
A RIEMANN-HURWITZ THEOREM FOR THE ALGEBRAIC EULER

CHARACTERISTIC

ANDREW FIORI

Abstract. We prove an analogue of the Riemann-Hurwitz theorem for computing Euler char-
acteristics of pullbacks of coherent sheaves through finite maps of smooth projective varieties in
arbitrary dimensions, subject only to the condition that the irreducible components of the branch
and ramification locus have simple normal crossings.

1. Introduction

Consider a finite map π : X → Y of degree µ. Let B = ∪Bi be the branch locus and its
irreducible decomposition. Let R = π−1(B) = ∪Rj be the ramification locus and the irreducible
decomposition of its reduction. Note that we are taking here the potentially non-standard choice
to include in R even those components of π−1(B) which are not ramified, this convention will be
consistent throughout. The Riemann-Hurwitz formula for the topological Euler characteristic of
curves can roughly be interpreted to say:

χ(X)− µ · χ(Y ) =
∑
i

riχ(Ri).

For some integers ri determined by local data. This formula can be generalized both to higher dimen-
sional manifolds, but also to the algebraic Euler characteristic. However, in the higher dimensional
algebraic setting, such a formula typically requires additional hypothesis on the ramification and/or
branch locus such as:

• The ramification locus to be non-singular.
• The irreducible components of the branch locus do not intersect.
• The irreducible components of the ramification locus to be non-singular.
• The formula is cleanest if the irreducible components of the ramification locus have trivial

self intersection.
Note that the work of Izawa [Iza03] handles the case where this last condition is not true

but requires the previous conditions.

We would like to be able to reduce these conditions to the requirement that the branch and
ramification locus consist of divisors with simple normal crossings.

The result which we obtain is a formula of the form:

χ(X)− µ · χ(Y ) =
∑
α

rαχ(Rα).

Where the Rα are irreducible components of the (possibly repeated) intersections, that is the strata,
of the ramification locus. The rα are constants defined in terms of the ramification structure along
Rα by universal equations determined by α. Precise statements are given in Theorem 5.1 and
Corollary 5.2 noting that terminology introduced elsewhere will be necessary to understand them.
Propositions 5.3 and 5.4 give alternative expressions for some of the coefficients rα. Other theorems
which may be of interest are Theorems 2.18 and 3.2 which describe the functoriality of the pullback
of logarithmic Chern classes and the logarithmic Euler characteristic through finite maps. It is
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likely both of these results admit generalizations outside the context in which the author is able to
prove them.

Moreover, our argument works virtually identically in each of the following cases:

• χ(X) is the topological Euler characteristic, in this case the above results are then classical
and follow from excision.
• χ(X) = χ(X,OX) is the algebraic Euler characteristic.

The result is well known when the map is étale (see [Ful98, Ex. 18.3.9]). The case of no
intersection between components of branch/ramification locus is handled for example in the
work of Izawa [Iza03].
• χ(X) = χ(X,F) is the Euler characteristic of a coherent sheaf F .
• The same argument should apply formally to any ‘characteristic’ defined by a multiplicative

sequence on the Chern classes. The formulas for the coefficients rα do naturally depend on
this choice of characteristic.

We shall only present the argument for the case of χ(X,F), the main results are Theorem 5.1 as
well as Corollary 5.2. The strategy of proof uses primarily formal properties of logarithmic Chern
classes and formal properties of multiplicative sequences. The paper is organized as follows:

• In Section 2 we introduce our notation and the key results we shall make use of. This
includes in particular Lemmas 2.15-2.17 and Theorem 2.18.
• In Section 3 we introduce our definition of logarithmic Euler characteristic.
• Section 4 contains the key calculations, which compares the classical Euler characteristic to

the logarithmic Euler characteristic.
• Section 5 applies the results of Section 4 to the problem of giving the Riemann-Hurwitz

theorem discussed above.
• In Section 6 we discuss computing the contribution to the logarithmic Euler characteristics

of the ‘self-intersection’ terms.

