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Abstract In this paper we study the integral structure of lattices over finite ex-
tensions of Zp which arise from restriction or transfer from a lattice over a finite
extension. We describe explicitly the structure of the resulting lattices. Special at-
tention is given to the case of lattices whose quadratic forms arise from Hermitian
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focus on the problem of computing the local densities.
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1 Introduction

Throughout this paper k shall be either a number field or one of its non-
archimedean completions and Ok shall be its ring of integers. By a Hermitian

form we mean a quadratic form of the shape:

qE,λ(x) = TrE/k(λxσ(x)),

where E is an étale k-algebra with involution σ and λ is a unit of Eσ, the subalgebra
of elements fixed by σ. By a Hermitian lattice we mean a fractional ideal Λ of
OE in E. This is a special case of what we shall call transfer, where a lattice on
one ring, becomes a lattice over a subring by taking the trace of the original form.

Such Hermitian lattices are natural to study, the quadratic forms have a natural
connection to special points on Shimura varieties (see [Fio12]). Understanding the
structure of lattices that arise by this process is a natural first step in many
computational problems, in particular that of computing local densities.
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The primary application we have in mind in the present work is for comput-
ing the arithmetic volumes of the orthogonal groups that arise from Hermitian
lattices. These lattices arise in the study of special points on orthogonal Shimura
varieties and these arithmetic volumes relate, by way of the Hirzebruch-Mumford-
proportionality principle and the Riemann-Roch theorem (see [Mum77,GHS08]),
to the dimensions of spaces of modular forms on the associated Shimura varieties.

Another important application is their use, by way of the Siegel mass formula,
as part of a stopping condition when enumerating the genus of a lattice. This has
important applications in the theory of algebraic automorphic forms on orthogo-
nal groups (see [Gro99] and [GV12]). Formulas for representation densities have
been worked out to cover many cases (see for example [Pal65,Wat76,Kit93,CS88,
Shi99,Kat99,SH00,GY00,Yan04,Cho12,Fio14]). In the present work we develop
formulas more tuned towards the input data of a Hermitian lattice rather than a
general abstract lattice. The sections of this paper are organized as follows:

(2) We introduce the general theory of lattices so far as it is needed in the sequel.
(3) We discuss specifically lattices over p-adic rings.
(4) We introduce local densities and formulas for computing them.
(5) We obtain results about the structure of lattices under transfer.
(6) We develop formulas for the representation densities of Hermitian lattices in

terms of the invariants of the fields involved.
(7) We discuss the concrete example of Q(µp).

The main results of this paper are contained in Sections 5 and 6. The major
new results of Section 5 are Theorems 31, 34, and 35 which give explicit infor-
mation about Jordan decompositions for lattices that arise through transfer over
p-adic rings. Prior to this work, most of the information about these lattices con-
cerned invariants defined after base change to the field of fractions, such as the
discriminant and Hasse invariant (see Theorems 27 - 30) and very little could be
said about the lattice structures in the dyadic case.

The main result of Section 6 is Theorem 40 which gives an explicit formula
for the local density of a Hermitian lattice in terms of natural invariants of the
rings. Prior to this work, explicitly computing the local densities could only be
done directly using general formulas expressed in terms of Jordan decompositions
(see Theorem 17).

The results of Section 6 make heavy use of the results of Section 5 as well as
the strategy for developing formulas for local densities as in Section 4.

2 General Notions of Lattices

In this section we introduce the general theory of lattices. Many good references
exist which treat this topic in a varying degree of generality. See for example [Kit93]
and [O’M00]. We shall eventually be most interested in the theory of lattices over
Ok, the maximal order in a number field k. Note that these are not always PIDs,
however, their localizations always are.

Definition 1 Let R be a Dedekind domain and K be its field of fractions. By a lattice

Λ over R we mean a projective R-module of finite rank, together with a symmetric

R-bilinear pairing:

bΛ : Λ× Λ→ K,
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which induces a duality HomR(Λ,K) ∼= Λ ⊗R K. A lattice is said to be integral

if bΛ (x, y) ∈ R. We will call the lattice even if bΛ (x, x) ∈ 2R and odd otherwise.

We shall call an integral lattice unimodular if the pairing induces an isomorphism

HomR(Λ,R) ∼= Λ, or more generally a-modular if the pairing induces an isomorphism

HomR(Λ,R) ∼= a−1Λ (for a a projective R-module of rank 1, that is, an invertible

fractional ideal of R). Notice that a-modular is equivalent to having HomR(Λ, a) ∼= Λ

by noting that:

HomR(Λ, a) ∼= a⊗R HomR(Λ,R) ∼= a⊗ a−1Λ ∼= Λ.

We will refer to a lattice as modular if there exists some a for which it is a-modular.

Note that not all lattices are modular.

Remark 2 By requiring HomR(Λ,K) ∼= Λ ⊗R K we are explicitly requiring that all

lattices be non-degenerate with respect to the bilinear form bΛ. If the pairing on the

‘lattice’ might not induce an isomorphism the ‘lattice’ shall be referred to as a module

or submodule.

Notation 3 Given a lattice Λ, by qΛ or simply q we shall always mean:

qΛ(x) = bΛ (x, x) .

To a lattice we may also associate another bilinear pairing:

BΛ(x, y) := qΛ(x+ y)− qΛ(x)− qΛ(y).

Note well that 2qΛ(x, x) = BΛ(x, x) and that qΛ(x) = bΛ(x, x) as these conventions

vary by author. Notice also that in characteristic 2 one may not recover bΛ from qΛ as

this would involve dividing by 2.

Remark 4 For lattices L⊕M shall always mean an orthogonal direct sum, so that:

bL⊕M (`1 ⊕m1, `2 ⊕m2) = bL(`1, `2) + bM (m1,m2).

For a lattice L and an element r ∈ R we shall denote by rL the lattice whose underlying

module is L but whose bilinear form is r times that of L, that is, brL = rbL.

This level of generality is too much for many of our purposes. Having the
following additional constraints gives major simplifications to the theory:

1. If Λ is free we may express bΛ (·, ·) by a matrix.
2. If R is a principal ideal domain, the theory of modules simplifies. In particular,

every lattice is free. We may often replace R by its (completed) localizations
to attain this.

3. The theory is simpler if 2 is not a zero divisor in R.

Though some of the results which follow are true without the above constraints,
for simplicity of presentation we will typically assume them. These assumptions
hold when we work over Z, Q, Zp for all p, Fp where p 6= 2, or the many finite ring
extensions of these. These assumptions may fail for Dedekind domains; however
as our study of these is done almost entirely with their localizations this will not
be an issue.
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Definition 5 Assume that Λ is free and let X = {x1, . . . , xn} be a basis for Λ. We

write:

A = AX = (bΛ (xi, xj))i,j

for the matrix corresponding to this lattice and choice of basis.

Definition 6 Given a lattice Λ we define the dual lattice to be:

Λ# = {x ∈ Λ⊗K | bΛ (x, y) ∈ R for all y ∈ Λ}

together with the induced pairing.

Definition 7 A submodule L ⊂ Λ is said to be isotropic if bΛ (·, ·) |L = 0. It is said

to be anisotropic if it has no non-zero isotropic submodules. A projective submodule

is said to be metabolic if it has an isotropic submodule of half its rank. A projective

submodule is said to be hyperbolic if it is generated by two isotropic submodules.

Definition 8 Lattices Λ have the following invariants:

• For Λ projective, the rank rΛ of Λ as an R module.

• For Λ free, the discriminant δΛ = det(AX) ∈ K/(R×)2 for a choice of basis X.

If Λ is not free we have at our disposal the discriminant D(q) of Λ ⊗K which is

an element of K/(K×)2, and the discriminant ideal which is the R ideal gen-

erated by det(AX) running over all maximal linearly independent subsets X of Λ.

Alternatively, for a projective module over a Dedekind domain, one may take the

discriminant ideal to be the product of the local discriminant ideals.

• Supposing Λ⊗K is isomorphic to the diagonal form (ai)i and denoting the Hilbert

symbol by (·, ·)K , the Hasse invariant is

H(Λ) = H(q) =
∏
i<j

(ai, aj)K ∈ H2(K, {±1}).

(See [Ser73, Ch. III] and [Ser79, Ch. XIV].)

• For each embedding R ↪→ R we have an associated signature (the dimension of

any maximal isotropic R-submodule of Λ⊗R R).

• The norm ideal NΛ is the R-ideal generated by {bΛ(x, x) | x ∈ Λ}.
• The scale ideal SΛ is the R-ideal generated by {bΛ (x, y) | x, y ∈ Λ}.

Note that NΛ ⊂ SΛ and 2SΛ ⊂ NΛ.

• The norm group nΛ is the group: {bΛ(x, x) | x ∈ Λ} + 2SΛ, it is an additive

subgroup of K.

Remark 9 The extent to which these invariants determine a lattice depends largely

on the setting. They are typically insufficient to characterize a lattice in the context in

which we are working.

3 Lattices over p-adic Rings

Here we enter into the improved setting of having R a (complete) local ring whose
maximal ideal is principal, generated by π. More specifically we intend to work
with a p-adic ring, by which we mean the maximal order of a p-adic field (a finite
extension of Qp). We shall denote by ν = νπ the π-adic valuation.

