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TODO-math symbol for ’inner’ automorphism is int
TODO-citations
TODO-equation/enumeration numbering
TODO-references to enumeration numbering are often as text
TODO-some of the math is ’unclear’ translationally, things like covers and lifts
I find much of the math here more difficult to follow than his previous paper, in the sense that

it is much harder to see what he is trying to talk about. In particular, he spends a lot of time
switching between adjoint forms, derived groups and various covers. These all certainly play a role
in conjugacy, it is unclear to me now what he is trying to do with it.

TODO-other things like when he in text says something is a restriction of scalars...
it is not clear which is the restrictee and which the restriction...

0. Introduction

This article follows up on [?], thus we use the esential results of it (those of paragraphs 4 and
5). In the first part, we try to motivate the axioms imposed on the system (G,X) 2.1.1 based on
which we define Shimura Varieties. We demonstrate that, generally speaking, they correspond to
moduli of hodge structures X+ of the following type:

(1) X+ is a connected component of the space of all hodge structures on some fixed vector
space V relative to several fixed tensors t1, . . . , tn of type (0, 0). The algebraic group G is
the subgroup of GL(V ) which fixes the ti and X is the orbit G(R) ·X+ of X+ under G(R).

(2) The family of hodge structres on V parametrised by X+ satisfies certain conditions, which
are satisfied by families of hodge structures which appear naturally in algebraic geometry;
for the correct complex structure (and uniquely determined) on X+, it is a polarisable
variation of hodge structres.

The space X+ is automatically a hermitian symmetric domain (with negative curvature). Hermit-
ian symmetric domains can all also be described as moduli spaces of hodge structures (1.1.17),
and I believe this description is very useful. For example “the embedding of a hermitian symmet-
ric domain D into its dual D̆ (a flag variety) corresponds to the mapping (Hodge Structure) 7→
(Hodge Filtration). Descriptions like “Siegel 3-space” can be interpreted in saing that, under cer-
tain hypothesis, if we superimpose on a hodge structure a filtration by weights, we obtain a mixed
hodge structure, or a mapping of D into a moduli space of mixed hodge structures (following the
construction of [?]. This last point will not be meantioned or used in this article.

This point of view, and the description of certain Shimura Varieties as moduli spaces of abelian
varieties, are linked by the dictionary: it comes back to (the equivalence of categories A 7→
H1(A,Z)) which links an abelian variety and a polarizable hodge structure of type {(−1, 0), (0,−1)}
(here we have torsion free Z-hodge structures; by passing to the dual (A 7→ H1(A,Z)) we can re-
place {(−1, 0), (0,−1)} by {(1, 0), (0, 1)}. Polarising an abelian variety is the same as polarising
its H1. TODO-this sentence is messed up With some parametrization, it is thus the same
to give a polarised abelian variety on a smooth complex variety parametrised by S or a varia-
tion of polarised hodge structures, parametrized by San. An analytic family of abelian varieties,
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parametrised by San is automatically algebraic (this follows from [?]). To interpret hodge struc-
tures of more complicated types, we would like to replace abelian varieties by the proper “motives”,
but this remains only a dream.

In section 1.2 we give a convienient description based on the formalism of the classification of
hermitan symmetric domains, in terms of Dynkin diagrams and their special TODO-sommet.
In section 1.3 we classify a certain type of embedding of hermitian symmetric space into a Siegel
half-space. The results are parallel to those of Satake [?]. An application of Weyl’s unitary trick,
for which we refer to [?], reduces the classification to a small part of the table, given for example
by Bourbaki [?], gives the expressions for the fundamental weights in terms of linear combinations
of simple roots.

The reader who wishes to learn more about the variations of Hodge structures and the ways
in which they appear in algebraic geometry, can consult [?] (though we do not follow their sign
conventions); some of the facts stated in [?] are proven in [?].

In sections 2.1 and 2.2 we define, in an adelic language, the Shimura varieties KMC(G,X)
(denoted KMC(G, h) in [?], for h any element of X), their projective limit MC(G,X) and the
notion of canonical modele. I refer you to the text for these definitions, and will say only that a
canonical model of MC(G,X) is a model of MC(G,X) over the dual field (2.2.1) E(G,X), That is

a scheme M(G,X) over E(G,X) together with an isomorphsim M(G,X)⊗E(G,X) C ∼→MC(G,X),
which will have good properties (G(Af )-equivarient, galois behaviour at special points 2.2.4). We
define also the notion of weak canonical model (same definition as canonical model except with an
extension E of E(G,X)). These play a technical role in the construction of canonical models. The
difference apparent in the definitions of 2.1 and 2.2 and those of [?] come from a different choice
of sign convention (left actions vs right actions, reciprocity theory of fields and global classes. . . ).

For a heuristic description, I refer you to the introduction of [?]. For a brief description, with
examples, of how to pass from the adelic language to a classical language I refer you to [?, 5,1.6-
1.11,3.14-3.16,4.11-4.16].

In [?] we systemified the methods introduced by Shimura for constructing canonical models. In
the second part of the the present article, we perfect the results of [?]. In section 2.6 we determine
the action of the galois group Gal(Q/E) on the collection of geometrically connected components
of a weak canonical model (which we assume exists) of MC(G,X) over E without supposing (as
is done in [?] that the derived group is simply connected, the essential point is the construction
given in 2.4 of a morphism of the following type. Let G be a connected reductive group over Q,
ρ : G̃ → G the universal covering of the derived group Gder and M a conjugacy class, defined
over a number field E, of morphisms from Gm into G. We construct a morphism qM from the
group of idele classes of E in the abelian quatient G(A)/ρ(G̃(A)) ·G(Q) of G(A). This morphism
is functorial in (G,M) and if F is an extension of E the diagram:

C(F )

((QQQQQQQQQQQQQ

NF/E

��

G(A)/ρ(G̃(A) ·G(Q)

C(E)

66mmmmmmmmmmmmm
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is commutative. If G̃ has no factor G′ over Q such that G′(R) is compact, we deduce from the
strong approximation theorem that:

π0(G(A)/ρ(G̃(A)G(Q)) = π0(G(A)/G(Q)),

and qM gives an action on π0(G(A)/G(Q)) of π0(C(E)), the abelianization of the galois group
Gal(Q, E)ab from the theory of global class field theory.

The second new idea-in fact a return to the point of view of Shimura-is the following observation:
the results of 2.6 permit us to reconstruct a weakly canonical model ME(G,X) of MC(G,X) from
the connected component of M0

Q(G,X+) (a geometrically connected component depending on the

choice of connected component X+ of X), together with a semi-linear action of a subgroup H of
G(Af )×Gal(Q/E) which stabilises it. Letting Z be the center of G and Gad be the adjoint group,
Gad(R)+, the connected component of the identity of Gad(R) and Gad(Q)+ = Gad(Q) = Gad(R)+.
The inclusion of the closure Z(Q)− of Z(Q) in G(Af ) acts trivially on MC(G,X), the action of H
on M0

Q(G,X+) factors through H/Z(Q)−. We can make a slightly larger group act, the extension

of Gal(Q/E) by the completion of Gad(Q)+ for the topology of the images of congruence subgroups
of Gder(Q).

Up to unique isomorphism, this extension depends only on Gad, Gder and on the projection X+ad

of X+ in Gad (2.5). We denote it EE(Gad, Gder, X+ad). The connected component of M0
C(G,X+)

is the projective limit of the quotients of X+ad by arithmetic subgroups of Gad(Q)+, images of
congruence subgroups of Gder(Q). We verifty that the conditions which must be satisfied by the
model M0

Q(G,X+) over Q, and the action of EE(Gad, Gder, X+ad), for corresponding to a weakly

canonical model, depend only on Gad, X+ad the image of Gder in Gad and the finite extension E
(contained in C) of E(Gad, X+ad). These conditions define models which are weakly canonical
(respectively canonical for E = E(Gad, X+ad)) connected ??.

The problem of the existence of a canonical model thus depends, in large, on the derived group.
This reduction to the derived group is a much more convienient version than the method of central
modification of h used in [?, 5.11].

In 2.3 we construct a TODO-provision of a canonical model with the help of a syplectic
embedding, in invoking [?, 4.2,5.7]. The results of 1.3 permits us to obtain the desired symplectic
embedding with few calculations. In 2.7 we explain the reduction to the derived group sketched
above and we deduce in 2.3 a criteria for the existance of a canonical model which covers all the
known cases (Shimura, Miyake and Shih).

In the article, we use the equivalence between weakly canonical models and weak connected
canonical models to transport to the later the results of [?] (uniqueness, the construction of a
canonical model from a family of weakly canonical models). It would have been more natural to
write the proofs and the functoriality [?, 5.4] and the passage to subgroups [?, 5.7] (avoiding by
the TODO-sybilline proposition [?, 1.15]). The lack of time and the wearyness, prevent us.

I recently showed that one can give in a purely algebraic sense the notion of a ration cycle of
type (p, p), on an abelian variety A (over a field of characteristic 0). We can recover from this the
criteria for the existance (2.3.1) of canonical models, and give a modular description of the models
obtained (see [?]). This description unfortunately is not ready to be reduced modulo p. This
method avoids the use to [?, 5.7] (and by a [?, 1.15]) and gives partial results on the conjugacy of
Shimura varieties.

0.1. Recall notaion and terminology.
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0.1.1. We will make use of the theorem of strong approximation, the theorem of real appoximation,
the Hasse principle and the nullity of H1(K,G) for G semi-simple and connected over a non-
archimedian local field. The bibliographical indications for these results are given in [?, (0.1) to
(0.4)]. Note, do to another article of G. Prasad (Strong approximation for semi-simple groups
over function fields, Ann of Math. (2) 105 (1977), 553-572) which proves the theorem of strong
approximation over an arbitrary global field. Let G be a semisimple simply connected group, with
center Z, over a global fieeld K. We use the Hasse principle for H1(K,G) only for classes in the
image of H1(K;Z), in particular, E8 factors are not an issue.

0.1.2. Reductive Group will always mean connected reductive group. A cover of a reductive
group will always be a connected one. Adjoint group means reductive adjoint group. If G is a
reductive group, we denote by Gad its adjoint group. Gder its derived group and ρ : G̃→ Gder the
universal cover of the derived group. We denote by Z = Z(G) the center of G, and Z̃ that of G̃
(note the conflict of notation)

0.1.3. We denote by the exponent 0 the algebraic connected component of the identity (for example
Z0 is the connected component of the center of G). The exponent + indicates the topological
connected component of the identity (for example G(R)+ is the connected component of the
identity in the real topological group G(R)). We denote also by G(Q)+ the TODO-trace of
G(R)+ under G(Q). For G real reductive we denote by an index + the inverse image of Gad(R)+

in G(R). The same notation + for the trace under a group of rational points.
For X a topological space, we denote π0(X) the connected components, given the quotient topol-

ogy from X. In the arcticle, the space π0(X) will always be discrete and completely disconnected.

0.1.4. A hermitian symmetric domain is a hermitian symmetric space of negative curvature.
That is without euclidean or compact factors).

