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Two applications

The goal of this talk is to describe two applications of Kuga varieties.
These are:

1 Applications to the Hodge conjecture.
(Abdulali - Abelian Varieties and the General Hodge Conjecture
and Hodge Structures on Abelian Varieties of Type III)

2 Relating modular forms to Galois representations and deducing
properties of these.
(Deligne - Forme Modulaires et Representation l-adic)
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Hodge Conjecture

The standard Hodge Conjecture tells us that via the cycle class map
the space of algebraic cycles of co-dimension k generate the space of
rational hodge cycles. More precisely

Conjecture (Hodge Conjecture)

Let X be a smooth projective complex variety then

H2k(X ,Q) ∩ Hk,k(X ) = c`(Z k(X ))

where c` associates to each cycle its fundamental class.
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General Hodge Conjecture

For a more general formulation we need to define several filtrations:

The arithmetic filtration: F r
a Hn(X ,Q) is the span of the

cohomology classes supported on codimension r subvarieties.
(The pushforwards of cohomology classes of subvarieties of
codimension r)

The Hodge filtration: F rHn(X ,C) = ⊕p+q=n,p≥rHp,q(X ).

Grothendiecks corrected filtration: F r
QHn(X ,Q) is the largest

Q-hodge sub-structure of F rHn(X ,C) ∩ Hn(X ,Q).

Conjecture (General Hodge Conjecture)

Let X be a smooth projective complex variety then in the notation
above:

F r
a Hn(X ,Q) = F r

QHn(X ,Q)

We remark that for r = n/2 this gives the usual Hodge conjecture.
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Dominating Families

Definition

We say a class Y of varieties dominates X if for every irreducible
hodge structure M in Hn(X ,Q) there exists a Y ∈ Y and
W ⊂ Hs(Y ,Q) such that W is equivalent to M and
h(M) := min{p|W p,dim(Y ) 6= 0} = 0.

Proposition (Grothendieck)

Suppose X is dominated by Y and for all Y ∈ Y the Hodge conjecture
holds for X × Y then the general Hodge conjecture holds for X .

(⇐) If M is supported on Z then f∗ : Hn−2h(V )(Z ,Q)→ Hn(X ,Q) is
a morphism of hodge structures whose image contains V , hence
Hn−2h(V )(Z ,Q) contains W .
(⇒) The equivalence of W and M is induced by an element
ξ ∈ H2 dim(Y )+2h(M)(Y × X ,Q). By the Hodge conjecture ξ = c`(Z ).

That M is supported on p2∗(Z ) implies V ⊂ F
h(V )
a Hn(X ,Q).
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What is known?

Very few cases of the Hodge conjectures are actually known. There
are special cases by

Type I, II abelian varieties whose Hodge rings generated by
divisors (Hazama, Tankeev, Mattuck, Gordon)

Powers of CM elliptic curves (Shioda)

Powers of certain CM abelian varieties (Tankeev)

Certain 4 dimensional abelian varieties with CM by Q(i)
(Schoen).

Based on the above, it seems that we might have better luck proving
results in special cases where we have extra structure. (It actually
turns out that less special abelian varieties are easier to handle.)
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Hodge Group

Definition

Let A be a (polarized) abelian variety, the Hodge group G (A) of A is
the smallest Q-subgroup of GL(H1(A,Q)) through which the
morphism defining the Hodge structure on H1(A,Q) factors. The
Lefschetz group L(A) of A is the centralizer of End(A)⊗Q in
Sp(H1(A,Q)).

We have natural inclusions G (A) ⊂ L(A) ⊂ Sp(H1(A,Q)) and by the
constructions we have seen previously these inclusions give rise to
Kuga varieties H(A) ⊂ L(A) ⊂ A having A as a fiber.

Definition

A is said to be of PEL-type if its Hodge group is that of a general
fibre of a PEL-family (Spn,SO∗2n,SUp,q). Equivalently if the Lefschetz
group equals the Hodge group.

“The smallest Q-subvariety of the moduli space to which A belongs is
a PEL-family”
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Endomorphisms of Abelian Varieties

We categorize simple abelian varieties by their endomorphism rings
End(A)⊗Q.

I A totally real number field.

II A totally indefinite quaternion algebra over a totally real field.

III A totally definite quaternion algebra over a totally real field.

IV A division algebra whose center is a CM-field.

Having a complete list of the possibilities allows us to classify the
possible Lefshetz groups. (Unfortunately the standard numbering for
these groups doesn’t match that for endomorphism rings (I,II are
Spn,III is SO∗2n,IV is SUp,q).)
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Some Positive Results

Theorem (Abdulali)

Let A be an abelian variety of PEL-type with semi-simple Hodge
group and such that for all type III simple factors B of A the
cohomology H1(B,Q) has odd dimension over End(B). Then A is
dominated by powers of itself.

(By the work of Shimura type III factors as above do exist in
characteristic 0. Though the dimension of H1(B,Q) can never be 1
(over End(B)) thus B has dimension at least 6)
In some cases it is known that the Hodge conjectures for A would
imply them for their powers, combining this with explicit cases where
the Hodge conjecture is known gives us the general Hodge
conjectures for these varieties. As an example, for type I and II this
holds when the Hodge rings of An are generated by divisors.
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Some Negative results

Theorem (Abdulali)

Let A be a simple abelian variety of type III which is a general
member of a PEL-family. Let d be the discriminant of the
skew-hermitian form for the polarization of A. Then A is dominated
by its powers if and only if d is not a square.

Theorem (Abdulali)

If d as above is a square and dim(H1(A,Q)) > 4 (dimension over
End(A)) then A is not dominated by the class of all abelian varieties.