In this context we have the following important results to recall:
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Theorem 10 A quadratic module over a p-adic field K is entirely determined by its

rank, its discriminant and its Hasse invariant.

See [O’M00, Thm 63:20].

Theorem 11 (Existence of Jordan decompositions) Every lattice Λ over a p-

adic ring R can be expressed as:

Λ ' ⊕
i
Li,

where the Li are ai-modular, with the ai distinct. Such a decomposition is called a

Jordan decomposition. Note that such decompositions are not in general unique, but

see Theorem 12.

See [O’M00, 91C].
It should be emphasized before stating the following result that Jordan decom-

positions over 2-adic rings are not typically unique. For the special case of Z2, a
complete description of the relations between different Jordan decompositions can
be found in [Nik79]. We shall make some use of this in the sequel.

Theorem 12 (Uniqueness of Jordan decompositions) Let Λ =
r1
⊕
i=1

Li =
r2
⊕
j=1

Kj

be two Jordan decomposition of a lattice over a p-adic ring with Li being ai-modular

and Kj being bj-modular, ai1 |ai2 for i1 < i2, and bj1 |bj2 for j1 < j2. Then:

1. r1 = r2,

2. ai = bi,
3. rankLi = rankKi,
4. NLi = ai if and only if NKi = ai, and

5. if p 6= 2 then Li ' Ki.

See [O’M00, 91:9].

Theorem 13 For p 6= 2 and a p-adic ring R, the isomorphism classes of unimodular

lattices Λ over R are classified by their rank and discriminant.

See [O’M00, 92:1].

Theorem 14 For p = 2 and a p-adic ring R, the isomorphism classes of unimodular

lattices Λ over R are classified by their rank, discriminant, Hasse invariant and norm

groups.

See [O’M00, 93:16].

Remark 15 Over Z2 specifying the norm group for a unimodular lattice is equivalent

to specifying if the lattice is even or odd.

4 Local Densities

In this section we focus our attention on what are called interchangeably repre-
sentation densities, local densities or arithmetic volumes. Throughout this section
we shall continue to assume that R is a p-adic ring, with maximal ideal p. We shall
denote by π a uniformizer and q = |R/pR| the size of the residue field, which is



6 Andrew Fiori

finite by assumption. We shall fix an additive Haar measure on R, normalized so
that the volume of R is 1.

Local density gives a way of assigning volumes to the sets:

Isom(Λ1, Λ2) = {φ ∈ HomR(Λ1, Λ2) | bΛ2
(φ(x), φ(y)) = bΛ1

(x, y)},

of isometric embeddings from Λ1 to Λ2. Such sets are typically infinite, so simply
counting elements is insufficient.

There are many subtly different definitions whose values often differ only by
constants. We shall use the following definition:

Definition 16 Let L and M be lattices over a p-adic ring R, with bilinear forms bL
and bM . Consider the map FbL : HomR(M,L)→ Sym2(M∨) given by:

(FbL(φ))(x, y) = bL(φ(x), φ(y)).

Some references define the local density at R to be:

αR(bM , bL) = αR(M,L) =
1

2
lim

U→bM

∫
F−1
bL

(U)
dX∫

U
dT

.

Here dX =
∏
ij dxij and dT =

∏
i≤j dtij are the standard measures when viewing the

spaces as matrix spaces with respect to some chosen basis. The limit is taken over the

directed family of open subset U of Sym2(M∨) containing bM . By [Han05, Lemma 2.2]

this does not depend on the choice of integral basis.

We define the local density to be:

βR(M,L) = (q− rank(M)vπ(2))αR(M,L).

When R = Op one often denotes the local densities by βp rather than βR.

Computing local densities is in general highly technical and the resulting for-
mulas are quite complicated in the general case. The formulas we shall make use
of are from Kitaoka.

Theorem 17 (Kitaoka) Let L be a Zp-lattice. Let L = ⊕iLi, where the Li are non-

trivial pai -modular lattices with distinct ai. Let Li(e) be any maximal even dimensional

unimodular even sublattice such that we may write p−aiLi = Li(e)⊕Li(o). Define the

following values:

ni = rank(Li),

ni(e) = rank(Li(e)),

s = |{i | ni 6= 0}| ,

w =
∑
i

aini

(ni + 1)/2 +
∑
aj>ai

nj

 ,

χ(Li(e)) =

{
1 Li(e) is split

−1 otherwise,
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and set

χ(i) =



0 ni = 0

0 p 6= 2 and ni odd

0 p = 2 and one of ai − 1, ai + 1 blocks is odd

0 p = 2, Li odd, ni even, and D(Li) 6= (−1)ni/2 (mod 4)

χ(Li(e)) otherwise.

For p 6= 2 set t = 0 and u = 0, if p = 2 set:

t =
∑
i



0 Li = 0 and ai − 1, ai + 1 blocks are even

−1 Li = 0, one of ai − 1, ai + 1 blocks is odd

0 Li 6= 0 is even

0 Li is odd ai + 1 block is even

1 Li is odd ai + 1 block is odd,

and

u =
∑
i

{
ni Li is odd

0 otherwise.

Finally set:

Ei = 1 + χ(i)p−ni(e)/2 and P (m) =
m∏
j=1

(1− p−2j).

Then we have the following formula for the local density:

βp(L,L) = 2s−tpw−u
∏
i

P
(⌊

ni(e)
2

⌋)
E−1
i .

Proof This is only a slight modification of [Kit93, Thm 5.6.3], we have adjusted
the definition of E, introduced the value u and modified t accordingly. ut

Remark 18 The following corollaries are useful for explicitly computing local densities

in special cases. They eliminate the need to explicitly find all the invariants of the

Jordan blocks. The ideas used here shall be used extensively when we compute local

densities in Section 6.

The key observation that makes these corollaries possible is that the formula above

for local density only depends on Li(e) if its isomorphism class does not depend on

any choices. In particular the contribution that comes from the pai -modular block can-

not depend on the choice of Jordan decomposition, hence we only need to identify the

isomorphism class of Li(e) for one choice of Jordan decomposition.

Corollary 19 The local density of a unimodular lattice over Zp with p 6= 2 is deter-

mined entirely by its rank and discriminant mod p.

The local density of a unimodular lattice over Z2 is determined entirely by its rank,

discriminant mod 4, Hasse invariant and norm group.
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Proof Over Zp in the non-dyadic case this information determines the lattice, hence
the local density.

In the dyadic case, this follows by observing that we can compute χ as follows:
If n− n(e) = 2 and D = (−1)n(e)/2 (mod 4) then by [Nik79] the isomorphism

class of L(e) is not well defined, and in Theorem 17 we have χ = 0 in this case.
Otherwise, by noting that the Hasse invariant of the odd part is trivial, we can
easily compute the Hasse invariant of L(e). Then, by observing that ( 0 1

1 0 ) and
( 2 1
1 2 ) have different Hasse invariants we can distinguish the two cases using Hasse

invariants. We conclude that if χ is not zero as above then χ is given by:

χ =

{
(−1,−1)n(e)(n(e)−2)/8H n = n(e)

((−1)n(e)/2, (−1)n(e)/2D)(−1,−1)n(e)(n(e)−2)/8H otherwise.

ut

Corollary 20 Suppose p 6= 2 and Lp is a Zp-lattice with exactly 2 Jordan blocks which

are pj , pj+1 modular and of dimension nj , nj+1, respectively. Then the Local density

of Lp is determined entirely by the ranks of the blocks, and the discriminant D and

Hasse invariant H of Lp.

In particular the local density is:

4qj(nj+nj+1)(nj+nj+1+1)/2+nj+1(nj+1+1)/2
bnj/2c∏
i=1

(1− q−2i)

bnj+1/2c∏
i=1

(1− q−2i)ξ,

where:

ξ =


(1 + χ(j)qnj/2)−1(1 + χ(j + 1)qnj+1/2)−1 nj , nj+1 even

(1 + χ(j)qnj/2)−1 nj even and nj+1 odd

(1 + χ(j + 1)qnj+1/2)−1 nj odd and nj+1 even

1 otherwise.

One can compute χ(i) as:

χ(i) =


0 ni odd

(p,−1)
(i+1)(nj+nj+1)/2
p (p,D)i+1

p H both blocks even

(p,−1)
(i+1)(nj+nj+1−1)/2
p H otherwise.

Proof One only needs to check that the computations for χ(i) are accurate, oth-
erwise this is simply evaluating the Theorem 17 in this case. Checking χ is simply
a matter of computing the Hasse invariant for a diagonal form and its rescaling
by p. Then by observing the dependence on the discriminant of each block in the
various cases we may conclude the result. ut

Corollary 21 Suppose p = 2 and Lp is a Zp-lattice with exactly 2 Jordan blocks which

are pj , pj+1 modular and of dimension nj , nj+1, respectively. Then the Local density of

Lp is determined entirely by the ranks and parities of the blocks and the discriminant

and Hasse invariants of Lp. Note that a method for computing the local densities is

made explicit in the proof.
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Proof We shall denote by D and H the discriminant and Hasse invariant of Lp
and by Di and Hi the discriminant and Hasse invariants of the ith modular block.
Note that for a unimodular lattice over Z2 one can compute that χ = 0 when
n− n(e) = 2 and D = (−1)n(e)/2 (mod 4) otherwise χ is given by:

χ =

{
(−1,−1)n(e)(n(e)−2)/8H n = n(e)

((−1)n(e)/2, (−1)n(e)/2D)2(−1,−1)
n(e)(n(e)−2)/8
2 H otherwise.