0.1.5. Unless we specify otherwise, vector spaces are finite dimensional and a number field is of
finite degree over Q. The number fields we shall consider will be most often contained in C. Q
denotes the algebraic closure of Q in C.

0.1.6. We set Ẑ = lim← Z/nZ =
∏

p Zp, Af = Q⊗ Ẑ =
∏

p Qp (restricted product) and we denote

A = R × Af the adele ring of Q. we occasionally denote by A the ring of adeles of an arbitrary
global field.

0.1.7. G(K), G ⊗F K, GK : for G a scheme over F (for example an algebraic group over F ) and
K an F algebra, we denote by G(K) the K valued points of G, and by GK = G⊗F K the scheme
over K arising from G via extension of scalars.

0.1.8. We normalise the reciprocity isomorphism of global class field theory (choosing it or its
inverse):

π0A∗E/E∗
∼→ Gal(Q/E)ab

so that the class of an idele which is a uniformizer at one place and 1 at all others corresponds to
geometric frobenius (the inverse of a frobenius substitution) (see 1.1.6 and the justifications cited
in TODO-where...).

1. Hermitian Symmetric Domains

1.1. Moduli Spaces of Hodge Structures.
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1.1.1. Recall that a hodge structre on a real vector space B is a bigrading VC = ⊕V pq of the
complexification of V , such that V pq is the complex conjugate of V qp.

Define an action h of C∗ on VC by the formula:

h(z)v = z−pz−qv for v ∈ V pq

The h(z) commute with the complex conjugation of VC, thus the action comes from the restriction
of scalairs of an action, again denoted h, of C∗ on V . Thinking of C as an extension of R, and letting
S be its multiplicative group, considered as a real algebraic group (otherwise said, S = RC/RGm

(Weil restriction)); we have S(R) = C∗, and h is an action of the algebraic group S. We verify that
this construction defines an equivalence of categories: (real vector spaces with hodge structures)
→ (real vector spaces with actions of the group S) .

To the inclusion R∗ ⊂ C∗ there corresponds an inclusion of real algebraic groups Gm ⊂ S. We
denote by wh (or simply w) the restriction of h−1 to Gm, and call it the weight w : Gm → GL(V ).
We say that V is homogenious of weight n if V pq = 0 when p+q 6= n, that is w(λ) is the homothety
ratio λn.

We denote by µh (or simply µ) the action of Gm on VC given by µ(z)v = z−pv for v ∈ V pq. It is
a composition Gm → SC →h GL(V ).

The Hodge Filtration Fh( or simply F ) is defined by F p = ⊕r≥pV rs We say that V is of type
E ⊂ Z× Z if V pq = 0 for (p, q) /∈ E .

More generally, if A is a subring of R such that A ⊗ Q is a field (in practice A = Z,Q,R), an
A-hodge structure is an A-module of finite type V , together with a hodge structure on V ⊗A R.

1.1.2.

Example. The fundamental example is that where V = Hn(X,R) for X a compact Kahler variety
and where V pq ⊂ Hn(X,C) is the space of cohomology classes represented by closed forms of type
(p, q). Other usefull examples arise from taking tensors, direct factors or duals. In particular the
dual Hn(X,R) of Hn(X,R) has a hodge structure of weight−n. Integral homology and cohomology
thus gives integral hodge structures.

1.1.3.

Example. Hodge structures of type {(−1, 0), (0,−1)} are those for which the action h of C∗ =
S(R) comes from a complex structure on V ; for V of this type, the projection pr of V on V −1,0 ⊂ VC
is bijective and satisfies pr(h(z)v) = zpr(v).

1.1.4.

Example. Let A be a comples torus; it is the quotient L/Γ of its Lie algebra L by the ring Γ.

We have Γ⊗R ∼→ L, or a complex structure on Γ⊗R. Considering this as a hodge structure like
1.1.3. Via the isomorphism Γ = H1(A,Z) it is also that of 1.1.2.

1.1.5.

Example. The hodge structure of tate Z(1) is the Z-hodge structure of type (−1,−1) of the integer
subring 2πiZ ⊂ C. The exponential identifies C∗ with C/Z(1), or an isomorphism Z(1) = H1(C∗).
The hodge structure Z(n) = Z(1)⊗n (n ∈ Z) is the Z-hodge structure of type (−n, n) of the integer
lattice (2πi)n)Z. We denote . . . (n) the tensor product of . . . by Z(n) (Tate twist).
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1.1.6.

Remark. The rule h(z)v = z−pz−qv for v ∈ V pq is that which I use in (Les Constanted des
equations fonctionelles des fonction L, Anvers II, Lecture Notes in Math., Vol. 349, pp. 501-597)
and the inverse of those of [?] They are justified in part by the example 1.1.4 above, and in part
by the desire that C∗ acts on R(1) as multiplication by the norm (see the end of ??).

1.1.7. A Variation of Hodge Structures on a complex analytic variety S consists of:

(1) A local system V of real vector spaces;
(2) To each point of S, a Hodge structure on the fibre of V at s which varies continuously with

s.

We require that the Hodge filtration varies holomorphically with s and verifies the axium we shall
call transversality: The derivative of a section of F p is in F p−1.

It will often be given a local system VZ of Z-modules of finite type, such that, V = VZ ⊗R. We
will thus speak of the variation of Z-Hodge structures. Again with Z replaced by any ring as
in 1.1.1.

1.1.8.

Remark. Considering S as a real variety, thus the tangeant space at each point can be given
a complex structure, that is, a Hodge structure of type {(−1, 0), (0,−1)}. The integrability of
the almost complex structure on S is expressed in saying that the bracket of vector fields is com-
patible with the hodge filtration of the complexification of the tangean fibres: [T 0,−1, T 0,−1] ⊂
T 0,−1. In the same way, the axiums of variations of Hodge structures express that the derivation
(tangeant fibre) ⊗R (sections C∞ of V ) → (sections C∞ of V ) (or rather the complexification of
this application) is compatible with the Hodge filtration: ∂DF

p ⊂ F p for D in T 0,−1 (holomorphic-
ity) and ∂DF

p ⊂ F p−1 for arbitrary D (transversality).

TODO-I do not understand what this is saying

1.1.9. We have the following principle: In algebraic geometry, every time there appears a hodge
structure which is dependant on complex parameters, it is a variation of hodge structures on the
space of these parameters. The fundamental example is 1.1.2 with parameters f : X → S a
smooth proper morphism, with fibres XS, kahler, the Hn(Xs,Z) form a local system on S and the
Hodge filtration on the complexification Hn(Xs,C) varies holomorphically with s and satisfies the
transversality axiom./

1.1.10. A polarisation of a real Hodge structure, of weight n, V is a morphism Ψ : V ⊗ V →
R(−n) such that the form (2πi)nΨ(x, h(i)y) is symmetric and positive definite. We have the
same condition for Z-Hodge structures, in replacing R(−n) by Z(−n), . . . . Because Ψ(h(i)x, y) =
Ψ(x, h(−i)y) (since h(i) is trivial on R(−n)) and h(−i)y = (−1)nh(i)y the symmetry condition
reduces to saying Ψ symmetric for n even and alternating for n odd.

The Hodge structures which appear in algebraic geometry are Z-hodge structrues which are
homogeneus and polarisable. The fundamental example: The possitivity theorem of Hodge assures
us that Hn(X,Z), for X projective smooth, is polarizable (note that h(i) is the operator which
Weil denotes C in his book on kahler varieties).

1.1.11. Let (Vi)i∈I be real vector spaces and (Sj)j∈J a family of tensors in the Vi and their duals.
We are interested in families of Hodge structures on the Vi for which the sj are of type (0, 0). To
interpret this condition ”Type (0, 0)” in particular cases, note that f : V → W is a morphism if
and only if as an element of Hom(V,W ) = V ∗ ⊗W , it is of type (0, 0).
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Let G be an algebraic subgroup of
∏

GL(Vi) which fixes the sj. After 1.1.1 a family of Hodge
structures on the Vi is indentified with a morphism h : S →

∏
GL(Vi). To have the sj be of

type (0, 0) it is necisary and sufficient that h factors through G, we must thus consider algebraic
morphisms h : S→ G.

We can regard G, rather than the system Vi,sj as the primordial object: if G is a real linear
algebraic group, it reduces in the same way to giving h : S → G or to giving each representation
V of G a Hodge structure which is functorial for G-morphisms and compatible with tensors (see
Saavedra [?, VI.2]). The morphism wh and µh of 1.1.1 come from morphisms of Gm into G and
Gm into GC respectively.

1.1.12. The construction 1.1.11 leads to considering spaces of Hodge structures of the following
type: we fix a real linear algebraic group G, and we consider a topologically connected component
X of the space of morphism (homoprhisms of algraic groups over R) of S into G.

Let G1 be the smallest algebraic subgroup of G through which we can factor the h ∈ X: X is
again a connected component of the space of morphisms of S into G1. Because S is of multiplicative
type, any two elements of X are conjugate: the space X is a class of G1(R)+ conjugates of
morphisms of S into G. It is also a class of G(R)+-conjugation and G1 is a normal subgroup of
the identity component of G.

1.1.13. In view of 1.1.9 and 1.1.10 we consider only those X that come from faithful representations
of G. We have:

(1) For all i, the grading by weight of Vi (for the complexification the grading of ViC by the
V n
iC = ⊕p+q=nV pq

i ) is independent of h ∈ X. Equivalently: h(R∗) is central in G(R)0 or the
adjoint representation has weight 0.

(2) For a proper complex structure on X, and all i the family of hodge strucuteres degined by
h ∈ X is a variation of Hodge structures on X.

(3) If V is the homogeneous component of weight n of one Vi, there exists Ψ : V ⊗V → R(−n)
such that for all h ∈ X, it is a polarization of V .

1.1.14.

Proposition. Suppose we satisfty the first condition in 1.1.13.

(1) There exists a unique complex structure on X such that the hodge filtrations vary holomor-
phically with h ∈ X.

(2) The second condition is satisfied if and only if the adjoint representaion is of type {(−1, 1), (0, 0), (1,−1)}.
(3) The third condition is satisfied if and only if G1 (as defined in 1.1.12) is reductive and for

h ∈ X, the inner automorphism inth(i) induces a Carton involution on its adjoint group.

(1) Let V be the sum of the Vi. It is a faithful representation of G. A Hodge structure is
determined by the corresponding Hodge filtration (plus the the grading by weight if we are
not in a homogenious case): in weight n = p+ q we have V pq = F p∩F q

. The mapping φ of
X into the grassmannian of VC : h 7→ the corresponding hodge filtration, is thus injective.
We will verify that it identifies X with a complex sub-variety of this grassmannian; this
proves the first point: The complex structure on X induced by that of the grassmannian
is the only one on which φ is holomorphic.

