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The Motivation

Why up to Isogeny?

Easier problem might shed light on the harder problem.

The theory might actually be nicer.

Fits in well with a different perspective on Shimura varieties.

In the end we obtain stratifications of the special fibers of
Shimura varieties.
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Isogenies of Dieudonné Modules

Definition

We say two Dieudonné modules M and N are isogenous if:

M ⊗Zp Qp ' N ⊗Zp Qp

Basically we are just inverting p. But what does this have to do with
isogenies?

Theorem

Let f : G → H be a morphism of p-divisible groups. The following are
equivalent:

f is an isogeny.

M(f ) : M(H)→ M(G ) is injective.

The induced map M(H)⊗Qp → M(G )⊗Qp is an isomorphism.
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Isomorphism classes of Isogenous Dieudonné Modules

The functor from isogeny classes of p-divisible groups to modules over
A = W (k)[1/p]〈F 〉 taking:

G 7→ M(G )⊗Zp Qp

is an anti-equivalence between p-divisible groups up to isogeny and
such modules where there exists an F , pF−1 stable W (k)-lattice M.

Theorem

The isomorphism classes of p-divisible groups isogenous to a fixed
p-divisible group G are in bijection with the isomorphism classes of
F , pF−1 stable W (k)-lattices contained in

M(G )⊗Zp Qp
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Category of A modules

The classification of p-divisible groups up to isogeny is thus highly
related to the classification of Dieudonné modules up to isogeny
which is in turn related to:

Question

What is the structure of the category of finitely generated modules
over

W (k)[1/p]〈F 〉?

It should be emphasized that not all finitely generated W (k)[1/p]〈F 〉
modules actually come from an isogeny class of p-divisible groups.
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Some Observations

Regardless of the field k over which we work every finitely generated
W (k)[1/p]〈F 〉-module admits a grading by irreducible
W (k)[1/p]〈F 〉-modules.

We thus really only need to understand the irreducible
W (k)[1/p]〈F 〉-modules and their extension classes.

If k is a finite field then by restriction every finitely generated
A-module becomes a finitely generated Qp[F ] module. We will not
actually use this observation, but it gives a reason to believe a good
structure exists.
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Semi-simplicity (k-algebraically closed)

The important structure theorem is the following:

Theorem (Manin)

Suppose k is algebraically closed. The category of finitely generated
W (k)[1/p]〈F 〉-modules is semi-simple. The simple objects being the
modules:

Es/r = W (k)[1/p]⊗Zp〈F 〉 Zp[F ]/(F r − ps)

where r , s are coprime integers, r > 0.

Note that
Es/r ⊗ Es′/r ′ = E

gcd(r ,r ′)
(sr ′+rs′)/rr ′

which motivates the convention used in some sources:

E(ns/nr) = En
s/r .
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Main Steps of Proof

The main steps of the proof are to prove each of the following
statements.

1 There are no non-trivial morphisms Eλ → Eλ′ for λ 6= λ′.

2 Any non-trivial morphism Eλ → Eλ is an isomorphism.

3 There are no non-trivial extensions of Eλ by Eλ′ .
(This uses that k is algebraically closed.)

4 Every A-module has a quotient isomorphic to Eλ for some λ.
(This uses that k is algebraically closed.)

5 The modules Eλ are simple.
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Some comments

It is not surprising that Qp[F ]/(F r − ps) is simple since it is a ‘field’.
It is also not surprising it remains simple after unramified base
extensions. Note that in this context the resulting object is a
‘skew-field’ and not a ’field’.

The statements about morphisms between these is then also not so
surprising. Though the actual proof is a direct computation showing
no element of Es/r is acted upon by F r ′ as ps′ unless s/r = s ′/r ′.

The statement about extensions being trivial reduces to showing that
the operator F r ′ − ps′ is surjective on Er/s . This is done by proving
you can solve a certain system of equations using that k is
algebraically closed.
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For an irreducible W (k)[1/p]〈F 〉-module M of dimension r over
W (k)[1/p] then for all 0 6= x ∈ M the set:

{x ,Fx ,F 2x , . . .F r−1x}

is a W (k)[1/p] basis for M and thus we can ‘represent’ F by the
matrix: 

0 0 . . . a0

1 0 . . . a1

. . .
...

1 an


When k is algebraically closed we are claiming that there exists

x ′ =
∑

biF
ix

with F r ′x ′ − ps′x ′ = 0. These equations can be solved over an
algebraically closed field once one picks appropriate values r ′, s ′.
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Slopes

We define the slope of the simple Dieudonné module Eλ to be λ.
This slope entirely determines the isomorphism class for simple
modules over an algebraically closed k.

One should notice that when we express:

λ =
s

r

then:

r is the dimension of the Dieudonné module which if this came
from a p-divisible group would be that groups rank.

