
TRAVAUX DE SHIMURA

DELIGNE (TRANSLATION - ANDREW FIORI)

This translation was performed as part of my attempts to understand the content, consequently,
mathematical errors of translation may have occurred.

TODO-Isomorphism arrows are often just arrows
TODO-equation labeling

0. Introduction

Let X/Γ be the quotient of a hermitian symmetric domain X by a discrete arithmetic group
Γ (suppose that it is defined by congruence conditions (see 1.7). via Baily and Borel, X/Γ is a
complex algebraic varieties. In [Shi64],[Shi67b],[Shi67a] and [Shi70], Shimura shows among other
things, that for many cases of these varieties, they can be defined over explicit number fields. This
is the subject of the present exposition.

To obtain proper results, we are forced to use an adelic language. This will force us to consider
for a given “congruence condition” a scheme over C, which is the disjoint union of a finite number
of varieties of the form X/Γ (see 1 and 2). In a number of cases, these schemes can be defined
over a number field E which is independent of the congruence conditions considered. These
geometrically connected components, can be defined over the class field of E. This phenomenon,
which is essential, will be neglected in the rest of this introduction.

In a small number of cases, X/Γ can be interpreted as the space of isomorphism classes of complex
abelian varieties, together with additional algebraic structures (polarization, endomorphism, order
n points). The sounding, over Q, of a moduli problem, gives a scheme M defined over an explicit
field F for which X/Γ is thus the complex points. We call M a ‘model of X/Γ. The fundamental
case of this is abelian varieties with a principle polarization, together with a level N structure (see
1.6,1.11,4.16,4.17,4.21).

In other cases, X/Γ can be interpreted as a collection of isomorphism classes of complex abelian
varieties, with structures as above but also with higher cohomological structures of type (pp)
ai ∈ H2p(A× · · ·×A,C) ([Mum66]). In such cases, the idea is to construct a model M for X/Γ as
a subscheme of a model M ′ constructed for X ′/Γ′. We start by constructing in M ′ the points which
correspond to abelian varieties of C.M. type (maximum complex multiplication). We define then
M as the gluing together of all these points. This construction relies on the detailed understanding
of C.M. abelian varieties from [ST61].

In the cases considered above, we have at our disposal a lot of information about the field of
definition of the points of M which correspond to C.M. abelean varieties. This permits us to give
a solution to the 12th of Hilbert’s problems ([Shi68] and 3.15, 3.16).

By looking at the things these cases have in common, we create a notion of a ‘canonical model’
for X/Γ (3). We show that there is at most one such, descent techniques permit us to construct
several canonical models for certain moduli problems ([Shi67b],[Shi67a],[Shi70],[Miy71]). For the
description of these “strange modeles”, we refer you to ??.

We will denote by Z/n(z) the group scheme µn of the nth roots of unity in a fixed algebraically
closed field k. For k = C, the exponential map permits us to identify Z/n(1) and Z/n. The groups
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Z/n(1) forms a projective system under the maps φn,m : x 7→ xn/m. We define:

Ẑ = lim
←

Z/nZ '
∏
p

Zp, Ẑ(1) = lim
←

Z/nZ(1)

We also denote by Af = Q ⊗ Ẑ the finite adeles, and Af (1) = Q ⊗ Ẑ(1) = Af ⊗Ẑ Ẑ(1). We shall
denote by A the complete ring of adeles of Q.

Remark. There appears to be a typo, in that Z(1) is never defined but is used to define Ẑ(1).

We will use the following notation:

• π0(X) (for any topological space X) is the connected components of X, we will think of
it as having the quotient topology of X and thus be discrete or compact and complete
disconnected.
• G0 (for a topological group G) is the connected component of the identity.
• G(K), GK , G⊗F K for a scheme G over F and an F -algebra K are the points and respec-

tively the scalar extension to K.
• E∗ for E a finite dimensional algebra over a field F denotes the algebraic group of units in
E. For E also a field E∗(A)/E∗(Q) is the idele class group of E.

We will say that an algebraic group G over Q satisfies the Hasse principle if H1(Q, G) =
H1(Gal(Q/Q), G(Q)) injects into the product

∏
ν H

1(Qν , GQν ) over all completions of Q. We will
use the following theorems:

Remark. I am not sure when any of the following are true for non-simply connected groups.

Theorem 0.1 (Hasse Principle). A semi-simple simply connected algebraic group with no E8

factors satisfies the Hasse principle.

[Har66]

Theorem 0.2. A simply connected semi-simple group G over a local non-Archimedean field satis-
fies H1(K,G) = 0. (See Bruhat-Tits [BT67]).

Theorem 0.3 (Strong approximation). Let G be a simply connected semi-simple group defined
over a global field K. If G is K-simple and if ν is a place of K such that G(Kν) is non-compact,
then G(Kν)G(K) is dense in G(A). (see Platonov [Pla69])

Theorem 0.4 (Real approximation). Let G be a connected linear algebraic group over Q. Then
G(Q) is dense in G(R). (This reduces to the case of tori, which is a corollary in [Kne65, 5.1].)

1. Adelic Language

1.0. Summary. X/Γ hermitian symmetric.
G reductive group. (No non-trivial closed connected normal unipotent subgroups).
G′ the group closure of the image of [G,G], that is the commutator subgroup.
T = G/G′.
C = Z(G) the center of G.
C ∩G′ is a finite group.
Fix G and π a faithful representation, a G structure is an element of: i ∈ Isom(Vπ,W )/π(G(Q)).

(If G = Aut(V, Struct) then it is like setting i = Isom((V, Struct), (W,Struct′)) where Struct′ is

the transfer of structure). Gi is iGi−1 ∈ GL(W ).