Let L be the Lie algebra of G and p : L → End(V ) its action on V . The action p is a
morphism of G modules, it is injective by hypothesis. For all h ∈ X it is also a morphism
of Hodge structures. The tangeant space of X at h is the quotient of L by the Lie algebra
of the stabilizer of h, namely the subspace L00 of L for the hodge structure of L defined by
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h. The tangeant space of the grassmannian at φ(h) is End(VC)/F 0(End(VC)). Finally, dφ
is the composition:

L/L00 p
//

l
��

End(V )/End(V )00

l
��

LC/F
0LC

p
// End(VC)/F 0 End(VC)

Because p is an injective morphism of hodge structures, dφ is injective; its image is that of
LC/F

0LC is a complex subspace, thus we have the assertion.
(2) The axiom of transversality tells us that the image of dφ is in F−1 End)VC)/F 0 End(VC),

that is that LC = F−1LC.
(3) To prove the last point, we will make use of [?, 2.8], which we recall below. Recall that

a Cartan involution of a linear algebraic group (not necissarily connected) G is an in-
volution σ of G such that the real form Gσ of G (with complex conjugation given by
g 7→ σg) is compact: Gσ(R) is compact and intersects all the connected components of
Gσ(C) = G(C). For C ∈ G(R) with central square, a C-polarisation of a representation
V of G is a bilinear form Ψ G-invariant, such that Ψ(x,Cy) is symmetric and possitive
definite. For all g ∈ G(R), we thus have that Ψ(x, gCg−1y) = Ψ(g−1x,Cg−1y) so that the
notion of C polarisation depends only on G(R) conjugacy class of C.

1.1.15.

Proposition. We recall ??2.8]TODO Let G be a real algebraic group and C ∈ G(R) be a central
square, the following are equivalent:

(1) IntC is a Cartan involution of G.
(2) All real representations of G are C-polarisable.
(3) G admits one faithful C-polarisable representation.

We note that the first condition implies that G0 is reductive so that it has a compact form. It
depends only on the conjugacy class of C. We prove now the third point of 1.1.14. Let G2 be the
smallest algebraic subgroup of G through which factor the restrictions of h ∈ X to U1 ⊂ C∗. For
a bilinear form Ψ : V ⊗ V → R(−n) to satisfy the third condition of 1.1.13 it is necissary and
sufficient that (2πi)nΨ : V ⊗ V → R is invariant by the h(U1)- thus by G2 (this expresses the fact
that Ψ is a morphism), and a h(i)-polarisation. Following 1.1.15 and 1.1.13 this is equivalent to
Inth(i) is a Cartan involution of G2.

We first deduce that G1 is reductive: G2 is, to have a compact form, and G1 is a quotient of a
product Gm×G2. Because G2 is generated by compact subgroups, its connected center is compact;
it is isogenous to the quotient of G2 by its derived group. The involution θ = Inth(i) is thus a
Cartan involution of G2 if and only if it is of its adjoint group, and we conclude in noting that G1

and G2 have the same adjoint groups.
TODO-This arguement 1.1.14 is not well translated

1.1.16.

Corollary. The conditions in 1.1.13 do not depend on the choice of family of representations Vi.

1.1.17.

Corollary. The spaces X in 1.1.13 are hermitian symmetric domains.

Taking X of this type. We successively reduce the cases considered as follows:
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(1) (a) That G = G1; replacing G by G1 does not change X nor the conditions of 1.1.13.
(b) That G is adjoint, by (1) we made it reductive, and its quotient by its finite center is

the product of a torus and its adjoint group Gad. The space X again identifies with
the connected component of a space of morphisms of S into G with a fixed projection
into T , whose lifting is unique. The conditions of 1.1.14 are verified elsewhere.

(c) That G is simple: we can decompose G into a product of simple groups Gi, this
decomposes X into a product of spaces Xi relative to the Gi.

Thus let G be a simple adjoint group, and X a G(R)+-conjugacy class of non-trivial
morphisms H : S/Gm → G, which satisfies the conditions of 1.1.14(ii) and (iii). The group
G is non-compact: otherwise h(i) would be trivial by (iii), since its centralizer is compact;
there thus exists on X a G(R)+ equivarient riemannian structure. By (ii) h(i) acts on the
tangeant space Lie(G)/Lie(G)00 of X at h by −1; The space X is riemannien symmetric.
We finally check that it is hermitian symmetric for the complex structure of 1.1.14(i). It is
thus of the non-compact type (negative curvature) since G is not compact.

(2) Conversely, if X is a hermitien symmetric space, and x ∈ X we know that the multiplication
by u (|u| = 1) on the tangeant space Tx of X at x extends to an automorphism mx(u) of
X. Letting A be the group of automorphisms of X and h(z) = m(z/z) for z ∈ C∗. The
centralizer of x commutes with h, and the condition of 1.1.14(ii) are thus verified: Lie(Ax)
is of type (0, 0) and Tx = Lie(A)/Lie(Ax) of type {(−1, 1), (1,−1)}. Finally we know that
A is the connected component of G(R) for G adjoint and that the riemannian symmetric
space is of negative curvature if and only if the symmetry h(i) is a Cartan involution of G
(see Helgason [?]).

1.1.18. We indicate now two variants of 1.1.15 (see [?, 2.11]).

(1) We give a reductive real algebraic group G, and a G(R)-conjugacy class of morphism
h : S → G. We suppose that wh- denoted w- is central and thus independant of h (the
condition 1.1.13(a)) and that Inth(i) is a Cartan involution of G/w(Gm).

Because G is reductive, w(Gm) admits a TODO-supplement G2: connected normal
subgroup such that G is a quotient of w(Gm)×G2 by a finite central subgroup. It is unique:
generated by the derived group and the largest compact torus in the center. It contains the
h(U1)(h ∈ X) and h(i) is a Cartan involution. If V is a representation of G, its restriction
to G2 admits an h(i)-polarisation Φ. If V is of weight n, w(Gm) acts by similitudes, thus so
does G: for a proper representation of G over R, Φ covariant. For this representation R-is of
type (n, n); this permits us to make G act on R(n), in a manner compatible with its Hodge
structure, and to vieew (2πi)−nΦ as a G-invariant polarisation form V ⊗ V → R(−n).

(2) Suppose that G is deduced by extension of scalars to R of GQ over Q and that w is defined
over Q. The group G2 is thus defined over Q, because it is the unique TODO-supplement
of w(Gm) and all aracther of G/G2 are defined over Q, because the group is either trivial
or isomorphic to Gm over Q. If a rational representation of GQ is of weight n, the G-
invariant bi-linear forms V ⊗ V → Q(−n) form a vector space F over Q. The collection of
those which are a polarisation (relative to h ∈ X) is the TODO-trace over F of an open
FR, and this open is non-empty by (‘a’), there thus exist G-invariant polarisation forms
Ψ : V ⊗ V → Q(n).

We take care that the forms in the above two interpretations are not alwas polarisations for all
h′ ∈ X: if h′ = Int(g)(h) the formula Ψ(x, h′(i)y) = gΨ(g−1x, h(i)g−1y) shows that the form
(2πi)nΨ(x, h′(i)y) is symmetric and definite, but the positive or negativeness of the definiteness
depends on the action of g on R(−n).
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1.2. Classification. After this paragraph, we will use the relation 1.1.17 between hermitian sym-
metric domains and moduli spaces of Hodge structres to reformulate certain results of [?]...[?] and
give several extensions.

1.2.1. Consider systems (G,X) of a simple adjoint real algebraic group G, and a G(R) conjugacty
class X of morphisms of real algebraic groups h : S → G which satisfy (the notations are that of
1.1.1 and 1.1.11):

(1) The adjoint representation Lie(G) is of type {(−1, 1), (0, 0), (1,−1)} (in particular h is
trivial on Gm ⊂ S)

(2) Inth(i) is a Cartan involution.
(3) h is non-trivial, or what amounts to the same thing (1.1.17) G is non-compact.

Following 1.1.17 the connected components of the space X are again irreducible hermitian sym-
metric domains.

The second hypothesis assures that the Cartan involutions of G are inner automorphisms, and
thus that G is an inner form of its compact form (see 1.2.3) in particular, G being simple, it is
absolutely simple.

The G(C) conjugacy class of µh : Gm → GC does not depend on the choice of h ∈ X. We denote
it my MX .

1.2.2.

Proposition. Let GC be a simple adjoint complexe algebraic group. To each system (G,X) formed
from a real form G of GC and X satisfying the conditions of 1.2.1 we associate MX . We obtain
a bijection between GC(C) conjugacy classes of systems (G,X) and GC(C)-conjugacy classes of
non-trivial morphisms µ : Gm → GC which satisfy the following condition:

(∗) In the representation adµ of Gm on Lie(GC) only the characters z, 1, z−1 appear.

To check this, we will use the duality between hermitian symmetric domains and compact
hermitian symmetric spaces.

1.2.3. Let G be a real form of GC, X a G(R) conjugacy class of morphisms of S/Gm into G and
h ∈ X. The real form of G corresponds to a choice of complex conjugation σ on GC; define G∗ to
be the real form corresponding to the complex conjugation coming from int(h(i))σ:

G∗(R) = {g ∈ GC(C)|g = int(h(i))σ(g)}

The morphism h is again defined over R, of S/Gm into G∗: we have h(C∗/R∗) ⊂ G∗(R); define
X∗ to be the G∗(R) conjugacy class of h. The construction (G,X) 7→ (G∗, X∗) is an involution on
the collection of GC(C) conjugacy classes of systems of real forms G of GC and a G(R) conjugacy
class of non-trivial morphism of S/Gm into G. It exchanges objects (G,X) as in 1.2.2 with those
where G is compact and X satisfies the first condition of 1.2.1.

We know that the compact real forms are all conjugate to each other. Because if g ∈ GC
normalises a real form G, we have G ∈ G(R) (this is because G is adjoint), the duality reduces
1.2.2 to the following:

1.2.4.

Lemma. Let G be a compact form of GC. The construction h 7→ µh induces a bijection between:

(1) G(R)-conjugacy classes of morphisms h : S/Gm → G satisfying the first condition of 1.2.1.
(2) GC(C)-conjugacy classes of morphisms µ : Gm → GC satisfying 1.2.2(∗).
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Let T be a maximal torus of G, and TC its complexification. We verify first that the mapping
h 7→ µh: Hom(S/Gm, T )→ Hom(Gm, TC) is bijective. If W is the Weil group of G, we know that:

Hom(U1, T )/W
∼→ Hom(U1, G)/G(R)

and
Hom(Gm, TC)/W

∼→ Hom(Gm, GC)/GC(C)

The mapping h 7→ µh thus induces a bijection:

Hom(S/Gm, G)/G(R)
∼→ Hom(Gm, G)/GC(C)

and to have h satisfy the first condition of 1.2.1 it is necissary and sufficient that µh satisfy 1.2.2(∗).

1.2.5. Let G be a simple adjoint complex algebraic group. We will enumerate the conjugacy classes
of non-trivial µ : Gm → G which satisfy the condition 1.2.2(∗), in terms of Dynkin diagrams D
of G. Recall that this diagram is canonically attached to G, in particular the automorphisms of
G act on D. We can identifier the TODO-Sommet with conjugacy classes of maximal parabolic
subgroups.

