Lecture 9 : Toroidal Compactifications due to Mumford

Lecturer: Andrew Fiori
Notes written by: Victoria de Quehen

1 Constructing a toroidal compactification

What will we cover $\Gamma \backslash \mathcal{D}$ by?
Consider:

We define $T_{\alpha}=\mathcal{U}_{\alpha, \mathbb{C}} / L_{\alpha}$ an algebraic torus (over \mathbb{C})
Heuristically if you think of Ω_{α} as $\left(\mathbb{R}^{+}\right)^{n}$ then

$$
\mathcal{U}_{\alpha} \backslash \mathcal{D}=\left\{\left(\tau_{1}, \tau_{2}, \tau_{3}\right)\left|0<\left|\bar{\tau}_{2}\right|, f\left(\tau_{1}, \tau_{2}\right)\right\}\right.
$$

It seems natural to add points for $\bar{\tau}_{2}=0$. Baily-Borel effectively adds a single point $\left(\tau_{3}, \tau_{2}\right)=(0,0)$ which adds F.

What points do we want to add? It depends on a choice of cone decomposition.
A $\rho_{l}\left(\Gamma_{\alpha}\right)$-admissible polyhedral decomposition of Ω_{α} is $\Sigma_{\alpha}=\left\{\sigma_{\nu}\right\}$ (relative to the L_{α} rational structure on \mathcal{U}_{α}) such that

1. Σ_{α} is a r.p.p. decomposition of \mathcal{U}_{σ},
2. Σ_{α} is closed under the action of $\rho_{l}\left(\Gamma_{\alpha}\right)$,
3. only finitely many $\rho_{l}\left(\Gamma_{\alpha}\right)$ orbits in Σ_{α}, and
4. $\Omega_{\alpha} \subset \cup_{\sigma} \sigma_{\nu}=\left(\Omega_{\alpha}\right.$ rational closure $)$.

A Γ-admissible family of polyhedral decompositions is $\Sigma=\left\{\Sigma_{\alpha}\right\}_{\alpha \text { Rational }}$

1. Σ_{α} is a $\rho_{l}\left(\Gamma_{\alpha}\right)$-admissible polyhedral decomposition,
2. for $\gamma \in \Gamma$ if $\gamma F_{\alpha}=F_{\beta}$ then $\gamma \Sigma_{\alpha} \gamma^{-1}=\Sigma_{\beta}$, and
3. for $F_{\alpha}<F_{\beta}$ then $\Sigma_{\beta}=\Sigma_{\alpha} \cap \mathcal{U}_{\beta}$.

1.1 The points being added

Now given such a Σ_{α} we may construct:

$$
\begin{aligned}
\left(L_{\alpha} \backslash \mathcal{D}\left(F_{\alpha}\right)\right)_{\Sigma_{\alpha}} & =\mathcal{D}\left(F_{\alpha}\right)^{\prime} \times\left(T_{\alpha}\right)_{\Sigma_{\alpha}} \\
& =\sqcup_{\sigma \in \Sigma_{\alpha}} O(\sigma) .
\end{aligned}
$$

where $O(\sigma)=\mathcal{D}\left(F_{\alpha}\right)^{\prime} \times O^{\prime}(\sigma)$. We may view the $O^{\prime}(\sigma)$ as being the points added with respect to σ to T_{α}. They have the following properties:

1. $O(\sigma)$ a torus bundle over $\mathcal{D}\left(F_{\alpha}\right)^{\prime}$,
2. for $\sigma<\tau, O(\tau) \subset \overline{O(\sigma)}$ (for $\sigma=\{0\}$ we have $O(\sigma)=L_{\alpha} \backslash \mathcal{D}\left(F_{\alpha}\right)$, and
3. $\operatorname{dim} \sigma+\operatorname{dim} O(\sigma)=\operatorname{dim} \mathcal{D}$.