This is based on the observation that in the first case the isomorphism class is
not well defined, and in the latter two cases the Hasse invariant of the odd part
is trivial, hence we can easily compute the Hasse invariant of L(e). Noting that
( 0 1
1 0 ) and ( 2 1

1 2 ) have different Hasse invariants allows us to distinguish them in
this way. We shall make implicit use of this in the following. Set:

w = j(nj + nj+1)(nj + nj + 1)/2 + nj+1(nj+1 + 1)/2.

There are 4 cases to consider depending on the parities of the blocks.

1. Both the pj and pj+1 blocks are odd.
By checking the cases as listed in [Nik79] one can confirm that in this case the
lattice Lp has at least 4 (and potentially more) Jordan decompositions.
Importantly, one can check that Kitaoka’s formula (Theorem 17) depends only
on the ranks of the Jordan blocks and not otherwise on the isomorphism class.
In particular the local density is:

2w+n+5

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

2. The pj block is odd and the pj+1 block is even.
Again by checking the cases as listed in [Nik79] one can confirm that in this
case Lp has 2 Jordan decompositions. One can check that Kitaoka’s formula
depends on the isomorphism class of the pj , but importantly the result of the
formula is independent of which Jordan decomposition we use.
Without loss of generality we may use the Jordan decomposition where the
pj+1 block is hyperbolic (which exists by [Nik79]). With this assumption the
pj+1 block has determinant (−1)nj+1/2 and Hasse invariant (−1,−1)`(`+2)/8.
We can thus determine both the determinant and Hasse invariant of the pj

block. The determinant is (−1)nj+1/2D and the Hasse invariant is:

(−1,−1)
nj+1(nj+1+2)/8+nj+1/2
2 (−1, D)

nj+1/2
2 .

Consequently, computations as in Corollary 19 allow us to conclude that if
nj − nj(e) = 2 and D = (−1)(nj(e)+nj+1)/2 (mod 4) then χ(j) = 0 and that
otherwise χ(j) is give by:

(2, D)
j(nj+nj+1−1)
2 (−1,−1)

(nj+1+nj(e))(nj+1+nj(e)+2)/8
2 (D,−1)

(nj+1+nj(e))/2
2 H.

The local density can then be explicitly computed as:

2w+nj+3(1 + χ(j)pnj(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).
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3. The pj block is even and the pj+1 block is odd.
This case is symmetric to the above case.
Without loss of generality we may use the Jordan decomposition where the
pj+1 block is hyperbolic. Thus this block has determinant (−1)` and Hasse
invariant (−1)`/2. We can thus determine both the determinant and Hasse
invariant of the pj+1 block. Consequently, computations as in Corollary 19
allow us to conclude that if nj+1 − nj+1(e) = 2 and D = (−1)(nj+1(e)+nj)/2

(mod 4) then χ(j + 1) = 0 and otherwise χ(j + 1) is:

(2, D)
(j+1)(nj+nj+1−1)
2 (−1,−1)

(nj+nj+1(e))(nj+nj+1(e)+2)/8
2 (D,−1)

(nj+nj+1(e))/2
2 H.

The local density can then be explicitly computed as:

2w+nj+1+3(1 + χ(j + 1)pnj+1(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

4. Both the pj and pj+1 blocks are even.
In this case there is a unique Jordan decomposition. We also note that the
discriminants of the unimodular blocks are (−1)nj/2 mod 4. As χ(i) = (2, Di)2,
the goal is to solve for (2, Di)2. We have that:

1 = (Dj , Dj+1)2, and Hi = (2, Di)2(−1,−1)
ni(ni+2)/8
2 .

It follows that:

H = HjHj+1(Dj , Dj+1)2(2, Dj)
j+1
2 (2, Dj+1)j2

= (−1,−1)
n(n+2)/8
2 (2, Dj)

j+1
2 (2, Dj+1)j2.

Thus we may solve:

χ(i) = (−1,−1)
n(n+2)/8
2 (2, D)i2H.

Therefore the local density can be explicitly computed as:

2w+2(1+χ(j)pnj(e)/2)−1(1+χ(j+1)pnj+1(e)/2)−1

nj(e)/2∏
i=1

(1−p−2i)

nj+1(e)/2∏
i=1

(1−p−2i).

ut

5 Transfer of Lattices

Suppose R1 ↪→ R2 is an inclusion of commutative rings which gives R2 the structure
of a finitely presented projective R1-module. The natural maps:

R2 −→ HomR1
(R2, R2)

∼−→ HomR1
(R2, R1)⊗R1

R2 −→ R1

in the category of R1-modules induce a map:

TrR2/R1
: R2 → R1.
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In this setting, given any quadratic module (LR2
, qR2

) over R2, one can construct
a quadratic module (LR1

, qR1
) over R1 by viewing LR2

as a module over R1 and
taking qR1

(x) = TrR2/R1
(qR2

(x)). We shall refer to this as transfer.
The purpose of this section is to study properties of this process over p-adic

rings. We are particularly interested in the transfer of Hermitian lattices, that is,
quadratic forms of the form:

qR2
(x) = 1

2 TrR3/R2
(λxσ(x)) = λxσ(x),

where x ∈ R3 a quadratic extension of R2, σ the nontrivial automorphism of
R3/R2, and λ is a unit in the fraction field of R2. The subsections of this section
are organized as follows:

(5.1) We give some basic results about trace forms for local fields.
(5.2) We compute invariants for the forms qR1

.
(5.3) We describe Jordan decompositions when p 6= 2 for both unary and binary

forms.
(5.4) We describe Jordan decompositions when p = 2 for both unary and binary

forms.

In the Section 6 we shall use these results to compute local densities for Hermitian
lattices over Q.

5.1 Trace Forms for Local Fields

The next few lemmas are important for various computations.

Lemma 22 (Euler) Let L = F (z) be a finite separable extension of F of degree m

with fz(x) ∈ OF [x] the minimal (monic) polynomial of z. We then have:

TrL/F

(
z`

f ′z(z)

)
=

{
1 ` = m− 1

0 0 ≤ ` < m− 1.

See [Ser79, III.6 Lemma 2].

Lemma 23 Let L/F be a totally ramified extension of local fields of degree m. Let

z = πL be a uniformizer of OL and fz(x) be the minimal (monic) polynomial of z.

Then fz is an Eisenstein polynomial and the collection 1, z, z2, . . . , zm−1 is an OF -

basis of OL and NL/F (z) is a uniformizer of F .

See [Ser79, Prop I.6.18].

Lemma 24 Let L/F be a totally ramified extension of local fields of degree m. Let

z = πL be a uniformizer of OL and fz(x) be the minimal (monic) polynomial of z.

Then for 0 ≤ ` ≤ m− 1 and k any integer, we have:

νF

(
TrL/F

(
zkm+`

f ′z(z)

))
≥ k.

Moreover, this is an equality if ` = m− 1.
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Proof As πF = NL/F (z) is a uniformizer of F we write zm = uπF . We see that:

TrL/F

(
zkm+`

f ′z(z)

)
= πkF TrL/F

(
ukz`

f ′z(z)

)
.

As ukz` ∈ OL write:

ukz` =
m−1∑
i=0

aiz
i,

with ai ∈ OF . Then:

TrL/F

(
ukz`

f ′z(z)

)
= am−1 ∈ OF .

The result follows immediately.

To show we have an equality if ` = m− 1 write:

uk =
m−1∑
i=0

aiz
i.

Then we compute that:

TrL/F

(
ukz`

f ′z(z)

)
=
m−1∑
i=0

ai TrL/F

(
zm−1+i

f ′z(z)

)
= a0 (mod πF ).

As vL(u) = 0 it follows that vF (a0) = 0, which concludes the result. ut

Example 25 We have the following special cases of the above. Write the minimal

monic polynomial fz of z as

fz(X) =
m∑
i=0

aiX
i.

Then:

TrL/F

(
z`

f ′z(z)

)
=


−am−1 ` = m

a2m−1 − am−2 ` = m+ 1

1/a0 ` = −1

a1/a
2
0 ` = −2.

The results for other powers can also be computed directly from the coefficients.

The following Lemma is immediate.

Lemma 26 Transfer commutes with orthogonal direct sums.
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5.2 Invariants of qR1

The most basic of questions is to understand the standard invariants of the
quadratic modules which result from transfer.

Theorem 27 (Discriminants) Let R2/R1 be an extension of p-adic rings or orders

in number fields. Suppose L is an R2-lattice (and hence also an R1-lattice) which is

free over R2 with quadratic form qR2
. Suppose that R2 is free over R1. Consider the

form qR1
(y) = TrR2/R1

(qR2
(y)) as a quadratic form on L viewed as an R1-lattice.

Then:

δqR1
= NR2/R1

(δqR2
)δnR2/R1

,

where δR2/R1
is the usual discriminant relative to the trace form.

