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Abstract

In this paper we develop formulas for computing the arithmetic volume of orthogonal groups for lattices over the
maximal orders of finite extensions of Zp. We specifically develop new explicit formulas for unimodular lattices over
2-adic rings. We also develop a reduction of the general problem to that of unimodular lattices together with the
combinatorial problem of computing representatives for all possible Jordan decompositions.
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1. Introduction

The issue of computing local densities goes back decades to when they were first introduced by Siegel [Sie35].
These types of computations have many applications beyond those originally envisioned (see for example [GK93,
Kud97, SP04, GHS08, GV12] among others) and formulas for them have been worked out to cover many cases (see
for example [Pal65, Wat76, Kit93, CS88, Shi99, Kat99, SH00, GY00, Yan04, Cho12]).

We have in mind several applications of this work. First, these formulas can be used by way of the Siegel
mass formula as part of a stopping condition when enumerating the genus of a lattice. This has important ap-
plications in the theory of algebraic automorphic forms on orthogonal groups (see [Gro99] and [GV12]). Second,
these formulas are related by way of the Hirzebruch-proportionality principle and the Riemann-Roch theorem (see
[Mum77, GHS08]), to the dimensions of spaces of modular forms on the associated Shimura varieties. The sections
of this paper are organized as follows:

(2) We introduce the general theory of lattices so far as it is needed in the sequel.

(3) We discuss specifically lattices over p-adic rings.

(4) We introduce representation densities and develop formulas for computing them.

(5) We discuss the computational issues associated with our formulas.

Almost none of the introductory content (Sections 2 and 3) is new, however, we present it in the format we
intend to use in the sequel. Many results on representation densities are known:

• The work of Pall, Watson and the book of Kitaoka [Pal65, Wat76, Kit93] give formulas for βp(L,L) over Zp
for arbitrary L and p.

• The work of Conway and Sloane [CS88] corrected minor errors in the above work verifying their formulas by
checking many cases. It is worth mentioning that although [CS88] only gives a sketch of a proof in terms of
lattice automorphims and embeddings, their ideas, which carry over to the nondyadic and unramified dyadic
settings, have similarities to those involved in some of our present proofs.

• Katsurada [Kat99] computes βp(L,M) over Z2.

• Shimura [Shi99] computes formulas for βp(L,L) when L is maximal, over Op any finite extension of Zp.

• Hironaka and Sato [SH00] computes βp(L,M) over Zp when p 6= 2.
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• The work of Gan and Yu [GY00] gives a high level machinery for computing βp(L,L) when p 6= 2 the recent
work of Cho [Cho12] extends this to work to cover unramified extensions of Z2.

However, formulas for all cases do not yet exist. The main results of this paper (Section 4) provide formulas for
computing βp(L,L) for arbitrary L and p (including especially p = 2). These results are largely the content of
Theorems 4.11, 4.18 and 4.26.

Theorem 4.11 reduces the computation of βp(L,L) for unimodular L to the computation of βp(L′, L′) for L′

a particular sublattice of L or rank at most 4 (rank at most 1 when p 6= 2). The techniques and ideas here are
classical, the proofs being only slight modifications of similar well known results over Q. It is worth remarking that
the proofs are uniform between the cases p = 2 and p 6= 2.

Theorem 4.18 is the most technical result of this paper. This theorem gives formulas for βp(L′, L′) for all L′

arising from Theorem 4.11. The number of apparent cases that need to be considered, as well as the apparently
technical nature of the calculations involved is likely the reason these cases have been ignored for so long. Though
our results do involve detailed calculations, our approach to the counting problem leads to surprisingly few cases
requiring independent analysis and is less technical than one might originally expect. Stated simply, the new idea
is that rather than counting in a single step the isometries, we first count the changes of basis that preserve the
general shape of the quadratic form, then divide out by the size of the over count. This overcount is precisely the
number of quadratic forms which both have the same shape as the original and are isomorphic to it.

Finally, Theorem 4.26 uses a new, yet simple idea, to give a general formula for βp(L,L) for arbitrary L and p
in terms of the set of all Jordan decompositions for L and the local densities of the modular blocks. The formula
completely describes the dependence of the local density on the set of Jordan decompositions and justifies the
general shape of the classical formulas for βp(L,L). A more careful analysis on the combinatorics of the set of all
Jordan decompositions explains the role of free and bound Jordan blocks in the formulas over Z2 (see [CS88, Sec.
13]). It is again worth remarking that the proof is uniform between the cases p = 2 and p 6= 2.

2. General Notions of Lattices

In this section we introduce the general theory of lattices. Many good references exist which treat this topic
in a varying degree of generality. See for example [Kit93] and [O’M00]. We shall initially work quite generally,
adding more structure as it is required. We shall eventually be most interested in the theory of lattices over Ok, the
maximal order in a number field k. Note that these are not always PIDs, however, their localizations always are.

Definition 2.1. Let R be a Dedekind domain and K be its field of fractions. By a lattice Λ over R we mean a
projective R-module of finite rank, together with a symmetric R-bilinear pairing:

bΛ : Λ× Λ→ K,

which induces a duality HomR(Λ,K) ∼= Λ⊗R K. We shall sometimes denote bΛ(x, y) = (x, y) when the pairing bΛ
is understood. A lattice is said to be integral if (x, y) ∈ R, even if (x, x) ∈ 2R and unimodular if the pairing
induces an isomorphism HomR(Λ, R) ∼= Λ, or more generally a-modular if the pairing induces an isomorphism
HomR(Λ, R) ∼= a−1Λ (for a a projective R-module of rank 1, that is, an invertible fractional ideal of R). Notice
that a-modular is equivalent to having HomR(Λ, a) ∼= Λ by noting that:

HomR(Λ, a) ∼= a⊗R HomR(Λ, R) ∼= a⊗ a−1Λ ∼= Λ.

We will refer to a lattice as modular if there exists some a for which it is a-modular. Note that not all lattices are
modular.

We shall sometimes denote the bilinear form as bΛ(·, ·) when we need to specify the underlying lattice.

Remark. By requiring HomR(Λ,K) ∼= Λ⊗RK we are explicitly requiring that all lattices be non-degenerate with
respect to the bilinear form bΛ. If the pairing on the ‘lattice’ might not induce an isomorphism the ‘lattice’ shall
be referred to as a module or submodule.

We will at times consider symmetric bilinear forms on an R-module M valued in another R-module M ′, that is,

(·, ·) : M ×M →M ′.

We may even consider such pairings when R is not an integral domain. These do not fit into our definition of
lattices though many notions remain valid. The most common examples of this would be either taking M ′ = R/I,
for any ideal I of R, or reducing all of R,M,M ′ by I.

We will also need the following notion in order to deal with certain complexities in characteristic 2.
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Definition 2.2. Let R be a ring and let M ′ be an R-module. We define a quadratic module M over R (or more
precisely an M ′-valued quadratic module) to be a module M over R together with a function q : M → M ′

satisfying q(λx) = λ2q(x) for all x ∈M and λ ∈ R and such that

BM (x, y) := q(x+ y)− q(x)− q(y)

is a bilinear pairing. For a quadratic module M we define:

M⊥ := {x ∈M | BM (x, y) = 0 for all y ∈M} and

Rad(M) := {x ∈M⊥ | q(x) = 0}.

A quadratic module is said to be regular or non-degenerate if BM induces a duality with the dual module.

Remark. In the above, one typically takes M ′ = R or M ′ = K, the total ring of fractions or M ′ = R/I.

Notation 2.3. Given a lattice Λ, by qΛ or simply q we shall always mean:

qΛ(x) = bΛ (x, x) .

To a lattice we may also associate another bilinear pairing:

BΛ(x, y) := qΛ(x+ y)− qΛ(x)− qΛ(y).

Note well that BΛ(x, y) = 2bΛ(x, y) and that qΛ(x) = bΛ(x, x) as these conventions vary by author. Notice also
that in characteristic 2 one may not recover bΛ from qΛ as this would involve dividing by 2 whereas if 2 ∈ K× then
non-degenerate quadratic modules and lattices are equivalent.

Remark. For both lattices and quadratic modules L⊕M shall always mean an orthogonal direct sum.

