
Math 666: Toroidal Compactifications Winter 2012

Lecture 11 : RPCD + g=2

Lecturer: Andrew Fiori Notes written by: Andrew Fiori

1 Constructing Polyhedral cone decompositions in general

We first introduce the notation we shall be using throughout.

• L a lattice with a positive definite bilinear form 〈·, ·〉.

• L# the dual of L with respect to 〈·, ·〉.

• Ω is a convex open homogeneous cone in V = L⊗ R self adjoint with respect to 〈·, ·〉.

• Γ a subgroup of AutL(Ω, V ).

Definition 1. A subset K is said to be a kernel of Ω if: 0 /∈ K and K + Ω ⊂ K.

Say two kernels are comparable if λK ′ ⊂ K ⊂ λ−1K ′.

The semi-dual of a set A is A∨ = {h ∈ Hom(V,R)|h(a) ≥ 1 ∀a ∈ A}.
The extreme points of a convex set A are E(A) = {x ∈ A|x = y+z

2
⇒ y = z = x}

Proposition 2. For a kernel K we have the following:

• K∨ is a kernel

• K = ∪e∈E(K)e+ C.

• The closed convex hull of Ω ∩ L is a kernel for Ω.

(All such are comparable independant of L).

Proof. SEE ASH

Definition 3. A kernel is called a core if K is comparable to the closed convex hull of

Ω ∩ L. It is called a co-core if K∨ is a core.

Proposition 4. We have the following two examples of cores:

• Kcent the closed convex hull of Ω ∩ L is a core.

• Kperf = (closed convex hull of Ω ∩ L \ 0)∨ is a core.
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Proof. SEE ASH

Definition 5. A closed convex kernel is called locally rationally polyhedral if for any rational

polyhedral cone Π whose verticies are in Ω we have:

Π ∩K = {y ∈ Π|〈xi, y〉 ≥ 1}

(for some finite collection of xi ∈ VQ ∩ Ω.)

It is said to be Γ-polyhedral if it is moreover Γ invariant. (where Γ is a discrete subgroup

of Aut(V,Ω).

Definition 6. Let T ⊂ 1
N
L ∩ Ω \ 0 we define KT = {x ∈ Ω|〈x, y〉 > 0 ∀y ∈ T}.

Proposition 7. If T is stable under the action of Aut(L#,Ω) then KT is Aut(L,Ω)-

polyhedral. If K is Aut(L#,Ω)-polyhedral then K∨ is Aut(L,Ω)-polyhedral.

Definition 8. For a convex set A ⊂ V a hyperplane H is said to support A if A \ H is

connected and A ∩H 6= ∅.

For y ∈ Ω denote by Hy := {x ∈ V |〈x, y〉 = 1} the associated hyperplane.

Given a kernel K define YK = {y ∈ Ω|Hy supports K, Hy ∩ E(K) spans V }.
For y = {y1, . . . , ym} ⊂ YK let σy be the cone generated by ∩iHyi ∩ E(K).

Proposition 9. Let K be a Γ-polyhedral co-core for Ω then

Σ := {σy|y ⊂ YK finite}

Then Σ is a Γ admissible decomposition.

One should read the above to say that if we understand how the extreme points of a

lattice intersect hyperplanes, then we understand how to construct a cone decomposition.

In general what these extreme points look like and how they behave is complicated.

2 Explicit Charts for g = 2

We recall that in this case there are three types of boundary components:

• Fα = {pt}, then D(Fα) = Uα,C = {(τ1, τ3, τ2)} and Lα\D(Fα) = (C∗)3 = {(t1, t3, t2)}.

• Fβ = H1, then D(Fβ) = H1 × Vβ × Uβ,C = {(τ1, τ3, τ2)|τ1 ∈ H1} and Lβ\D(Fβ) =

H1 × Vβ × Tβ = {(τ1, τ3, t2)}.