Let T be a maximal torus, X(T ) = Hom(T,Gm), Y (T ) = Hom(Gm, T ) (The dual of X(T )
for the pairing X(T ) × Y (T ) →0 Hom(Gm,Gm) = Z), R ⊂ X(T ) the collection of roots, B a
system of simple roots, α0 the TODO-oppose of the largest root and B+ = B ∪ {α0}. The
TODO-sommet of D are parametrised by B and those of the extended Dynkin diagram D+ by
B+.

A conjugacy class of a morphism of Gm into G has a unique representative µ ∈ Y (T ) in the
fundamental chamber 〈α, µ〉 ≥ 0 for α ∈ B. It is uniquely determined by the positive integers
〈α, µ〉 (α ∈ B) and G being adjoint, these can be chosen arbitrarily. The condition 1.2.2(∗) for µ
non-trivial can be rewritten as:

〈α0, µ〉 = −1

Writting the largest root as a linear combination of simple roots,
∑

α∈B+ n(α)α = 0 with n(α) =
1 and call special the TODO-sommet of D+ such that for the corresponding root α ∈ B+, we
have n(α) = 1. We know that the quotient of the group of coweights by the coroots acts on D+,
and in a manner which is simply transitive on the special roots, the special roots are thus the
conjugates under Aut(D+) of the root corresponding to α0 and the number of them is the number
of components |π1(G)| of G (see Bourbaki [?, VI,2ex2 and 5a]).

The condition (∗) is rewritten as: (∗)′′ for a simple root α ∈ B corresponding to a special
TODO-sommet of D we have 〈α, µ〉 = 1 for the other simple roots we have 〈α, µ〉 = 0.

1.2.6. In total, the GC(C)-conjugacy classes of systems (G,X) as in 1.2.2 are parametrised by the
special TODO-sommet of the Dynkin diagram D of GC. In particular, for G a given real form
of GC, X is determined by the corresponding special TODO-sommet s(X) (G(R) ⊂ GC(C) is in
effect its proper normalizer). The TODO-sommet corresponding to X−1 = {h−1|h ∈ X} is the
transformation of s(X) by the involution TODO-d’opposition.

In 1.2.3 G and G∗ are inner formes of each other, if there exists X satisfying the conditions of
1.2.1, G is thus an inner form of its compact form. In other words, complex conjugation acts on
the Dynkin diagram of GC by its involution TODO-d’opposition.

1.2.7.

Proposition. Let G be a simple adjoint real algebraic group, and suppose that there exist mor-
phisms h : C∗/R∗ → G satisfying the conditions of 1.2.1. The collection of these morphisms
has two connected components exchanged by h 7→ h−1. Each has for its stabilizer the connected
component G(R)+ of G.
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The second hypothesis of 1.2.1 assures that the centralizer K of h(i) is a maximal compact
subgroup of G(R). In particular, π0(K) ' π0(G(R)). It has the same Lie algebra as the centralizer
of h. This, latter group, is a connected algebraic group, as it is the centrelizer of a torus, and
compact, as it is a subgroup of the centralizer of h(i). It is thus topologically connected, and
Centr(h) = K+ = K ∩ G(R)+. The center of K+ has dimension 1: The complexification of K+

is the centralizer of µh thus by (∗)′′, it is the Levi subgroup of a maximal parabolic subgroup.
We can also deduce that the representation of K+ on Lie(G)/Lie(K+) is irreducible (see [?, proof
of V,1.1]. The morphism h is thus an isomorphism of S/Gm with connected center K+, and K+

determines h up to sign. A fortiori, h(i) determines h up to sign. Thus:

(1) The mapping h 7→ h(i) is 2 : 1.
(2) It maps isomorphically the orbit G(R)+/K+ of h under G(R)+ under G(R)/K of all Cartan

involutions in G(R).

The following proposition results:

1.2.8.

Corollary. Let (G,X) be as in 1.2.1, and s the corresponding TODO-sommet in the Dynkin
diagram of GC.

(1) If s is not fixed by the involution TODO-d’opposition, G(R) and X are connected.
(2) If s is fixed by the involution TODO-d’opposition, G(R) and X have two connected

components, the components of X are interchanged by h 7→ h−1 and by the g ∈ G(R) \
G(R)+.

We point out that the first condition is equivalent to either of:

• The system of relative roots for G is of type C (rather than BC);
• X is a tube domain.

1.3. Symplectic Embeddings.

1.3.1. Let V be a real vector space, with a non-degenerate alternating bilinear form Ψ. The
coreseponding Siegel half space S+ has the following description: it is the space of complex
structures h on V for which Ψ is of type (1, 1) (for the identification of 1.1.3 between complex
structures and Hodge structures of type {(−1, 0), (0,−1)}) and for which the form Ψ(x, h(i)x) is
symmetric and positive definite.

If we replace ‘positive definite’ by ‘definite’ the Double Seigel half space S± obtained is a
conjugacy class of morphisms h : S→ CSp(V ) (CSp is the group of symplectic similitudes; In [?]
it is denoted Gp).

1.3.2. Letting G be an adjoint real algebraic group (??) and X a conjugacy class of morphisms
h : S→ G. We suppose it satisfies the first two conditions of 1.2.1 and we replace the third by:

(iii’) G has no compact factors.
The system (G,X) is thus a product of systems (Gi, Xi) as in 1.2.1 and Xi corresponds to a

special sommet of the Dynkin diagram of Gi (1.2.6).
Consider the diagrams:

(G,X)← (G1, X1)→ (CSP (V ), S±)

Where G is the adjoint group of the reductive group G1, and where X1 is a G1(R)-conjugacy class
of morphisms of S into G1. We have a section G̃→ G1 of the type for which V is a representation
of G̃. Our goal is the determination 1.3.8 of the non-trivial complex irreducible representations W
of G̃, which is essentially equivalent to that contained in the complexification of the representation
obtained. This problem is resolved by Satake in [?]
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1.3.3.

Lemma. It is sufficient that there exists (G1, X1)→ (G,X) as above, and a linear representation
(V, ρ) of type {(−1, 0), (0,−1)} of G1 for that W is contained in VC.

Replacing G1 by the subgroup generated by the derived group G′1 and the image of h reduces
us to supposing that inth(i) is a Cartan involution of G1/w(Gm). There then exists on V a
polarisation form Ψ (1.1.18(a)) for which ρ is a morphism of (G1, X1) into (CSp(V ), S±).

1.3.4. Considering the following projective system (Hn)n∈N: N is ordered by divisibility, Hn = Gm

and the transition morphism Hnd into Hn is x 7→ xd (The projective limit of the Hn is the
universal cover– in the algebraic sense– of Gm). A fractional morphism of Gm into a group
H is an element of lim injHom(Hn, H), the same for the group S. For µ : Gm → H fractional,
define by µn : Hn = Gm → H, and V a linear representation of H, V is the sum of subspaces Va
(a ∈ (1/n)Z such that, via µn, Gm acts on Va by multiplication by xna. The a’s such that Va 6= 0
are the weights of µ in V . In the same way, a fractional morphism h : S → H determines a
fractional Hodge decomposition V r,s of V (r, s ∈ Q).

1.3.5.

Lemma. For h ∈ X, let µ̃h be the fractional lift of µh to G̃C the representations W of 1.3.2 are
those of µ̃h which have only two weights a and a+ 1.

The condition is necissary: lifting h to h1 ∈ X1, we have µh1 = µ̃h · ν with ν central. On V , µh1

has weights 0 and 1. If −a is the unique weight of ν on W irreducible in VC, the only weights of
µ̃h on W are a and a+ 1. For W non-trivial, the action of Gm via µ̃nh (for n sufficiently divisible)
is non-trival (because GC is simple), thus non-central and the two weights a and a+ 1 must both
appear.

The condition is sufficient: Take for V the real vector space underlying W , and for G1 the group
generated by the image of G̃ and by the group of homotheties. For h ∈ X, with fractional lifting
h̃ to G̃, let h1(z) = h(z)z−az1−a. If Wa and Wa+1 are the subspaces of weight a and a+ 1 of W , h̃
acts on Wa (resp Wa+1) by (z/z)a (resp z/z1+a) and h1 by z (resp. z): So h1 is a true morphism
of S into G1, with projection h into G and V is of type {(−1, 0), (0,−1)} rel. h1. It remains only
to apply 1.3.3.

1.3.6. Translating the conditions in 1.3.5 in terms of roots. Let T be a maximal torus of GC, T̃
its inverse image in G̃C, B a system of simple roots of T and µ ∈ Y (T ) the representative of the
fundamental champer of the conjugacy class of µh (h ∈ X). If α is the dominant weight of W , the
smalest weight is −τ(α) for τ the involution TODO-d’opposition. It comes to expressing that
〈µ, β〉 takes on only two values a and a + 1, for β a weight of W . These weights are all of the
form (α+ a Z-linear combination of roots), and the 〈µ, r〉 for r a root are integers, the condition
is expressed by 〈µ,−τ(α)〉 = 〈µ, α〉 − 1 :

(1.3.6.1) 〈µ, α + τ(α)〉 = 1

Determining the solutions of this. For all dominant weights α,〈µ, α+ τ(α)〉 is an integer, because
α+τ(α) is a Z-linear combination of roots. If α 6=, it is > 0 otherwise µ annihilates all the weights
of the corresponding representation. A dominant weight α satisfying (1.3.6) can only be the sum
of two weights.

1.3.7.

Lemma. Only fundamental weights can satisfy condition 1.3.6.
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1.3.8. After 1.3.7 the representations W we are looking for factor through a simple factor Gi of
G and their dominant weight is fundamental; It corresponds to a TODO-sommet of the Dynkin
diagram Di of GiC. The necisary and sufficient conditon 1.3.6 depends only on the projection
of µ into GiCL this corresponds to a special TODO-sommet s of Di (1.2.6), an s to a simple
root αs. The number 〈µ, ω〉, for ω a weight, is the coefficient of αs in the expression of ω as a Q
linear combination of simple roots. For ω fundamental these coefficients are given in the tables of
Bourbaki [?]. They are given in the following table, where we enumerate the Dynkin diagrams with
a special TODO-sommet which is circled. Each TODO-sommet corresponds to a fundamental
weight ω, and we indicate the number 〈µ, ω〉. The TODO-sommet correspond to weights which
satisfy condition 1.3.6 are underlined.

1.3.9. TODO-the table... sigh...

1.3.10. Remarks:

(1) For G simple and exceptional, no representations W satisfy 1.3.2.
(2) For G simple and classical, except for the case DH

l (l ≥ 5) the representations W of 1.3.2

form a faithful system of representations of G̃. For DH we obtain only a faithful represen-
tation of a double cover of G (namely, the algebraicly connected component of the group
of automorphisms of a vector space H together with an anti-hermitian non-degenerate
form–an inner form of SO(2n))

2. Shimura Varieties

2.0. Preliminaries.

2.0.1. Let G be a group, Γ a subgroup, and ϕ : Γ → ∆ a morphism. Suppose we are given an
action r of ∆ on G, which stabilizes Γ and such that:

(1) r(ϕ(γ)) is an inner automorphism intγ of G;
(2) ϕ is compatible with action of ∆ on Γ by r, and on itself by inner automorphisms:

ϕ(r(δ)(γ)) = intδ(ϕ(γ))

Form the direct product G o ∆. The conditions above, reduce to saying that the collection of
γ ·ϕ(γ)−1 is a normal subgroup, and we define G ∗Γ ∆ as the quotient of Go ∆ by this subgroup.