H are objects (H, i, h, k) where H is a vector space with G structure i. h : S → Gi
R with

i−1hi : S → GR. k ∈ Isomi(H ⊗ Af , V ⊗ Af ).
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1.1. Let G be a reductive group over Q. We denote by G′ the derived group of G, by C the
center of the identity component of G, and by T = G/G′. We will make use of the following exact
sequences of algebraic groups:

0→ C → G→ G/C → 0

0→ G′ → G
ν→ T → 0

The compositions of maps which maps C → T and G′ → G/C are isogenies of order C ∩G′.

1.2. Let S be the real algebraic group of invertible elements in the R algebra C. That is the
algebraic group which is given by the Weil restriction of scalars from C to R of the group Gm. We
have that S(R) = C∗ and SC ' GmC×GmC. The group Hom(SC,GmC) of characters of SC has as
a basis the characters corresponding to z and z in such a way that the maps:

C∗ = S(R) ↪→ S(C)
z,z−→ C∗

respects complex conjugation.
Let V be a real vector space. For every representation H : S → GL(V ), we denote by V pq the

subspace of VC under which S acts by the character zpzq. The spaces V pq form a bigradation of VC
and the map h 7→ V pq identifies the representations of S in GL(V ) with all of the Hodge structures
on VC (those such that V pq = V qp. We denote by F (h) the associated hodge filtration of VC such
that:

F (h)p = ⊕p′≥pv
p′q′

1.3. We denote by R : GmC → SC the C-homomorphism such that (zpzq) ◦ r = (x 7→ xp) and by
W : CmR → S the R-homomorphism such that (zpz1 ◦ w = (x 7→ xp+q). For h : S → GL(V ) and
vpq ∈ V pq we have:

h(r(x))(vpq) = xpvpq

and
h(w(x))(vpq) = xp+qvpq

The composite w : R∗ = Gm(R)
w→ S(R) = Cast is the natural inclusion.

1.4. Let h : S → GR be a homomorphism. For all representations ρ : G → GL(V ) of G on a
Q vector space V , ρh defines a bi-grading on VC (1.2). If V is a faithful and G is a subgroup of
GL(V ) which preserves some tensors si, the construction h 7→ (V pq) identifies homomorphisms h
with hodge filtrations of VC such that si are of type (0, 0).

1.5. Let h0 : S → GR be a homomorphism which satisfies the following conditions (see [Mum66]
and [?]; the second is motivated by Griffiths transversality)

1.5.1. The image of h0w : Gm → GR is central. We call h0w the weight of h0.

1.5.2. The hodge structure of Lie(G)C the complexified lie algebra given by the representation
attached to it through the adjoint representation (1.2) is of type (-1,1),(0,0),(1,-1).

1.5.3. The automorphism adh0(i) of G (an involution by 1.5.1 induces a cartan involution of G′.
Let K∞ be the centralizer of h0 in G(R); it contains the center of G(R) and K∞ ∩ G′(R)0

is a maximal compact subgroup of G′(R)0, which is equal to the centralizer of h0(i) in G′(R)0.
The space K∞\G(R) is identified with the collection X of conjugates of h0 by elements of G(R).
We verify that it possesses one and only one complex structure such that for all representations
ρ : G → GL(V ) the filtration F (ρh) of VC depends holomorphically on h ∈ X. This structure is
right invariant under G(R), and the connected components of X are hermitian symmetric domains.
We denote by X0 the connected component containing h0.
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1.6.

Example. Let Gp(V ) be the group of symplectic similitude of a real vector space V which has an
non-degenerate alternating form ψ. There exists then a unique conjugacy class X of homomor-
phisms h : S → Gp(V ) satisfying the conditions (1.5 i) which is of weight −1. That is the weight
hw : Gm → Gp(V ) maps x 7→ x−1. This space X is identified with two copies of the Siegel Space.

The construct (1.5) identifies the h ∈ X with decompositions VC = V −1,0⊕V 0,−1 which are totally
isotropic with respect ψ, and that, if C denotes an endomorphism of V which induces multiplication
by ip−q on V pq, the symmetric form ψ(x,Cy) = ψ(x, h(i)y) on V will be either positive or negative
definite.

1.7. Let Γ be an arithmetic subgroup of G(Q). We are interested in the case where Γ is defined by
congruence conditions. If VZ is an integral lattice in a faithful representation V of G, this implies
that there exists n such that Γ contains as a finite index subgroup Γn ⊂ G(Q) the γ ∈ G(Q) such
that γ ∈ G(R)0, γVZ = VZ and γ ∼= Id mod n. By Baily and Borel, the quotient X0/Γ comes
naturally with the structure of a quasi-projective scheme over C. Let Kn be the open compact
subgroup of G(Af ) formed by the k = (kp) such that kp · VZ ⊗ Zp = VZ ⊗ Zp and such that kp ∼= 1
mod n when p|n. The group Γn is then the intersection in G(A) of G(Q) and G(R)0 ×Kn.

1.8. Let K be a compact open subgroup of G(Af ). The space:

K∞ ×K\G(A)/G(Q) = K\X ×G(Af )/G(Q) = X ×K\G(Af )/G(Q)

is thus the union of a finite collection of spaces like thos considered in 1.7. It is thus a quasi-
projective scheme over C. We denote it by KMC(G, h0) (or simply KMC(G) or KMC).

For K which become smaller and smaller, these schemes form a projective system where the
transition maps are finite and surjective:

KMC(G, h0) (K → 0)

We denote by MC(G, h0) (or simply MC(G) or MC) the quasi-compact and separated (but not
of finite type unless G = {1}) the projective limit of this system:

MC(G, h0) = lim
←
K∞ ×K\G(A)/G(Q)

We must consider it like an avatar of the projective system above. The group G(Af ) acts on MC,
or, if we would prefer to say it differently, on the pro-object defined by the projective system, but
certainly not on the individual KMC. We have that:

K\MC = KMC

in the sense that:
MC = lim

←
K\MC K compact open in G(Af )

This amounts to saying that G(Af ) acts continuously on MC.
The following construction is useful for interpreting KMC like a moduli scheme.