Proof If qR1
is diagonalizable then by multiplicitivity of determinants and norms

we may reduce the problem to studying the unary case. In this setting we have the
usual argument (see [Fio12, Lemma 3.1]). The argument works integrally. Note
that in the argument cited one can use {z`}, any basis for the ring of integers, and
this basis need not be a power basis {z`}.

More generally we need to work with lattices which may not be diagonalizable.
Consider L′ ⊂ L a free diagonalizable lattice in the same quadratic module. There
exists a basis for L and a matrix M = diag(a1, . . . , an)U , where ai ∈ R×2 and U

is an upper triangular unipotent matrix with respect to which L′ = ML. The
discriminant of L′ differs from that of L by

∏n
i a

2
i .

Fix a basis for R2 over R1. For x ∈ R2 let (x) denote the matrix for x acting
on R2 as an R1-module in this basis.

Passing to R1 the matrix which realizes L′ as a submodule can be taken to
have a block decomposition M ′ = diag((a1), . . . , (an))U ′, where U ′ is the matrix
whose blocks are (Uij). The determinant of (ai) = NR2/R1

(ai), and hence the
determinant of this change of basis becomes the norm of the original change of
basis. We thus relate δL,qR1

, δL,qR2
, δL′,qR2

and δL′,qR1
by

δL,qR1
= NR2/R1

(∏
i

ai

)
δL′,qR1

= NR2/R1

(∏
i

ai

)
NR2/R1

(
δL′,qR2

)
δnR2/R1

= NR2/R1

(
δL,qR2

)
δnR2/R1

.

The formula thus holds for L. ut

Theorem 28 (Hasse Invariants) Let R2/R1 be an extension of p-adic rings. Let L

be an R2-lattice of rank n with quadratic form qR2
. Denote by

QR2/R1,λ(x) = TrR2/R1
(λx2) and by d = NR2/R1

(D(qR2
)).

We will consider the form:

qR1
= TrR2/R1

(qR2
).

Continue to denote (·, ·)R1
the Hilbert symbol. We have the following results:
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1. The form qR1
has Hasse invariant:

HR1
(qR1

) = HR1
(QR2/R1,1)n+1HR1

(QR2/R1,D(qR2 )
)(δR2/R1

, d)n+1
R1

HR2
(qR2

).

We view these all as being in the same cohomology group H2(K1, {±1}) by iden-

tifying the different groups with {±1} or equivalently via corestriction, which is

injective for local fields.

2. If p 6= 2 and the extension R2/R1 is unramified, then:

HR1
(qR1

) = HR2
(qR2

)(πR1
, (−1)n(n−1)/2δR2/R1

d)
vR2 (D(qR2 ))

R1
.

3. Consider the case p 6= 2, u ∈ R×1 and R2/R1 is totally ramified. Write λ as

λ =
πkR2

uf ′(πR2
)π`R2

,

where f is the minimal polynomial of πR2
. The form QR2/R1,λ has Hasse invariant:

HR1
(QR2/R1,λ) = (πR1

, u)
n(n−`)
R1

(πR1
,−1)

k(n2(n−1)/2+`2(1−n))−`(n−`)(n−`−1)/2
R1

.

4. Suppose p = 2 and the extension is Galois. The form Q(x) = TrR2/R1
(x2) has

Hasse invariant:

HR1
(Q) =



(−1,−1)(n
2−1)/8 n = 1 (mod 2)

(δR2/R1
, (−1)(n+2)/4)R1

n = 2 (mod 4)

1 n = 0 (mod 4) and − 1 ∈ R2
2

(−1,−1)R1 (2, δR2/R1
)R1

n = 4 (mod 8),−1 ∈ NR2/R1
(R2)

−(−1,−1)R1
(2, δR2/R1

)R1
n = 4 (mod 8),−1 /∈ NR2/R1

(R2)

(2, δR2/R1
)R1

otherwise.

The first and fourth statements are [Epk89, Lemma 1 and Theorem 1], respectively;
the second and third are [Fio12, Lemma 4.1 and 4.3] , respectively.

Remark 29 The above theorem fails to provide a complete description of how to com-

pute Hasse invariants for certain dyadic fields. This is remedied for binary forms of

the following special type.

Theorem 30 (Invariants for Hermitian Lattices) Suppose R3 is a p-adic ring

with an involution σ. Let z ∈ R2 = Rσ3 be such that
√
z generates R3[ 1p ] as a R1[ 1p ]-

algebra (note that by [Fio12, Prop. 3.5] such a z exists). View R3 as a binary R2-lattice

with quadratic form:

qR2
(x+ y

√
z) = λ((x+ y

√
z)σ(x+ y

√
z)) = λx2 − zλy2

so that D(qR2
) = −z and H(qR2

) = (λ, z). Let f be the minimal monic polynomial for

z over R1 and m = [R2 : R1]. Then:

H(qR1
) = CorR2/R1

((z,−λf ′z(z))R2
) · (NR2/R1

(z),−1)m−1
R1

· (−1,−1)
m(m−1)/2
R1

.

See [Fio12, Theorem 3.8].
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Theorem 31 (Modularity for Unramified Transfer) Suppose that R2/R1 is

an unramified extension of p-adic rings and that L is a πr-modular R2-lattice with

quadratic form qR2
. Then L is also πr-modular as an R1-lattice. Moreover, the valu-

ation of the norm ideal NL and scale ideal SL are unchanged. In particular, Jordan

decompositions are taken to Jordan decompositions.

Proof It is clear that we have:

NL/R1
= TrR2/R1

(NL/R2
) and SL/R1

= TrR2/R1
(SL/R2

).

Indeed, picking an element x ∈ L, where ν(qR2
(x)) is minimal write qR2

(x) = uπt

with π a uniformizer of R1 and u a unit. Then qR1
(ax) = πt TrR2/R1

(ua2). For

p 6= 2 the unimodularity TrR2/R1
(ua2) implies that there exists a ∈ R2 for which

this is a unit. For p = 2 notice that a 7→ TrR2/R1
(ua2) is surjective on the residue

field. The claim for NL/R1
follows immediately, the proof for SL/R1

is similar.

The question of πr modularity now follows from the observation that L is πr-
modular if and only if SL = (πr) and SL# = (π−r). ut

With the above result in hand, we shall for the time being restrict to the case
of totally ramified extensions.

5.3 Ramified Transfer Over Non-Dyadic p-adic Rings

The case of p 6= 2 is simpler for both unary and Hermitian forms. We thus present
the results for this case separately. The important feature we will show is that
in both the unary and binary cases we know that there are at most two Jordan
blocks and that their modularity differs by a power of πR1

. We may thus completely
recover the invariants of the blocks as in Corollary 20.

Let R2/R1 be a totally ramified extension of p-adic rings of degree m. Let πR2

be a uniformizer of R2 and set πR1
= NR2/R1

(πR2
) to be a uniformizer of R1.

Let f(X) = fπR2
(X) be the minimal monic polynomial of πR2

over R1. Suppose

u1 ∈ R×1 , u2 ∈ R×2 , v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z, set u = u1u2 and set:

λ =
πkR1

u1u2v2π`R2
f ′(πR2

)
.

We note that if the residue characteristic is not 2, then for any given λ in the
fraction field of R2 there exists (non-unique) corresponding values for u1, v, `, k with
u2 = 1. We shall thus assume in this section that the constant u2, as introduced
above, is 1.

Now denote by qR2
(x) the R2-quadratic form on R2 given by λx2, and by qR1

(x)
the R1-quadratic form on R2 given by qR1

(x) = TrR2/R1
(λx2). Consider:

M1 = span{v, . . . , vπ`−1
R2
} and M2 = span{uvπ`R2

, . . . , uvπm−1
R2
}

as quadratic submodules of R2. These submodules will play important roles in the
construction of Jordan decompositions.
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Theorem 32 (Non-Dyadic Ramified Transfer for Unary Forms) With all the

notation as above the orthogonal decomposition R2 = M1 ⊕M2 is a Jordan decom-

position with M1 and M2 being, respectively, πk−1
R1

and πkR1
modular. Moreover, the

discriminants of 1

πk−1
R1

qR1
|M1

and 1
πkR1

qR1
|M2

are, respectively:

D

(
1

πk−1
R1

qR1
|M1

)
= (−1)`(`+1)/2−m`u−` and

D

(
1

πkR1

qR1
|M2

)
= (−1)(m−`)(m−`−1)/2um−`.

See [Fio12, Lemma 4.3].

In addition to the above notation, suppose that R3/R2 is a quadratic extension
with involution σ. Fix w a non-square element of R×1 . Writing x = x1 +x2

√
δR3/R2

consider the quadratic form on R3 given by:

qR3/R1
(x) = 1

2 TrR3/R1
(λxσ(x)) ' TrR2/R1

(λx21)−TrR2/R1
(λδR3/R2

x22).

Then set λ′ = λδR3/R2
, k′ = k, u′2 = 1 and choose u′1, v

′, `′ so that

λ′ =
πkR1

u′v′2π`
′
R2
f ′(πR2

)
.

Let q′R1
,M ′i be defined similarly to qR1

,Mi using λ′ instead of λ so that

qR3/R1
(x) = qR1

(x1)− q′R1
(x2).

