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1. Root Systems

Let V be a Euclidean vector space with an inner product (·, ·).
A root system is a finite collection of vectors Φ which satisfy the following:

(1) The span of Φ is V .
(2) If α ∈ Φ then Φ is closed under the reflection σα in α⊥.
(3) If α ∈ Φ then λα ∈ Φ if and only if λ = ±1.

(4) For α, β ∈ Φ we have 〈β, α〉 def
= 2 (α,β)

(α,α)
∈ Z.

Remark. The pairing 〈·, ·〉 is not necissarily symmetric, only linear in the first variable.
The purpose of the integrality condition is to make it so that the root system can generate a

lattice in a sensible way. (That it is integral and not rational says that the system is somehow
’reduced’)

Using that 〈α, β〉〈β, α〉 = 4 (α,β)2

|α|2|β|2 = 4 cos2(θ) (where θ is the angle between α, β. The integrality

condition immediately imposses that the cosine of the angles are one of {0,±1
2
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2
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,±
√

3
2
,±1}.

In particular the product is 0, 1, 2, 3 they both have the same sign, and at least one of them is
±1.

The rank of the root system is the dimension of V .
Root systems are reducible if there exist V1, V2 ⊂ V with V = V1⊕V2 and Φ = (Φ∩V1)∪(Φ∩V2).
Two root systems are isomorphic if there exists an isomorphism between the spaces taking

roots onto roots.
The Weyl group of Φ is the group of isometries of V generated by σα. This group is finite as

it acts faithfully on the finite set of roots.
The Root lattice of Φ is the Z module generated by Φ.

Example. • (0, 1), (1, 0) (A1 × A1)
• (0, 1), (1, 0), (1, 1) (B2)
• Hexagon (A2)
• Long+Short Hexagon (G2)
• E6 = (12,12off)

2. Simple roots

We say that a subset Φ+ is a system of positive roots if:

(1) For each α ∈ Φ exactly one of α,−α ∈ Φ+.
(2) If α, β ∈ Φ+ and α + β ∈ Φ then α + β ∈ Φ+.

An element of γ ∈ Φ+ is simple (with respect to Φ+) if γ can not be written as α + β for
α, β ∈ Φ+.
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Remark. Picking a collection Φ+ is equivalent to picking a connected component of V \ (∪αα⊥).
That is, picking a hyperplane γ⊥ which contains none of the α and setting Φ+ = {α ∈ Φ|〈γ, α〉 > 0}.

The collection ∆(γ) of simple roots of Φ+(γ) forms a basis of V and every α ∈ Φ+(γ) is a
positive integral linear combination of elements of ∆(γ).

Generating set by induction relative to (γ, α). Next have α, β ∈ ∆(γ) implies 〈α, β〉 < 0
otherwise one of α − β or β − α would be in Φ+(γ). Now if X =

∑
α sαα =

∑
β tββ with all

si, ti > 0, then by the above (X,X) = 0 and so X = 0, then we consider (X, γ) = 0 and so
si, ti = 0.

We can recover a root system from a collection of simple roots. Indeed, inductively on height if
α is a non-simple positive root there exists a β ∈ ∆, such that α − β is also positive. (use linear
independence of simple roots expressing alpha as a sum of them).

We have the following facts about

• The Weyl-group acts transitively on Weyl-champers and thus on all collections of positive
and simple roots.
• Every root can be made to be simple.
• The Weyl-group is generated by the σα|α ∈ ∆.
• If an element of the weyl-group maps ∆ to ∆ it is the identity.

3. Dynkin Diagram

We verify the following properties of root systems:

(1) If ∆ is a system of simple roots then ∆ \ S generates a roots system in the span(∆ \ S).
(2) there are at most n pairs in ∆ with 〈α, β〉 6= 0.
(3) If α, β ∈ ∆ and 〈α, β〉 6= 0 then ∆̃ generates a root system in V/(α− β).
(4) For α ∈ ∆ we have

∑
β 6=α〈β, α〉 ≥ −3.

These correspond directly to the statements which allow us to define admissible Dynkin dia-
grams. Via some tedius dot product arguements we can then show the classification.

(1) Every sub-diagram of admissible is admissible
(2) fewer than n pairs of connected verticies (implies acyclic) with above
(3) Can delete verties and glue.
(4) No edge has more than 3 lines attached
(5) A vertex with more than 2 lines imposes length of chain conditions.∑

iei and
∑
jnj then look at (e, n) litterally and via cauchy schwartz.

Example. • An
• Bn (out arrow)
• Cn (in arrow)
• Dn (double head)
• E6, E7, E8 (2,1,n)
• F4 (double in middle)
• G2 (triple)

4. ‘Maximal Tori’ in Lie... Algebras

A Cartan sub-algebra h in a lie algebra g is a maximal abelian subalgebra of g ([A,B] = 0 for
A,B ∈ h) such that A ∈ h act semi-simply through on g through the adjoint representation.