1.9. Let H be an algebraic group over Q and V a faithful representation of H. We define an
H structure i on a vector space W as an isomorphism of V with W given modulo H(Q) : i ∈
Isom(V,W )/H(Q). If H(Q) is the automorphism group of a structure s of the space Σ on V , then
an H-structure on W is identified with a structure t of the same space Σ on W , which is isomorphic
to s (with i = Isom((V, s), (W, t)). Let W be a space with an H-structure i. The algebraic group

iHi−1 ⊂ GL(W )(i ∈ i) depends only on i. We will denote it by H i. Let A be a Q algebra. The
collection Isom(W ⊗ A, V ⊗ A) of isomorphism permis fo W ⊗ A with V ⊗ A is the collection
of isomorphisms k such that for i ∈ i we have ki ∈ H(A).
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1.10. Let (G, h0) be as in (1.5), V be a faithful linear representation of G, K a compact open
subgroup of G(Af ) and consider objects H of the following type: H consists of:

(1) A vector space HQ over Q together with a G-structure i (1.8).

(2) A homomorphism h : S → Gi
R such that for i ∈ i, i−1hi : S → GR is conjugate to h0.

(3) A class k ∈ K\ Isomi(H ⊗ Af , V ⊗ Af ) (1.9)

1.11.

Example. Following up on 1.6. Let V be a Q-vector space together with a non-degenerate alter-
nating form ψ, G the group of symplectic similitudes of V , VZ an integral lattice in V on which ψ
has discriminant 1 and h0 like as in 1.6. Take K =

∏
lGp(VZ ⊗ Zl).

An element (a) above, can be interpreted as a vector space H of the same dimension as V ,
together with an alternating form ψ given up to rational rescaling. An element (b) as above, is like
giving a hodge bigrading to HC as in 1.6. An element (c) is like giving an integral lattice HZ of
H such that a rational multiple of ψ has integral values and discriminant 1: k is the collection of
k such that for all l, VZ ⊗ Zl = kl(HZ ⊗ Zl). we can normalize ψ by conditions of having integral
values of discriminant 1 on HZ, and satisfies ψ(x,Cx) > 0 (1.6).

Let n be an integer, and Kn the subgroup of K formed by taking the k such that k ∼= 1
(mod n)). For Kn, an element of type (c) is interpreted as HZ as above, plus a symplectic symili-
tude HZ/nHZ → VZ/nVZ.

1.12. Under the hypotheses of 1.10, the points of KMC(G, h0) are in bijective correspondence with
the isomorphism classes of objects H of the type in 1.10. In effect we have H = (HQ, i, h, k); to
H with i ∈ i we associate the morphism i−1hi : S → GR, the element of X ' K∞\G(R), and
ki in K\G(Af ) and together they make an element of K\X × G(Af ); to H alone we associate
only an element of KMC(G, h0) = K\X ×G(Af )/G(Q) = K∞×K\G(A)/G(Q) which determines
uniquely the isomorphism class of H.

In certain cases (see 4.11), to give an object H is to give an abelian variety, together with some
auxiliary structures. We thus obtain an interpretation of KMC(G) as a moduli scheme coarsely of
this type of abelian variety.

1.13. Let Gi(i = 1, 2) be two reductive groups with hi : S → Gi
R homomorphisms satisfying

the conditions of 1.5 and X i be the collection of conjugates of hi by elements of Gi(R). Let
G = G1×G2, h : S → GR be the morphism (h1, h2) and X = X1×X2 the collection of conjugates
of h. We define in the natural way an isomorphism:

MC(G1, h1)×MC(G2, h2) = MC(G, h)

For Ki compact open in Gi(Af ) and K = K1 ×K2 we likewise have:

K1MC(G1, h1)× K2MC(G2, h2) = KMC(G, h)

1.14. Let G1, G2, h1, h2 be as in 1.13. We denote by u : (G1, h1) → (G2, h2) a homomorphism
u : G1 → G2 such that uX1 ⊂ X2. Such a homomorphism defines:

u : MC(G1, h1)→MC(G2, h2).

For Ki compact open in Gi(Af ) with u(K1) ⊂ K2 it defines:

u(K1, K2) : K1MC(G1, h1)→ K2MC(G2, h2).
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1.15.

Proposition. With the notation as in 1.14 suppose that G1 is a subgroup of G2, thus for all
compact open subgroups K1 of G1(Af ) there exists a compact open subgroup K2 ⊃ K1 of G2(Af )
such that u(K1, K2) identifies K1MC(G1, h1) with a closed subscheme of K2MC(G2, h2).

If the Ki are sufficiently small so that the image of X i × (K\Gi(Af )) in KiMC(Gi, hi) is etale,
then the map u(K1, K2) is finite and unramified. It suffices to consider this case and to show that
u(K1, K2) is injective when K2 ⊃ K1 sufficiently small. The graph of the equivalence relation
u(K1, K2)(x) = u(K1, K2)(y) is a closed subscheme of (K1MC(G1, h1)2 which decreases with K2

and is thus fixed for K2 ⊃ K1 sufficiently small. It suffices to show:

u(K1) : K1MC(G1, h1)→ lim
←

K2⊃K1

K2MC(G2, h2)
def
= K1MC(G2, h2)

is injective. We have:

K1MC(G1, h1) = K1\MC(G1, h1)

K1MC(G1, h1) = K1\MC(G2, h2)

so that it suffices to prove:

Claim. u : MC(G1, h1)→MC(G2, h2) is injective.

This assertion follows easily from the following two lemmas.