If this were coming from a p-divisible group then s would be the
dimension of the tangent space of the group.
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Newton Polygons

As slopes determine the simple modules over an algebraically closed k .
A collection of slopes given in increasing order and with multiplicity:

λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn

determines an isomorphism class of A-module when k is algebraically
closed. Concretely it determines the A-module:

Eλ1 ⊕ Eλ1 ⊕ · · · ⊕ Eλn−1 ⊕ Eλn .

One can arrange this collection of ‘slopes’ into pictures which we call
Newton polygons. To the slope s/r we draw a line segment of slope
s/r of horizontal length r .
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Example Polygons
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Computing Newton Polygons

Question

Given an A-module how would you go about computing the Newton
polygon?

Suppose k has pa elements. Then for any W (k)[1/p]〈F 〉-module we
have that F a is linear.

Theorem (Manin)

Let M be a Dieudonné module over W (k)[1/p]〈F 〉 where k has pa

elements. Let P(X ) = det(F a − X id) =
∏

(τi − X ) be the
characteristic polynomial of F a. Then the slopes of M are:

vW (k)(τi )

counted with multiplicities.

This follows based on a straight forward computation using the
classification theorem.
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Newton Polygons of p-divisible groups

Not all possible A-modules arise from p-divisible groups and thus not
all Newton polygons arise from p-divisible groups. This leads to the
natural question:

Question

Which A-modules arise from p-divisible groups?

To which we have the following answer:

Theorem

A Newton polygon arises from a p-divisible group if and only if all the
slopes λ satisfy 0 ≤ λ ≤ 1.

Set:
W = Lim

→
(Ker pn : WFp →WFp)

Then the associated group Gλ is the kernel of the map F r − V s

acting on W .
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Newton Polygons of Abelian Varieties

Given the existence of a map from abelian varieties to Newton
polygons (by way of the associated p-divisible group and its
Dieudonné module) a very natural question arises

Question

Which Newton polygons are in the image of this map?
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Admissible Newton Polygons

The answer depends on what structures your abelian variety can have.

Dimension g start (0, 0) end at (2g , ∗).

A polarization implies it is ’symmetric’, in the sense that λ and
1− λ must appear with the same multiplicity.

This in turn implies the end point is (2g , g).

Theorem

Every Newton polygon satisfying the above arises from an abelian
variety.
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Kottwitz Formulation

It is sometimes useful to encode data about decompositions of vector
spaces using the representation of a torus on the vector space. This is
what is typically done with the Hodge filtration in the theory of
Shimura varieties.
The same thing can be accomplished for slopes. Since we want
rational slopes Gm is insufficient its character group is Z. However,
using that the character group of the pro-algebraic group:

D = Lim
←

Gm

is Q the slope decomposition for M can be encoded in by a
representation of D on M.

In the end one finds themselves interested in the σ-conjugacy classes
of the representations of D satisfying axioms making them admissible.
We will not go so deeply into the theory.
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Basic Stratum

Theorem

The subset of abelian varieties with a given Newton polygon in the
special fibre of a Shimura variety gives a stratification.

Using the interpretation of Kottwitz we define the following:

Definition

The basic stratum is the one for which the cocharacter of D factors
through the centre of the corresponding reductive group.

In general the basic strata are the lowest dimensional (hence closed)
strata, they correspond to the ‘highest’ possible Newton polygons.
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Example

For the case of polarized abelian varieties the reductive group is the
group of symplectic similitudes GSp2g and its centre is the scalar
multiples of the identity.
The only cocharacter which can factor through the centre have a
single eigenvalue. Thus, the basic stratum is those whose Newton
polygons have all slopes equal.
In this was we see that the basic stratum for the family of polarized
abelian varieties consists of supersingular abelian varieties.
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Additional Structures

The functoriality of the construction tells us that if an abelian variety
has endomorphism algebra B then these must also act on the
Dieudonné module. This leads to another natural question:

Question

What restrictions on the Newton polygon is imposed by the existence
of extra endomorphisms?

This problem is important as it is highly linked to studying the special
fibres of PEL Shimura varieties.

We won’t give all the results, as there are too many cases, we just
mention one example...
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The case of real multiplication

Suppose we restrict attention to the case of principally polarized
abelian varieties of dimension g with real multiplication by OK , here
K is a totally real field in which p is inert of degree g over Q.

Theorem (Goren-Oort)

The Dieudonné module of A an abelian variety as above is of the
form either:

E`/g ⊕ E1−`/g

for some 0 ≤ ` ≤ g (we are not assuming `, g coprime) or

E g
1/2.

Their results actually say much more than this, they in fact give the
dimension of the moduli space for the possible Newton polygons.
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The End
Thank you.
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