We note that the hypothesis lead to Z = Ker(ϕ) being central in G, and that =(ϕ) is a normal
subgroup of ∆. The lines in the following diagram:

0 // Z // Γ //
� _

��

∆ //
� _

��

∆/Γ // 0

0 // Z // G // G ∗Γ ∆∆/Γ //// 0

are exact, or an isomorphis:
Γ\G ∼→ ∆\G ∗Γ ∆

and, highlighting a right action of G ∗Γ ∆ on Γ\G. For this action, G acts by right translation and
∆ acts on the right by r−1.

If G is a topological group, with ∆ discrete, and such that the action r is continuous, the group
G ∗Γ ∆ given the quotient topology of that of Go ∆ is a topological group, G/Ker(ϕ) is an open
subgroup and the mapping above is a homeomorphism.

The construction 2.0.1 maintains meaning in the categorie of algebraic groups over a field. If G
is a reductive group over k, we have a canonical isomorphism G = G̃ ∗Z(G̃) Z(G) (for the trivial

action of Z(G) on G̃).
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2.0.2. Let G by an algebraic group over a field k and Gad the quotient of G by its center Z(G).
The action by inner automorphisms of G on itself (x, y) 7→ xyx−1 : G×G→ G is invariant under
Z × {e} acting by translation, thus factors through an action of Gad on G. Take care that the
action of γ ∈ Gad(k) on G(k) is not necissarily an inner automorphism of G(k) (the projection of
G(k) into Gad(k) need not be surjective). A typical example of this is the action of PGL(n, k) on
SL(n, k).

In the same way, the action of the “commutateur” (x, y) = xyx−1y−1 is invariant under trans-
lation by Z × Z and thus factors trhough an action of Gad ×Gad → G.

All of this, and the fact that these “commutateurs” and “inner automorphisms” satisfy the usual
identities is best seen by descent, that is interpretting G as a TODO-faisceau in groups at an
appropriate site, and Gad like the quotient of this TODO-faisceau in group by its center. In
characteristic 0, if we are only interested in points of G in extension of k, it suffices to use galois
descent– see 2.4.1.2.4.2.

A variant of this. For G reductive over k, the groups G and G̃ have the same adjoint group,
and the proceeding constructions for G and G̃ are compatible. In particular, the application of
the commutateur ( , ) : G×G→ G has a canonical factorisation:

( , ) : G×G→ Gad ×Gad → G̃→ G

We deduce that the quotient G(k) by the normal subgroup ρ(G̃(k)) is abelian.

2.0.3. Letting k be a global field of characteristic 0, A its ring of adeles, G a semi-simple group
over k and N = Ker(ρ : G̃→ G). Let S be a finite collection of places of k, AS the ring of S-adeles
(restricted product for ν /∈ S) and set ΓS = ρ(G̃(AS))∩G(k) (the intersection in G(AS)). It is the
group of elements of G(k) which, for all places ν /∈ S can be lifted to G̃(kν) (recall that ρ : G̃→ G
is proper).

The long exact sequence in cohomology identifiesG(k)/ρ(G̃(k)) with a subgroup ofH1(Gal(k/k), N(k))
and ΓS/ρ(G̃(k)) with elements which are locally trivial in the places ν /∈ S of this subgroup. In
particular ΓS/ρ(G̃(k)) is contained in the subgroup H1(Gal(k/k), N(k)) of classes whose restriction
to all TODO-monogene subgroups is trivial (arguement and notations from [?]). If =Gal(k/k)
os tje o,age of galois in Aut(N(k)), we have H1(Gal(k/k), N(k) = H1(=Gal(k/k), N(k) (loc. cit.);
in particular, ΓS/ρ(G̃(k)) is finite.

2.0.4.

Proposition. (1) ΓS depends only on the collection of places ν ∈ S where the decomposition
group Dν ⊂ =Gal(k/k) is non-cyclic. In particular, it doesn’t change when we adjust S
with infinite places.

(2) ΓS/ρ(G̃(k)) is identified with a subgroup of the finite group H1(=Gal(k/k), N(k) formed
from classes with trivial restriction to all decomposition groups Dν, ν /∈ S. In particular,
for S large, we have ΓS/ρ(G̃(k)) = H1=Gal(k/k), N(k).

The restriction of an element of H1(=Gal(k/k), N(k)) to an element of a cyclic decomposition
group is automatically trivial, thus we have the first claim. For the second, we can suppose that S
contains the infinite places. The Hasse principle for G̃ (for the classes comming from the center)
assures that all the elements of the group are effectively realized as obstruction classes.

2.0.5.

Corollary. All sufficiently small S-congruence subgroups of G(k) are in ΓS.
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If U is an S-congruence subgroup, U/U ∩ ρ(G̃(k)) is finite: the obstruction to lifting to G̃(k)
is killed in a galois extenion with bounded ramification, thus is in H1(Gal, N(k)) for Gal a finite
quotient of Gal(k/k). The conditions of S-congruence thus permit us to pass from this H1 to
ΓS/ρ(G̃(k)) cf. [?].

2.0.6.

Remark. We note from elsewhere that if G̃ satisfies the strong approximation theorem relative
to S, all S-congruence subgroups U ⊂ ΓS of G(k) surject onto ΓS/ρ(G̃(k)).

2.0.7.

Corollary. For all archimedian places ν, a suffificiently small S-congruence subgroup U of G(k)
is in the topologically connected componant G(kν)

+ of G(kν).

Becuase G̃(kν) is connected, we have G(kν)
+ = ρG̃(kν) and U ⊂ ΓS = ΓS∪ν ⊂ G(kν)

+ (2.0.4
and 2.0.5).

2.0.8.

Corollary. The subgroup G(k)ρ(G̃(AS)) of G(AS) is closed, topologically isomorphic to ρ(G̃(AS)∗ΓS

G(k) (i.e. ρ(G̃(AS)) is an open subgroup).

It is a subgroup because, in view of 2.0.2, ρ(G̃(AS)) is normal in G(AS) with a commutative
quotient. If T ⊃ S is sufficiently large so that G̃(k) is dense in G̃(AΓ) (strong approximation).
Denote kT−S the product of kν for ν ∈ T − S. For K an open compact subgroup of G(AT ), we
have:

G(k)ρ(G̃(AS)) = G(k)ρ(G̃(k) · G̃(kT−S)× ρ−1K) ⊂ G(k)(ρ(G̃(kT−S))×K).

From 2.0.5 for K sufficiently small, we have in G(AT ) : G(k) ∩ K ⊂ ΓT , or in G(AS) : G(k) ∩
(ρ(G̃(kT−S)) ×K) ⊂ ΓS ⊂ ρ(G̃(AS)). The intersection of G(k)ρ(G̃(AS)) with the open subgroup
ρ(G̃(kT−S))×K is thus contained in ρ(G̃(AS)) and the corallary follows.

2.0.9.

Corollary. If G̃ satisfies the condition of real approximation rel. S. The TODO-adherence of
G(k) in G(AS) is G(k) · ρ(G̃(AS)).

2.0.10. Let T be a k torus, and S a finite collection of places including the archimean ones. Let
U ⊂ T (k) be the group of S-unites. By a theorem of chevaelly, all subgroups of finite index in U
are congruence subgroups (see [?] for an elegant proof). It follows that if T ′ → T is an isogeny,
the image of a congruence subgroup for T ′ is a congruence subgroup for T .

2.0.11. Let G be reductive over k, ρ : G̃ → Gder the universal covering of its derived group, and
Z0 the connected component of the center Z. Here are several corollaries of 2.0.10 (we suppose
that the finite collection S contains the archimedian places).

2.0.12.

Corollary. For U of finite index in the group of S-unites of Z(k) there exists a compact open
subgroup K of G(AS) such that:

G(k) ∩ (K ·Gder(AS)) ⊂ Gder(k) · U
Applying 2.0.10 to the isogeny Z0 → G/Gder: for small K, an element γ of G(k) in K ·Gder(AS)

has in (G/Gder)(k) a small image, for the topology of subgroups of S-congruence, thus can be
lifted to a small element z of Z(k) and γ = (γz−1) · z.
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2.0.13.

Corollary. The product of a congruence subgroup of Gder and a finite index subgroup of the S-
unites of Z0(k) is an S-congruence subgroup of G(k).

2.0.14.

Corollary. All the sufficiently small S-congruence subgroups of G(k) are contained in the topo-
logical connected component G((R)+ of G(R).

Apply 2.0.13, ?? to Gder and 2.0.10 to Z0.

2.0.15. We know that Gder(k)ρ(G̃(A)) is open in G(k)ρ(G̃(A)) (because the inverse image of {e} ⊂
the discrete subgroup G/Gder(k) of (G/Gder)(A)). From 2.0.8, G(k)ρ(G̃(A)) is thus a closed
subgroup of G(A). We set:

π(G) = G(A)/G(k)ρ(G̃(A))

The existance of commutateurs 2.0.2 shows that the action of Gad(k) on π(G) deduceed from the
action 2.0.2 of Gad on G is trivial.

2.1. Shimura Varieties.

2.1.1. Let G be a reductive group, defined over Q and X a G(R)-conjugacy class of morphisms
of real algebraic grouups S into GR. We suppose it satisfies the following axioms (the notation is
that of 1.1.1 and 1.1.11.

(1) For h ∈ X, Lie(GR) is of type {(−1, 1), (0, 0), (1,−1)}
(2) The involution inth(i) is a cartan involution on the adjoint group Gad

R .
(3) The adjoint group admits no factors G′ defined over Q for which the projection of h is

trivial.
(4) The morphism w : Gm → GR is defined over Q.
(5) inth(i) is a Cartan involution of the group (G/w(Gm))R.

From 1.1.14(i), X admits a unique complex structure such that, for all representations V of GR,
the Hodge filtration Fh of V varies holomorphically with h. For this complex structure, the
connected components of X are hermitian symmetric domains. The proof in 1.1.17 shows also
that if we decompose Gad

R into simple factors, h projects trivially onto compact factors, and that
each connected component of X is the product of hermitien symmetric domains corresponding to
the non-compact factors. The thrid condition can be restated as saying that Gad (respectively G̃,
which will give us the same thing) has no factors G′ (defined over Q) such that G′(R) is compact,
and the theorem of strong approximation assures us that G̃(Q) is dense in G̃(Af ).