Lemma. If U i ⊂ Ci(Q) TODO-le group des unites in the center of Gi and let Gi(Q) =
lim←
n

(Gi(Q)/(U i)n then:

MC(Gi, hi) = Ki
∞\Gi(A)/Gi(Q)

This is a corollary to Chevalley’s theorem that the (U i)n are congruence subgroups of U i.

Lemma. u : G1(Af )/G1(Q)∨ → G2(Af )/G2(Q)∨ is injective.

TODO- the ∨ may be upside down

0 // G1(Q)∨

��

// G2(Q)∨

��

// G2/G1(Q)∨

!
��

0 // G1(Af )∨

��

// G2(Af )∨

��

// G2/G1(Af )∨

G1(Af )∨/G1(Q)∨ // G2(Af )∨/G2(Q)∨

Where G2/G1(Q)∨ = lim
←

(G2/G1)(Q)/(U2/U1)n.

2. Connected Components

2.1. Let G be a connected reductive group over Q. Recalling the notation of 1.1 and suppose that
G′ has no non-trivial normal subgroups H with H(R) compact. This hypothesis doesn’t exclude
the possibility that G′ has compact factors. We let G̃′ be the simply connected cover of G′.
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2.2.

Proposition. • The group G(Af ) acts transitively on the connected components of G(A)/G(Q).
• The group G̃′(A) acts trivially on these.
• G(A)/ρ(G̃′) is commutative

The first assertion is a consequence of 0.4 G(A) = G(Af )G(R)0G(Q).
Because G̃ is simply connected, the group G̃(R) is connected, Thus by 0.3 we have G̃(R)G̃(Q) is

dense in G̃(A), in the sense that G̃(A)/G̃(Q) is connected. For x ∈ G(A) we have G̃(A)x = xG̃(A)
in the sense that G̃(A)x in G(A)/G(Q) is an image of G̃(A)/G̃(Q) it is connected, and the second
assertion follows.

Let Z be the center of G̃′, the third assertion results from the fact that the commutateur
xyx−1y−1 : G×G→ G admits a factorization:

G×G→ G/C ×G/C ← G̃′/Z × G̃′/Z → G̃′ → G

2.3.

Definition. We denote by π(G) the abelian quotient (a further quotient of G(Af )/ρ(G̃′)) which
acts transitively on components.

In other words, π(G) is π0(G(A)/G(Q)), together with the structure of a commutative group.Recall
the following theorem.

2.4.

Theorem. Under the conditions of 2.1, if G′ is simply connected then there is a canonical bijective
homomorphism:

π(G) = π0(G(A)/G(Q))→ π0(T (A)/T (Q))

To prove the surjectivity of 2.4 it suffices after 2.2 applied to T to show that G(Af ) is sent onto
T (Af ). The kernel G′ of νG→ T is connected. We know that for almost all p, ν(G(Zp)) = T (Zp)
(this formula makes sense for almost all p and is a corollary of the theorem of Lang applied to G′

reduced modulo p). It suffices thus to prove that for all p, ν(G(Qp)) = T (Qp), this is a consequence
of 0.2 applied to G′.

The theorem 2.4 is equivalent to the following more concrete formulation:

2.5.

Theorem. For every compact open subgroup K ⊂ G(Af ) we have that:

ν : π0(K\G(A)/G(Q))→ π0(ν(K)\T (A)/T (Q))

is bijective.

It effect, π0(G(A)/G(Q)) = lim← π0(K\G(A)/G(Q)), and the same for T . By TODO-ailleurs
= elsewhere π0(K\G(A)/G(Q)) = G(R)0 ×K\G(A)/G(Q). Shows that if x, y ∈ G(A) have the
same image in the member in the right of 2.5 they also have the same image in the member on
the left. A left translation by y−1 which replaces K by y−1Ky permits us to suppose that y = e.
Modifying x by an element of G(R)0 ×K we can suppose that ν(x) = τ with τ ∈ T (Q). By the
Hasse principal (0.1) for G′ the equation m(γ) = τ has a solution in G(Q). Correcting x by γ, we
can suppose that x ∈ G(A). As a result of 2.22 the image of x in G(A)/G(Q) is in the identity
component, thus a fortiori x and y have the same image in the member on the left of 2.5.

This proof seems to use via 0.1 that G′ has no E8 factors. In fact, the class in H1(Q, G′) which
obstructs the equation m(γ) = τ comes from the center of G′ and the factors E8 are adjoint, this
accounts for the butter.
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2.6.

Proposition. We have that K∞ = C(R) · (K∞ ∩ G′(R)0. The group K∞ ∩ G′(R)0 is connected
and:

π0(K∞)→ Im(π0(C(R)))→ π0(G(R))

Let h′ : S → GR → (G/C)R. The centralizer of h′ in (G/C)R is connected because it is a compact
group and thus the complexification is connected (as the centralizer of a torus). In particular, the
image of K∞ in G/C(R) lands in the connected component of the identity, the image of G′(R)0

and K∞ = C(R)(K∞ ∩ G′(R)0). The group K∞ ∩ G′(R)0 is connected in all maximal compact
subgroup of connected group. 2.6 follows.

2.7. The image of π0(K∞) in π0(G(A)/G(Q) doesn’t depend on the conjugacy class of h, and
π0(MC(G, h)) = lim← π0(K∞ ×K\G(A)/G(Q)) identifies with π(G)/π0(K∞).

In particular, if G′ is simply connected we have:

π0(MC(G, h))→ π0(T (A)/T (Q))/π0(K∞)

More concretely, for all compact open subgroup K of G(Af ), π0(KMC(G, h)) is thus a principal
homogeneous space under ν(K∞ ×K)\T (A)/T (Q).

3. Models

3.0. Summary. We define the notion of model over an algebraic field.
We introduce how models relate for subvarieties.
We describe what a good model for special points is.
We define the notion of canonical model to be one which has good model for all its special points.