We should mention that our original motivation for considering the objects being introduced is
to compute dimension formulas for spaces of modular forms. For this application it is actually the
results of Section 4 and Section 6 that by way of the work of Mumford in [Mum77] play a significant
role. Though actual dimension formulas require additional arithmetic and/or combinatorial input
the results of the aforementioned sections can be seen as a generalization of a key ingredient for the
approach used in [Tsu80].

2. Background and Notation

Notation 2.1. We shall make use of the following notation.

(1) X and Y shall always be varieties, typically assumed to be smooth and projective.
(2) Given a variety X we shall denote by

Ω1
X

the cotangent bundle of X.
(3) ∆ = ∪i{Di} shall always be a collection of (reduced irreducible) divisors on a variety. These

shall typically be assumed to have simple normal crossings.
(4) Given ∆ = ∪i{Di} a collection of divisors on X we shall denote by:

Ω1
X(log ∆)

the logarithmic cotangent bundle of X relative to ∆,
(5) For any Y ⊂ X we shall denote by:

Ω1
Y (log ∆′)

the logarithmic cotangent bundle of Y , relative to ∆′ = ∪i{Di∩Y }, where we consider only
those i such that Y 6⊂ Di. When we write this we shall always assume that Y meets the
relevant Di transversely. Whenever we write ∆′, the relevant Y shall be understood.
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(6) Given any coherent sheaf F on X we shall denote by:

c(F) =
∑
i

ci(F)

the total Chern class and the ith Chern class (see [Ful98, Ch. 3]).
We shall denote by ch(F) and Todd(F) the Chern character and Todd class respectively.

The Todd class Todd(F) has a universal expression in terms of the ci(F), whereas ch(F)
additionally requires the rank, rk(F), specifically the constant part of the Chern character.
These classes can be interpreted as being in the cohomology ring or the Chow ring as
appropriate from context.

We can interpret ch(F) as a vector determining all of rk(F), c1(F), . . . , cn(F). Conversely,
given a vector x = (x0, . . . , xn) we shall write ch(x) to indicate the formal expression in the
xi where we replace ci by xi and rk(F) by x0 in the formal expression for ch(F). For brevity,
and to make clear the connection to the role of the Chern character, we shall often write ch(x)
or ch(F) when evaluating a function on the vectors (x0, . . . , xn) or (rk(F), c1(F), . . . , cn(F))
when it is defined through ch(F) (see for example Theorem 2.2).

(7) Given ∆ = ∪i{Di} a collection of divisors on X we shall denote by:

∆k

the kth elementary symmetric polynomial in the Di. so that:∏
i

(1−Di) =
∑
k

(−1)k∆k.

The products above take place in either the cohomology ring or the Chow ring as appropriate
from context.

(8) When we say that α is a partition of m we mean that m =
∑

i αii. Given a partition α,
we shall denote by |α| the value m it is partitioning. That is |α| =

∑
i αii. Moreover, given

such a partition we shall denote by:

cα(F) =
∏
i

ci(F)αi

and by:

∆α =
∏
i

∆αi
i .

(9) Given a monomial exponent b = (b1, . . . , b`) ∈ N` of total degree |b| =
∑
bi we shall denote

by:

Db =
∏

Dbi
i .

The products above take place in either the cohomology ring or the Chow ring as appropriate
from context. Whenever we write this, the choice of base D will make clear the relevant ∆ to
which Di belong. Do not confuse D` with Db, the former will always be the self intersection
of a particular divisor D ∈ ∆.

Theorem 2.2 (Riemann-Roch Theorem). For each n ∈ N there is a universal polynomial

Qn(x0, . . . , xn; y1, . . . , yn) = Qn(ch(x); y1, . . . , yn)

such that for all smooth projective varieties X of dimension n and coherent sheaves F on X the
Euler characteristic of F is:

χ(X,F) = Qn(rk(F), c1(F), . . . , cn(F); c1(Ω1
X), . . . , cn(Ω1

X)) = Qn(ch(F); c1(Ω1
X), . . . , cn(Ω1

X)).