• Fγ = H2, then D(Fγ) = H2 with coordinates (τ1, τ3, τ2) and Lγ\D(Fγ) = D(Fγ)
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We have the following diagram:

Lα\D(Fα) = (t1, t3, t2) //

**UUUUUUUUUUUUUUUUU
Γα\(Lα\D(Fα)Σα = Γα\(Tα)Σα

���
�
�

Lβ\D(Fβ)

OO

= (τ1, τ3, t2)

(exp,exp,id)

OO

//

**UUUUUUUUUUUUUUUUU
Γβ\(Lβ\D(Fβ)Σβ = E × (Tβ)Σβ

���
�
�

Lγ\D(Fγ)

OO

= (τ1, τ3, τ2)

(id,id,exp)

OO

// Γγ\(Lγ\D(Fγ)Σγ = X

The vertical dashed maps on the right only being defined in a neighbourhood of the boundary,

these exist because the diagonal and horizontal maps are injections near the boundary.

We note that cone decompositions of Uβ are trivial, and we always add a copy of E at

the boundary.

We are interested in understanding what happens to Uα so as to see how everything fits

together.

We have the following cones: (these correspond to a fundamental domain, they are not

necissarily the best choices, consequently some of the descriptions below are not the most

natural)

• 〈(2, 1, 2), (1, 0, 1), (0, 0, 1)〉

Gives Spec(C[t1t
−2
3 , t3, t2t

−1
1 ]) = C× C× C.

This adds the point (0, 0, 0), in this model.

• 〈(1, 0, 1), (0, 0, 1)〉

Gives Spec(C[t1t
−2
3 , t±1

3 , t2t
−1
1 ]) = C× C∗ × C

This adds the (0,C∗, 0) piece of the above,

• 〈(0, 0, 1)〉

Gives Spec(C[t1t
−2
3 , t±1

3 , (t2t
−1
1 )±1]) = C× C∗ × C∗.

This adds what is actually added by the Fα boundary, that is the part of (C∗,C∗, 0) it

adds is that which quotients to E(Γ)→ X(Γ).

The C∗ piece above is what would be (0,C∗, 0) here, it thus corresponds to something

over the cusp i∞ in the upper half plane, that is, we are adding a copy of C∗ (a piece

of a generalized elliptic curve) over the cusp.

The very top piece, which adds the (0, 0, 0) point is adding an ‘intersection point’ to

this generalized elliptic curve.

In order to see how all three of these pieces fit together, look at them inside the top

C3.
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• 〈(1, r, r2 + 1), (0, 0, 1)〉

Gives Spec(C[t1, (t
−r
1 t3)±1, t2t

−1
1 t−r3 ]) = C× C∗ × C.

This is simply another translate of 〈(1, 0, 1), (0, 0, 1)〉, both of which contain (0, 0, 1)

(the Fα boundary). This cone adds another (0,C∗, 0) piece over i∞ that is, it is adding

more branches to the generlized elliptic curve we are placing at infinity.

The total structure of the generalized curve we get at infinity depends on the level and

on how many of these branches get glued together.

To summarize what this is telling us, it is that when we are on the cusp Fβ (that is

with t2 = 0) we have a compactification of the universal elliptic curve by adding a

generalized elliptic curve at the boundary. (the charts ur = t3t
−r
1 , vr = t−1

3 tr+1
1 are

precisely the ones Victoria used to describe this compactification, and this is the same

algebra as arrises by speciallizing t2 = 0).

• 〈(2, 1, 2), (1, 0, 1)〉

Gives Spec(C[t1t
−2
3 , t3, (t2t

−1
1 )±1]) = C× C× C∗.

This adds (0, 0,C∗), this gives the ‘perpendicular’ direction to the Fα piece at i∞ on

it.

• 〈(2, 1, 2)〉

Gives Spec(C[(t1t
−2
3 )±1, t3, (t2t

−1
1 )±1]) = C∗ × C× C∗.

This adds (0,C∗,C∗), looking again at the cusp i∞ we can think of this as having our

generalized elliptic curve extended perpendicularly into the moduli.

• 〈(1, 0, 1)〉

Gives Spec(C[t1t
−2
3 , t±1

3 , (t2t
−1
1 )±1]) = C× C∗ × C∗.

This adds (C∗, 0,C∗), the first coordinate being ‘like’ the modular curve, we can think

of this as being the zero of the elliptic curves at each point extended into the moduli.
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