3.1. Let G be a reductive group over Q, h : S → GR satisfy the conditions of 1.5 and let E be a
field together with a complex embedding ρ : E → C. We write MC(G) = MC(G, h).

Definition. A model over E of MC(G) consists of:

(1) A scheme M over E, endowed with a continuous action of G(Af );
(2) An isomorphism m of M ⊗E,ρ C with MC(G) compatible with the action of G(Af ).

Let F be a finite extension of E, together with a complex embedding extending that of E. If
ME(G, h) is a model of MC(G, h) over E, we denote by MF (G, h) the model ME(G, h) ⊗E F of
MC(G, h) over F .

3.2.

Remark. To give a scheme M over E together with a continuous action of G(Af ) amounts to
giving:

(1) for every open compact subgroup K of G(Af ) a scheme KM over E;
(2) for every K and L two compact open subgroups of G(Af ) and for x ∈ G(Af ) with xKx−1 ⊂

L a homomorphism JL,K(x) : KM → LM such that these homomorphisms satisfy:
(a) JM,L(y)JL,K(x) = KM,K(yx).
(b) JK,K(x) = Id if x ∈ K.
(c) ForK normal in L, J defines an action of L/K on KM and JL,K(e) defines (L/K)\KM →

LM .

We will have:
M = lim

← KM

KM = K\M
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3.3. Let M(G) be a model over E of MC(G). For K compact open in G(Af ), we let KM(G) =
K\M(G). The KM(G) are quasi-projective schemes over E, they are not necessarily geometrically
connected. The structural isomorphism m induces an isomorphism:

KM(G)⊗E,ρ C→ KMC(G).

3.4. Suppose that G verifies the hypothesis of 2.1 and that (M,m) is a model of MC(G, h) over
E. Let E be the algebraic closure of E in C. Since M is defined over E, Gal(E/E) acts on the
profinite system:

π0(M ⊗E E = lim
←
π0(KM ⊗E E)→

m
π0(MC(G, h)).

The group G(Af ) acts on π0(M⊗EE) through its quotient π(G)/π0(K∞) and π0(M⊗EE) is a prin-
ciple homogeneous space under the commutative group π(G)/π0(K∞). The action of Gal(E/E)
commutes with that of G(Af ) and thus with that of π(G)/π0(K∞). The action of an σ of Gal(E/E)
can be nothing but the translation defined by an element λ(σ) of π(G)/π0(K∞) and λ is a homo-
morphism:

λM : Gal(E/E)→ π(G)/π0(K∞).

Suppose that E is a number field. Class field theory identifies the largest abelian quotient of E/E
with π0(E∗(A)/E∗(Q)) and the above as:

λM : Gal(E/E)ab = π0(E∗(A))/E∗(Q))→ π(G)/π0(K∞).

In the case that G′ is simply connected, then using 2.7 the homomorphism above is:

λM : π0(E∗(A)/E∗(Q))→ π0(T (A)/T (Q))/π0(K∞).

3.5.

Definition. The homomorphisms above are called The law of reciprocity of the model M . If
G′ is simply connected and λM comes from a homomorphism of algebraic groups over Q of E∗ in
T this last one is again called the reciprocity law of M .

3.6. For each of the models constructed by Shimura, there exists a rule for determining E and
the reciprocity law λM from G and h. The field E, for arbitrary G and λM when G′ is simply
connected are described as follows.

3.7. The composition of the homomorphisms h ◦ r of 1.3:

hr : Gm
r→ SC

h→ GC

is a homomorphism over C between algebraic groups defined over Q. The subfield E of C is the
field of definition E(G, h) of the conjugacy class of this homomorphism.

For G semi-simple and adjoint, the field E(G, h) can be described as follows. Letting ∆ be
the Dynkn diagram of GC and |∆| the collection TODO-sommet?? of ∆. The Galois group
Gal(Q/Q) acts on ∆.

Let H be a maximal torus of GC, together with a system of simple roots (αi)i∈|∆|. The αi identify

H with G|∆|m . For all homomorphisms u : Gm → GC. There exists a unique homomorphism
u′ : Gm → H = G∆

m : x 7→ (xni)i∈|∆| with ni ≥ 0, which is conjugate to u. The construction
n 7→ n(u) = (ni)i∈|∆| identifies the conjugacy classes of maps of Gm in GC with the collection of

functions of |∆| into N. We deduce that the field E(G, h) is defined by the subgroup of Gal(Q/Q)
which stabilizes n(hr).
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3.8.

Proposition. Let G/C =
∏g

i=1Gi be the decomposition of the adjoint group G/C into Q-simple

factors, and let hi be the composition hi : S
h→ GR → GiR.

(1) The subfield E(G, h) of C is the composition of the subfields E(T, ν ◦ h) and E(Gi, hi) for
(1 ≤ i ≤ g) of C.

(2) If the involution TODO-d’opposition of the Dynkin diagram of Gi respects n(hir) then
E(Gi, hi) is totally real. Otherwise, E(Gi, hi) is a quadratic imaginary extension of a totally
real field.

The first assertion is easy to check, and it suffices to prove the second in the case of G a Q-simple
adjoint group. Let ∆ be its Dynkin diagram, as a result of the hypothesis in 1.5 that GR admits
a maximal compact torus; this implies that complex conjugation acts on ∆ by the involution
TODO-d’opposition i. This is in the center of the group of automorphisms of ∆.

Let E ′ be a Galois extension of Q defined by the subgroup of Gal(Q/Q) which acts trivially
on ∆. Thus, the image of σ (complex conjugation) is central in Gal(E ′/Q); it follows that E ′ is
totally real or a quadratic imaginary extension of a totally real field. Finally, σ is the identity on
E(G, h) ⊂ E ′ if and only if i respects n(hr) which is our assertion.