This level of generality is too much for many of our purposes. Having the following additional constraints gives
major simplifications to the theory:

1. If Λ is free we may express (·, ·) by a matrix.

2. If R is a principal ideal domain, the theory of modules simplifies. In particular, every lattice is free. We may
often replace R by its (completed) localizations to attain this.

3. The theory is simpler if 2 is not a zero divisor in R.

Note that some of the results which follow are true without some (or all) of the above constraints, however, for
simplicity of presentation we may sometimes assume them. Note that these assumptions hold when we work over
Z, Q, Zp for all p, Fp where p 6= 2, or the many finite ring extensions of these. These assumptions may fail for
Dedekind domains; however as our study of these is done almost entirely with their localizations this will not be an
issue. We will occasionally still need to work in characteristic 2 and it will be apparent when this is happening.

Definition 2.4. Assume that Λ is free and let X = {x1, . . . , xn} be a basis for Λ. We write:

A = AX = ((xi, xj))i,j

for the matrix corresponding to this lattice and choice of basis.

Definition 2.5. Given a lattice Λ we define the dual lattice to be:

Λ# = {x ∈ Λ⊗K | (x, y) ∈ R for all y ∈ Λ}

together with the induced pairing.

Definition 2.6. A submodule L ⊂ Λ is said to be isotropic if (·, ·) |L = 0. It is said to be anisotropic if it has
no isotropic submodules. A projective submodule is said to be metabolic if it has an isotropic submodule of half
its rank. A projective submodule is said to be hyperbolic if it is generated by two isotropic submodules.

Definition 2.7. Lattices Λ have the following invariants:

• For Λ projective, the rank rΛ of Λ as an R module.

• For Λ integral, the discriminant group DΛ = Λ#/Λ together with the induced pairing mapping into K/R.
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• For Λ free, the discriminant δΛ = det(AX) ∈ K/(R×)2 for a choice of basis X.

If Λ is not free we have at our disposal the discriminant D(q) of Λ ⊗ K which is an element of K/(K×)2,
and the discriminant ideal which is the R ideal generated by det(AX) running over all maximal linearly
independent subsets X of Λ. Alternatively, for a projective module over a Dedekind domain, one may take
the discriminant ideal to be the product of the local discriminant ideals.

• Supposing Λ ⊗ K is isomorphic to the diagonal form (ai)i and denoting the Hilbert symbol by (·, ·)K , the
Hasse invariant is

H(Λ) = H(q) =
∏
i<j

(ai, aj)K ∈ H2(K, {±1}).

(See [Ser73, Ch. III] and [Ser79, Ch. XIV].)

• The Witt invariant, W (Λ) = W (q) is the class in H2(K, {±1}) of either the Clifford algebra or the even
Clifford algebra of Λ when the parity of rΛ is, respectively, even or odd.

• For each embedding R ↪→ R we have an associated signature (the dimension of any maximal isotropic
R-submodule of Λ⊗R R).

• The norm ideal NΛ is the R-ideal generated by {(x, x) | x ∈ Λ}.

• The scale ideal SΛ is the R-ideal generated by {(x, y) | x, y ∈ Λ}.
Note that NΛ ⊂ SΛ and 2SΛ ⊂ NΛ.

• The norm group nΛ is the group: {(x, x) | x ∈ Λ}+ 2SΛ, it is an additive subgroup of K.

• If R is Noetherian consider mΛ ⊂ nΛ the largest R-ideal contained in nΛ. Then for π an ideal of R, define the
π-weight ideal to be the ideal wΛ,π = πmΛ + 2SΛ. When we are working over a local ring we shall denote
this by wΛ as π is understood to be the unique maximal ideal.

Remark. It is clear that the above are all invariants as they are defined naturally. The extent to which these
determine a lattice depends largely on the setting. They are typically insufficient to characterize a lattice in the
context in which we are working.

Proposition 2.8. Every unimodular sublattice L ⊂ Λ of an integral lattice is an orthogonal direct summand. More
generally, if SΛ = a then every a-modular sublattice L ⊂ Λ is an orthogonal direct summand.

See [O’M00, Thm 82:15a].

3. Lattices over p-adic Rings

Here we enter into the improved setting of having R a (complete) local ring whose maximal ideal is principal,
generated by π. More specifically we intend to work with a p-adic ring, by which we mean the maximal order of
a p-adic field (a finite extension of Qp). We shall denote by ν = νπ the π-adic valuation.

In this context we have the following important result to recall:

Theorem 3.1. A quadratic module over a p-adic field K is entirely determined by its rank, its discriminant and
its Hasse invariant.

See [O’M00, Thm 63:20].

Notation 3.2. For a, b ∈ R, with ab 6= 1, we shall denote by La,b the binary lattice whose bilinear form has matrix
( a 1

1 b ).
For 0 6= c ∈ R we shall denote by Uc the unary lattice whose bilinear form has matrix (c).
For a lattice L and an element r ∈ R we shall denote by rL the lattice whose underlying module is L but whose

bilinear form is r times that of L, that is, brL = rbL.

Lemma 3.3.

1. La,b = Uc1 ⊕ Uc2 if and only if one of a, b or 2 is in R×.

2. The discriminant of La,b is −(1− ab).

3. The Hasse invariant of La,b is (a, 1− ab)p = (b, 1− ab)p.
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4. Let M be any integral lattice, suppose β = bM (x, x) for some x ∈M and u ∈ R×, if La+u−1β,b is unimodular
then:

uLa,b ⊕M = uLa+u−1β,b ⊕M ′

for some lattice M ′. In the case b = 0 then uLa+u−1β,b is unimodular and moreover M ′ 'M .

Proof. For the first point, in the forward direction use the fact that every unimodular sublattice is a direct summand,
together with the determinant of the matrix. For the other direction, use the fact that if none of a,b or 2 is a unit,
then NLa,b 6= R and is unimodular whereas if Uc1 ⊕ Uc2 is unimodular then NUc1⊕Uc2 = R.

The second point is a direct calculation. For the third, notice that over K we have the change of basis:(
1 0
−a−1 1

)(
a 1
1 b

)(
1 −a−1

0 1

)
=

(
a 0
0 b− a−1

)
.

Thus the Hasse invariant is (a, b− a−1)p = (a, 1− ab)p (using that (a,−a)p = 1).
The fourth point is [O’M00, 93:12].

Theorem 3.4 (Existence of Jordan decompositions). Every lattice Λ over a p-adic ring R can be expressed as:

Λ ' ⊕
i
Li,

where the Li are ai-modular, with the ai distinct. Such a decomposition is called a Jordan decomposition. Note
that such decompositions are not in general unique, but see Theorem 3.13.

See [O’M00, 91C].

It should be remarked that in spite of the following “Witt type theorem,” a decomposition Λ = L1⊕K1 = L2⊕K2

with L1 ' L2 does not imply K1 ' K2.

Theorem 3.5 (Kneser). Let R be a local ring with unique maximal ideal p. Let L1, L2 ⊂ Λ be submodules of Λ
and F ⊂ Λ be a subset satisfying:

1. 1
2qΛ(F ) and bΛ (F,Λ) are both subsets of R,

2. Hom(L1, R),Hom(L2, R) ⊂ {bΛ(x, ·) | x ∈ F}, where bΛ(x, ·) is viewed as a map from Λ to R, and

3. σ : L1 → L2 an isometry such that σ(x)− x ∈ F for all x ∈ L1.

Then σ can be extended to an isometry of Λ which acts trivially on F⊥. Moreover, if F contains an element z such
that:

1. qΛ(z) ∈ 2R× and,

2. if the residue field is F2, then also (F, z) ⊂ p,

then σ is induced by products of reflections in elements of F .

See [Kit93, Thm 1.2.2] or [Kne02, Satz 4.3].

Corollary 3.6. Suppose R is a p-adic ring. Let M1,M2 be integral R lattices and N1 = N2 unimodular lattices
with NN1

⊂ (2). Then N1 ⊕M1 ' N2 ⊕M2 implies that M1 'M2.