2.1.2. Shimura Varieties KMC(G,X) – or simply KMC– are quotients KMC(G,X) = G(Q)\X×
(G(Af )/K) for K a compact open subgroup of G(Af ). From 1.2.7 and with the notations of ??, the
action of G(R) on X makes π0(X) a principal homogeneous space under G(R)/G(R)+. Because

G(R) is dense in G(R) (real approximation), we haev G(Q)/G(Q)+
∼→ G(R)/G(R)+, and if X+ is

a connected component of X we have:

KMC(G,X) = G(Q)+\X+ × (G(Af )/K)

This quotient is a disjoint union, indexed by the finite collection G(Q)+\G(Af )/K of double cosets,
of the quotients Γf\X+ or the hermitian symmetric domain X+ by the images Γg ⊂ Gad(R)+ of the
subgroups Γ′g = gKg−1∩G(Q)+ of G(Q). The Γg are arithmetic subgroups, or there is an analytic
structure on Γg\X+. The arcticle [?] gives a natural strucutre of quasi-projective algebraic varieties
to these quotients, thus on KMC(G,X). If Γg is torsion free (this is the case for K sufficiently
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small); it is a result of [?] that this structure is unique. More precisely, for all reduced schemes Z,
an analytic morphism of Z into Γg\X+ is automatically algebraic.

2.1.3. We have:

π0KMC = G(Q)\π0(X)× (G(Af )/K) = G(Q)\G(Q)/G(R)+ ×K = G(Q)+\G(Af )/K.

Because G(Af )/K is discrete, we can replace G(Q)+ by its closure in G(Af ). The connectedness
of G̃(R) assures that ρ(G̃(Q)) ⊂ G(Q)+. By the theorem of strong approximation for G̃, ρ(G̃(Q))
is dense in ρ(G̃(Af )) and G(Q)+ ⊃ ρ(G̃(Af )), Thus,

π0KMC = G(A)/ρ(G̃(A) ·G(Q) ·G(R)+ ×K
= π(G)/G(R)+ ×K = π0π(G)/K

In particular π0KMC depends only on the image of K in G(A)/ρ(G̃(A)).

2.1.4. Letting K vary (becoming smaller and smaller), the KMC form a projective system. It comes

with a right action of G(Af ): a system of isomorphisms g : KMC
∼→ g−1KgMC. It is convienient

to consider instead the scheme MC(G,X)–or simply MC– the projective limit of the KMC. This
limit exists because the transition morphisms are finite. This scheme comes with a right action of
G(Af ) and it recovers the KMC = MC/K.

We propose to determine MC and its decomposition into connected components.

2.1.5.

Definition. Fixing a connected component X+ of X, the identity component M0
C of MC is the

component which contains the image of X+ × {e} ⊂ X ×G(Af ).

2.1.6.

Definition. Let G0 be an adjoint group over Q with no factors G′0 defined over Q such that
G′0(R) is compact and G1 a covering of G0. The topology τ(G1) on G0(Q) is that which has for
a fundamental system of neighbourhoods of the identity the images of congruence subgroups of
G1(Q).

We denote ∧ (rel. G1), or simply ∧, the completion for this topology. Let ρ : G̃0 → G1 be the
natural mapping, denote − the closure in G1(Af ) and set: Γ = ρ(G̃0(A) ∩G1(Q). Because G̃0(R)
is connected, Γ ⊂ G1(Q)+, we have (2.0.9,2.0.14)

G0(Q)∧(rel.G1) = G1(Q)− ∗G1(Q) G0(Q) = ρ(G̃0(Af )) ∗Γ G0(Q),

G0(Q)+∧(rel.G1) = G1(Q)−+ ∗G1(Q)+ G0(Q)+ = ρ(G̃0(Af )) ∗Γ G0(Q)+.

2.1.7.

Proposition. The identity component M0
C is the projective limit of the quotients Γ\X+ for Γ

arithmetic subgroups of Gad(Q)+, open for the τ(Gder) topology.

From 2.1.2 it is the limit of the Γ\X0 for Γ the image of a congruence subgroup of G(Q)+. The
Corrallary 2.0.13 permits us to replace G by Gder.
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2.1.8. The projection of G onto Gad induces an isomorphism of X+ with a G(R)+ conjugacy class
of morphisms of S into Gad

R and from 2.1.7, M0
C(G,X) depends only on Gad, Gder and this class.

Formalising this remark. Let G be an adjoint group, X+ a G(R)+-conjugacy class of morphism of
S into G satisfying (2.1.1,2.1.2,2.1.3) and G1 a covering of G. The connected Shimura varieties
(rel. G,G1, X

+) are the quotients Γ\X+ , for Γ an arithmetic subgroup of G(Q)+, open for the
τ(G1) topology. We denote M0

C(G,G1, X
+) their projective limit for Γ smaller and smaller. We

note that by transport of structures we the action G(Q)+ on M0
C(G,G1, X

+) extends by continuity
to a complete action G(Q)+∧(rel. G1).

With the notations of 2.1.7 and the identification above of X+ with a G(R)+-conjugacy class of
morphisms of S into Gad

R we have:

M0
C(G,X) = M0

C(Gad, Gder, X+)

2.1.9. Let Z be the center of G, and Z(Q)− the closure of Z(Q) in Z(Af ). By the theorem of
Chevalley (2.0.10), it is the completion of Z(Q) for the topology of finite index subgroups of the
group of units; it recieves isomorphically the closure of Z(Q) in π0Z(R)× Z(Af ).

For K ⊂ G(Af ) compact open, we have Z(Q) ·K = Z(Q)− ·K (in Z(Af )) and

KMC = G(Q)\X × (G(Af )/K) =
G(Q)

Z(Q)
\X × (G(Af )/Z(Q) ·K)

=
G(Q)

Z(Q)
\X × (G(Af )/Z(Q)− ·K

The action of G(Q)/Z(Q) on X × (GAf )/Z(Q)− is proper. This permits us to pass to the limit
over K.

2.1.10.

Proposition. We have

MC(G,X) =
G(Q)

Z(Q)
\X × (G(Af )/Z(Q)−)−

2.1.11.

Corollary. If the conditions of 2.1.4 and 2.1.5 are satisfied we have MC(G,X) = G(Q)\X×G(Af ).

In this case Z(Q) is discrete in Z(Af ) and Z(Q)− = Z(Q).

2.1.12.

Corollary. The right action of G(Af ) factors through G(Af )/Z(Q)−.

2.1.13. Let Gad(R)1 be the image of G(R) in Gad(R) and Gad(Q)1 = Gad(G)∩Gad(R)1. The action
2.0.2 of Gad on G induces an action (on the left) of Gad(Q)1 on the system of KMC:

int(γ) : KMC
∼→ γKγ−1MC

and to the limit on MC. For γ ∈ Gad(Q)+, this action stabilises the identity component )thus all
connected components, see the following) and induces the action of 2.1.6.

Converting this action to a right action, denoted ·γ. If γ is the image of δ ∈ G(Q), the
action ·γ coincidees with the action of δ seen as an element of G(Af ): for u ∈ MC the image of
(x, g) ∈ X ×G(Af ), u · γ is the image of:

(γ−1(x), int−1
γ (g)) = (δ−1(x), δ−1gδ) ∼ (x, gδ) mod G(Q) on the left
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In total, we obtain then a right action on MC of the group:

G(Af )

Z(Q)−
∗G(A)/Z(Q) G

ad(Q)1 =
G(Af )

Z(Q)−
∗G(A)+/Z(Q) G

ad(Q)+

2.1.14.

Proposition. The right action of G(Af ) on π0MC makes π0MC into a principal homogeneous
space under ints abelian quotient G(Af )/G(Q)−+ = π0π(G).

We will see this soon by passage to the limit of the formulas in 2.1.3

2.1.15. Because Gad(Q) acts trivially on π(G) (2.0.15) and because Gad(Q)+ stabilizes at least one
connected component (2.1.13) the group Gad(Q)+ stabilizes all of them. For the action 2.1.13 of
the group described there on MC, the stabilizer of each connected component is thus:

G(Q)−+
Z(Q)−

∗G(Q)+/Z(Q) G
ad(Q)+ =2.0.13 G

ad(Q)+∧(rel, Gder)

2.1.16. Summary: The group G(Af )/Z(Q)− ∗G(Q)/Z(Q) G
ad(Q)1 acts on the right on MC. The

profinite collection π0MC is a principal homogeneous space under the action of its abelian quotient
G(Af )/G(Q)−+ = π0π(G) of this group by the closure of Gad(Q)+. This closure is the completion
of Gad(Q)+ for the topology of images of congruence subgroups of Gder(Q). The action of this
completion on the identity component, once converted to a left action, is that of 2.1.8.

2.2. Canonical Models.

2.2.1. Let G and X be as in 2.1.1. For h ∈ X, the morphism µh (1.1.1, completed by 1.1.11) is
a morphism over C of algebraic groups defined over Q: µh : Gm → GC. The dual field (reflex
field) E(G,X) ⊂ C of (G,X) is the field of definition of this conjugacy class. If X+ is a connected
component of X, we will sometimes denote it E(G,X+).

Let (G′, X ′) and (G′′, X ′′) be as in 2.1.1. If there is a morphism f : G′ → G′′ which sends X ′

into X ′′ we have E(G′, X ′) ⊃ E(G′′, X ′′).

2.2.2. Let T be a torus, E a number field, and µ a morphism defined over E of Gm into TE.
The group E∗, viewed as an algebraic group over Q is the Weil restriction of scalars RE/Q(Gm).
Applying RE/Q to µ we obtain RE/Q(µ).

We will use also the norm map NE/Q : RE/QTE → T (on the rational points it is the norm). And
by composition we have a morphism NE/Q ◦RE/Q(µ) : E∗ → T . We will denote it simply NRE(µ)
or NR(µ). If E ′ is an extension of E and µ is again defined over E ′:

NRE′(µ) = NRE(µ) ◦NE′/E

2.2.3. Let in particular T be a torus, h : S → TR and X = {h}. If E ⊂ C contains E(T,X) the
morphism µh is defined over E, or the morphism NR(µh) : E∗ → T . Passing to the adelic points
modulo rational points, we deduce a homomorphism from the group of idele classes C(E) of E in
T (Q)/T (A), and, by passage to the connected components, a morphism:

TODO-typo T (A)/T (Q) makes more sense

π0NR(µh) : π0(C(E))→ π0(T (Q)/T (A))

Global class field theory identifies π0(C(E) with the abelianization of the galois group over E.
The group π0(T (Q)\T (A)) is a profinite group, the projective limit of the finite groups T (Q)\T (A)/T (R)+×

K for K compact open in T (Af ). It is π0(T (R))×T (Af )/T (Q)−. The Shimura varieties KMC(T,X)
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are the finite collections T (Q)\{h}×T (Af )/K = T (A)\T (Af )/K, their projective limit, calculated
in 2.1.10 is the quotient of π0(T (Q)\T (A)) by π0(T (R)).