3.9. We recall the notation of 3.6. We suppose that G′ is simply connected, that E contains
E(G, h) and that the complex embedding of E extends that of E(G, h). The composite morphism:

r′′(h) : νhr : GmC
r→ SC

h→ GC
ν→ TC

depends only on the conjugacy class of hr. It is thus defined over E, that is, it comes from the
extension of scalars from E to C of a homomorphism of algebraic groups over E, again denote
r′′(h) : Gm → TE. Applying the restriction of scalars of Weil, et let r′(h) : E∗ → T be the
composite:

E∗ = RE/Q(GmE)
RE/Q(r′′(h))
−→ RE/Q(TE)

NE/Q−→ T

. The law of reciprocity of M is the inverse r(G, h) of r′(h):

r(G, h) = r′(h)−1 : E∗ → T

TODO-what??? shouldn’t inverse go the other way???

3.10.

Example. Let H be a torus and h : S → HR. The conditions of 1.5 are automatically verified.
The KMC(H, h) are finite collections. A reduced finite scheme over E(H, h) (3.7) is identified with
a Galois set. We deduce that there exists up to unique isomorphism one and only one model of
MC(H, h) over E(H, h), with the reciprocity law given by 3.9. We shall denote it M(H, h).

3.11. Let F be a finite extension of E, together with a complex embedding extending that of E.
The diagram:

F ∗
NF/E

//

r(G,h)

��
2222222222222 E∗

���������������

T

is commutative. If ME(G, h) is a model over E of MC(G, h) satisfying the reciprocity law of 3.9,
it follows that MF (G, h) (3.1) satisfies again the reciprocity law of 3.9.
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3.12. Let u : (G1, h1)→ (G2, h2) be like as in 1.14 and MEi(G
i, hi) be models of MC(Gi, hi) over

Ei. Let E be the composite of E1 and E2 in C. We have (in the notation of 3.1):

ME(Gi, hi)⊗E C = MC(Gi, hi) (i = 1, 2)

There is thus a sense in asking if

u : MC(G1, h1)→MC(G2, h2)

is defined over E.

3.13.

Definition. Let G be a connected reductive group over Q satisfying the conditions of 2.1. h : S →
GR a homomorphism satisfying the conditions of 1.5 and E and extension of E(G, h) (3.7) together
with an complex embedding extending that of E(G, h). A model ME(G, h) of MC(G, h) over E is
said to be weakly canonical if, for every torus u : H ↪→ G in G, together with h′ : S → HR such
that uh′ is a conjugate of h by an element of G(R), the morphism (1.14):

MC(H, h′)→MC(G, h)

is defined (3.103.12) over the composite E(H, h′) · E ⊂ C. A model ME(G, h) is said to be
canonical if it is weakly canonical and E = E(G, h).

3.14. Traduction. Let M be a canonical model of MC(G, h) with reciprocity law λM . If G′ is
simply connected, and thus λM is given by 3.9 (??). For every compact open subgroup K of G(Af )
denote again by ν(K) the image of K in π(G)/π0(K∞) and let E(K) be the extension of E(G, h)
defined by the idele classes λ)M−1(ν(K)). We verify that E(K) is the field of definition of the
connected component of the identity KM

0
C of KMC considered as a subscheme of KMC = KM⊗E,ρC.

By definition, KM
0
C is given by extension of scalars from E(K) to C of the subscheme KM

′ of

KM ⊗E E(K). The scheme KM
′/E(K) is geometrically connected over E(K) and we can again

describe the scheme KM
′ like that of the connected components (over E) of KM which, after

extension of scalars from E to C contain the origin.

KM

��

KM
′

��

oo
KM

0
C

��

oo

Spec(E(K))

wwppppppppppp
Spec(C)oo

Spec(E)

Shimura has the habit of expressing in terms of a system of varieties KM
′/E(K) and homomor-

phism like as in 2.2 that we have between these. For a typical such result see [Shi70, p146]. For
the traduction [Shi70, 2.7]

3.15. For u : (H, h′)→ (G, h) as in 3.13 the image of MC(H, h′) in KMC(G, h) is a finite collection.
The hypothesis is that this piece of KMC(G, h) is defined over E(H, h′), that these points are defined
over a finite abelian extension of E(H, h′) and that Gal(E(H, h′)/E(H, h′)) permutes the points
in a prescribed manner.

We call the points in KMC(G, h) that are in the image of KMC(H, h′) special.
Suppose that we have a projective embedding q : KMC0 → Pr that is defined over E(K). We

can interpret this as q̃ : X0 → Pr (cf. 1.7,1.8). If uh′ ∈ X is in X0, then the coordinates of q̃(uh′)
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will be in E(K)E(H, h′) an abelian extension of E(H, h′) which can be explicitly described as a
class field.

3.16. The classical example of a situation of such a situation is the example of the moduli of
elliptic curves (corresponding to the case G = GL2 and K = GL2(Ẑ), and h as in 1.6), the special
points here are elliptic curves with complex multiplication.

Let j be the modular invariant, viewed as a function on the Poincare half plane X0. If τ ∈ X0

generates a quadratic imaginary field K, let L(τ) = Z ⊕ Zτ ⊂ C, and θ(τ) = {k ∈ K|kL(τ) ⊂
L(τ)}. The field K(j(τ)) is an abelian extension of K whose Galois group is the idele class
group over the ring θ(τ). If σ in the Galois group corresponds to an invertible ideal L, and if
L(τ ′) ' L(τ)⊗θ(τ) L, we have j(τ) = j(τ ′)σ.

For more explicit and strange examples see [Shi68, p45-46].

4. Abelian Varieties

4.0. Summary. We describe abelian varieties with enough information to discuss the classifica-
tion, this is similar in many ways to what dylan talked about.