We also have the map introduced by Dylan:

$$
\begin{aligned}
\operatorname{Im}: F_{\alpha} \times V_{\alpha} \times \mathcal{U}_{\alpha, \mathbb{C}} & \rightarrow \mathcal{U}_{\alpha} \\
\left(\tau_{1}, \tau_{3}, \tau_{2}\right) & \mapsto \operatorname{Im}\left(\tau_{2}\right) .
\end{aligned}
$$

extends to

$$
\operatorname{Im}:\left(L_{\alpha} \backslash \mathcal{D}\left(F_{\alpha}\right)\right)_{\Sigma_{\alpha}} \rightarrow\left(\mathcal{U}_{\alpha}\right)_{\Sigma_{\alpha}}
$$

The map is compatible with T_{α} action hence

$$
\operatorname{Im}: O(\sigma) \rightarrow \overline{O(\sigma)}
$$

Using the fact that Φ is a translation of Im we can then define Φ as follows:

$$
\Phi:\left(L_{\alpha} \backslash \mathcal{D}\left(F_{\alpha}\right)\right)_{\Sigma_{\alpha}} \rightarrow\left(L_{\alpha}\right)_{\Sigma_{\alpha}}\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \quad \mapsto \operatorname{Im}\left(\tau_{2}\right)-\left(\operatorname{Im} \tau_{3}\right)\left(\operatorname{Im} \tau_{1}\right)^{-1}\left(\operatorname{Im} \tau_{3}\right)
$$

With all this in hand, we make the following definition:

$$
\begin{aligned}
\left(L_{\alpha} \backslash \mathcal{D}\left(F_{\alpha}\right)\right)_{\Sigma_{\alpha}} & :=\text { Interior of closure of } L_{\alpha} \backslash \mathcal{D} \text { in }\left(L_{\alpha} \backslash \mathcal{D}\left(F_{\alpha}\right)_{\Sigma_{\alpha}}\right. \\
\left(\Omega_{\alpha}\right)_{\Sigma_{\alpha}} & :=\text { Interior of closure of } \Omega_{\alpha} \text { in }\left(L_{\alpha}\right)_{\Sigma_{\alpha}}
\end{aligned}
$$

By continuity if follows that $\Phi^{-1}\left(\left(\Omega_{\alpha}\right)_{\Sigma_{\alpha}}\right)=\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}$. This observation allows one to check the following claim:

CLAim 1. If $\sigma_{u} \cap \Sigma_{\alpha} \neq \varnothing$ then $\overline{O(u)} \subset\left(\Omega_{\alpha}\right)_{\Sigma_{\alpha}}$.

As a consequence we define $O\left(F_{\alpha}\right):=\coprod_{\sigma_{u} \cup \Sigma_{\alpha} \neq 0} O(u)$. We call these $O\left(F_{\alpha}\right)$ the points added with respect to F_{α}.

Note that the above is not an if and only if. So, what about the other $O(\sigma)$ not part of $O\left(F_{\alpha}\right)$? These relate to $O\left(F_{\beta}\right)$ when $F_{\alpha} \leq F_{\beta}$.

The condition $F_{\alpha} \leq F_{\beta}$ implies $\mathcal{U}_{\beta} \subset \mathcal{U}_{\alpha}$ and Ω_{β} boundary of $\Omega_{\alpha}, \Sigma_{\beta}=\Sigma_{\alpha} \cup \mathcal{U}_{\beta}$ get maps

This bottom part happening whenever $\sigma_{u} \in \Sigma_{\beta}$

1.2 Gluing

Having defined the points we wish to add, we must describe how these all fit together.
Define $p_{\sigma}:\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}} \rightarrow \overline{\Gamma \backslash \mathcal{D}}^{\text {Sat }}$ via the natural projection $O\left(F_{\alpha}\right) \rightarrow F_{\alpha}$.
We assert that this map is holomorphic (but remark that this requires more understanding of the holomorphic structure on the Satake compactification than we have).

Proposition 2. $\Gamma_{\alpha} / L_{\alpha}$ acts properly discontinuously on $\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}$.

Lemma 3. Let $f: X \rightarrow Y$ be a continuous G-equivariant map of Hausdorff space (suppose G acts on Y via $H)$.

If H acts properly discontinuously on Y and ker $: G \rightarrow H$ acts properly discontinuously on X then G acts properly discontinuously on X.