These correspond to the lie algebras of maximal tori in G.



Definition 4.1. Let H ∈ g consider:

g(H)
def
= {X ∈ g| ad(H)kX = 0 for some k}

H is regular if dim(g(H)) = minX∈g(dim g(X)).

Theorem 4.2. Cartan sub-algebras exist! Moreover they are the all of the form g(H) for regular
elements H.

(This requires semi-simplicity (non-degenerate killing form))

Let α be a linear functional on the space h. Denote by gα the linear subspace gα = {X ∈ g :
[H,X] = α(H)X} on which h acts via α.

We have the following:

• g0 = h and thus g = h⊕
∑

α 6=0 gα.

• [gα, gβ] ⊂ gα+β

follows from the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

• gα, gβ are orthogonal if α + β 6= 0.
For Xα, Yβ we have adXα adYβ

gγ ⊂ gγ+β+α, Consequently the trace must be 0.
• The above implies that Bh is non-degenerate, and that gα 6= {0} implies g−α 6= 0.
• Let Hα be such that B(Hα, H) = α(H) then [gα, g−α] = CHα.
• dim(gα) = 1 (or 0).

For non-trivial spaces there exists Eα, E−α with B(Eα, E−α) = 1. Fix Dα such that

B(Dα, E−α = 0. Set Dn = (adEα)nDα then [E−α, Dn] = n(n+1)
2

α(Hα)Dn−1 and Dn ∈
g(n+1)α. If Dn is non-zero this is a contradiction.

Let Φ be the set of all α 6= 0 such that gα 6= 0.

• Let α ∈ Φ and β be a root, then β + nα ∈ Φ for p ≤ n ≤ q where p+ q = −2βHα

αHα
.

Compute the trace of Hα on
∑
gα+βn for a maximal string of n.

• The only multiples of α such that λα ∈ Φ are ±α and 0.
Uses the above + tricks to rule out non-integers.

• [gα, gβ] = gα+β.
Similar arguements with traces and invariance.

• [X−α, [Xα, Xβ]] = q(1−p)
2

α(Hα)B(Xα, X−α)Xβ

Induction on the α series of β

Let hR =
∑

α∈Φ RHα.

Theorem 4.3. • B is strictly positive definite on hR.
B(H,H ′) =

∑
β∈Φ β(H)β(H ′)

β(Hα) = −α(Hα)(pβ,α + qβ,α)
α(Hα) ∈ R and positive.

• Φ is a root system in hR relative to B.

5. The Root System

Fix Xα ∈ gα such that B(Xα, X−α) = 1. Let Nα,β be such that [Xα, Xβ] = Nα,β

Lemma 5.1. • if α + β + γ = 0 and all terms defined then Nα,β = Nβ,γ = Nγ,α

• if α + β + γ + δ = 0 and all terms defined then Nα,βNγ,δ +Nβ,γNα,δ +Nγ,αNβ,δ = 0.



Theorem 5.2. Let Φ be a root system. Define a Lie algebra with generators Hλ, Xλ, Yλ to have
the relations:

(1) [Hλ, Hµ] = 0 for all λ, µ ∈ Φ.
(2) [Hλ, Xµ] = (λ, µ)Xµ for all λ, µ ∈ Φ.
(3) [Hλ, Yµ] = −(λ, µ)Xµ for all λ, µ ∈ Φ.
(4) [Xλ, Yµ] = δµλHµ for all λ, µ ∈ Φ.

(5) ad
−(µ,λ)+1
Xλ

Xµ = 0 for all λ 6= µ ∈ Φ.

(6) ad
−(µ,λ)+1
Yλ

Yµ = 0 for all λ 6= µ ∈ Φ.

Then the generated Lie algebra is semi-simple with root system Φ

Theorem 5.3. If two semi-simple lie algebra’s have isomorphic root systems then they are iso-
morphic

We can obtain an isomorphism of the cartan algebra for free, it is easy to check it is an isometry.
The cartan algebra and the system of roots determines a decomposition of the space.

One uses induction and the above lemma to get the result.

Theorem 5.4. Any two cartan algebras are conjugate, and thus give the same root system. And
thus we have converse to the above.

6. The Classification Theorem

Theorem 6.1. Classification of complex semi-simple adjoint algebraic groups

• An - SLn+1

• Bn - SO2n+1

• Cn - Sp2n

• Dn - SO2n

Theorem 6.2. Classification of non-adjoint groups.
(this uses things about fundamental groups)

Theorem 6.3. Classification of forms.
This is galois descent in general, for R one can work it out using extended Dynkin diagrams.