Proof. Identify Λ := N1 ⊕M1 with N2 ⊕M2 via any isomorphism. In the notation of the above theorem, take
L1 = N1, L2 = N2, and F = Λ. The map which identifies N1 and N2 thus extends to an isometry of Λ which
necessarily maps M1 = N⊥1 to N⊥2 = M2.

Lemma 3.7. For p 6= 2 every unimodular lattice Λ over a p-adic ring R with rank at least 3 has a hyperbolic
sublattice.

See [O’M00, 92:1a].

Corollary 3.8. For p 6= 2 and a p-adic ring R, the isomorphism classes of unimodular lattices Λ over R are
classified by their rank and discriminant.

See [O’M00, 92:1].

Lemma 3.9. Suppose p = 2, then the isomorphism classes of unimodular lattices Λ over R are determined by their
rank, discriminant, Hasse invariant and norm groups.
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See [O’M00, 93:16].

Lemma 3.10. For a lattice L over a 2-adic ring letting aπt be an element of minimal valuation in nL we find:
nL = aπtR2 + wL.

See [O’M00, 93:3].

Theorem 3.11. Let L be a unimodular lattice over a 2-adic ring R with uniformizer π. Fix α ∈ R× such that
δL = −(1 + απr) modulo (R×)2, such that furthermore either r is odd or r = ν(4). Fix also a ∈ R× such that
aπt ∈ qL(L) is an element of minimal valuation represented by L. Then wL = (πs), where r − t ≥ s ≥ t and s+ t
is odd or s = ν(2). Let ρ ∈ R/πR be such that x2 + x+ ρ is irreducible mod π.

Then L is isomorphic to precisely one of:

1. Hn ⊕
(
πs 1
1 0

)
⊕
(
aπt 1
1 −a−1απr−t

)
,

2. Hn ⊕
(
πs 1
1 4ρπ−s

)
⊕
(
aπt 1
1 −a−1(α− 4ρ)πr−t

)
,

3. Hn ⊕
(
πs 1
1 0

)
⊕ (−δL),

4. Hn ⊕
(
πs 1
1 4ρπ−s

)
⊕ (−(1− 4ρ)δL),

5.

(
aπt 1
1 −a−1απr−t

)
or

6. (−(1− απr)).

Proof. This is essentially the content of [O’M00, 93:18].
This is a consequence of Lemma 3.9. One only needs to observe that these examples cover all possible combi-

nations of ranks, discriminants, Hasse invariants and norm groups. Lemma 3.10 allows one to check we have all of
the possible norm groups. The observation that (1 + 4ρ, π)p = −1 allows one to check we have all possible Hasse
invariants.

Corollary 3.12. Every unimodular lattice Λ over a 2-adic ring R with rank at least 5 has a hyperbolic sublattice.

See also [O’M00, 93:18v].
It should be emphasized before stating the following result that Jordan decompositions over 2-adic rings are not

typically unique.

Theorem 3.13 (Uniqueness of Jordan decompositions). Let Λ =
r1
⊕
i=1
Li =

r2
⊕
j=1

Kj be two Jordan decomposition of

a lattice over a p-adic ring with Li being ai-modular and Kj being bj-modular, ai1 |ai2 for i1 < i2, and bj1 |bj2 for
j1 < j2. Then:

1. r1 = r2,

2. ai = bi,

3. rankLi = rankKi,

4. NLi = ai if and only if NKi = ai, and

5. if p 6= 2 then Li ' Ki.

See [O’M00, 91:9].

4. Local Densities

We now move from general theory to a more particular problem, that is, we now focus our attention on what
are called interchangeably representation densities, local densities or arithmetic volumes. Throughout this section
we shall continue to assume that R is a p-adic ring, with maximal ideal p. We shall denote by π a uniformizer and
q = |R/pR| the size of the residue field, which is finite by assumption. We shall fix an additive Haar measure on R,
normalized so that the volume of R is 1. In this context we continue to have that all lattices are free.
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4.1. Notion of Local Densities

Fundamentally the notion of representation density has to do with assigning a volume to sets of the form:

Isom(Λ1,Λ2) = {φ ∈ HomR(Λ1,Λ2) | bΛ2
(φ(x), φ(y)) = bΛ1

(x, y)},

the isometric embeddings from Λ1 to Λ2. Such sets are typically infinite, so simply counting elements is insufficient.
This problem can be approached both locally and globally and there are a number of different ways to formulate

the notion. The various definitions are typically, up to constants, equivalent. We take the following definition of
local density; for some the α definition is more natural.

Definition 4.1. Let L and M be lattices over a p-adic ring R, with bilinear forms bL, bM . Consider the map
FbL : HomR(M,L) → Sym2(M∨) which takes the maps from M to L to the space of symmetric bilinear forms on
M given by (FbL(φ))(x, y) = bL(φ(x), φ(y)). Some references define the local density at R to be:

αR(bM , bL) = αR(M,L) =
1

2
lim

U→bM

∫
F−1
bL

(U)
dX∫

U
dT

.

Here dX =
∏
ij dxij and dT =

∏
i≤j dtij are the standard measures when viewing the spaces as matrix spaces with

respect to some chosen basis. The limit is being taken over the directed family of open subset U of Sym2(M∨)
containing bM . By [Han05, Lemma 2.2] this does not depend on the choice of integral basis.

We define the local density to be:

βR(M,L) = (q− rank(M)vπ(2))αR(M,L).

When R = Op one often denotes the local densities by βp rather than βR.

The above definition may seem quite unwieldy and difficult to compute. The following proposition gives a more
concrete interpretation of these values.

Proposition 4.2. Let R be a p-adic ring with residue field Fq and uniformizer π. Let M and N be two quadratic
modules over R of ranks m and n, respectively. Fix h ∈ Z sufficiently large so that πh−1qM (M#) ∈ (2) and
πh−1qN (N) ∈ (2), and let r, r′ ∈ Z be such that r, r′ − ν(2) ≥ h. Denote ξr = (qr)m(m+1)/2−mn then define
BR(M,N, r) to be:

ξr · |{φ ∈ HomR(M,N/πrN) | bN (φ(x), φ(x)) = bM (x, x) (mod 2πr)}|

and define AR(M,N, r′) to be:

ξr′ ·
∣∣∣{φ ∈ HomR(M,N/πr

′
N) | bN (φ(x), φ(y)) = bM (x, y) (mod πr

′
)}
∣∣∣ .

These values are independent respectively of r and r′. Moreover,

βR(M,N) = BR(M,N, r) and αR(M,N) = AR(M,N, r′).

These results are reasonably well known, and can be deduced from [Han05, Lemma 3.2] and [Kit93, Lemmas
5.6.1 and 5.6.5] or from [Kne02, 15.3-5 and 33.5] or alternatively from the proof of [Kit88, Prop 1].

Remark. It can be useful to think of the local density as counting the number of elements of Isom(M,N), or of it
as being the probability that a linear map is in Isom(M,N) (even though it is not literally either of those things,
it is a rescaling of these numbers when one thinks of L/πr for large r).

Proposition 4.3. Suppose that L = L1 ⊕ L2 and the following hypothesis is satisfied:

L1 ⊕ L2 'M1 ⊕M2 and L1 'M1 implies L2 'M2.

Then for any lattice L3 we have the following formula:

βR(L1 ⊕ L3, L) = βR(L1, L)βR(L3, L2).

Proof. This follows immediately from the description in terms of counting isometries and book-keeping the rescaling
constants.

Remark. This type of ‘cancellation law’ does not hold in general, nonetheless, one can use cases where it does
hold (see for example Corollary 3.6) as a way to inductively prove formulas for representation densities.
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4.2. Computing Local Densities

Computing local densities is in general considered to be highly technical. The resulting formulas become quite
complicated in the general case. In spite of this, in this section we will compute the local densities βp(L,L) for an
arbitrary lattice over an arbitrary p-adic ring. The combinatorics behind actually carrying out the computation
in any given case will require detailed understanding of the isomorphism class of the given lattice. In particular
one needs to be able to compute the set of all possible Jordan decompositions. We will thus not present complete
formulas for this in the most general cases. Instead, we give a reduction formula in terms of these combinatorics
and formulas for all the terms that can appear.