The polynomial is given explicitly by:

Qn(rk(F), c1(F), . . . , cn(F); c1(Ω1
X), . . . , cn(Ω1

X)) = degn(ch(F)Todd(Ω1
X)).
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Recall that we interpret ch(F) as a vector determining all of rk(F), c1(F), . . . , cn(F) and ch(x) as
the corresponding vector where the xi are substituted in the universal expression for ch(F).

We have the following explicit formulas for Qn for small n:

Q0(x0; y0) = x0

Q1(x0, x1; y1) =
1

2
x0y1 + x1

Q2(x0, x1, x2; y1, y2) =
1

12
x0(y2

1 + y2) +
1

2
x1y1 +

1

2
(x2

1 − 2x2)

Q3(x0, x1, x2, x3; y1, y2, y3) =
1

24
x0y1y2 +

1

12
x1(y2

1 + y2) +
1

4
(x2

1 − 2x2)y1 +
1

6
(x3

1 − 3x1x2 + 3x3)

Q4(x0, . . . , x4; y1, . . . , y4) =
1

720
x0(−y4

1 + 4y2
1y2 + y1y3 + 3y2

2 − y4) +
1

24
x1y1y2 + · · ·

Remark 2.3. The most important feature of the explicit description we shall make use of is that

Todd(E1 ⊕ E2) = Todd(E1)Todd(E2)

so that Qn is effectively multiplicative in the ci(Ω
1
X) set of parameters.

The following proposition makes precise what we mean by multiplicative.

Proposition 2.4. For notational convenience in the following we use the constants u0 = v0 = 1 and
ui = vi = 0 for i < 0. Consider formal variables u1, . . . , un and v1, . . . , vn and set yi =

∑
j+k=i ujvk

then
Qn(ch(x); y1, . . . , yn) =

∑
`+m=n

Q`(ch(x);u1, . . . , u`)Qm(1; v1, . . . , vm).

Proof. Denote by Todd(y), Todd(u), Todd(v) the universal expression for the Chern character or
Todd class where we substitute the appropriate set of variables for the Chern classes. We then have:

Qn(ch(x); y1, . . . , yn) = degn(ch(x)Todd(y))

= degn(ch(x)Todd(u)Todd(v))

=
∑

`+m=n

deg`(ch(x)Todd(u)) degm(Todd(v))

=
∑

`+m=n

Q`(ch(x);u1, . . . , u`)Qm(1; v1, . . . , vm). �

Remark 2.5. The same formula holds if we use instead the system of polynomials

Qn(x0, x1, . . . , xn; y1, . . . , yn) = yn

which give the topological Euler characteristic. The algebraic Euler characteristic of X is just the
special case of F = OX .

Notation 2.6. We shall also need the following terminology and combinatorial quantities. Note
that these are all universal and depend only on the choice of multiplicative sequence Q. These
constants can all be effectively computed.

(1) Given any monomial exponent b we shall denote by:

δb

the coefficient of Db in Q|b|(1; ∆1, . . . ,∆|b|). Note that these coefficients depend only on the
monomial type of b, that is the multi-set {bi 6= 0}. In particular δ(2,0,1) = δ(1,2,0) = δ(2,1).

In the context we are working, where Q describes the algebraic Euler characteristic, this
is also precisely the coefficient of Db in:∏

D∈∆

D

1− e−D
.
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For example, given that:

Q2(1,∆1,∆2) =
1

12
(∆2

1 + ∆2) =
1

12

∑
i

D2
i +

1

4

∑
i 6=j

DiDj

we have that:

δ(2) =
1

12
δ(1,1) =

1

4
.

Likewise given that:

Q3(1,∆1,∆2,∆3) =
1

24
∆1∆2 = 0

∑
i

D3
i +

1

24

∑
i 6=j

D2
iDj +

1

8

∑
i 6=j 6=k

DiDjDk

we have that:

δ(3) = 0 δ(2,1) =
1

24
δ(1,1,1) =

1

8
.

We can likewise compute that:

δ(0) = 1 δ(1) =
1

2
.