The following diagram

$$
D\left(F_{\alpha}\right)^{\prime} \longrightarrow F_{\alpha}
$$

$V_{\alpha}=W_{\alpha} / L_{\alpha}$ acts as $m \tau^{\prime}+n$ whereas $p_{h}\left(\operatorname{ker}\left(p_{l}\right) \cap \Gamma_{\alpha}\right)$ is an arithmetic subgroup acting on a symmetric space. Both actions being properly discontinuous, this implies $\rho_{l}\left(\Gamma_{\alpha}\right)$ acts properly discontinuously on $\mathcal{D}\left(F_{\alpha}\right)$.
2) $\rho_{l}\left(\Gamma_{\alpha}\right)$ acts properly discontinuously on $\left(\Omega_{\alpha}\right)_{\Sigma_{\alpha}}$

$$
\left(\Omega_{\alpha}\right)_{\Sigma_{\alpha}}=\bigcup_{u} \bigcup_{y \in \Omega_{\alpha}}\left\{y+\infty \sigma_{u}\right\} .
$$

Set

$$
\begin{aligned}
& I=\left\{\sigma_{v} \mid \sigma_{v} \cap\left\langle y, \sigma_{u}\right\rangle \neq \emptyset\right\} \\
& \sigma=\cup_{v \in I} \sigma_{v} .
\end{aligned}
$$

Claim I is finite, $y \in \sigma^{o}$ (interior) $\rightarrow \bar{\sigma}$ neighborhood of $y+\infty \sigma_{u}$ so is $\bar{\sigma}^{o}$. Use I finite to get result.

Apply the Lemma with respect to Φ.
TODO MORE CAN BE SAID ABOUT THIS

Theorem 4. $\left(\Gamma_{\alpha} / L_{\alpha}\right) \backslash\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}$. has the structure of a normal analytic space. $\overline{O\left(F_{\alpha}\right)}:=$ $\left(\Gamma_{\alpha} / U_{\alpha}\right) \backslash O\left(F_{\alpha}\right)$ is a closed analytic subspace.

We have

We want these $\left(\Gamma_{\alpha} / L_{\alpha}\right) \backslash\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}$ to give us an "open covering" of $\overline{(\Gamma \backslash \mathcal{D})_{\Sigma_{\alpha}}}$ in the sense that the maps from them give an open covering. Firstly we consider the $\left(\Gamma_{\alpha} / L_{\alpha}\right) \backslash\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}$ modulo Γ, that is, the collection of all modulo Γ. This is a finite collection.

Now if $F_{\bar{\alpha}}, F_{\bar{\beta}} \leq F_{\bar{\omega}}$, then we glue along the image of $\pi_{\beta, \omega}, \pi_{\alpha, \omega}$ of $\left(L_{\omega} \backslash \mathcal{D}\right)_{\Sigma_{\omega}}$ in each factor.

1. There is no map $\left(\Gamma_{\omega} / L_{\omega}\right) \backslash\left(L_{\omega} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}} \rightarrow\left(\Gamma_{\alpha} / L_{\alpha}\right) \backslash\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}$.
2. There is a neighbourhood of $\mathcal{D}\left(F_{\alpha}\right)$ on which $\left(L_{w} \backslash \mathcal{D}\right)_{\Sigma_{w}}$ injects so that the map descends.

There are two ways to think about it.

1. Open neighborhoods of $\overline{O\left(F_{\alpha}\right)}$ glued along intersections from $F_{w} \geq F_{\alpha}$.
2. $\coprod_{F_{\alpha}}\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}} / \sim$ where $x_{\alpha} \in\left(U_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}}, X_{\beta} \in\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\beta}}$ have $x_{\alpha} \sim x_{\beta}$ if there exists $\stackrel{F_{w}}{F_{w}}, \gamma \in \Gamma, x_{w} \in\left(L_{\omega} \backslash \mathcal{D}\right)_{\Sigma_{\omega}}$ such that

$$
\begin{aligned}
& \pi_{\alpha, \omega}\left(x_{\omega}\right)=x_{\alpha} \\
& \pi_{\alpha, \omega}\left(x_{\omega}\right)=\gamma x_{\beta}
\end{aligned}
$$

Define $\bar{\pi}_{F_{\alpha}}$ to be the map

$$
\left(\Gamma_{\alpha} / L_{\alpha}\right) \backslash\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}} \rightarrow \overline{\Gamma \backslash \mathcal{D}^{\mathrm{tor}}}
$$

$\bar{\pi}_{F_{\alpha}}$ injective near $\overline{O\left(F_{\alpha}\right)}$ makes $\overline{(\Gamma \backslash \mathcal{D})}{ }^{\text {tor }}$.
Near $\overline{O\left(F_{\alpha}\right)}$ looks like ${\overline{\left(p_{h}(\Gamma) \backslash F_{\alpha}\right)}}^{\text {tor }} \times V / " V_{\mathbb{Z}}+\tau V_{\mathbb{Z}} " \times T_{\alpha}^{\Sigma_{\alpha}}$.