We will the reciprocity map to be the map rE(T,X) : Gal(Q, E)ad → T (Af )/T (Q)− consisting
of the inverse of the compostion of the isomorphism of global class field theory ?? of π0NR(µh)
and the projection of π0(T (A)/T (Q) onto T (Af )/T (Q)−. It defines an action rE of Gal(Q/E)ab

on the KMC(T,X) : σ 7→ the right translation by rE(T,X)(σ).
The universal case (in E) is that where E = E(T,X): it results from (??) that the action rE of

Gal(Q/E) is the restricton to Gal(Q/E) ⊂ Gal(Q/E(T,X)) of rE(T,X).

2.2.4. Let G and X be as in 2.1.1. A point h ∈ X is said to be special or of CM-type if
h : S→ G(R) factors through a torus T ⊂ G defined over Q. We note that if T is such a torus, the
cartan involution inth(i) is trivial on the image T (R) in the adjoint group, and that this image is
thus compact. The field E(T, {h}) depends only on h, it is the dual field E(h) of h.

We transport this terminology to points of KMC(G,X) and of MC(G,X): for x ∈ KMC(G,X)
(respectively MC(G,X) the class (h, g) ∈ X ×G(Af ), the G(Q)-conjugacy class of h depends only
on x, we say that x is special if h is, that E(h) is the dual field E(x) of x and that the G(Q)
conjugacy class h is the type of x.

On the collection of special points of KMC(G,X) (resp MC(G,X)) of a given type, corresponding
to a dual field E, we will define an action r of Gal(Q/E). Let thus x ∈ KMC(G,X) (resp MC(G,X))
have class (h, g) ∈ X ×G(Af ) T ⊂ G a torus through which h factors, σ ∈ Gal(Q/E) and r(σ) a
representative in T (Af ) of rE(T, {h})(σ) ∈ T (Af )/T (Q)−. We set r(σ)x = the class of (h, r(σ)g).
The reader must verify that this class depends only on x and σ. The action thus defined commutes
with the right action of G(Af ) on MC(G,X).

2.2.5. A Canonical Model M(G,X) of MC(G,X) is a form over E(G,X) of MC(G,X) together
with a right action of G(Af ) such that:

(1) The special points are algebraic;
(2) On the collection of special points of type τ given, corresponding to a dual field E(τ), the

gallois group Gal(Q/E(τ)) ⊂ Gal(Q/E(G,X)) acts by the action in 2.2.4.

By “form” we mean a scheme M over E(G,X), with a right action by G(Af ) and an equivariant

isomorphism M ⊗E(G,X) C ∼→MC(G,X).
Let E ⊂ C be a number field containing E(G,X). A weakly canonical model of MC(G,X)

over E is a form over E with a right action of G(Af ) satisfying the first condition, but with the
second modified so that Gal(Q/E(τ)) is replaced by Gal(Q/E(τ) ∩Gal(Q/E).

2.2.6. In [?, 5.4,5.5], inspired by the methods of Shimura, we showed that MC(G,X) admites at
most one weakly canonical model over E for E(G,X) ⊂ E ⊂ C and that if it exists it is fonctorial
in (G,X).

2.3. Construction of Canonical Models. In this section we determine the cases in which the
following criteries demonstrated in [?, 4.21,5.7], shows that we can construct canonical models.

2.3.1.

Theorem. Let (G,X) be as in 2.1.1, V a rational vector space with a non-degenerate alternating
form Ψ and S± the corresponding double Siegel half space (see 1.3.1). If there exists an embedding
G ↪→ CSp(V ) which maps X into S±, then MC(G,X) has a canonical model M(G,X).
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2.3.2.

Proposition. Let (G,X) be as in 2.1.1, w = wh (h ∈ X) and (V, ρ) a faithful representation
of type {(−1, 0), (0,−1)} of G. If inth(i) is a Cartan involution of GR/w(Gm) there exists an
alternating form Ψ on V such that ρ induces a map (G,X) ↪→ (CSp(V ), S±).

By hypothesis, the faithful representation V is homogeneous of weight −1. The weight w is thus
defined over Q, and we take for Ψ a polarisation form as in 1.1.18(b).

2.3.3.

Corollary. Let (G,X) be as in 2.1.1, w = wh (h ∈ X) and (V, ρ) a faithful representation of type
{(−1, 0), (0,−1)} of G. If the center Z0 of G TODO-deploye over a CM-field, there exists a
subgroup G2 of G, with the same derived group and through which X factors, and an alternating
form Ψ on V , such that ρ induces (G2, X) ↪→ (CSp(V ), S±)).

The hypothesis on Z0 is the same as saying that the largest compact subtorus of Z0
R is defined

over Q. We take G2 generated by the derived group, this torus, and the image of w and apply
2.3.2.

2.3.4. Let (G,X) be as in 2.1.1, with G Q-simple adjoint. The axiom (2.1.12) assures that GR) is
an inner form of its compact form. We exploit this fact.

(1) The simple components of GR are absolutely simple, if we write G as obtained from re-
striction of scalars G = RF/QG

s with Gs absolutely simple over F , this signifies that F is
totally real. Set the notation I = the collection of real embeddings of G and for v ∈ I
Gv = Gs ⊗F,v R, Dv = dynkin diagram of GvC, We have GR =

∏
Gv, GC =

∏
GvC and the

dynkin diagram D of GC is the disjoint union of the Dv. The galois group Gal(Q/Q) acts
on D and I, in a manner compatible with the projection of D on I.

(2) Complex conjugation acts on D by the involution TODO-d’opposition. This is central in
Aut(D). Thus, Gal(Q/Q) acts on D in a manner which is faithful with that of Gal(KD/Q),
with KD totally real if the involution is trivial, CM otherwise.

2.3.5. We have X =
∏
Xν for Xν a Gν(R)-conjugacy class of morphism of S into Gν . For Gν

compact, Xν is trivial. For Gν noncompact, Xν is described by TODO-sommet sν , of the
Dynkin diagram Dν of GνC (1.2.6).

Some notation: Ic = the collection of v ∈ I such that Gv is compact, Inc = I− Ic, Dc (resp Dnc)
= the union of the Dv for v ∈ Ic (resp v ∈ Inc), Gc (resp Gnc) = the product of the Gv for v ∈ Ic
(resp v ∈ Inc); the same for the universal coverings, Σ(X) = the collection of the sv for v ∈ Inc.
The definition 2.2.1 gives:

2.3.6.

Proposition. The dual field of (G,X) is the sub-field of KD fixed by the sub group of Gal(KD/Q)
which stabilizes Σ(X).

2.3.7. Suppose we have the diagram:

(G,X)← (G1, X1) ↪→ (CSp(V ), S±)

The universal covering G̃ lifts in G1, this permits us to restrict the representation V to G̃. The
quotient of G̃ which acts faithfully is by hypothesis the derived group of G1. Applying 1.3.2,1.3.8
to the diagram:

(Gnc, X)← (Ker(G1R → Gc)
0, X1)→ (CSp(V ), S±)
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We find that the non-trivial irreducible components of the representation VC of G̃nc factors through
one of the G̃vC (v ∈ Inc), and that their dominant weight is fondamental, and is one of those types
permitted by table 1.3.9. The collection of dominant weights of the irreducible components of the
representation VC of G̃C is stable under Gal(Q/Q). Because Gal(Q/Q) acts transitively on I, and
Inc 6= ∅, we find that:

(1) All the irreducible components W of VC are of the form ⊗v∈TWv with Wv a fondamental
representation of GvC (v ∈ T ⊂ I), corresponding to a TODO-sommet τ(v) of Dv. We
denote L(V ) the collection of the τ(v) ⊂ D for W ⊂ VC irreducible.

(2) If S ∈ L(V ),S ∩ Dnc is empty or reduices to a single point sS ∈ Dv (v ∈ Inc) and in the
table 1.3.9 for (Dv, sv), Ss is one of the underlined TODO-sommet.

(3) L is stable under Gal(Q/Q). We have LTODO-what?? not the empty set.
If a collection of one of the parts of L of D satisfies (b) and (c) we denote G̃(L)C

the quotiend of G̃C which acts faithfully in the corresponding representation of G̃C. The
condition (c) assures that it is defined over Q. the most interesting case is that where:

(4) L is formed from parts made of single elements.
If L satisfies (b), (c), the collection L′ of the {s} for s ∈ S ∈ L verifies (b),(c),(d) and

G̃(L′) dominates G̃(L).

In the following table–deduced from 1.3.9– we give
The list of the cases where there exists L satisfying (b),(c). From 1.3.10 this can be only the

case if G is of one of the types A,B,C,D and the cases will be successively reviewed.
The collection L verfying the (b),(c),(d) maximal, and the corresponding group G̃(L). (it

dominates all the G̃(L) for L satisftying (b),(c)).

2.3.8. The Table:
TODO-this

• Types A,B,C
• Type Dl (l ≥ 5)
• sub-case Type DR

l

• sub-case Type DH
l

• Type D4

• sub-case Type DR
4

• sub-case Type DH
4

For the remainder of this work, it will be convienient for us to redefine the case DH
4 as to exclude

DR
4 . With this terminology, there exists L satisfying (b),(c) if and only if (G,X) is one of the

types A,B,C,DR, DH and except for the type DH there exists L satisfying (b),(c),(d) and such
that G̃(L) is the universal covering of G.

2.3.9. We will consider imaginary quadratic extensions K of F , together a collection T of complex
embeddings: one on top of each real embedding v ∈ I One single T defines a hodge structure hT :
S→ K∗R over K (considered as a rational vector space, and on which K∗ acts by multiplication): if
J is a collection of complex embeddings of K, we have K ⊗C = CJ , and we define hT in asserting
that the factors indexed by σ ∈ K are of type (−1, 0) for σ ∈ T , (0,−1) for σ ∈ T and (0, 0) if σ
is above one of Inc, the primary result of this section is:

2.3.10.

Proposition. Let (G,X) be as in 2.1.1, with G Q-simple adjoint and of type A,B,C,DR, DH.
For all totally imaginary quadratic extensions K of F , given with a T as in 2.3.9 there exists a
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diagram:

(G,X)← (G1, X1) ↪→ (CSp(V ), S±)

for which

(1) E(G1, X1) is teh composite E(G,X) and E(K∗, hT ).
(2) The derived group G′1 is simply connected for G of type A,B,C,DR and the universal

covering is as described in 2.3.8 for DH.

TODO-the proof

2.3.11.

2.3.12.

2.3.13.

2.4. Preliminaries on the Reciprocity Law. The constructions of this section will permit us,
in section 2.6, to cacluate the reciprocity lay of canonical models, that is, the action of the galois
group on the collection of geometrically connected components.

Although they are expressed better in the language of fppf descent, we express them in the
language of Galois descent, we believe this is more familiar to non-geometers. This exposes sev-
eral repetitions and inconsistencies, and introduces parasitic hypothesis about seperability and
characteristic 0.