The general structure of this section is as follows:

1. Reduce the problem for (πt)-modular lattices to unimodular lattices. See in particular Proposition 4.4.

2. Reduce the problem for unimodular lattices to the special case of certain lattices of rank at most 4, see
Theorem 4.11.

3. Compute the representation density for these special cases. This is done in a series of lemmas culminating in
Theorem 4.18.

4. Reduce the general problem for an arbitrary lattice to the combinatorial problem of understanding all the
Jordan decompositions together with the problem for modular lattices. See Theorem 4.26.

� Rescaling

Our first step is an elementary lemma which allows us to compute the local density of rescaled lattices.

Proposition 4.4. Let R be a p-adic ring with field of fractions K. Let M and L be lattices over R and c ∈ K×.
The following formula holds:

βR(M,L) = |c|m(m+1)/2
π βR(cM, cL),

where m = rank(M).

Proof. This is an elementary computation, see [Han05, Lemma 3.1].

As a consequence of the above proposition, it is possible to compute βR(L,L) in the case of a-modular lattices
simply by treating the case of unimodular lattices.

Remark. There is no reasonable formula for βR(cM,L) or βR(M, cL) in terms of βR(M,L) unless we make further
assumptions. In particular some of these could be 0 while the others are not.

� Unimodular Lattices

We now discuss the problem of computing the local density βR(L,L) for a unimodular lattice.

Lemma 4.5. Suppose L is any unimodular lattice and L(e) is any even unimodular lattice. The following formula
holds:

βR(L(e)⊕ L,L(e)⊕ L) = βR(L(e), L(e)⊕ L) · βR(L,L).

Proof. This follows immediately from Corollary 3.6 and Proposition 4.3.

Lemma 4.6. Suppose L is a unimodular lattice and L(e) is any even unimodular lattice of rank 2n. Set Λ = L⊕L(e)
then define:

L(2) := {x ∈ L | (x, x) ∈ 2R} and Λ(2) := {x ∈ Λ | (x, x) ∈ 2R}.

Then L(2) and Λ(2) are lattices, Λ(2) = L(e)⊕ L(2), and:

βR(L(e),Λ) = [L : L(2)]−2nβR(L(e),Λ(2)).

Proof. Denote by ξr = (qr)n−2n2−2n`. Now pick r sufficiently large so that πrL ⊂ L(2). It follows that βR(L(e),Λ)
is given by:

ξr · |{φ ∈ HomR(L(e),Λ/πrΛ) | q(x) = q(φ(x)) (mod 2πr)}| ,

and βR(L(e),Λ(2)) is given by:

ξr ·
∣∣∣{φ ∈ HomR(L(e),Λ(2)/πr(Λ(2))) | q(x) = q(φ(x)) (mod 2πr)}

∣∣∣ .
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Then because L(e) is even, it is clear that βR(L(e),Λ) can be computed as:

ξr ·
∣∣∣{φ ∈ HomR(L(e),Λ(2)/πrΛ) | q(x) = q(φ(x)) (mod 2πr)}

∣∣∣ .
For each element φ ∈ HomR(L(e),Λ(2)/πrΛ), there are precisely [L : L(2)]2n many extensions of φ to a map
in HomR(L(e),Λ(2)/πrΛ(2)), all of which automatically satisfy q(x) = q(φ(x)) (mod 2πr) as that condition was
already well-defined. Comparing formulas completes the proof.

Lemma 4.7. Suppose L is a unimodular lattice of rank ` and L(e) is any even unimodular lattice of rank 2n.
Define Λ, L(2) and Λ(2) as above. Consider the vector spaces V1 = L(e)/πL(e) and V2 = Λ(2)/πΛ(2) together with
the quadratic form Q̃i(x) = 1

2 (x, x) (mod π) for their respective pairings valued in R/πR. Then the local density

βR(L(e),Λ(2)) is:

qn−2n2−2n`
∣∣∣{σ : V1 → V2 | Q̃1(x) = Q̃2(σ(x)) for all x}

∣∣∣ .
Proof. Firstly we observe by Proposition 4.2 that βR(L(e),Λ(2)) is:

qn−2n2−2n`
∣∣∣{σ : L(e)→ Λ(2)/πΛ(2) | q(x) = q(σ(x)) (mod 2π)}

∣∣∣ .
Secondly, we observe that:∣∣∣{σ : L(e)→ Λ(2)/πΛ(2) | q(x) = q(σ(x)) (mod 2π)}

∣∣∣ =∣∣∣{σ : V1 → V2 | Q̃1(x) = Q̃2(σ(x))}
∣∣∣ .

The result then follows immediately.

Remark. The space V2 may not be a regular quadratic module.

Definition 4.8. For a regular quadratic module V of dimension 2n we define:

χ(V ) =

{
1 V ' Hn and n > 0

−1 otherwise.

Lemma 4.9. Every quadratic module W over a field of characteristic 2 decomposes as:

W0 ⊕W ′ ⊕ Rad(W )

with W0 a maximal regular sublattice and W⊥ = W ′ ⊕ Rad(W ). Note that the isomorphism class of W0 is unique
if and only if W⊥ = Rad(W ).

See [Kit93, Thm 1.2.1 and Ex. 1.2.2].

Lemma 4.10. Suppose V is a (non-trivial) regular quadratic module represented by W , that is, for which there
exists at least one isometry from V into W . Write W = W0 ⊕W⊥ as in Lemma 4.9 and set v = dim(V ) and
w = dim(W0). The number of isometries from V into W is:

qv dim(W )−v(v+1)/2

 w/2−1∏
e=(w−v)/2+1

(1− q−2e)

 (1− χ(W0)q−w/2)ξ,

where ξ is given by:

ξ =

{
1 + χ(V ⊕−W0)q(v−w)/2 W⊥ = Rad(W )

1 + χ(W0)q−w/2 W⊥ 6= Rad(W ).

See [Kit93, Prop 1.3.3].

Remark. Notice that the above formula, which appears to depend on a choice of W0 in W , does so only when
W⊥ = Rad(W ).
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Theorem 4.11. Consider a unimodular lattice Λ. Then Λ has a decomposition Λ = L(e) ⊕ L, where L(e) is
a maximal even dimensional even unimodular sublattice of Λ and L has rank at most 4. Let ` = rank(L) and
2n = rank(L(e)). Then:

βR(Λ,Λ) = [L : L(2)]−2nξβR(L,L)

n∏
e=1

(1− q−2e),

where:

ξ =

{
2(1 + χ(L(e))q−n)−1 L(e) non-trivial and independent of choices

1 otherwise.

Proof. Such a decomposition exists by Theorem 3.11. Lemma 4.5 gives us the formula:

βR(L(e)⊕ L,L(e)⊕ L) = βR(L(e), L(e)⊕ L) · βR(L,L).

Lemma 4.6 allows us to evaluate:

βR(L(e), L(e)⊕ L) = [L : L(2)]−2nβR(L(e), L(e)⊕ L(2)).

Lemma 4.7 then reduces the computation of βR(L(e), L(e)⊕L(2)) to a computation over the residue field. Finally,
Lemma 4.10 gives the precise formula for this computation. Combining the results allows us to conclude the
theorem.

Remark. If L(e) is as above, then one has χ(L(e)) = (π, (−1)n/2D(L(e)))p.

Corollary 4.12. Suppose p 6= 2 and maintain the notation of Theorem 4.11, then:

βR(Λ,Λ) = 2

n∏
e=1

(1− q−2e)

{
(1 + χ(L(e))q−n)−1 ` = 0

1 ` = 1.

Proof. When p 6= 2 all lattices are even and hence we have that L is either 0 or 1-dimensional. The result now
follows immediately from the theorem and the observation that for a 1-dimensional lattice the representation density
is 2.

� Unimodular Lattices of Rank at Most 4

We are now left only to consider the case where the residue characteristic is 2. Theorem 4.11 reduces this case
to that of computing βR(L,L) and of understanding L(2), in the case of L unimodular of rank at most 4 with no
even unimodular factors. Such low rank unimodular lattices with no even unimodular factors are precisely those
appearing as L in Theorem 4.11. We first discuss the problems of understanding L(2).