(2) We may think of the monomial exponents b as vectors indexed by the elements D of ∆. As
such, given two monomial exponents b and b′ we shall denote b ≤ b′ if the inequality holds
component wise so that we may write:

DbDb′′ = Db′

for some b′′ with all components b′′i ≥ 0. By the support of a monomial exponent b we
mean the collection of Di for which bi 6= 0. We say a and b have disjoint support if the
corresponding collections have no common elements. Given a monomial exponent b we shall
say it is multiplicity free, abbreviated MF, if bi ≤ 1 for all i, otherwise, we shall say it is
not multiplicity free, abbreviated NMF. Note that a monomial exponent is MF precisely
when computing Db involves no self intersections. Finally, given a collection of monomial
exponents bj we shall write: ∑

j

bj = b

if this is true as a vector sum.

Proposition 2.7. If bj have disjoint support then:

δ∑
j bj

=
∏
j

δbj .

Proof. This follows immediately from the multiplicativity of Q as in Proposition 2.4 and the
observation that:

ci

(
⊕

D∈∆
O(D)

)
= ∆i. �

(3) Given a monomial exponent b denote by b̃ the monomial exponent such that

b̃i = min(1, bi),

so that b̃ captures the support of b but b̃ is MF. For example ˜(1, 2, 3) = (1, 1, 1). Moreover,

we shall denote by b̂ the monomial exponent such that

b̂i =

{
1 bi = 1

0 otherwise,

so that b̂ captures the part of the support of b where b has no self intersection. For example
̂(2, 1, 3) = (0, 1, 0).
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(4) Given a monomial exponent b we shall denote by:

λb =
∑
k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b

 k∏
j=1

δbj

 = δb
∑
k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b

1.

In the summation we consider only terms with all
∣∣bj∣∣ ≥ 1 and where in the tuple (b1, . . . , bk)

all of bj have disjoint support and each of b1, . . . , bk−1 are MF, so that only bk is potentially
NMF. Note, when b is MF, these last three conditions are automatic. For k sufficiently
large the inner sum is an empty sum. Under these conditions the equality between the two
definitions is immediate from Proposition 2.7.

Proposition 2.8. When b is MF we have:∑
k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b

1 = (−1)|b|

where the sum is taken as above.

Proof. Each tuple (b1, . . . , bk) contributing to the above summation describes an ordered
factorization of Db = D1 · · ·D` into k non-trivial coprime parts. Denote by Nk,` the number

of such length k factorizations. Using that D` is a factor of Dbj for a unique j we may
uniquely associate to each length k ordered factorization ofD1 · · ·D` an ordered factorization
of D1 · · ·D`−1 of either length k or length k − 1 as follows:

• If Dbj 6= D` then replace bj by b′j where Dbj = Db′jD`. This gives a length k factoriza-
tion.
• If Dbj = D` we omit bj from the factorization entirely, and shift down the indices on bi

for i > j. This gives a length k − 1 factorization.
As we run over all the ordered factorizations of D1 · · ·D` each length k and each length k−1
ordered factorization of D1 · · ·D`−1 occurs exactly k times. We thus obtain a recurrence
relation Nk,` = kNk,`−1 + kNk−1,`−1 and a straightforward computation yields that:∑

k≥0

(−1)k+1Nk,` = −
∑
k≥0

(−1)k+1Nk,`−1.

The claim now follows by an induction on ` = |b|. �

Proposition 2.9. When b is NMF and
∣∣∣b̂∣∣∣ ≥ 1 then:∑

k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b

1 = 0

where the sum is taken as above.

Proof. Every ordered factorization of Db into k non-trivial coprime parts where only the

last one is NMF induces an ordered factorization of Db̂ into either k− 1 non-trivial coprime

parts or k non-trivial coprime parts. Each factorization of Db̂ arises in exactly two ways. It
follows that:∑

k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b

1 =
∑
k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b̂

1−
∑
k≥0

(−1)k+1
∑

(b1,...,bk)∑
bj=b̂

1 = 0

which gives the desired result. �
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The constants λb shall be used in Corollaries 4.3, 4.5 and 5.2.
As an example, by considering the different ordered decompositions of (1, 1, 1), for in-

stance:

(1, 1, 1) (1, 1, 0) + (0, 0, 1) (0, 0, 1) + (1, 1, 0) (1, 0, 1) + (0, 1, 0) . . .

including also the 6 permutations of (1, 0, 0) + (0, 1, 0) + (0, 1, 0), we see that:

λ(1,1,1) = δ(1,1,1) − 6δ(1,1)δ(1) + 6δ3
(1) =

1

8
.

