Math 666: Toroidal Compactifications
Winter 2012

Lecture 11: RPCD $+\mathrm{g}=2$

Lecturer: Andrew Fiori
Notes written by: Andrew Fiori

1 Constructing Polyhedral cone decompositions in general

We first introduce the notation we shall be using throughout.

- L a lattice with a positive definite bilinear form $\langle\cdot, \cdot\rangle$.
- $L^{\#}$ the dual of L with respect to $\langle\cdot, \cdot\rangle$.
- Ω is a convex open homogeneous cone in $V=L \otimes \mathbb{R}$ self adjoint with respect to $\langle\cdot, \cdot\rangle$.
- Γ a subgroup of $\operatorname{Aut}_{L}(\Omega, V)$.

Definition 1. A subset K is said to be a kernel of Ω if: $0 \notin \bar{K}$ and $K+\Omega \subset K$.
Say two kernels are comparable if $\lambda K^{\prime} \subset K \subset \lambda^{-1} K^{\prime}$.
The semi-dual of a set A is $A^{\vee}=\{h \in \operatorname{Hom}(V, \mathbb{R}) \mid h(a) \geq 1 \forall a \in A\}$.
The extreme points of a convex set A are $E(A)=\left\{x \in \bar{A} \left\lvert\, x=\frac{y+z}{2} \Rightarrow y=z=x\right.\right\}$

Proposition 2. For a kernel K we have the following:

- K^{\vee} is a kernel
- $K=\cup_{e \in E(K)} e+C$.
- The closed convex hull of $\Omega \cap L$ is a kernel for Ω.
(All such are comparable independant of L).
Proof. SEE ASH
Definition 3. A kernel is called a core if K is comparable to the closed convex hull of $\Omega \cap L$. It is called a co-core if K^{\vee} is a core.

Proposition 4. We have the following two examples of cores:

- $K_{\text {cent }}$ the closed convex hull of $\Omega \cap L$ is a core.
- $K_{\text {perf }}=(\text { closed convex hull of } \bar{\Omega} \cap L \backslash 0)^{\vee}$ is a core.

Proof. SEE ASH

Definition 5. A closed convex kernel is called locally rationally polyhedral if for any rational polyhedral cone Π whose verticies are in $\bar{\Omega}$ we have:

$$
\Pi \cap K=\left\{y \in \Pi \mid\left\langle x_{i}, y\right\rangle \geq 1\right\}
$$

(for some finite collection of $x_{i} \in V_{\mathbb{Q}} \cap \bar{\Omega}$.)
It is said to be Γ-polyhedral if it is moreover Γ invariant. (where Γ is a discrete subgroup of $\operatorname{Aut}(V, \Omega)$.

Definition 6. Let $T \subset \frac{1}{N} L \cap \bar{\Omega} \backslash 0$ we define $K_{T}=\{x \in \bar{\Omega} \mid\langle x, y\rangle>0 \forall y \in T\}$.

Proposition 7. If T is stable under the action of $\operatorname{Aut}\left(L^{\#}, \Omega\right)$ then K_{T} is $\operatorname{Aut}(L, \Omega)$ polyhedral. If K is $\operatorname{Aut}\left(L^{\#}, \Omega\right)$-polyhedral then K^{\vee} is $\operatorname{Aut}(L, \Omega)$-polyhedral.

Definition 8. For a convex set $A \subset V$ a hyperplane H is said to support A if $A \backslash H$ is connected and $A \cap H \neq \varnothing$.

For $y \in \bar{\Omega}$ denote by $H_{y}:=\{x \in V \mid\langle x, y\rangle=1\}$ the associated hyperplane.
Given a kernel K define $\mathcal{Y}_{K}=\left\{y \in \bar{\Omega} \mid H_{y}\right.$ supports $\mathrm{K}, H_{y} \cap E(K)$ spans $\left.V\right\}$.
For $\underline{y}=\left\{y_{1}, \ldots, y_{m}\right\} \subset \mathcal{Y}_{K}$ let $\sigma_{\underline{y}}$ be the cone generated by $\cap_{i} H_{y_{i}} \cap E(K)$.

Proposition 9. Let K be a Γ-polyhedral co-core for Ω then

$$
\Sigma:=\left\{\sigma_{\underline{y}} \mid \underline{y} \subset \mathcal{Y}_{K} \text { finite }\right\}
$$

Then Σ is a Γ admissible decomposition.
One should read the above to say that if we understand how the extreme points of a lattice intersect hyperplanes, then we understand how to construct a cone decomposition. In general what these extreme points look like and how they behave is complicated.

2 Explicit Charts for $g=2$

We recall that in this case there are three types of boundary components:

- $F_{\alpha}=\{p t\}$, then $D\left(F_{\alpha}\right)=U_{\alpha, \mathbb{C}}=\left\{\left(\tau_{1}, \tau_{3}, \tau_{2}\right)\right\}$ and $L_{\alpha} \backslash D\left(F_{\alpha}\right)=\left(\mathbb{C}^{*}\right)^{3}=\left\{\left(t_{1}, t_{3}, t_{2}\right)\right\}$.
- $F_{\beta}=\mathcal{H}_{1}$, then $D\left(F_{\beta}\right)=\mathcal{H}_{1} \times V_{\beta} \times U_{\beta, \mathbb{C}}=\left\{\left(\tau_{1}, \tau_{3}, \tau_{2}\right) \mid \tau_{1} \in \mathcal{H}_{1}\right\}$ and $L_{\beta} \backslash D\left(F_{\beta}\right)=$ $\mathcal{H}_{1} \times V_{\beta} \times T_{\beta}=\left\{\left(\tau_{1}, \tau_{3}, t_{2}\right)\right\}$.
- $F_{\gamma}=\mathcal{H}_{2}$, then $D\left(F_{\gamma}\right)=\mathcal{H}_{2}$ with coordinates $\left(\tau_{1}, \tau_{3}, \tau_{2}\right)$ and $L_{\gamma} \backslash D\left(F_{\gamma}\right)=D\left(F_{\gamma}\right)$

We have the following diagram:

The vertical dashed maps on the right only being defined in a neighbourhood of the boundary, these exist because the diagonal and horizontal maps are injections near the boundary.