Proposition 4.13. Consider L a unimodular lattice of rank at most 4 over a 2-adic ring with no nontrivial even
unimodular factors. Denote by W = L(2)/πL(2) with the induced form Q̃(x) = 1

2 (x, x) (mod π). Then we have the
following cases:

• Case n = 4. Write L =
(
aπt 1
1 cπr−t

)
⊕
(
πs 1
1 4bπ−s

)
with t < s < r− t, t+s is odd, and either r odd or r = ν(4).

Then Rad(W ) 6= W⊥. Moreover,

logq([L : L(2)]) = ν(2)− (s+ t− 1)/2.

• Case n = 3. Write L =
(
πs 1
1 bπν(4)−s

)
⊕ (d) with ν(2) > s > 0 and s odd. Then Rad(W ) 6= W⊥. Moreover,

logq([L : L(2)]) = ν(2)− (s− 1)/2.

• Case n = 2, Write L with matrix
(
aπt 1
1 cπr−t

)
with either r > t odd or r = ν(4). Then Rad(W ) = W⊥ unless

r − t ≤ ν(2) or ν(2)− t is even. Moreover,

logq([L : L(2)]) =

{⌈
ν(2)−t

2

⌉
r − t ≥ ν(2),

ν(2)− (r − 1)/2 otherwise.
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• Case n = 1 Then Rad(W ) = W⊥ unless ν(2) is even. Moreover,

logq([L : L(2)]) =
⌈
ν(2)

2

⌉
.

Proof. In each case we will denote the basis with respect to which the matrix is given by {~x1, . . . , ~xn}.
The argument shall use the following observation. If x, y ∈ L are such that νπ(q(x)) is odd and νπ(q(y)) is even,

then since:
q(ηx+ θy) = η2q(x) + θ2q(y) (mod 2),

the only way to have νπ(q(ηx+θy)) ≥ νπ(2) is to have both 2νπ(η)+νπ(q(x)) ≥ νπ(2) and 2νπ(θ)+νπ(q(y)) ≥ νπ(2).
The observation allows us to easily compute bases for the following three cases. In the case of n = 1 it is clear

that a basis for L(2) is:
{πdνπ(2)/2e~x1}.

In the case of n = 2 a basis for L(2) is:

{πd(νπ(2)−t)/2e~x1, π
max(0,d(νπ(2)−(r−t))/2e)~x2}.

In the case of n = 3 a basis for L(2) is:

{πd(νπ(2)−s)/2e~x1, ~x2, π
dνπ(2)/2e~x3}.

For the case of n = 4, we can eliminate some of the conditions by using that t, s ≤ r− t. We do this by fixing η
and θ so that:

η2aπt + θ2πs = cπr−t (mod 2).

Now a basis for L(2) is:
{πd(νπ(2)−t)/2e~x1, η~x1 + ~x2 + θ~x3, π

d(νπ(2)−s)/2e~x3, ~x4}.
It is now an easy calculation to determine [L : L(2)]. Moreover, it is apparent that W⊥ = W and thus

Rad(W ) = W⊥ if and only if Q̃ is trivial. This is easily checked on the bases we have given.

We now discuss the problem of computing βR(L,L) for unimodular lattices L of rank at most 4 with no even
unimodular factors. The general strategy is as follows:

1. Describe a constructive process for enumerating and counting all choices of basis that give a bilinear form
that ‘looks like’ the original.

2. Show that the number of ways of obtaining each possible form that ‘looks like’ the original is the same.
3. Count the number of possible forms that ‘look like’ the original.
4. Obtain the result.

The above is made more precise in the following proofs.

Lemma 4.14. Suppose L is a unimodular lattice of rank 1. Then:

βR(L,L) = 2.

This case is a simple check.

Lemma 4.15. Suppose L is the unimodular lattice of rank 2 over a 2-adic ring represented by

(
aπt 1
1 cπr−t

)
with

a, c ∈ R×, 2t < r and either r < ν(4) odd or r = ν(4). Then:

βR(L,L) =

{
4q(r−1)/2−ν(2) r − t ≤ ν(2)

2q−d(ν(2)−t)/2e ν(2) < r − t.

Proof. By Proposition 4.2 we need to count the elements in the set:

Φ = {φ : L→ L/πν(2)−t+1L | qL(φ(x)) = qL(x) (mod πν(4)−t+1)}.

Consider the following sets:

X = {~x ∈ L/πν(2)−t+1L | qL(~x) = aπt (mod πν(4)−t+1)},
Y~x = {~y ∈ L/πν(2)−t+1L | (~x, ~y) = 1 (mod πν(2)−t+1), ν(q(~y)) = r − t}, and

Ỹ = {qL(~y) (mod πν(4)−t+1) | ~y ∈ Y~x|, ~x ∈ X}.
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We claim that |Y~x| is independent of the choice of ~x ∈ X. Indeed, letting ~x0 and ~y0 be the original basis it is
clear that:

Y~x = {(~x, (~x, ~y′)−1~y′) | ~y′ = (xπd(r−2t)/2e~x0 + ~y0)},

where x runs over elements of R/πν(2)−t+1−d(r−2t)/2eR. If follows that:

|Y~x| = qν(2)+1−dr/2e.

We next compute
∣∣∣Ỹ ∣∣∣. The values of qL(~y) that can appear are precisely those such that:

1− aqL(~y)πt = 1− acπr (mod (R×)2)

as these are the values that give isomorphic quadratic forms. This is precisely the same as the number of elements
modulo πν(4)+1 that are squares, and congruent to 1 modulo πr. We thus have:∣∣∣Ỹ ∣∣∣ =

1

2
qν(2)+1−dr/2e.

We now compute |X|. We are counting solutions for x, y (mod πν(2)−t+1) of:

aπtx2 + 2xy + cπr−ty2 = aπt (mod πν(4)−t+1).

We make the substitution x = 1 + x and this becomes:

aπtx2 + 2aπtx+ 2y + 2xy + cπr−ty2 = 0 (mod πν(4)−t+1).

By inspecting the valuations of monomials that result from such a switch (of x = x+ 1), in particular the parity of
their valuations, it is apparent that we have:

x = 0 (mod πmax(ν(2)−(r−1)/2,d(ν(2)−t)/2e)) and

y = 0 (mod πmax(ν(2)+t−r,ν(2)+t)),

where the first terms are maximal if and only if ν(2) ≥ r − t. If we perform the substitutions:

x = πmax(ν(2)−(r−1)/2,d(ν(2)−t)/2e)x′ and y = πmax(ν(2)+t−r,0)y′

the equation becomes:

aπν(2)+δx2 + 2y + 2πP (x, y) = 0 r − t > ν(2), or

2y + 2cy2 + 2πP (x, y) = 0 r − t ≤ ν(2)

for some polynomial P and δ ∈ {0, 1}. (Notice the only way we could have had both an x2 and y2 term was if
r − t = t = ν(2) but we have excluded that case from consideration.) We observe that by dividing by 2 we may
solve for y in terms of x. As the equation is non-singular, we may use Hensel’s lemma to find solutions and the
total number of solutions is equal to the number of solutions modulo π. There are precisely 2 solutions modulo π
if ν(2) ≥ r − t and 1 solution otherwise. We thus find:

|X| =

{
2q(r−t−t−1)/2+1 ν(2) ≥ r − t
qb(ν(2)−t)/2c+1 otherwise.

The set Φ corresponds precisely to the fibre of

{(~x, ~y) | ~x ∈ X, ~y ∈ Y~x}

over cπr−t ∈ Ỹ . The automorphism group of L/πν(2)−t+1L acts simply transitively on this fibre. However, noting
that the original choice of cπr−t is arbitrary, the automorphism group acts simply transitively on each fibre of:

{(~x, ~y) | ~x ∈ X, ~y ∈ Y~x}

over Ỹ .

12



It thus follows that:

|Φ| = |X| |Y~x|∣∣∣Ỹ ∣∣∣ .

Thus we find:

|Φ| =

{
4q(r−t−t−1)/2+1 r − t ≤ ν(2)

2qb(ν(2)−t)/2c+1 ν(2) < r − t.
Combining terms completes the result.

Lemma 4.16. Suppose L = Lπt,bπν(4)−t ⊕ U−d is a unimodular lattice of rank 3 over a 2-adic ring with t < ν(2)
odd and b, d ∈ R×, then:

βR(L,L) = 4q(1−t)/2.