We can also compute that:

λ(0) = −1 λ(1) = δ(1) =
1

2
λ(1,1) = δ(1,1) − 2δ2

(1) = −1

4

λ(2) = δ(2) =
1

12
λ(2,1) = δ(2,1) − δ(2)δ(1) = 0 λ(3) = δ(3) = 0.

Proposition 2.10. Let X be a smooth projective variety and ∆ = ∪{Di} be a collection of smooth
divisors with simple normal crossings on X. We have a relation:

ci(Ω
1
X) =

∑
j

(−1)i−jcj(Ω
1
X(log ∆))∆i−j .

Recall ∆k is the k-th elementary symmetric polynomial in the irreducible components of the boundary
of X. This can also be expressed as:

c(Ω1
X) = c(Ω1

X(log))
∏
Di

(1−Di).

Proof. We follow essentially an argument for an analogous result from [Tsu80, Prop. 1.2]. We have
the following two exact sequences:

0 // Ω1
X

// Ω1
X(log ∆) // ⊕ODi

// 0

0 // OX(−Di) // OX // ODi
// 0.

The first of which essentially defines Ω1
X

(log ∆).
By the multiplicativity of the total Chern class we obtain:

c(Ω1
X) = c(Ω1

X(log ∆))
∏
Di

(1−Di). �

Proposition 2.11. Logarithmic Chern classes restrict to the boundary. That is, let X be a smooth
projective variety and ∆ = ∪{Di} be a collection of smooth divisors with simple normal crossings
on X. Suppose D ∈ ∆ is a fixed irreducible divisor then:

cα(Ω1
X(log ∆)) ·D = cα(Ω1

D(log ∆′)).

This equality should be interpreted as an equality on D.

Proof. The result is analogous to [Tsu80, Lem. 5.1], this proof was suggested by the referee.
By Proposition 2.10 we have:

c(Ω1
X(log ∆)) = c(Ω1

X)
1

(1−D)

∏
Di 6=D

1

(1−Di)
.

As c(Ω1
X) 1

(1−D) restricts to c(Ω1
D) on D the right hand side of the above expression restricts to:

c(Ω1
D)

∏
Di 6=D

1

(1−D′i)
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which in turn equals c(Ω1
D(log ∆′)) by Proposition 2.10. As the Chern classes agree, so to do their

products. �

Notation 2.12. Consider π : X → Y a ramified covering. For Z ⊂ X irreducible we shall denote
by eZ the ramification degree of π at Z as it is defined in [Ful98, Ex. 4.3.4].

We note that in the context of smooth varieties by [Ful98, Prop. 7.1] we can compute the
ramification degree as:

eZ = length(OX,Z ⊗OY
OY,π(Z)/Jπ(Z)).

In the expression above, Jπ(Z) is the ideal associated to π(Z) and the length is that of the ring as
a module over itself.

The following proposition is well known (see for example [Ful98, Ex. 4.3.7]), though we will not
make direct use of it the statement motivates our understanding of ramification.

Proposition 2.13. Let X and Y be smooth projective varieties. Consider π : X → Y a potentially
ramified finite covering of degree µ. For any Z ′ ⊂ Y irreducible, if we decompose π−1(Z ′) = ∪iZi
into irreducible components then: ∑

i

µZieZi = µ.

where µZi is the degree of π|Zi.

Notation 2.14. Fix a ramified covering π : X → Y of smooth projective varieties of dimension n.
The collection of reduced irreducible components of the branch locus shall be denoted ∆(B),

and we shall denote monomial exponents for the branch locus by b and write Bb for the associated
equivalence class of cycle.