Let G be a reductive group over a global field k, with the notation of ?? our goal is to construct
canonical morphisms of the following two types:

(1) For k′ a finite (we shall suppose seperable) extension of k, and G′ the extension of scalars
of G to k′, a norm map:

Nk′/k : π(G′)→ π(G)

(2) For T a torus and M a conjugacy class, defined over k, of morphisms of T into G, a
morphism:

qM : π(T )→ π(G)

If m ∈ M(k), qM will be a morphism qm induced by m; the difficulty will be to show that
this morphism doesn’t depend on the choice of m, and to construct qM even if M doesn’t
have representatives defined over k.

The functorial properties of these morphisms will be evident from their constructions.

2.4.1. We use systematically the language of torseurs (which I prefer to that of cocycles), and that
of Galois descent, in the form that Grohendieck gives (cf. SGA 1, or SGA 4.5 [Arcata]).

Galois Descent : Let K be a finite seperable extension of a field k. To construct an object X over
k (for example a torseur), it suffices to construct (a) for all seperable extensions k′ of k such that
there exists a morphism of k-algebras of K into k′, an object Xk′ , over k; (b) for k′′ an extension

of k′, an isomorphism χk′′,k′Xk′ ⊗ k′′
∼→ Xk′′ ; and satisfy the compatibility χk′′′k′′χk′′k′ = χk′′′k′ .

In practice, this signifies, that to construct X, we can suppose the existance of auxilliary objects
which exist only in seperable extensions K of k– at the cost of showing that the X constructed
does not depend–up to unique isomorphism– on the choice of this auxilliary object.

Remark. Galois descent is a particular case of localisation in the etale topology; a construction
like (a),(b),(c) above is often introduced with the adverb “locally”
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2.4.2.

Example. Explaining the canonical covering used in 2.0.2 of the commutateur map. The use of
galois descent–rather than fppf – obliges us to suppose that the projection of G on Gad is smooth,
and only considering ( , ) : Gad(k)× Gad(k) → G(k), rather than the morphism Gad × Gad → G.
If X1, x2 ∈ Gad(k), we can, locally, write xi = ρ(x̃i)zi with zi in the cnter of G. The element x̃i
is unique, up to multiplication by an element of the center of G̃. The commutateur of x̃1 and x̃2

does not depend on the choise of x̃i and we set (x1, x2) = x̃1x̃2x̃
−1
1 x̃−1

2 .

2.4.3. For G an algebraic group over a field k, a G-torseur is a scheme P over k, with a right
action of G which gives it the structure of a principle homogenious space. The trivial G-torseur
Gd is G with the action of G by right translation. We identifiy the points x ∈ P (k) with the

trivializations of P (isomorphisms φ : Gd
∼→ P ) by φ(g) = xg.

If f : G1 → G2 is a morphism, and P a G1-torseur, there exists a G2-torseur f(P ) together
with f : P → f(P ) which satisfies f(pg) = f(p)f(g), and it is unique up to unique isomorphism.
We interest ourselves in the category [G1 → G2] of G1 torseurs P together with a trivialization
of f(P ). For morphisms, take isomorphisms of G1 torseurs, compatible with G2 trivializations.
We denote H0(G1 → G2) the group of automorphisms of (G1d, e) (it is ker(G1(k) → G2(k))) and
H1(G1 → G2) the collection (pointed by (G1d, e)) of isomorphism classes of these objects.

Each x ∈ G2(k) defines an object [x] of [G1 → G2]” the trivial G1-torseur G1d together with
the trivialization x of f(G1d) = G2d. When it doesn’t cause confusion, we denote this simply x.
The collection of morphisms of [x] into [y] identifies with {g ∈ G1(k)|f(g)x = y}, to g accociate
u 7→ ug : G1d → G1d. An object is of the form [x] if and only if as a G1-torseur, it is trivial–or
there is an exact sequence:

1→ H0(G1 → G2)→ G1(k)→ G2(k)→ H1(G1 → G2)→ H1(G1)→ H1(G2)

(this does not describe the inverse image of p ∈ H1(G1); to describe it, one must proceed by
TODO-twisting as in [?]).

2.4.4. If g is an epimorhpism, with kernal K, it is the same thing to give a G1 toresur P which is
G2 trivialized by x ∈ f(P )k or to give a K-torseur f−1(x) ⊂ P : the natural functor [K → {e}]→
[G1 → G2] is an equivalence.

More generally, if g : G2 → H induces an epimorphism of G1 on H, and Ki = ker(G1 → H),
the natural foncteur [K1 → K2]→ [G1 → G2] is an equivalence.

2.4.5. If G is cummutative, the sum s : G × G → G is a morphism, and we denote the sum of
G-torseurs by P + Q = s(P × Q), if G1 and G2 are commutative, we add in the same way the
objects of [G1 → G2] which becomes a Picard Category (strictely commutative) (SGA 4, XVIII,
1.4).

All the proceeding works for group schemes over an arbitrary base.

2.4.6. If k′ is a finite extension of k (the case where k′/k is seperable is sufficient for us) and G′

is an algebraic group over k′, the foncteur of restriction of scalaires of Weil Rk′/k is an equivalence
of categories between G′ torseurs and Rk′/kG

′-torseurs. This corresponds to a lemma of Shapiro
H ′(k′, G′) = H1(k,Rk′/kG

′). If G′ comes from G by extension of scalars from G commutative–over
k, we will make use of the trace map Rk′/kG

′ → G–or a trace functor Trk′/k of G′-torseurs into
G-torseurs. More generally, for G1 → G2 a morphism of commutative groups gives an additive
functor:

Trk′/k : [G′1 → G′2]→ [G1 → G2]
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These functors are described in great generatlity in [?, XVII, 6.3]. For k′/k seperable, we can give
a more simple definition by descent: locally, k′ is the sum of [k′ : k] copies of k [G′1 → G′2] is
identified with the category of [k′ : k]uples of objects G1 → G2 and Trk′/k is the sum.

When groups are denoted multiplicatively, we will speak rather of the norme functors Nk′/k.

2.4.7. TODO-very long section... not sure what it is doing

2.4.8.

Proposition. If k is a local of global field, the morphism deduced from (??) by passing to the
isomorphism classes of objects induces a morphism of G(k′)/ρ(G̃′′(k′)) in G(k)/ρ(G̃(k)):

G(k′)/ρ(G̃(k′) G(k)/ρ(G̃(k))

H1(G̃′ → G′) H1(G̃→ G)

TODO-arrows

TODO-the proof

2.4.9. For k non-archimedian local field with ring of integers V , k′ unramified over k with ring of
integers V ′, and G reductive over V , the morphism 2.4.8 induces a morphism of G(V ′)/ρ(G̃(V ):
we see this by repeating the proceeding arguements over V , galois descent is replaced by etale
localisation (here it is formally identical to galois descent over the residue field).

We can thus make adelic 2.4.8: for k a global field, the restricted product of morphisms 2.4.8
for the completions of k, is a morphism:

Nk′/kG(A′)/ρ(G̃(A′))→ G(A)/ρ(G̃(A))

Dividing by the global trace map, we obtain in the end the morphism (1)

Nk′/k : π(G′)→ π(G)

The same as the construction of the morphism (1) based on that of the fonctor (??), that of (2) is
based on the following:

2.4.10. TODO-fancy construction of the maps qM ...

2.4.11.

2.4.12.

2.5. Application: A Canonical Extension.

2.5.1.

2.5.2.

2.5.3.

2.5.4.

2.5.5.

2.5.6.

2.5.7.
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2.5.8.

2.5.9.

2.5.10.

2.6. the Reciprocity Law of Canonical Models.

2.6.1. Let (G,X) be like as in 2.1.1 and E ⊂ C a number field containing E(G,X). Suppose
that MC(G,X) admits a weakly canonical model ME(G,X) over E. The galois group Gal(Q/E)
then acts on the profinite system π0(MC(G,X)) of the geometrically connected components of
ME(G,X). This action commutes with that of G(Af ), by hypothesis is defined ovef E. From
2.1.14 the (right) action of G(Af ) makes π0MC(G,X) into a principal homogeneous space under
the abelian quotient π0πG− G(Af )/G(Q)−+. The galois action is thus given by a homomorphism

rG,X of Gal(Q/E) into π0π(G), called the reciprocity. Our sign convention: the (right) action of
σ coincides with the (right) action of rG,X(σ). This morphism factors through the abelianization
of the Galois group, identified by global class field theory with π0π(GmE) where:

rG,X : π0π(GmE)→ π0π(G)

2.6.2. Let M be the conjugacy class of µh, for h ∈ X. Because E ⊃ E(G,X), it is definied over
E. Composing the morphisms ??, we obtain NE/QqM : π(GmE)→ π(GE)→ π(G).

By passage to π0, we deduce:

π0NE/QqM : π0π(GmE)→ π0π(G)→ π0π(G)

2.6.3.

Theorem. The morphism (2.6.1) gives the action of Gal(Q/E) on the collection of geometrically
connected components of the weakly canonical model ME(G,X) of MC(G,X) over E, it is the
inverse of the morphism π0NE/QqM of 2.6.2.

The idea of the proof is that, for eacy type τ of special point (2.2.4) we know the action of a
finite index subgroup of Galτ of Gal(Q/E) on the special points of this type (this by the definition
of weakly canonical models), thus on the collection of connected components via mapping to the
connected component which contains each point and using that this action is compatible. That
the action of Galτ thus obtained is the restriction to Galτ of the action defined by the inverse of
π0(NE/QqM) is verified in 2.6.4 below, and it remains to show that the Galτ generate Gal(Q/E).

A type of special point τ is defined by h ∈ X which factors by a torus ι : T → G defined over
Q. The subgroup Galτ corresponds to Gal(Q/E) ∩ Gal(Q/E(T, h)) = Gal(Q/E · E(T, h)). From
[?, 5.1], for every finite extension F of E(G,X) there exists (T, h) such that the extension E(T, h)
of E(G,X) is linearly disjoint from F , this is more than enough to ensure that the Galτ generate
Gal(Q/E).

2.6.4. Let T and h be as above and µ = µh, The morphism µ : Gm → T is defined over E(T, h) and
the morphism π0NR(µh) of 2.2.3 is derived, by the application of the fonctor π0 from NE(T,h)/Q ◦
qµ : π(GmE(T,h)) → π(T ). We deduce that the action of Gal(Q/E) ∩ Gal(Q/E(T, h)) on the

special points of type τ is compatible with the action of Gal(Q/E(T, h))ab = π0π(GmE(T,h)) on
π0(MC(G,X)) defined, by application of the fonctor π0 to the inverse of:

ι ◦NE(T,h)/Q ◦ qµ : π(GmE(T,h))→ π(T )→ π(G)

From the fonctoriality of N and q, it results that the composition is NE(T,h)/Q ◦ qM :
TODO-diagrams



28 DELIGN (TRANSLATION - ANDREW FIORI)

is equal to NE(G,X)/Q ◦ qM ◦NE(T,h)/E(G,X):

Because the normNE(T,h)/E(G,X) corresponds via class field theory to the inclusion of Gal(Q/E(T, h))

into Gal(Q/E(G,X)) we have correctly the promised action.

2.7. Reduction to the Derived Group, and the Existance Theorem.