Now define Ni = Mi ⊕−M ′i and Ñ1 = 1

πk−1
R1

N1 and Ñ2 = 1
πkR1

N2 their unimodular

rescalings.

Theorem 33 (Non-Dyadic Ramified Transfer for Hermitian Forms) With

all the notation as above the orthogonal decomposition R3 = N1 ⊕N2 is a Jordan de-

composition for R3 with the form qR3/R1
. The sublattices N1 and N2 are, respectively,

πk−1
R1

and πkR1
-modular. Moreover:

• If δE/R2
= w then D(Ñ1) = (−1)−`w−` and D(Ñ2) = (−1)`−mw`−m.

• If δE/R2
= πR2

then D(Ñ1) = (−1)m+1u and D(Ñ2) = −u.

• If δE/R2
= wπR2

then D(Ñ1) = (−1)m−1uw1−` and D(Ñ2) = −uw`−m+1.

• If δE/R2
= 1, then D(Ñ1) = (−1)−` and D(Ñ2) = (−1)`−m.

See [Fio12, Lemma 4.4].
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5.4 Ramified Transfer Over Dyadic p-adic Rings

The case of p = 2 is more complex for a variety of reasons, the failure of diago-
nalizability being the most prominent. In this section we obtain results on Jordan
decompositions similar to those of the previous section keeping track of the addi-
tional information about norm ideals. In order to account for non-diagonalizability,
we must consider both unary and binary lattices separately.

We begin exactly as in the non-dyadic case. Let R2/R1 be a totally ramified
extension of p-adic rings of degree m. Let πR2

be a uniformizer of R2 and set
πR1

= NR2/R1
(πR2

) to be a uniformizer of R1. Let f(X) = fπR2
(X) be the minimal

monic polynomial of πR2
over R1. Suppose u1 ∈ R×1 , u2 ∈ R×2 , v ∈ R×2 , 0 ≤ ` ≤ m,

k ∈ Z, set u = u1u2 and set:

λ =
πkR1

u1u2v2π`R2
f ′(πR2

)
.

Now denote by qR2
(x) the R2-quadratic form on R2 given by λx2, and by qR1

(x)
the R1-quadratic form on R2 given by qR1

(x) = TrR2/R1
(λx2). Consider:

M1 = span{v, . . . , vπ`−1
R2
} and M2 = span{uvπ`R2

, . . . , uvπm−1
R2
}

as quadratic submodules of R2. Note, one key difference between the dyadic and
non-dyadic cases is that we may no longer make the assumption that u2 = 1. This
is relevant in the following theorems.

Theorem 34 (Dyadic Ramified Transfer for Unary Forms) With all the nota-

tion as above the orthogonal decomposition R2 = M1 ⊕M2 is a Jordan decomposition

with M1 and M2 being, respectively, πk−1
R1

and πkR1
-modular. They differ in modularity

by a multiple of πR1
, hence their discriminants may depend on the choice of Jordan

decomposition. Set:

M̃1 = 1

πk−1
R1

M1 and M̃2 = 1
πkR1

M2.

We can in general only determine if N
M̃i

is R1. We have the following cases:

• N
M̃1
⊂ (πR1

) if ` is even and u2 ∼=
πR1
πmR2

(mod R2
2π
`
R2

). Otherwise N
M̃1

= R1.

• N
M̃2
⊂ (πR1

) if m− ` is even and u2 ∼= 1 (mod R2πm−`R2
). Otherwise N

M̃2
= R1.

Proof One easily checks by Lemma 22 that M1 ⊥M2.

Next we consider the matrix for M1, it is of the form (aij)i,j , where the aij
satisfy:

1. ai1j1 = ai2j2 whenever i1 + j1 = i2 + j2.
2. vR1

(ai,`−i) = k − 1.
3. vR1

(ai,j) > k − 1 whenever i+ j > `.

4. If ` is even and u2 ∼=
πmR2
πR1

(mod R2
2π
`
R2

), then vR1
(aii) > k−1 for all i. Otherwise

there exists i with ν(aii) = k − 1.
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The first statement is immediate, the second and third follow from Lemma 24.
The last statement is seen as follows. Firstly, the statement depends only on the
square class of u2. This is true even though modifying u2 changes the basis as
the conclusion about the norm groups we are making is independent of choice of
Jordan decomposition (see Theorem 12). We may thus choose to write:

u2 = 1 + c1πR2
+ c3π

3
R2

+ · · · (mod π`R2
)

with ci ∈ R1. Now by taking x = π
(`−i)/2
R2

and setting TrR2/R1
(λx2) = 0 (mod πkR1

)
we can solve for ci mod πR1

in terms of cj with j < i (the equations involve the
coefficients of f but these are constant). Explicitly we are solving:

ci = πR1
(TrR2/R1

(π−1−i) +
∑
j<i

cj TrR2/R1
(πj−i−1)) (mod πR1

).

Lemma 24 tells us that the right hand side makes sense. As this is solvable we
conclude that up to squares there is a unique value of u2 modulo π`R2

which
makes all values of the quadratic form be contained in πR1

R1. Observing that
u2 = πR2

/πmR1
does this allows us to conclude the result.

We now consider the matrix for M2, it is of the form (bij)i,j , where the bij
satisfy:

1. bi1j1 = bi2j2 whenever i1 + j1 = i2 + j2.
2. vR1

(bi,m−`−i) = k.
3. vR1

(bi,j) > k whenever i+ j > m− `.
4. If m − ` is even and u2 ∼=

πmR2
πR1

(mod R2πm−`R2
), then vR1

(bii) > k for all i.

Otherwise there exists i with vR1
(bii) = k.

The arguments are identical to those for M1 except that 1 is the necessary con-
gruence. ut

Another difference in the dyadic case is the need to consider binary forms, in
particular those that do not decompose as direct sums of unary forms. Taking λ

and all the associated constants as above we consider L over R2 of the form:

λ

(
u3π

a 1

1 u4π
a+b

)
=

πkR1

u1u2v2

 u3

f ′(πR2 )π
`−a
R2

1
f ′(πR2 )π

`
R2

1
f ′(πR2 )π

`
R2

u4

f ′(πR2 )π
`−a−b
R2


with a > 0 and b ≥ 0.

We use the basis:

{v, . . . vπ`−1
R2
}e1 ∪ {vuπ`R2

, . . . , vuπm−1
R2
}e1,

{v, . . . vπ`−1
R2
}e2 ∪ {vuπ`R2

, . . . , vuπm−1
R2
}e2,

where e1, e2 denote respectively the first and second coordinates of L.
Define the following quadratic submodules with the given basis:

M1 = {v, . . . vπ`−1
R2
}e1, M ′1 = {v, . . . , vπ`−1

R2
}e2,

M2 = {vuπ`R2
, . . . , vuπm−1

R2
}e1, M ′2 = {vuπ`R2

, . . . , vuπm−1
R2
}e1.

Also define N1 = M1 + M ′1 and N2 = M2 + M ′2. Note these are not orthogonal
decompositions. We are considering the span of both in the ambient space. Note
also that N1 and N2 need not be orthogonal complements.
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Theorem 35 (Dyadic Ramified Transfer for Binary Forms) With all the nota-

tion as above. The lattice R1 with qR1
has 2 Jordan blocks, Ñ1 and Ñ2 of modularities

πk−1
R1

and πkR1
, respectively. They differ in modularity by a multiple of πR1

. We can

only in general determine if the norm ideals are R1.

• N
Ñ1
⊂ (πR1

) if and only if max(` − a, 0) and max(` − a − b, 0) are even, and

u2u3 ∼= πR1
/πmR2

(mod π`−aR2
) and u2u4 ∼= πR1

/πmR2
(mod R2

1π
`−a−b
R2

)
• N

Ñ2
⊂ (πR1

) if and only if max(m− `− a, 0) and max(m− `− a− b, 0) are even,

and u2u3 ∼= 1 (mod πm−`−aR2
) and u2u4 ∼= 1 (mod R2

1π
m−`−a−b
R2

).

Note that Ñ1 and Ñ2 may or may not be simultaneously N1 and N2, see Remark 36.

Proof Viewing the underlying space under the basis M1,M
′
1,M2,M

′
2 as above the

matrix for qR1
is of the form: 

A Bt Dt 0
B C 0 Et

D 0 F Gt

0 E G H

 .

The blocks (that is the submatrices A, . . . ,H) have the following properties:

1. A,B,C are ` by ` matrices and, F,G,H are m− ` by m− ` matrices.
2. For all the blocks we have ∗i1j1 = ∗i2j2 whenever i1+j1 = i2+j2. In particular,

the square blocks are symmetric.
3. ν(∗ij) ≥ k − 1 for all blocks and all i, j. Furthermore,

ν(Aij) > k − 1 for i+ j > `− a,
ν(Bij) > k − 1 for i+ j > `,

ν(Bij) = k − 1 for i+ j = `,

ν(Cij) > k − 1 for i+ j > `− a− b,
ν(Dij), ν(Eij) > k − 1 for all i, j,

ν(Fij) > k for i+ j > m− `− a,
ν(Gij) > k for i+ j > m− `,
ν(Gij) = k for i+ j = m− `, and

ν(Hij) > k for i+ j > m− `− a− b.