Proof. By Proposition 4.2 we need to count elements in the set:

Φ = {φ : L→ L/πν(2)+1L | qL(φ(x)) = qL(x) (mod πν(4)+1)}.

As in the previous lemma consider the following sets:

X = {~x ∈ L/πν(4)+1L | qL(~x) = πt (mod πν(4)+1)},
Y~x = {~y ∈ L/πν(2)+1L | (~x, ~y) = 1 (mod πν(2)+1), ν(qL(~y)) = ν(4)},
Ỹ = {qL(~y) (mod πν(4)+1) | ~y ∈ Y~x, ~x ∈ X},

Z~x,~y = {~z ∈ 〈~x, ~y〉⊥/πν(2)+1 | qL(~z) = −d (mod πν(4)+1)}.

We claim that |Y~x| is independent of ~x ∈ X. Indeed, letting ~x0, ~y0, ~z0 be the original basis it is clear for parity
reasons that:

Y~x = {(~x, (~x, ~y′)~y′) | ~y′ = xπν(2)−t~x0 + ~y0 + zπν(2)−(t−1)/2~z0},
where x ∈ R/πt+1R and z ∈ R/π(t−1)/2+1R. We thus find:

|Y~x| = qt+(t−1)/2+2.

Next we compute
∣∣∣Ỹ ∣∣∣ = 1

2q. The argument is identical to the previous lemma, except we note that the

discriminant of this block is well-defined modulo squares because it controls the Hasse invariant of the form.
Now |Z~x,~y| = 2 independently of ~x, ~y. This follows as the orthogonal complement is isomorphic to U−d by

necessity (again because the Hasse invariant controls the discriminant).
We now compute |X|. We are counting solutions for x, y, z (mod πν(2)+1) of:

πtx2 + 2xy + πν(4)−ty2 + cz2 = πt (mod πν(4)+1).

It is clear that we may replace z by πdν(2)/2ez and get:

x2 + πν(2)−txy + bπν(4)−2ty2 + cπν(2)+2dν(2)/2e−tz2 = 1 (mod πν(4)−t+1).

We now replace x by 1 + πd(ν(2)−t)/2ex and the expression modulo πν(4)−t+1 becomes:

2πd(ν(2)−t)/2ex+ π2d(ν(2)−t)/2ex2 + πν(2)−ty+

πd3(ν(2)−t)/2exy + bπν(4)−2ty2 + cπ2dν(2)/2e−tz2 = 0.

This reduces to:

2πδx+ πδx2 + y + πδ+ν(2)−txy + bπν(2)−ty2 + cπ1−δz2 = 0 (mod πν(2)+1),

where δ =

{
0 ν(2) odd

1 otherwise.

As in the previous case, this equation is non-singular in y, hence, for all values of z, x we may find a unique solution
for y. It follows that:

|X| = qbν(2)/2c+b(ν(2)−t)/2c−t+2 = qν(2)−(t+1)/2−t+2.

As in the previous lemma it follows that:

|Φ| = 2qt+(t−1)/2+1 |X| |Y~x| |Z~x,~y|
∣∣∣Ỹ ∣∣∣−1

.

We may thus conclude that |Φ| = 4q3ν(2)−3t−(t−1)/2+3. Combining terms completes the result.
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Lemma 4.17. Suppose L = Lπs,bπν(4)−s ⊕Laπt,cπr−t is a unimodular lattice of dimension 4 over a 2-adic ring with
t < s < ν(2), a, b, c ∈ R×, s− t odd, and r < ν(4) odd or r = ν(4). In this situation:

βR(L,L) = 4q−3ν(2)+2t−2−(r−t−s)/2

{
q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t.

Proof. We make the following definitions:

Φ = {g ∈ GL(L/πν(4)−t+1L) | gtAg =
(
πs 1
1 bπν(4)−s

)
⊕
(
aπt 1
1 cπr−t

)
},

X = {~x ∈ L/πν(2)−t+1L | qL(x) = πs (mod ν(4)− t+ 1)},
Y~x = {~y ∈ L/πν(2)−t+1L | (~x, ~y) = 1 (mod πν(2)−t+1), ν(qL(~y)) ≥ ν(4)− s},
Ỹ = {qL(~y) ∈ R/πν(4)−t+1R | ~y ∈ Y~x, ~x ∈ X},

Z~x,~y = {(~z, ~w) ∈ 〈~x, ~y〉⊥/πν(2)−t+1 | (~z, ~w) = 1 (mod πν(2)−t+1), ν(qL(~z)) = t},
Z̃~x,~y = {(qL(~z), qL(~w)) ∈ (R/πν(4)−t+1R)2 | (~z, ~w) ∈ Z~x,~y},
Ẑỹ = {Λ a lattice modulo πν(4)−t+1 up to isomorphism | Lπs,ỹ ⊕ Λ ' L}.

In the above we are taking ỹ ∈ Ỹ .
Our first claim is that |Y~x| = qν(2)−3t+3+s+(s+t−1)/2 and that this is independent of ~x ∈ X. Indeed, we can

compute its value as follows:
Y~x = {(~x, ~y′)−1~y′ | ν(qL(~y′)) = ν(4)− s}.

Thus its size is the number of solutions to:

πsx2 + 2x+ aπtz2 + 2zw + cπr−tw2 = 0 (mod πν(4)−s),

where x, z, w are taken in R/πν(2)−t+1R. In the event that r − t > ν(4)− s then for parity reasons we must have:

x = 0 (mod πν(2)−s) and z = 0 (mod πν(2)−(s+t−1)/2).

One finds then that there are no further conditions and thus counting solutions we find:

|Y~x| = qν(2)−3t+3+s+(s+t−1)/2.

Otherwise we suppose r − t ≤ ν(4)− s. Next we may choose η, ε such that:

η2c+ ε2aπ = 1.

For parity reasons we again find:

x = 0 (mod π(r−t−s)/2) and z = 0 (mod π(r+1)/2−t).

We may thus substitute:

x = π(r−t−s)/2x′ and w = ηx′ + w′ and z = π(r+1)/2−t(εx′ + z).

The whole expression modulo πν(4)−s then becomes:

2π(r−t−s)/2x+ πr−t+1z2 + πr−tw2 + πν(2)+(r−t−s)/2+1P (x,w, z) = 0

for some polynomial P . It is now apparent that:

z = 0 (mod πd(ν(2)−(3r−3t−s)/2−1)/2e) and w = 0 (mod πd(ν(2)−(3r−3t−s)/2)/2e)

and that x is determined modulo πν(2)−s−(r−t−s)/2 by the other parameters. One finds then that there are no
further conditions and thus counting solutions we find:

|Y~x| = qν(2)−3t+3+s+(s+t−1)/2.

Next we compute
∣∣∣Ỹ ∣∣∣. Indeed, so long as there exist values α, γ ∈ R× such that:

L ' Lπs,βπν(4)−s ⊕ Lαπt,γπr−t
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then β ∈ Ỹ . The two conditions:

nL = αR2 + πs, and

H(L) = (α, δL)(πt, δL)(πs+t, 1− βπν(4))

can be solved for all β if r− t ≤ ν(4)− s. If however, r− t > ν(4)− s then, since (α, δL) cannot depend on α, only
half of the potential values for β will work. The other condition:

δL = (1− αγπr)(1− βπν(4)) (mod R2)

can always be solved by γ. It follows that:

∣∣∣Ỹ ∣∣∣ = qs−t+1

{
1
2 r − t > ν(4)− s
1 otherwise.

We now claim that
∣∣∣Z̃~x,~y∣∣∣ is independent of ~x ∈ X and ~y ∈ Y~x. Indeed there are three conditions for (α, γ) ∈ Z̃~x,~y.

The first condition is:
H(L) = (α, δL)(πt, δL)(πs+t, 1− qL(~y)πν(4)).

This condition cannot be unsatisfiable. Hence, it is either imposing a condition (independently of ~y), or is not
imposing a condition (independently of ~y). The second condition is:

nL = αR2 + πs.