Construct a canonical model for the symplectic shimura variety

4.1. Let k be an algebraically closed field of characteristic 0. Let A be an abelian variety over k.
For n ∈ N+ we denote by An the kernel of multiplication by n. The An form a projective system
(φnm,nAnm → An by x 7→ xm) we define:

T̂ (A) = lim
←
An, V̂ (A) = Af ⊗Ẑ T̂ (A)

The Ẑ-module T̂ (A) is the product of the Tate modules (the Weil representation) Tl(A). If k = C
we have:

T̂ (A) = Ẑ⊗H1(A,Z)

and

V̂ (A) = Af ⊗H1(A,Q)

4.2. The category of abelian varieties up to isogeny over k is the category in which the objects
are abelian varieties over k and Homcat(A,B) = Hom(A,B)⊗Q. We denote by A⊗Q the abelian
variety up too isogeny underlying the abelian variety A. All additive functors on the category of
abelian varieties into an additive category which are Q-linear factor through A 7→ A ⊗ Q. Thus,
the contravariant functor of “dual variety” A 7→ A∗, descends to abelian varieties up to isogeny.
The functor A 7→ V̂ (A) descends likewise. Moreover, if A0 is an abelian variety up to isogeny, it is

equivalent to give B and an isomorphism B ⊗Q = A0 or to give T̂ (B) ⊂ V̂ (A0).

4.3. Let A be an abelian variety over k. We denote by NS(A) the group of algebraic equivalence
classes of invertible sheaves on A. We define an effective polarization (resp. polarization) to be
an element of NS(A) (resp. NS(A)⊗Q)) such that a positive multiple is defined by a projective
embedding of A. A polarization TODO-homogene is an element of NS(A)⊗Q/Q∗ which is the
class of a polarization.

Recall that NS(A)⊗Q is identified by a bijection p→ p′ with the elements of Hom(A,A∗)⊗Q
which are equal to their TODO-transpose (adjoint??). An isomorphism u ∈ Hom(A⊗Q, B⊗Q)
induces an isomorphism of Hom(A,A∗)⊗Q with Hom(B,B∗)⊗Q, from NS(A)⊗Q with NS(B)⊗Q
which takes polarizations to polarizations. This permits us to speak of the polarization of an abelian
variety up to isogeny.
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4.4. A polarization p of A defines in End(A)⊗Q a positive involution u 7→ p′−1u∗p′, which depends
only on the TODO-homogene polarization Q∗.p.

Let F be a product of totally real fields and let ρ : F → End(A)⊗Q. Let NSρ(A) ⊂ NS(A) be
the collection of p such that p′ρ(f) = ρ(f)∗p′ for f ∈ F . The vector space NSρ(A)⊗Q is equipped
for f ∈ F with an action of F given by (f · p)′ = p′ ◦ ρ(f) = ρ(f)∗ ◦ p′. A weak polarization of
A (relative to ρ, F ) is an element of NSρ(A) ⊗ Q/F ∗ which is the class of a polarization. The
collection of weak polarizations of A depends only on A⊗Q. The restriction to F of the involution
on End(A) ⊗ Q, defined by a polarization p ∈ NSρ(A), depends only on the weak polarization
F ∗ · p.

4.5. If A∗0 is the dual abelian variety up to isogeny of A0, then V̂ (A0) and V̂ (A∗0) are in duality
with values in Af (1). If p is a polarization of A0, the polarization form φf (x, y) = 〈x, p′(y)〉 is

a non-degenerate alternating form on the free Af -module V̂ (A0) with values in Af (1).
The results 4.1, 4.5 extend to abelian schemes over any base.

4.6. Let k = C. The additive functor A 7→ H1(A,Q) extends to abelian varieties up to isogeny
over C (4.2). For A0 an abelian variety up to isogeny, H1(A0,Q) and H1(A∗0,Q) are in duality. Via
4.12 and the isomorphism of Af (1) with Af defined by the exponential, this duality is compatible
with the one considered in 4.5. The alternating form ψp(x, y) = 〈x, p′(y)〉 on H1(A0,Q) defined by
a polarization p of A0 is called again the polarization form of the hodge structure of H1(A0,Q) and
the homomorphism h : S → GL(H1(A0,Q))R such that S acts on H1(A0,Q)⊗C by the characters
z−1 and z−1 and such that F (h)0 (1.4) is the kernel of the exponential H1(A0,Q)→ Lie(A).

4.7.

Theorem. The constructions:

(A, p) 7→ (H1(A,Q), ψp, H1(A,Z), h)

(V, ψ, VZ, h) 7→ F (h)0\V ⊗ C/VZ

establishes an equivalence between:

(1) Polarised abelian varieties over C;
(2) Systems formed of a vector space V over Q a non-degenerate alternating form ψ on V , a

lattice VZ in V and a homomorphism h of S into the group Gp(V )R of simplectic similitudes
of V ⊗ R of the type in 1.6 and such that:

ψ(x, h(i)x) > 0 (x ∈ V ⊗ R, x 6= 0)

4.8. It is equivalent to give either an abelian variety up to isogeny A over C, equipped with a
polarization TODO-homogene or to give a vector space over Q, together with a non-degenerate
alternating form φ, up to rescaling and a map h : S → Gp(B) of the type in 1.6.

4.9. Let L be a semi-simple algebra with involution over Q, and V a vector space over Q, given
with a faithful L-module structure and a non-degenerate alternating form ψ such that:

ψ(lx, y) = ψ(x, l∗y)

We denote by G the algebraic group over Q of L-linear simplectic similitudes of V . The group
G(Q) is the collection of g ∈ GLL(V ) such that there exists µ(g) ∈ Q∗ such that:

ψ(gx, gy) = µ(g)ψ(x, y)

Suppose we give a homomorphism h0 : S → GQ such that via h0, S acts on VC by the characters
z−1 and z−1 and that the form ψ(x, h0(i)y) is symmetric and positive definite. The conditions
(1.5.1 to 1.5.3) are thus verified by (G, h0) and the involution of L is positive.
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4.10. Apply (1.11) to (G, h0) and to the representation V of G. A G-structure i on a vector space
H is interpreted by 1.8, as giving to H the structure of an L-module and an alternating form ψ
given up to rescaling, the vector space H, together with these structures, is isomorphic to V . Let i
be a G structure on H. A given 1.9b h : S → Gi

R on H thus defines, after 4.8 applied to (H,ψ, h)
an abelian variety up to isogeny A, together with a polarization TODO-homogene p, such that
H is H1(A,Q), h the hodge structure of H1(A,Q) and ψ the polarization form. Moreover, the
L-module structure on H comes from ρ : L→ End(A) and H, together with i and h is determined
by (A, p, ρ).