We note that cone decompositions of U_{β} are trivial, and we always add a copy of \mathcal{E} at the boundary.

We are interested in understanding what happens to U_{α} so as to see how everything fits together.

We have the following cones: (these correspond to a fundamental domain, they are not necissarily the best choices, consequently some of the descriptions below are not the most natural)

- $\langle(2,1,2),(1,0,1),(0,0,1)\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[t_{1} t_{3}^{-2}, t_{3}, t_{2} t_{1}^{-1}\right]\right)=\mathbb{C} \times \mathbb{C} \times \mathbb{C}$.
This adds the point $(0,0,0)$, in this model.

- $\langle(1,0,1),(0,0,1)\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[t_{1} t_{3}^{-2}, t_{3}^{ \pm 1}, t_{2} t_{1}^{-1}\right]\right)=\mathbb{C} \times \mathbb{C}^{*} \times \mathbb{C}$
This adds the $\left(0, \mathbb{C}^{*}, 0\right)$ piece of the above,

- $\langle(0,0,1)\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[t_{1} t_{3}^{-2}, t_{3}^{ \pm 1},\left(t_{2} t_{1}^{-1}\right)^{ \pm 1}\right]\right)=\mathbb{C} \times \mathbb{C}^{*} \times \mathbb{C}^{*}$.
This adds what is actually added by the F_{α} boundary, that is the part of $\left(\mathbb{C}^{*}, \mathbb{C}^{*}, 0\right)$ it adds is that which quotients to $\mathcal{E}(\Gamma) \rightarrow X(\Gamma)$.

The \mathbb{C}^{*} piece above is what would be $\left(0, \mathbb{C}^{*}, 0\right)$ here, it thus corresponds to something over the cusp $i \infty$ in the upper half plane, that is, we are adding a copy of \mathbb{C}^{*} (a piece of a generalized elliptic curve) over the cusp.
The very top piece, which adds the $(0,0,0)$ point is adding an 'intersection point' to this generalized elliptic curve.
In order to see how all three of these pieces fit together, look at them inside the top \mathbb{C}^{3}.

- $\left\langle\left(1, r, r^{2}+1\right),(0,0,1)\right\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[t_{1},\left(t_{1}^{-r} t_{3}\right)^{ \pm 1}, t_{2} t_{1}^{-1} t_{3}^{-r}\right]\right)=\mathbb{C} \times \mathbb{C}^{*} \times \mathbb{C}$.
This is simply another translate of $\langle(1,0,1),(0,0,1)\rangle$, both of which contain $(0,0,1)$ (the F_{α} boundary). This cone adds another $\left(0, \mathbb{C}^{*}, 0\right)$ piece over $i \infty$ that is, it is adding more branches to the generlized elliptic curve we are placing at infinity.

The total structure of the generalized curve we get at infinity depends on the level and on how many of these branches get glued together.

To summarize what this is telling us, it is that when we are on the cusp F_{β} (that is with $t_{2}=0$) we have a compactification of the universal elliptic curve by adding a generalized elliptic curve at the boundary. (the charts $u_{r}=t_{3} t_{1}^{-r}, v_{r}=t_{3}^{-1} t_{1}^{r+1}$ are precisely the ones Victoria used to describe this compactification, and this is the same algebra as arrises by speciallizing $t_{2}=0$).

- $\langle(2,1,2),(1,0,1)\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[t_{1} t_{3}^{-2}, t_{3},\left(t_{2} t_{1}^{-1}\right)^{ \pm 1}\right]\right)=\mathbb{C} \times \mathbb{C} \times \mathbb{C}^{*}$.
This adds $\left(0,0, \mathbb{C}^{*}\right)$, this gives the 'perpendicular' direction to the F_{α} piece at $i \infty$ on it.

- $\langle(2,1,2)\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[\left(t_{1} t_{3}^{-2}\right)^{ \pm 1}, t_{3},\left(t_{2} t_{1}^{-1}\right)^{ \pm 1}\right]\right)=\mathbb{C}^{*} \times \mathbb{C} \times \mathbb{C}^{*}$.
This adds $\left(0, \mathbb{C}^{*}, \mathbb{C}^{*}\right)$, looking again at the cusp $i \infty$ we can think of this as having our generalized elliptic curve extended perpendicularly into the moduli.

- $\langle(1,0,1)\rangle$

Gives $\operatorname{Spec}\left(\mathbb{C}\left[t_{1} t_{3}^{-2}, t_{3}^{ \pm 1},\left(t_{2} t_{1}^{-1}\right)^{ \pm 1}\right]\right)=\mathbb{C} \times \mathbb{C}^{*} \times \mathbb{C}^{*}$.
This adds $\left(\mathbb{C}^{*}, 0, \mathbb{C}^{*}\right)$, the first coordinate being 'like' the modular curve, we can think of this as being the zero of the elliptic curves at each point extended into the moduli.