2 Properties of Toroidal Compactifications

1. The boundary has codimension $1,\left(O\left(\sigma_{u}\right)\right.$ for σ_{u} minimal $)$.
2. The boundary only has toroidal singularities. (It is "Cohen-Macaulay.")
3. There is a map $\overline{(\Gamma \backslash \mathcal{D})}^{\text {tor }} \rightarrow \overline{(\Gamma \Gamma \backslash \mathcal{D})}^{\text {Sat }}$.
4. It is not a unique but it is functorial in $\left(\Sigma_{\alpha}\right)$ compatible with the level structure.
5. It is compact.

2.1 Smoothness

Definition 5. A subgroup $\Gamma \in \mathrm{GL}_{n}$ is neat if for all $G \subset \mathrm{GL}_{n}$, and algebraic maps Φ : $G \rightarrow H$ we have $\Phi(\Gamma \cup G)$ torsion-free.

Theorem 6 (Borel). Suppose $p \nmid \Phi_{\ell}(1)$ and for all ℓ, we have $\operatorname{deg}\left(\Phi_{\ell}\right) \leq n$, then $\Gamma(p) \subset$ $\mathrm{GL}_{n}(\mathbb{Z})$ is neat.

Neat subgroups act without fixed points.

Proposition 7. The singularities of $\overline{\Gamma \backslash \mathcal{D}}{ }^{\text {tor }}$ are

1. finite quotient singularities from non-neat elements of Γ.
2. toroidal singularities in $\pi_{F_{\alpha}}(O(u))$ for irregular cones σ_{u}.

For the proof look at $F_{\alpha} \times$ (Abelian variety) $\times T_{\alpha}^{\Sigma_{\alpha}}$.

Theorem 8. There exist regular Γ-admissible refinements.
The proof is by induction and the "finite mod Γ property."

2.2 Projectivity of $\overline{(\Gamma \backslash \mathcal{D})}^{\text {tor }}$.

Definition 9. A Γ-admissible decomposition Σ_{α} is called projective if there exists $f: \Omega \rightarrow$ \mathbb{R}^{+}which is:

1. convex, piecewise linear, Γ-invariant, $f(\Gamma \cup \Omega) \subset \mathbb{Z}$, and
2. for all $\sigma_{u} \in \Sigma_{\alpha}$ there exists ℓ_{u} a linear functional on \mathcal{U}_{α} such that
(a) $\ell_{u} \geq f$ on Ω_{α}
(b) $\sigma_{u}=\left\{x \in \mathcal{U}_{\alpha} \mid \ell_{u}(x)=f(x)\right\}$
(equiv σ_{u} the maximal subsets on which f is linear)

Denote over $\varphi_{U}=f_{\sigma_{U}}$ (extended linearly to U_{α})
$\varphi_{U}^{*}=\min p_{i}(\lambda)$ vertices of $p_{i}=\sigma \cap\{\varphi=1\}$.

Proposition 10. Every holomorphic function on $\overline{(\Gamma \backslash \mathcal{D})}$ sat has a Fourier expansion of the form

$$
\sum_{\rho \in \Omega \cap \mathcal{U}(F)} \theta_{p}\left(\tau_{1}, \tau_{3}\right) \underline{e}\left(\rho\left(\tau_{2}\right)\right)
$$

Definition 11.

$$
\begin{gathered}
J_{m, k}=\left\{f \in \mathcal{O}_{x} \mid \theta_{p} \neq 0 \text { only if } \rho \in L_{\alpha} \cap \Omega, \varphi_{u}^{*}(\rho) \geq m\right\} . \\
I_{\alpha, x} \text { on }\left(L_{\alpha} \backslash \mathcal{D}\right)_{\Sigma_{\alpha}} \text { be generated by } \underline{e}\left(\varphi_{u}\left(\tau_{2}\right)\right) .
\end{gathered}
$$

Let $\partial_{m}:=f_{*}\left(I_{\alpha}\right)^{m}$.