4. The discriminant of 1

πk−1
R1

(
A Bt

B C

)
and the discriminant of 1

πk−1
R1

(
F Gt

G H

)
are units

mod πR1
.

5. There are changes of basis which realize both N1 and N2 as Jordan blocks
(though not simultaneously).
Hence the questions of whether the norm ideals of the rescaled Jordan blocks
are contained in R1 are determined by 1

πk−1
R1

(
A Bt

B C

)
and 1

πkR1

(
F Gt

G H

)
.

6. The lattice N1 is odd unless max(`− a, 0) and max(`− a− b, 0) are even, and
u2u3 ∼= πR1

/πmR2
(mod π`−a) and u2u4 ∼= πR1

/πmR2
(mod R2

1π
`−a−b)

7. The lattice N2 is odd unless max(m − ` − a, 0) and max(m − ` − a − b, 0) are
even, and u2u3 ∼= 1 (mod πm−`−a) and u2u4 ∼= 1 (mod R2

1π
m−`−a−b).
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Points (1) and (2) are direct checks. Point (3) uses Lemma 24. Point (4) is el-
ementary yet tedious to check. First observe that since modulo πR1

the matrix
1

πk−1
R1

(
A Bt

B C

)
is of the form: ( ∗ ∗ u

∗ X 0
u 0 0

)
,

where X is a 2`−2 by 2`−2 block, it has determinant −u2 det(X). We may iterate
this procedure on X until X is of the form:(

Ã B̃t

B̃ C̃

)
with Ã, B̃, C̃ being `−a−b by `−a−b blocks. We may iterate until X has additional
non-zero entries on the bottom row and rightmost column. Now use the fact that:

det
(
Ã B̃t

B̃ C̃

)
= det(C̃) det(Ã− B̃tC̃−1B̃),

combined with the observation that:

Ã− (B̃tC̃−1B̃)ij ∈

{
πR1

R1 i+ j > `− a− b
R∗1 i+ j = `− a− b

to conclude the result. We may perform an analogous argument for
(
F Gt

G H

)
.

For point (5) notice that the change of bases needed are, respectively:(
Id −

(
A Bt

B C

)−1
(
Dt 0
0 Et

)
0 Id

)
and

(
Id 0

−
(
F Gt

G H

)−1 (D 0
0 E

)
Id

)
.

The matrices
(
D 0
0 E

) (
A Bt

B C

)−1
and

(
D 0
0 E

) (
F Gt

G H

)−1
are integral by points (3) and

(4). One sees that orthogonal complements of N2 and N1 are preserved, respec-
tively, modulo πk−1

R1
and πkR1

. Hence they are modular and we indeed have a Jordan
decomposition.

The arguments for (6) and (7) are analogous to that of the previous lemma.
Indeed, one has norm ideal R1 if and only if the diagonal contains a unit. Hence
the problem reduces to considering the blocks on the diagonal, and we are reduced
to the situation of the previous lemma, (except that we have now two different
subblocks to check for each Jordan decomposition). ut

Remark 36 Note that though N1 and N2 are Jordan blocks for some Jordan decom-

positions, it is not necessarily true that the space for qR1
is isomorphic to N1 ⊕N2 as

N1 and N2 may not be Jordan blocks in the same decomposition. In the above theorem

one can take either Ñ1 = N1 or Ñ2 = N2, though not necessarily both at the same

time.

We now move to the special case of forms which arise from Hermitian forms.
We quickly review the possible quadratic extensions R3/R2 of a 2-adic ring. On
the level of their fields of fractions they are of the form K(

√
z). We therefore look

at the various cases for z before describing the resulting lattices in each case.
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• z = aπR2
for a ∈ R×2 .

Then the extension is ramified, has uniformizer
√
aπR2

, the discriminant is
δR3/R2

= 4aπR2
, and the ring of integers has integral basis:

1,
√
aπR2

.

In this basis the Hermitian form qR2
= 1

2 TrR3/R2
(λxσ(x)) has matrix:

λ

(
1 0
0 −aπR2

)
.

In this case k =
⌈
vR2 (2λf

′(πR2 ))+1
2m

⌉
and ` = −(vR2

(λf ′(πR2
))−mk).

• z = 1 + aπ2r+1
R2

for 0 ≤ r < vπR2
(2) and a ∈ R×.

Then the extension is ramified, has uniformizer
1+

√
1+aπ2r+1

R2

πrR2

, the discriminant

is δR3/R2
= 4

π2r
R2

(1 + aπ2r+1
R2

), and the ring of integers has integral basis:

1,
1 +

√
1 + aπ2r+1

R2

πrR2

.

In this basis the Hermitian form qR2
= 1

2 TrR2(R3/R2
(λxσ(x)) has matrix:

λ 1
πrR2

(
πrR2

1
1 −aπr+1

R2

)
.

In this case k =
⌈
vR2 (λf

′(πR2 ))−r
m

⌉
and ` = −(vR2

(λf ′(πR2
))− r −mk).

• z = 1 + bπ2r for r = vπR2
(2) and x2 + 2

πrR2

x− b irreducible mod πR2
.

Then the extension is unramified, has uniformizer πR2
, the discriminant is

δR3/R2
= (1 + bπ2r), and the ring of integers has integral basis

1,
1 +

√
1 + bπ2rR2

πrR2

.

In this basis the Hermitian form qR2
= 1

2 TrR3/R2
(λxσ(x)) has matrix:

λ 1
πrR2

(
πrR2

1
1 −bπrR2

)
.

In this case k =
⌈
vR2 (λf

′(πR2 ))−r
m

⌉
and ` = −(vR2

(λf ′(πR2
))− r −mk).

Corollary 37 (Dyadic Ramified Transfer for Hermitian Lattices) Let R3 be

the maximal order of R2[12 ](
√
z), R2 and R1 being as above. Let

λ =
πkR1

u1u2v2f ′(πR2
)π`R2
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with u1 ∈ R×1 , u2, v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z and where f(X) is the minimal monic

polynomial of πR2
. Consider the Hermitian forms

qR2
(x) = 1

2 TrR3/R2
(λxσ(x)) and qR1

(x) = TrR2/R1
(qR2

(x)).

The form qR1
has two Jordan blocks Ñ1 and Ñ2, they are πk−1

R1
and πkR2

-modular,

respectively. Moreover, we have:

• If z = aπR2
then the blocks are of dimension 2`− 1 and 2(m− `) + 1, respectively.

Both blocks have N = R1.

• If z = (1 + aπ2r+1
R2

) then the blocks are of dimension 2` and 2(m− `), respectively.

The block Ñ1 has NÑ1
= R1 if and only if r < ` whereas Ñ2 has NÑ2

= R1 if and

only if r < m− `.
• If z = (1 + bπ2r) then the blocks are of dimension 2` and 2(m − `), respectively.

Both blocks always satisfy N ⊂ (πR1
).

Proof The result is immediate by the proceeding discussion and Theorem 35. ut

Remark 38 As in Theorem 35 we do not give an explicit Jordan decomposition, we

only prove one exists with the given properties. The blocks Ñ1 and Ñ2 are again both

Jordan blocks in some decomposition, but not necessarily in the same decomposition.

6 Computing Local Densities For Hermitian Forms over Q

We now have all the tools in hand to carry out the task of computing the local
densities for Hermitian lattices over Q. This is what we shall do in this section.

The idea is as follows: given the ring of integers O of some étale algebra E over
Q, we wish to understand the local densities for the form

q(x) = 1
2 TrE/Q(λxσ(x)),

where λ ∈ E×. For each prime p of Q we may write Ep = ⊕p|pEp, where the sum
is over maximal ideals p for the maximal order of Eσ. The first step is thus to
understand the Jordan decompositions of the forms

qp(x) = 1
2 TrEp/Qp(λpxσp(x)).

We may then combine these to understand the Jordan decompositions of the or-
thogonal direct sum qp = ⊕pqp with sufficient precision to compute the local
density. We remind the reader of the ideas in the proof of Corollary 21. One of
the keys of computing local densities is that whenever the invariants of a Jordan
block are needed, they do not depend on the choice of Jordan decomposition. As
such, we can allow ourselves to compute the invariants of a Jordan block for any
representative Jordan decomposition. In the following we will be computing what
we call valid invariants for each block. These represent an invariant that occurs
for some choice of Jordan decomposition, not necessarily all choices.
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6.1 Explicit Computations of Invariants For Jordan Blocks

Fix p|p a maximal ideal dividing p in the maximal order of Eσ. Set R3 be the
maximal order of Ep, R2 the maximal order of Eσp and R1 = Zp. Let ep and fp be,
respectively, the ramification and inertial degrees of R2 over R1. Let np = 2mp =
[R3 : R1]. We shall denote by DRi/Rj the different ideal of Ri over Rj . Now set:

δp = (−1)[R2:R1]NR2/R1
(1
4λ

2D2
R2/R1

δR3/R2
).

This is the discriminant of the quadratic form q (see Theorem 27). Next, set:

Hp = CorR2/R1
((z,−λf ′z(z))R2

)(NR2/R1
(z),−1)

mp−1
R1

(−1,−1)
mp(mp−1)/2
R1

,

where
√
z primitively generates the fraction field of R3 over that of R1. This is the

Hasse invariant (see Theorem 30).

