Average Number of Quadratic Frobenius Pseudoprimes

Andrew Fiori
PIMS Postdoctoral Fellow - University of Calgary

Summer 2016

This work is joint with Andrew Shallue.

Context and Motivation

- A number n is a base a pseudoprime if $a^{n}=a(\bmod n)$.
- Let $F(n)=\mid\{a(\bmod n) \mid n$ is a base a pseudoprime $\} \mid$. Erdős and Pomerance showed that, with $\alpha=\frac{23}{15}$ we have:

$$
x^{2-\alpha^{-1}-o(1)}<\sum_{n<x} F(n)<x^{2} e^{-\log (x) \frac{\log \log \log (x)}{\log \log (x)}}
$$

- Rather than a base a $(\bmod n)$ we will consider a base $f(x)=x^{2}+a x+b(\bmod b)$, and the more elaborate Frobenius pseudoprime test. We will then look at

$$
F_{ \pm 1}(n)=\left\{f \quad(\bmod n) \left\lvert\,\left(\frac{\Delta_{f}}{n}\right)= \pm 1\right., n \text { is a base } f \text { pseudoprime }\right\}
$$

- We are broadly motivated by the question: How likely is it that a randomly chosen pair (f, n) passes the primality test even though n is not prime?
Note: a Frobenius pseudoprime for f, is a Lucas pseudoprime for the associated recurrence.

What are Frobenius Pseudoprimes

Fix a polynomial $f(x)$. If p is a prime number, and $\left(\Delta_{f} f(0), p\right)=1$ then we know that:

- For all d we have that:

$$
d \left\lvert\, \operatorname{deg}\left(\operatorname{gcd}_{\bmod -\mathrm{p}}\left(f(x), \frac{x^{p^{d}}-1}{x^{p^{d-1}}-1}\right)\right)\right.
$$

- The map $x \mapsto x^{p}$ permutes the roots of each:

$$
f_{d}(x)=\operatorname{gcd}_{\text {mod-p }}\left(f(x), \frac{x^{p^{d}}-1}{x^{p^{d-1}}-1}\right) .
$$

- We have the factorization $f(x)=\prod f_{d}(x)(\bmod p)$.
- The factorization structure of $f(x)$, that is the collection of degrees above, determines $\left(\frac{\Delta_{f}}{p}\right)$.
Without getting into the technical details, we will call a number n a Frobenius pseudoprime if it satisfies these four conditions.

What are our main results?

We have the following closed form expressions for $F_{ \pm}(n)$:

$$
\begin{aligned}
& F_{+}(n)=\left.\frac{1}{2} \prod_{p \mid n} \frac{1}{2}\left(\left(n-1, p^{2}-1\right)+(n-1, p-1)^{2}-2(n-1, p-1)\right)\right) \\
&\left.+\frac{1}{2} \prod_{p \mid n} \frac{1}{2}\left((n-1, p-1)^{2}-\left(n-1, p^{2}-1\right)\right)\right) \\
& F_{-}(n)=\frac{1}{2} \prod_{p \mid n} \frac{1}{2}\left(\left(\frac{n}{p}-1, p^{2}-1\right)+\left(n^{2}-1, p-1\right)-2(n-1, p-1)\right) \\
&-\frac{1}{2} \prod_{p \mid n} \frac{1}{2}\left(-\left(\frac{n}{p}-1, p^{2}-1\right)+\left(n^{2}-1, p-1\right)\right)
\end{aligned}
$$

We have the following bounds on the average:

$$
\begin{aligned}
& x^{3-\alpha^{-1}-o(1)}<\sum_{n<x} F_{+}(n)<x^{3} e^{-\log (x) \frac{\log \log \log (x)}{\log \log (x)}} \\
& x^{2-\alpha^{-1}-o(1)}<\sum_{n<x} F_{-}(n)<x^{3} e^{-\log (x) \frac{\log \log \log (x)}{\log \log (x)}}
\end{aligned}
$$

Some basic questions we can thus partially answer

1) Fix n, are there quadratic $f(x)$ with (f, n) a Frobenius liar pair? Yes.
2) Fix n, are there quadratic $f(x)$ with $\left(\frac{\Delta_{f}}{n}\right)= \pm 1$? Yes for +1
Sometimes no for -1 (for example 21) but they exist on average.
3) Given f, are there n for which (f, n) gives a Frobenius liar pair? Yes.
We just need a Carmichael number n for which f splits at all $p \mid n$.
4) Given f, are there n with $\left(\frac{\Delta_{f}}{n}\right)= \pm 1$ and the pair is a liar? Yes for +1
Unclear for -1 case, and our result doesn't even tell us on average.

What is needed to improve our $\left(\frac{\Delta_{f}}{n}\right)=-1$ result.

Firstly, the idea of the proof is that of Erdős and Pomerance. Given primes p for which $p-1$ is smooth one constructs n for which $(n-1, p-1) \quad\left(n-1, p^{2}-1\right) \quad\left(n^{2}-1, p-1\right) \quad\left(n^{2}-1, p^{2}-1, n-p\right)$
are large. To improve the results in the -1 case, we want $p^{2}-1$ to be smooth to maximize: $\left(n^{2}-1, p^{2}-1, n-p\right)$. But this is not sufficient because of the $n-p$ term.

Conjecture:

If p is a prime and $p^{2}-1$ is 'smooth' the expected number of prime factors of $p^{2}-1$ is $\log \left(\left(p^{2}-1\right)^{o(1)}\right)$.

Assuming this conjecture we can show, with $\beta=\frac{4}{3}$ that:

$$
x^{3-\beta^{-1}-o(1)}<\sum_{n<x} F_{-}(n)
$$

This would tell us we expect n to exist on average.

The End.

Thank you.