Proposition 12. $\partial_{m, x}=J_{m, x}$.
Note that one has:
\tilde{I} on $\widehat{(\Gamma \backslash \mathcal{D})}$ is $\oplus L_{F_{\alpha}^{*}} I_{\alpha}$
I on $\overline{(\Gamma \backslash \mathcal{D})}^{\text {tor }}$ is $\Gamma(U, I)=\left\{s \in \Gamma\left(p^{-1} U, \tilde{I}\right) \mid\right.$ glue $\}$.
$J_{m}=f_{*}\left(I^{m}\right)$.
The proof of the Prop. is 324 Tai.
THEOREM 13. $\overline{(\mathcal{D} / \Gamma)}^{\text {tor }}$ is the normalization of the blow up of $\overline{(\mathcal{D} / \Gamma)}^{\text {rat }}$ along J_{m}. Moreover, $f^{*} J_{m}=I^{m}$ 。

Let $\operatorname{tr}\left(A_{\rho} \cdot \lambda\right)=\rho(\lambda)$.
Concretely define

$$
\begin{aligned}
\theta_{\rho}\left(\tau_{1}, \tau_{3}\right) & :=\sum_{x \in V_{z}} e^{2 \pi i\left(\operatorname{tr}\left(A_{p}\left(x^{T} \tau_{1} x++2 x^{T} \tau_{3}\right)\right)\right.} \\
& \left.:=\sum_{x \in V_{z}} \underline{e}\left(x A_{p} x^{T} \tau_{1}++2 x A-p \tau_{3}^{T}\right)\right) \\
\theta_{\rho}\left(\tau_{1}, \tau_{3}+\tau_{1} m_{1}+m_{2}\right) & =\theta_{p}\left(\tau_{1}, \tau_{3}\right) e^{-2 \pi i\left(\operatorname{tr}\left(m_{1} A_{p} m_{1}^{T} \tau_{1}+2 m_{1} A_{p} \tau_{3}\right)\right)} \\
\theta_{\rho}\left(M \tau_{1},\left(\left(c \tau_{1}+d\right)^{T}\right)^{-1} T \tau_{3}\right) & =\theta_{p}\left(\tau_{1}, \tau_{2}\right) e^{2 \pi i\left(\operatorname{tr}\left(\tau_{3} A_{p} m_{1}^{T} \tau_{3}^{T}\left(c \tau_{1}+d\right)^{-1} c\right)\right)} \\
\theta_{u^{T} \rho u}\left(\tau_{1}, \tau_{3}\right) & =\theta_{\rho}\left(\tau_{1}, \tau_{3} u^{T}\right) .
\end{aligned}
$$

The point is that "things like" $H_{\sigma}\left(\tau_{1}, \tau_{3}, \tau_{2}\right)=\Sigma_{u}\left(\tau_{1}, \tau_{3} u^{T}\right) \underline{e}\left(\operatorname{tr}\left(U^{T} A_{p} U \tau_{2}\right)\right)$ generate ∂_{m}. Steps of proof

1. Reduce to the case where Γ is neat (or finite normal subgroups).
2. Check what happens in the limit at the cusps. (Effectively that after the pullback these look like $\left.g \cdot e^{\rho(\cdots)}\right)$. This implies $f^{*} \partial_{m}<\partial^{m}$.
3. For a large enough m we can get $\theta_{m_{p}}\left(\tau_{1}, \tau_{3}\right) \neq 0$. (For a high enough weight ∂_{m} is ample.) This implies $f^{*} \partial_{m}=\partial^{m}$ rather than just containment.
4. Use the universal properties of blowups:

5. Show that ψ is a local isomorphism since $\Gamma \backslash \mathcal{D}$ is open in both and ψ^{+}is injective. Reduce to the strata $\ldots \backslash F_{\alpha} \times V \times O(\alpha)$ use $\left.\mathcal{L}_{m \lambda_{a}}\right|_{\pi^{-1}}(t)$ very ample.