This condition is independent of ~y. The final condition is:

δL = (1− αγπr)(1− qL(~y)πν(4)) (mod R2).

For each α satisfying the first two conditions we are imposing a condition on the variable γ. The number of values
for γ satisfying the condition is independent of ~y.

Now, we claim that |Z~x,~y| is independent of ~x ∈ X and ~y ∈ Y~x. Indeed, the value of |Z~x,~y| is precisely∣∣Aut(〈~x, ~y〉⊥/πν(4)−t+1)
∣∣ ∣∣∣Z̃~x,~y∣∣∣. Our computations in Lemma 4.15 show this depends only on t and r. Explicitly,

the value is: ∣∣∣Aut(〈~x, ~y〉⊥/πν(4)−t+1)
∣∣∣ =

{
4q(r−t−t−1)/2+1 r − t ≤ ν(2)

2qb(ν(2)−t)/2c+1 ν(2) < r − t.

Next, we claim that
∣∣∣Ẑỹ∣∣∣ is independent of ỹ ∈ Ỹ . Equivalence classes of lattices Λ ∈ Ẑỹ have representatives of

the form Lα,γ where (α, γ) ∈ Z̃~x,~y for some ~x ∈ X, ~y ∈ Y~x. We may thus represent Λ by (α, γ). Now, as the Hasse

invariant and discriminant of Λ ∈ Ẑỹ are determined by ỹ and L, the only freedom to modify Λ is picking its norm

generator. In terms of (α, γ) this amount to fixing the square class of α module πr−2t. The first constraint on the
square class of α is that it must give the norm generator of L module πs. This determines the square class of α
modulo πs−t. This leaves us with precisely:

q(r−t−s)/2

many options for such square classes. The only other constraint on α is that it must give the correct Hasse invariant.
As above, the Hasse invariant depends on α through (α, δL). Thus, it follows that:

∣∣∣Ẑỹ∣∣∣ = q(r−t−s)/2

{
1
2 r − t ≤ ν(4)− s
1 otherwise.

We now compute |X|. We are solving for x, y, z, w ∈ R/πν(2)−t+1R in the following equation modulo πν(4)−t+1:

πsx2 + 2xy + bπν(4)−sy2 + aπtz2 + 2zw + cπr−tw2 = πs.

Pick η, ε such that η2 + πaε2 = c (mod πν(2)). We may then make the following substitutions:

x = 1 + ηπd(r−t−s)/2ew + x and z = επd(r+1)/2e−tw + z.
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The equation then becomes:

πsx2 + 2y + aπtz2 + 2zw + πν(2)+1P (x, y, z, w) = 0

for some polynomial P . For parity reasons we now see that:

x = 0 (mod πd(ν(2)−s)/2e) and z = 0 (mod πd(ν(2)−t)/2e).

This equation is now solvable in y, and determines y modulo πν(2)−t+1. Counting solutions, we find that there are:

|X| = qν(4)−3t+3+(s+t−1)/2.

We now observe that:

|Φ| = |X| |Y~x| |Z~x,~y|
∣∣∣Ỹ ∣∣∣−1 ∣∣∣Z̃~x,~y∣∣∣−1 ∣∣∣Ẑỹ∣∣∣−1

.

To see this, consider the map:

{(~x, ~y, ~z, ~w) | ~x ∈ X, ~y ∈ Y~x, (~z, ~w) ∈ Z~x,~y} → (R/πv(4)−t+1R)3

given by (~x, ~y, ~z, ~w) 7→ (qL(~y), qL(~z), qL(~w)) and observe that |Φ| is precisely the size of each fibre. We thus must
show that the size of the image is: ∣∣∣Ỹ ∣∣∣ ∣∣∣Z̃~x,~y∣∣∣ ∣∣∣Ẑỹ∣∣∣ .
The image of this map is precisely:

{(ỹ, z̃, w̃) | ỹ ∈ Ỹ , (z̃, w̃) ∈ Ẑỹ}.

This set is naturally fibred over:
{(ỹ, (α, γ)) | ỹ ∈ Ỹ , (α, γ) ∈ Ẑỹ}.

Moreover, the size of the fibre over (ỹ, (α, γ)) is precisely
∣∣∣Z̃~x,~y∣∣∣ where ~x ∈ X and ~y ∈ Y~x are any vectors such that

(α, γ) ∈ Z̃~x,~y. From this the claim about |Φ| follows immediately.
We, therefore, have that:

∣∣∣Aut(L/πν(4)−t+1L)
∣∣∣ = 4q3ν(2)−4t+4−(r−t−s)/2

{
q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

Combining terms gives the desired result.

The above lemmas cover the final few cases we needed to completely solve the problem of computing local
densities for unimodular lattices over 2-adic rings. By combining the results we get the following theorem:

Theorem 4.18. Consider a unimodular lattice L of rank at most 4 over a 2-adic ring R with no even unimodular
factors. Let π be a uniformizer of R and q = |R/πR|. Recall that L(2) = {x ∈ L | (x, x) ∈ 2R}. Denote by W the
quadratic module L(2)/πL(2) with the induced form Q̃(x) = 1

2 (x, x) (mod π). Then:

• Case n = 4. Write L =
(
aπt 1
1 cπr−t

)
⊕
(
πs 1
1 4bπ−s

)
with t < s < r− t, t+s is odd, and either r odd or r = ν(4).

Then Rad(W ) 6= W⊥. Moreover, [L : L(2)] = qν(2)−(s+t−1)/2 and the local density is:

βR(L,L) = 4q−3ν(2)+2t−2−(r−t−s)/2

{
q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

• Case n = 3. Write L =
(
πs 1
1 bπν(4)−s

)
⊕ (d) with ν(2) > s > 0 and s odd.

Then Rad(W ) 6= W⊥. Moreover, [L : L(2)] = qν(2)−(s−1)/2 and the local density is:

βR(L,L) = 4q(1−t)/2.
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• Case n = 2. Write L with matrix
(
aπt 1
1 cπr−t

)
with either r > t odd or r = ν(4).

Then Rad(W ) = W⊥ unless r − t ≤ ν(2) or ν(2)− t is even.

Moreover, [L : L(2)] =

q
⌈
ν(2)−t

2

⌉
r − t ≥ ν(2)

qν(2)−(r−1)/2 otherwise
and the local density is:

βR(L,L) =

{
4q(r−1)/2−ν(2) r − t ≤ ν(2)

2q−d(ν(2)−t)/2e ν(2) < r − t.

• Case n = 1. Then Rad(W ) = W⊥ unless ν(2) is even.

Moreover, [L : L(2)] = q

⌈
ν(2)

2

⌉
and the local density is:

βR(L,L) = 2.

� General Lattices - Jordan Decompositions

Computing local densities is equivalent to computing |Aut(L/πrL)| which can be done indirectly by computing
the probability that a randomly chosen element of GL(L/πrL) preserves the quadratic form on L. Once one is
working in the realm of probabilities, it is natural to use conditional probabilities that are easier to compute to
arrive at a solution. This is the approach we shall take.

We shall use the following notation.

Notation 4.19. Let R be a p-adic ring, with uniformizer π and |R/π| = q. Suppose L is a lattice over R.
By a Jordan decomposition I of L we mean a decomposition:

L = ⊕LIi ,

where the LIi are modular and ordered by valuations of their scale ideals. Two Jordan decompositions, I and J ,
are considered isomorphic if LIi ' LJi for all i. We will denote by JDL the set of all Jordan decompositions of L
up to isomorphism.

We fix r sufficiently large so that the isomorphism classes of all of the LJi are determined by their reductions
modulo πr.

We shall say a matrix A which represents the quadratic form on L is in the Jordan form I ∈ JDL (modulo
πr) if A has a block diagonal decomposition ⊕Ai, where the Ai represent modular lattices in ascending order and
Ai represents LIi for some choice of basis for each i.

Lemma 4.20. Let A be any matrix representation for L. Then the probability that for g ∈ GL(L/πrL) the matrix
gtAg is in Jordan form (modulo πr) is:

PJD,r = |GL(L/πrL)|−1

(∏
i

∣∣GL(LIi /π
rLIi )

∣∣) qw,
where w =

∑
i

(2r − i)ni
∑
j>i

nj.