For a triple (A, p, ρ) to come from an H like above, it is necessary and sufficient that:

(1) H1(A,Q) together with its structure of an L-module and the polarization form (up to
rescaling) is isomorphic to V .

(2) For i : V → H1(A,Q) an isomorphism i−1h is conjugate to h0.
(3) Let i be the map from L into C given by:

t(l) = Tr(l;VC/F
0(h0))

.

4.11.

Theorem (Scholie). Let K be an open compact subgroup of G(Af ). The points in KMC(G, h0)
correspond bijectively to the isomorphism classes of abelian varieties up to isomorphism A together
with:

(1) ρL→ End(A) such that:

Tr(ρ(l),Lie(A)) = t(l) (l ∈ L)

(2) A polarization TODO-homogene ρ which induces the given involution of L.

(3) A class mod K, k of L-linear simplectic similitudes k : V̂ (A)→ V ⊗ Af .
(4) The conditions (1)(2) are satisfied.

We apply 1.11 and 4.10 and note that an item 1.9(c) is equivalent to an item (c), and that
conditions (b) and (a) result from (1) and (2) respectively.

4.12. Let K be a compact open subgroup of G(Af ), VZ a lattice in V such that VẐ = VZ⊗ Ẑ is K-
invariant, LZ an order in L such that LZVZ ⊂ VZ, ψZ a positive rational multiple of the alternating
form on V with integral values on VZ, and V ′Z the largest lattice in V such that ψZ(VZ, V

′
Z) ⊂ Z.

Let n be an integer and Kn = {g ∈ G(Af )|(g−1VẐ ⊂ nVẐ. We suppose n is sufficiently large so
that K ⊃ Kn.

If A is as in 4.11, and thus k−1(VẐ) ⊂ V̂ (A) does not depend on k ∈ k is defined by an abelian

variety V with V ⊗ Q ' A and T̂ (B) = k−1(VẐ) ⊂ V̂ (A). The action of L on A is induced by
the action of LZ on B. There exists a unique effective polarization p of B, with p ∈ p, such that
k−1(VẐ) is the largest lattice T̂ ′(B) ⊃ T̂ (B) with ψp(T̂ (B), T̂ (B)) ⊂ Ẑ(1). Finally, the collection k

of symplectic isomorphisms which are L-linear of T̂ (B) with VẐ are the inverse image of its image

kn in Isom(Bn, VZ/nVZ).
This permits us again to interpret the points of KMC(G, h0) as corresponding to a system

(B, p, ρ, kn) consisting of:

(1) A polarized abelian variety (B, p) with complex multiplication by LZ, satisfying 4.11 (a)(b),
(2) A class modulo K/Kn, kn of an isomorphism kn : Bn ' VZ/nZ with can be lifted to an

L-linear symplectic isomorphism k : T̂ (B)→ VẐ, which verifies conditions 1 and 2.
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4.13. TODO- 4.13 - this looks important... what is it

4.14. TODO- 4.14 - Theorem on level structure

4.15. TODO- 4.15

4.16. TODO- 4.16 - Example

4.17.

Proposition. The Q-scheme M(Gp, h0) = lim← KnM is a model over Q−E(Gp, h0) of MC(Gp, h0).

4.18. Putting ourselves in the particular case of 4.9 where V is an L-module TODO-monogene.
The groups G and G1 are thus contained in the center of L∗.

Let E be an algebraic closure of E(G, h) and M+ the collection of isomorphism classes [A, ρ, k, p]
of objects (A, ρ, k, p) consisting of:

(1) An abelian variety up to isogeny A/E together with a TODO-homogene polarization p
and of ρ : L→ End(A) such that in the notation of 3 we have for l ∈ L:

Tr(l,Lie(A)) = t(l) ∈ E(G, h)

(2) An isomorphism K ⊗ Af -linear k : V̂ (A) → V ⊗ Af . The abelian variety A is thus of
CM -type.

We refer you to [ST61] for the proof of the following fundamental result:

4.19.

Theorem (Shimura-Taniyama). The Galois group Gal(E/E(G, h)) acts on M+ via its largest
abelian quotient π0(E(G, h)∗(A)/E(G, h) ∗ (Q)). For e ∈ E(G, h) ∗ (A) the image φ(e) in the
abelianization of the Galois group, and of the composition in E(G, h) ∗ (Af ) we have:

φ(e)([A, ρ, k, p] = [A, ρ, r(G, h)(ef ) · k, p]

TODO- 4.19 - Shimura-Taniyama— CFT is correct here

4.20.

Proposition. The E(G, h)-scheme M(G, h) = lim← KM(G, h) is a canonical model of MC(G, h).

4.21.

Theorem. The model of M(Gp, h0) constructed in 4.17 is a canonical model.

TODO- 4.21 - details
TODO- 4.22 - ’Hilbert modular version’

5. Techniques of Construction

5.0. Summary. Prove properties of canonical models in particular uniqueness, and restriction
to subvarieties.

Conjecture they always exist.

5.1. TODO-This

6. Strange Model

I think he looks at twisted forms of symplectic group, haven’t really read this.



16 DELIGNE (TRANSLATION - ANDREW FIORI)

References
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