(If d as above is a square and dim(H1(A,Q)) = 4 then A dominate
by Bn × Am for some abelian variety B.)
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Ideas of Proofs

In both the affirmative and negative cases, the knowledge of the
Hodge groups for general members of PEL families together with
Satake’s classification of the possible Kuga varieties plays a crucial
role.
Using this classification one is able to reduce the problem to that of
either explicitly showing a highest weight vector can or can not be
found in the powers of some other representation. Note:

The problem reduces to considering simple factors in an
isogenous abelian variety.

To show something dominates one needs to show that for each
irreducible Hodge substructure U in the cohomology of Aa we
can find one in Hb(Ac ,R) containing (b, 0) forms which is G (Aa)
equivalent to U.
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More details Positive

1 By results of Satake decompose H1(A,R) = ⊕Vα where each Vα
is acted upon by a unique simple factor of G (A). It suffices to
treat simple factors.

2 Via case by case analysis on the (G ,V ) look at the conditions
under which ΛcV b contains a given representation.

3 For type III the interesting case is the top symmetric power.
Over Q this splits as two irreducibles only one of which contains
a (b, 0)-form.
When d is not a square the Galois action on roots implies this
splitting does not happen so the two representations always
appear together.

4 Conclude that large values of c allow us to find the Hodge
structure we are looking for.
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More details Negative

1 Conversely to the above, we find there exists an irreducible
representation of G (A) which is defined over Q and contains no
(b, 0) forms.
This gives us an effective Hodge structure which can never
appear in the cohomology of the powers of A.

2 Show that Kuga varieties arising from equivalent H2

representations give isogenous abelian varieties.

3 Supposing A is dominated by B we show that
G (A)× G (B) ⊃ G (A× B) is isogenous to G (A).

4 Via Satake’s classification we conclude G (A),G (B) are
equivalent H2 representations so that B is isogenous to a power
of A.

5 The dimension 4 case is a consequence of exceptional
isomorphisms in the classification.
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Galois Representations for Higher Weight Forms

The second applications is a way to construct sheaves for modular
forms and Galois representations. First a few definitions:
Denote by Y (Γ) the open modular curve, X (Γ) its usual
compactification and π : E(Γ)→ X (Γ) the universal elliptic curve
having zero section e.
Define ω = e∗Ω1

E/X , TZ(E) = ((R1π∗)Z)∨.

There are exact sequence of sheaves of sections (over X ):

1→ TZ(E)→ ω−1 → E → 1

1→ ω → (R1π∗R)⊗R OX → ω−1 → 1

We can view these fiberwise as being the realization of E as a
quotient of its tangeant space by its homology and the Hodge
splitting of de Rham cohomology.
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Definition of Modular Forms

One checks that Ω1
Y = ω2|Y , and that the inclusion Ω1

X → ω2

amounts to requiring simple zeros at the cusps.

Definition

We define the space of cusp forms of weight k + 2 for Γ to be:

H0(X (Γ),Ω1
X ⊗ ωk)

Proposition

The de Rham resolution of the map Ω1 ⊗ ωk → Ω(Symk(R1π∗)R)
yields an isomorphism:

sh : H0(X ,Ω1 ⊗ ωk)⊕ H0(X ,Ω1 ⊗ ωk)→ H̃1(X , Symk(R1π∗)R⊗ C)

(H̃ indicates the image of cohomology with compact support.)
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Galois Representation

In order to actually construct Galois representations and compare
them to the Hecke modules we need a further construction:
Consider the Q-vector spaces:

nW = H̃1(X (Γ(n)), Symk(R1πn∗Q))

And the Q`-vector space (and Galois module):

nW` = nW ⊗Q` = H̃1(X (Γ(n))⊗Q, Symk(R1πn∗Q`))

Let s : X (Γ(n))→ Spec(Z) then:

Proposition

nW` is the fibre over Z[1/n, 1/`] at Q of (R i s̃)(Symk(R1πn∗Z`))⊗Q`

(image with proper support)
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Comparing Modular forms and Galois Representations

We have seen that:

nW ⊗ C = H0(X ,Ω1 ⊗ ωk)⊕ H0(X ,Ω1 ⊗ ωk)

The above construction thus allows us to relate a space of modular
forms as a Hecke module to a Galois module.
One can show that the construction of Hecke operators is compatible
with base change to Fp, we may thus compute and compare Tp,Fp,Vp

on this special fibre over p. Doing this we obtain the usual results:

Tp = F + I ∗p V FV = pk+1

(1− TpX + pk+1I ∗p X 2) = (1− FX )(1− I ∗p VX )

(Ip is the map (E , α) 7→ (E , α/p))
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Relation to Universal Elliptic Curve

Consider πk : Ek → X , the k-fold product of the universal elliptic
curve over X . (It is worth pointing out that this is a Kuga variety.)
We have that Symk R1π∗Z is a direct factor of (R1π∗Z)k , which in
turn by the Kunneth formula is a direct factor of Rkπk∗Z.
Consequently, the geometry of Ek and properties of its cohomology
give us properties of associated Galois representations.

Theorem (Deligne)

The Weil conjectures for Ek imply the Ramanujan-Peterson
conjectures on Hecke eigenvalues.

Key arguement is that if S is smooth over Fp, f : A→ S an abelian
scheme such that A ⊂ A∗ is an open in a smooth projective scheme
over Fp then the eigenvalues of F on H̃ i (S ,R j f∗Ql) are algebraic

integers of absolute value pi+j/2. Then construct such a model of Ek .
Finally use det(1− TpX + pk+1X 2) = det(1− FX ).
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The End
Thank you.
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