Set kp =
⌈
vR1 (δp)
np

⌉
. The kp and kp− 1-modular blocks are those which may be

non-trivial. Set:

np,i =


np − vR1

(δp) (mod np)∗ i = kp − 1

vR1
(δp) (mod np)∗ i = kp

0 otherwise.

These are the dimensions of the kp and kp−1-modular blocks. The value of kp and
the dimensions are clear by considering the discriminant and the fact that there
are at most two non-trivial Jordan blocks. Note that for the i = kp case use np as
the representative for 0, for the i = kp − 1 case use 0 (so that if there is only one
non-trivial block it is the kp-modular block).

Set `p = vR2
(λ) + vR2

(DR2/R1
) + vR2

(δR3/R2
)/2 (mod ep) (a representative

between 0 and ep). Then define:

χp,i(o) =


0 p = 2, i = kp − 1, kp and vR2

(δR3/R2
) is odd

0 p = 2, i = kp − 1 and `p < vR2
(δR3/R2

)/2

0 p = 2, i = kp and ep − `p < vR2
(δR3/R2

)/2

1 otherwise.

This value is 1 if Ni ⊂ 2Si, and 0 otherwise. This follows immediately from the
criterion for evenness of Corollary 37.

Set np,i(e) = 2
⌊
np,i−1+χp,i(o)

2

⌋
. This represents the dimension of the maximal

even dimensional unimodular sublattice with N ⊂ (2). Then:

χp,i(e) =


(p,−1)

(i+1)mp
p (δp, p)

i+1
p (p,−1)

np,i/2
p Hp np,i 6= 0 even, p 6= 2

(p,−1)
imp
p (δp, p)

i
p(p,−1)

(np+2)/2
p Hp np,i 6= 0 odd, p 6= 2

(δp, 2)i2(−1,−1)
(n2

p−2np)/8
2 Hp np,i(e) = np,i 6= 0, p = 2

1 otherwise.

.

The above calculations combine those of Corollaries 20 and 21. We note that for
p = 2, it computes this accurately whenever it is well defined. If it is not well
defined then the result is still valid for some Jordan decomposition.
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Let u be a non-square in R×1 . For p = 2 set u = 3. Define:

δp,i =


1 (χp,i(o) = 0 and np,i odd) or np,i = 0

(−1)np−np,i/2δp χp,i(o) = 0, np,i even

(−1)bnp,i/2cu(χp,i(e)−1)/2 otherwise.

This represents a valid discriminant for the ith modular Jordan block. For p = 2
the value is typically accurate mod 8. If p = 2, np,i = 1,mp = 1 it is only accurate
mod 4 but this case does not impact the following computations. The first two
cases compute the discriminant when this block is odd. It does so assuming the
complementary block is hyperbolic, since if this block were odd, there exists a
Jordan decomposition with hyperbolic complementary block. In the final case we
reverse engineer the discriminant based on whether or not the block is split using
the computation of χp,i(e) above.

We now set:

Hp,i =


1 p 6= 2

1 np,i = 1

(−1,−1)
(np−np,i)(np−np,i−2)/8
2 (δp,i,−1)

mp−np,i/2
2 (δp, 2)i2Hp otherwise.

This represents a valid Hasse invariant for the ith modular block. The compu-
tations here are the same as those in Corollary 21. We compute it assuming the
complementary block is even. If it is not, then the Hasse invariant of the ith block
depends on a choice. Hence the result above is still valid.

Now we set:

χp,i =



0 np,i is odd

0 χp,i−1(o)χp,i+1(o) = 0

0 χp,i(o) = 0 and δp,i = (−1)(np,i−1)/2 (mod 4)

((−1)np,i/2δp,i, p)p p 6= 2,

(−1,−1)
np,i(np,i−2)/8
2 Hp,i p = 2.

This value is 0 precisely when the isomorphism class of Li(e) is not well-defined.
The computation is based on those in the proof of Corollary 19.

6.2 Explicit Formulas for Local Densities

We now exploit the explicit computations of the previous section to give explicit
formulas for the local densities in the various cases of interest.
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The key terms which appear in the formulas are:

tp =
∑
i

(1− χp,i(o))np,i + (1− χp,i(o))(1− χp,i+1(o))−∑
i

δnp,i,0(1− χp,i−1(o)χp,i+1(o)),

sp =
∣∣{i | np,i 6= 0}

∣∣ ,
wp = (k − 1)[R3 : R1]([R3 : R1] + 1)/2 + nk(nk + 1)/2,

Pp,i =

np,i(e)

2∏
j=1

(1− q−2j),

Ep,i = (1 + χp,iq
−np,i(e)/2)−1,

Pp =
∏
i

Pp,i,

Ep =
∏
i

E−1
p,i .

Theorem 39 Let R1 = Zp and R3 be the ring of integers of a p-adic field with invo-

lution σ and maximal ideal p. Suppose λ ∈ (Rσ3 )×. Consider the lattice L = R3 with

the form: 1
2 TrR3/R1

(λxσ(x)). Using all the notation as above, we have:

βp(L,L) = 2sp−tpqwpPpEp.

Proof The result follows immediately from Theorem 17 and all the computations
of the relevant terms. ut

We now combine what we know about the quadratic forms qp to get sufficient
information about the form qp to compute its local densities. We define the relevant
constants in terms of the decomposed ones:

np,i =
∑
p|p

np,i,

δp,i =
∏
p|p

δp,i,

χp,i(o) =
∏
p|p

χp,i(o),

np,i(e) = 2

⌊
ni + 1− χp,i(o)

2

⌋
, and

Hp,i =
∏
p|p

Hp,i

∏
p<q

(δp,i, δq,i).

The above formulas are all direct computations. Now we set:

χp,i =



0 np,i is odd

0 χp,i−1(o)χp,i+1(o) = 0

0 χp,i(o) = 0 and δp,i = (−1)(np,i−1)/2 (mod 4)

((−1)np,i/2δp,i, p)p p 6= 2,

(−1,−1)
np,i(np,i−2)/8
2 Hp,i p = 2.
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As before, this formula is based on the computations of Corollary 19. We may now
introduce the terms which will appear in the formulas:

tp =
∑
i

(1− χp,i(o))np,i + (1− χp,i(o))(1− χp,i+1(o))−∑
i

δnp,i,0(1− χp,i−1(o)χp,i+1(o)),

sp =
∣∣{i | np,i 6= 0}

∣∣ ,
wp =

∑
i

inp,i((np,i + 1)/2 +
∑
j>i

np,j),

Pp,i =

np,i(e)

2∏
j=1

(1− q−2j),

Ep,i = (1 + χp,iq
−np,i(e)/2).

Finally, define:

Pp =
∏
i

Pp,i and Ep =
∏
i

E−1
p,i .

Theorem 40 Let OE be the ring of integers of a number field with involution. Using

all the notation above the p-adic local density of the form 1
2 TrE/Q(λxσ(x)) on OE is:

βp(L,L) = 2sp−tpqwpPpEp.

Proof Again, the result follows immediately from Theorem 17 and the above com-
putations of the relevant terms. ut

The above formula is complicated. This is largely by virtue of the fact that each
p|p could contribute to different Jordan blocks, and hence we must independently
compute the invariants for each. One can thus in general expect no reasonable
cancellation in the above formulas as there are cases where none occurs. The
advantage of this formula over those of the Section 4 is that the formula is expressed
entirely in terms of the invariants of the rings involved (and λ) and thus given a
ring which one understands, one can compute this formula.

We now present a restricted case, that is, we shall suppose that λp has small
valuation for all p so that k = 1 and the final lattice has at most 2 Jordan blocks at
each p. In particular assume that 0 ≤ vp(λ/2) + vp(δOE/OEσ )/2 + vp(DOEσ/Z) ≤ ep
for all primes p of Eσ.

Under these assumptions we have:

• The dimension of the space is n = 2m = [E : Q].
• The dimensions of the Jordan blocks are:

np,0 = n− vp(N(λ/2)2δE/Qp) and np,1 = vp(N(λ/2)2δE/Qp).

• The conditions for the blocks to be odd are:

• χp,0(o) = 0 if and only if either vp(δE/Eσ ) is odd or ep > vp(λ) + vp(DEσ/Q)
for some p.

• χp,1(o) = 0 if and only if either vp(δE/Eσ ) is odd or vp(δE/Eσ ) > 2ep −
vp(λ)− vp(DEσ/Q) for some p.
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• As before one computes np,i(e) = 2
⌊
ni+1−χp,i(o)

2

⌋
.

• We have the following formula for χp,i:

χp,i =



0 ni = 0 or ni odd

0 p = 2, χp,i−1χp,i+1 = 0

0 p = 2, δp = (−1)m−1 (mod 4)

CorEσp /Qp((z, (−1)mpi+1λf ′z(z))Eσp ) p 6= 2, ni even

CorEσp /Qp((z, (−1)m2iλf ′z(z))Eσp ) otherwise,

where
√
z primitively generates the E over Qp.