Proof. The proof is an inductive exercise in book keeping. We first count the number of ways of finding a minimal
modular block. In order to pick a set of vectors which will span a minimally modular block one needs to select a
GL(LIi /π

rLIi ) combination of the vectors that were in the original minimally modular block. One can then give an
arbitrary contribution from the vectors which were complementary to the minimal modular block. This arbitrary
choice contributes a factor of qrni

∑
j>i nj .

We then must proceed inductively on the space which is orthogonally complementary. The degree of freedom
in picking an orthogonally complementary space (modulo πr) is precisely q(r−i)ni

∑
j>i nj .

Taking products of number of choices at each inductive steps gives us the result.

Definition 4.21. Let I ∈ JDL. Suppose that g ∈ GL(L/πrL) is chosen at random. Suppose gtAg is in Jordan
form (modulo πr). Denote the conditional probability that the Jordan form J of gtAg is equal to I as Jordan
decompositions (modulo πr) as given that gtAg is in Jordan form (modulo πr) as:

PI=J,r.
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Lemma 4.22. Let A be any matrix representation for L. Let I ∈ JDL. Fix a matrix AI representing the Jordan
form I. Define Peq,I,r to be the conditional probability that an element g ∈ GL(L/πrL), for which the matrix gtAg
is in Jordan form I (modulo πr), will have gtAg = AI mod πr. Then the conditional probability Peq,I,r can be
computed as:

Peq,I,r =
∏
i

∣∣Aut(LIi /π
rLIi )

∣∣∣∣GL(LIi /π
rLIi )

∣∣ .
Proof. The set of possible values of gtAg is acted upon by

∏
i GL(LIi /π

rLIi ) with the size of the stabilizer being∣∣∏
i Aut(LIi /L

I
i π

r)
∣∣. In particular, then the probability that we get any given representative is

∏
i
|Aut(LIi /L

I
iπ
r)|

|GL(LIi /π
rLIi )| .

Lemma 4.23. Let A be any matrix representation for L. Let I ∈ JDL. Fix a matrix AI representing the Jordan
form I. The absolute probability that an element g ∈ GL(L/πrL) gives gtAg = AI mod πr is:

PAut,L,r = PJD,rPI=J,rPeq,I,r.

Proof. This is a trivial statement in conditional probabilities.

Remark. Notice that PAut,L,r and PJD,r are independent of the choice of I while PI=J,r and Peq,I,r depend on
the choice.

Lemma 4.24. With all the notation as above, we have the formula:

PAut,L,r = PJD,r

( ∑
I∈JDL

P−1
eq,I,r

)−1

.

Proof. By observing that Peq,I,r 6= 0 for all I we may write:

PAut,L,rP
−1
eq,I,r = PJD,rPI=J,r.

By summing over I ∈ JD we obtain:

PAut,L,r

∑
I∈JD

P−1
eq,I,r = PJD,r

∑
I∈JD

PI=J,r.

Since
∑

I∈JD
PI=J,r = 1 we obtain the result.

Lemma 4.25. Suppose L is a lattice of rank ` then:

βR(L,L) = q`vπ(2)+r`(1−`)/2 |GL(L/πrL)|PAut,L,r.

Proof. This is immediate from Proposition 4.2 and the definition of the probability.

Combining the above lemmas we arrive at the following very general theorem.

Theorem 4.26. With the notation as above we have:

βR(L,L) = qw

( ∑
I∈JD

∏
i

βR(LIi , L
I
i )
−1

)−1

= qw̃

( ∑
I∈JD

∏
i

βR(L̃Ii , L̃
I
i )
−1

)−1

,

where L̃Ii is the unimodular rescaling of LIi and w, w̃ are given by:

w =
∑
i

ini(
∑
j>i

nj) and

w̃ = w +
∑
i

(ni(ni + 1)/2).

Proof. This is a direct calculation. The only tricky part is the book-keeping on the exponents of q.

Remark. In order to use this theorem to derive specific formulas for a given lattice one must understand the set
JDL. For a non-dyadic ring there is a unique Jordan decomposition. The problem is thus fully solved in this case.

For the dyadic case it is worth remembering that most of the factors involved in the formula of local density for
a unimodular lattice do not depend on the isomorphism class. Hence there are many terms which can be factored
out of the sum appearing in the formula above. Moreover, whenever there is dependence on the isomorphism class
through χ(Li(e)) it is typically symmetric and cancels out. Both of these phenomena can be seen in the structure
of the classical formulas over Z2, even though the classical proofs did not fully explain why this structure should
exist [CS88].
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5. Computational Issues

The preceding results give an explicit formula for the problem of computing the representation densities βp(L,L)
for an arbitrary lattice L. Given such formulas, a very natural question which arises is:

Question 1. Are these formulas actually computable?

More concretely the question one might pose is:

Question 2. Given a p-adic ring R and a matrix A representing some bilinear form, what problems arise when
trying to use the formulas of the previous section to compute the corresponding representation density?

An encouraging first comment is that the constant r, as in Proposition 4.2, is easily computed using the
modularity of the Jordan blocks together with Theorem 3.11. This tells us precisely how accurate an approximation
of p-adic numbers we must maintain in order to compute the exact value.

From an implementation point of view, the first hurdle one needs to overcome is:

Question 3. How can one compute the collection of all possible Jordan forms?

An easier question that one must be able to answer first is:

Question 4. How can one find any Jordan form?

This question is answerable and there exists an explicit algorithm:

1. Find matrix entry of minimal valuation.

2. Use index of this entry to determine a basis for a sublattice x or x, y.

3. Find the orthogonal complement of x or x, y.

4. Compute the matrix for the bilinear form on this complement.

5. Proceed inductively.

Before one can use this to answer Question 3, one should first consider:

Question 5. How can you reduce the Jordan blocks to canonical form (as in Theorem 3.11)?

One only needs to know the discriminant, Hasse invariant, and norm group. Finding the discriminant is an
explicit and easy computation. Finding the Hasse invariant requires that you diagonalize, but this may be done in
the field of fractions where it is easy, otherwise the problem is reduced to computing Hilbert symbols. Computing
Hilbert symbols is an explicit problem in local class field theory. Finally, the norm group can be computed easily.
Indeed, use the diagonal element of lowest valuation to arrange so that all other diagonal elements have valuation of
a different parity, the two diagonal elements of minimal valuation then determine the group. Having these invariants
an easy application of Theorem 3.11 lets one express the matrix in a standard form.

Continuing to leave aside Question 3, an encouraging observation is that we can easily answer the question:

Question 6. Given a Jordan decomposition how do we compute its contribution to representation density?

The answer is provided by the fact that the only information that we needed in order to apply Theorems 4.11
and 4.18 were invariants we computed when putting the Jordan form into its standard form.

Now finally back to Question 3. This problem is trivial when p 6= 2 as there is only one Jordan decomposition.
In the specific case of Z2 [Nik79, Prop. 1.8.2] gives us a complete description of the relations on the semi-group
of quadratic forms under direct sum. Consequently, in this case one can generate all Jordan decompositions by
iteratively applying these relations. For unramified extensions of Z2 relations of a similarly simple sort can be
derived; in this case the set of relations should be enumerable. For ramified extensions of Z2 the relations become
increasingly more numerous and complex as the ramification degree grows. It is not clear to me how best to describe
them other than by brute force search. The only bright side is that one can bound the size of the relations needed,
and they could be precomputed ‘once and for all’ for any given ring R.

6. Concluding Remarks

In this paper we attacked the problem of computing the local densities for the orthogonal group of an arbitrary
lattice over an arbitrary p-adic ring. In spite of the broad scope of the results, there are additional problems worthy
of attack:
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• One would like to expand the results to the more general setting of finding formulas for βp(L,M), especially
for p primes over 2.

• One would like to compute more explicitly the contribution of the structure of distinct Jordan decompositions
to βp(L,L). Specifically, one expects that for unramified extensions of Q2 the formula should simplify greatly
in much the way it does over Q2.

• One would like to have an effective way of describing the set of all possible Jordan decompositions for a given
lattice over a 2-adic ring. Alternatively, one would like at least to have an effective algorithm for enumerating
them.
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