Remark 41 Notice that for all primes which are unramified in E and for which

vp(N(λ)) = 0 (or for p = 2 take λ = 2) the above formula for χp,i reduces to

((−1)mD, p)p. The lack of symmetry at 2 is a consequence of our normalization of the

form. The normalization we have chosen makes the Hasse invariant formula cleaner,

but breaks the symmetry in this formula.

Now set:

tp =


(1− χp,0(o))(np,0 − 1) + (1− χp,1(o))(np,1 − 1)+

(1− χp,0(o))(1− χp,1(o))
np,0np,1 6= 0

(1− χp,0(o))(np,0 − 2) + (1− χp,1(o))(np,1 − 2) otherwise,

sp =
∣∣{i | np,i 6= 0}

∣∣ , and

wp = np,1(np,1 + 1)/2.

Corollary 42 Let E/Q be a finite extension with involution σ, supposing E is primi-

tively generated by
√
z over Q with z ∈ Eσ. Let λ ∈ (Eσ)× with:

0 ≤ vp(λ/2) + vp(δOE/OEσ )/2 + vp(δOEσ/Z) ≤ ep,

for all primes p of Eσ. Then with notation as above the local density of the form
1
2 TrE/Q(λxσ(x)) is:

2sp−tpqw

np,0(e)

2∏
j=1

(1−q−2j)

np,1(e)

2∏
j=1

(1−q−2j)(1+χp,0q
−np,0(e)/2)−1(1+χp,1q

−np,1(e)/2)−1.

Proof Once again this is an immediate application of Theorem 17 together with
the above computations of the relevant terms. ut

7 Example of Q(µp)

Fix a prime p of Z. In this section we shall compute the local densities for the form

qE,λ = 1
2 TrE/Q(λxσ(x)),

where E = Q(µp) is the cyclotomic field of pth roots of unity, σ is complex conju-
gation, and λ is restricted in valuation so that:

0 ≤ vq(λ/2) + vq(δOE/OEσ )/2 + vq(DOEσ/Z) ≤ eq

for all q.
We shall use the following ‘elementary’ facts.
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• The ring of integers of E is OE = Z[ζap ] for each a ∈ (Z/pZ)×.
• The ring of integers of F := Eσ is:

OF = Z[ζp + ζ−1
p ] = Z[(ζp − ζ−1

p )2] = Z[(ζap − ζ−ap )2]

for each a ∈ (Z/pZ)×.
Denote by za = (ζap−ζ−ap )2 then za is totally negative and E = Q(

√
za). Denote

by fz the minimal polynomial of za (this does not depend on a).
• There is a unique prime in each of OE and OF over p. Denote by p the prime

over p in OF .
• The discriminant of E/Q is δE/Q = (−1)(p−1)/2pp−2.

• Since ζ2p 6= 1 (mod q) for all q - p it follows that ζap −ζ−ap and hence (ζap −ζ−ap )2

is a unit away from p.
• Since the different ideal is DF/Q = (f ′z(za)) it follows that f ′z(za) is a unit at

all places away from p.
• The elements ζap − ζ−ap and (ζap − ζ−ap )2 are uniformizing elements at p for the

fields they generate.
This follows from the observation that the order Z[

√
za] = OF [

√
za] is maximal

away from 2.

• The ramification degrees are e` =

{
p− 1 ` = p

1 otherwise
.

In the formulas of the previous section we have the following:

• The dimension of the space is [E : Q] = p− 1.
• The dimensions of the Jordan blocks are for ` 6= p are:

n`,0 = p− 1− 2ν`(NF/Q(λ/2)) and n`,1 = 2ν`(NF/Q(λ/2))

and for ` = p they are:

n`,0 = 1− 2νp(NF/Q(λ)) and n`,1 = p− 2 + 2νp(NF/Q(λ)).

Thus we set:

w` = n`,1(n`,1 + 1)/2 and

s` =

{
1 ` 6= p, ν`(NF/Q(λ)) = 0,±(p− 1)/2

2 otherwise.

• The parity of the Jordan blocks at 2 are:

χ2,i(o) = 1

so long as the blocks are non-trivial. This is true because the extension is
unramified at 2. Consequently, t` = 0 for all `.

• The character for the blocks are computed as follows:

χ`,i =


0 ` = p

CorEσ/Q

(
(za, (−1)(p−1)/22iλf ′z(za))

)
`

` = 2

CorEσ/Q

(
(za, (−1)(p−1)/2`i+1λf ′z(za))

)
`

` 6= 2, p.
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We are thus interested in computing:

CorF/Q ((za, λ)) CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
.

For all ` 6= 2, p we have that za and f ′z(za) are units and thus:

CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
`

= 1.

For ` = 2 we have that:

CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
2
· (−1)(p−1)(p−3)/8

computes the Hasse invariant of the form (for λ = 1). Since this Hasse invariant
is 1 for all places (including infinite) other than p we can conclude that:

CorF/Q((za,(−1)(p−1)/2f ′z(za)))2

= (−1)(p−1)(p−3)/8 CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
p

We are thus reduced to computing CorF/Q

(
(za, (−1)(p−1)/2f ′z(za)

)
p
. Observe

that:(
za, (−1)(p−1)/2f ′z(za)

)
p

=
(
za,−z−1

a

)(p−3)/2

p

(
za, (−1)(p−1)/2f ′z(za)

)
p

= (za,−1)p

(
za, z

−(p−3)/2f ′z(za)
)
p

= (za,−1)p

∏
a6=b∈(Z/pZ)×/±1

(
za, 1− zb

za

)
p
.

Now, we may use that za is a uniformizer and that:

zb
za
∼=
a2

b2
(mod za).

It follows that the terms we wish to evaluate are actually:(
za, 1− zb

za

)
p

=
(
za, 1− b2

a2

)
p

=
(
za, 1− b

a

)
p

(
za, 1 + b

a

)
p
.

The resulting expression now becomes:(
za, (−1)(p−1)/2f ′z(za)

)
p

= (za,−1)p
∏

±a 6=b∈(Z/pZ)×

(
za, 1− b

a

)
p

= (za,−2)p .

Applying the Corestriction map we have:

CorF/Q ((za,−2)p) =
(
NF/Q(za),−2

)
p

=
(

(−1)(p−1)/2p,−2
)
p

= (p,−2)p .

From this we can conclude that:

CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
2

= (−1)(p−1)(p−3)/8(p,−2)p = 1.



30 Andrew Fiori

Now, for all ` 6= p we find:

CorEσ/Q ((za, `))` =
(

(−1)(p−1)/2p
`

)
=
(
`
p

)
.

Thus we can conclude that:

χ`,i =



0 ` = p

CorEσ/Q ((za, λ))` ` = 2, i = 0

CorEσ/Q ((za, λ))`

(
`
p

)
` = 2, i = 1

CorEσ/Q ((za, λ))` ` 6= p, i = 1

CorEσ/Q ((za, λ))`

(
`
p

)
` 6= p, i = 0.

7.1 Explicit Formulas for the Examples

Combining all of the above we can easily compute the product over all local den-
sities for the following cases:

• Case λ = 2, the local density is:

2p(p−2)(p−1)/2(1− pp−1)
∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2µ, where µ ∈ O×F has a unique negative embedding and (za, µ)p =
−1, the local density is:

2p(p−2)(p−1)/2(1− pp−1)
∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2µ, where µ ∈ O×F has a unique negative embedding and (za, µ)p = 1,
the local density is:

2p(p−2)(p−1)/2(1− pp−1)
1−

(
2
p

)
2(p−1)/2

1 +
(

2
p

)
2(p−1)/2

∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2q, where (q)|q 6= p is prime and (q, p)p = −1, set nq = νq(NF/Q(q))
and suppose (q) 6= (q) and q is totally positive, the local density is:

22p(p−2)(p−1)/2qnq(nq−1)/2 (1− qnq )
(

1 + q(p−1)/2−nq
) nq∏
i=1

(
1− q2i

)−1

p−1−nq∏
i=1

(
1− q2i

)−1 ∏
` 6=q

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .
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• Case λ = 2q, where q|q 6= p, 2 is prime and (q, p)p = 1, set nq = νq(NF/Q(q))
and suppose (q) 6= (q) and q is totally positive, the local density is:

22p(p−2)(p−1)/2qnq(nq−1)/2 (1 + qnq )
(

1 + q(p−1)/2−nq
) nq∏
i=1

(
1− q2i

)−1

p−1−nq∏
i=1

(
1− q2i

)−1 1−
(

2
p

)
2(p−1)/2

1 +
(

2
p

)
2(p−1)/2

∏
` 6=q

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

Other more complicated combinations can be handled similarly.

8 Concluding Remarks

We have been able to accomplish two important goals:

1. Describe the structure of lattices that arise from transfer, in particular for
Hermitian lattices.

2. Give a method for computing the local densities for Hermitian lattices over Z
in terms of invariants of the rings.

In spite of this many interesting problems remain open:

• More refined computation of invariants for transfer of lattices over 2-adic rings.
In particular, a complete description of the resulting norm group.

• Obtaining more general formulas for βp(L,M) where the lattices L and or M
are Hermitian lattices.

• Attempting to expand the results to finite extensions of Z, this requires more
work on several fronts, especially the problem of more general explicit formulas
for local densities.
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