The collection of reduced irreducible components of the ramification locus shall be denoted ∆(R),
and we shall denote monomial exponents for the ramification locus by a and write Ra for the
associated equivalence class of cycle. Recall that ∆(R) = π−1(∆(B)) includes all components Rj
in π−1(Bi) even those which may not themselves be ramified.

For an irreducible component Ri then it is clear π(Ri) = Bj for a unique j. Given a pair of
monomial exponents a and b we shall say π(a) = b if for each j we have:

bj =
∑

π(Ri)=Bj

ai.

We shall denote by:

ERa =
∏
i

(eRi)
ai

the product of the ramification degrees. This notation is justified by Lemma 2.16 which says that
when a is MF then ERa is the ramification degree of each irreducible component of Ra.

Lemma 2.15. Consider π : X → Y a potentially ramified finite map between smooth projective
varieties. Suppose D1 and D2 are two (reduced irreducible) divisors on X which meet with simple
normal crossings and that π(D1) = π(D2) = D is smooth. Let Z be a (reduced) irreducible compo-
nent of D1 ∩D2. Then there is a component R of the ramification locus of π such that Z ⊂ R and
Z 6∈ {D1, D2}. In particular the collection {D1, D2, R} does not have simple normal crossings.

Proof. We will consider the completed local rings at Z and π(Z). By the Cohen structure theorem
(for regular complete local rings, see [Sta17, Tag 0323 Lemma 10.154.10]) these are power series
rings over the coordinate ring, we can thus write these in the form:

K(Z)[[s1, s2]] and K(π(Z))[[t1, t2]]

where si is the local coordinate defining Di on X near Z, the coordinate t1 defines D on Y near
π(Z) and t2 is any other local coordinate defining a divisor which meets D transversely at π(Z).
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By the assumption that π(D1) = π(D2) = D we have that we can choose our coordinates s1 and
s2 so that π∗(t1) = usa11 s

a2
2 with a1, a2 ≥ 1 and u ∈ K(Z)×. By the assumption that the map is

finite we have that s1, s2 6 |π∗(t2), moreover π∗(t2) vanishes at Z and thus π∗(t2) has trivial constant
term. It follows that

π∗(t2) = v1s
b1
1 + v2s

b2
2 + (other terms (not including those monomials))

with b1, b2 ≥ 1 and v1, v2 ∈ K(Z)×.
We can understand the ramification locus near Z by way of the Jacobian condition. The Jacobian

is precisely:

a1us
a1−1
1 sa22

(
b2v2s

b2−1
2 +

∂(other terms)

∂s2

)
+ a2us

a1
1 s

a2−1
2

(
b1v1s

b1−1
1 +

∂(other terms)

∂s1

)
.

As the expressions s2
∂(s

`1
1 s

`2
2 )

∂s2
and s1

∂(s
`1
1 s

`2
2 )

∂s1
both have the same monomial type, namely s`11 s

`2
2 , as

the starting monomial we find that we may rewrite the Jacobian above as:

usa1−1
1 sa2−1

2 (a2b1v1s
b1
1 + a1b2v2s

b2
2 + (other terms (not including those monomials))).

The term (a2b1v1s
b1
1 + a1b2v2s

b2
2 + (other terms)) vanishes at Z and is not divisible by s1 or s2 and

thus defines at least one component of the ramification locus that pass through Z which is not equal
to D1 or D2. �

Lemma 2.16. Consider π : X → Y a potentially ramified finite map between smooth projective
varieties. Let ∆(B) be the collection of irreducible components of the branch locus (on Y ) and
∆(R) = π−1(∆(B)) be the collection of (reduced) irreducible components of the ramification locus
(on X). Suppose ∆(B) and ∆(R) have simple normal crossings. If R1, . . . R` ∈ ∆(R) are distinct
and if Z is a (reduced) irreducible component of ∩iRi then:

eZ =
∏
i

eRi .

Proof. We will consider the completed local ring at Z and π(Z). The completed local rings at the
generic points are of the form:

K(Z)[[s1, . . . , s`]] and K(π(Z))[[t1, . . . , t`]]

where si is a local parameter defining Ri, and ti a local parameter defining Bi = π(Ri). That π(Ri)
are all distinct follows from Lemma 2.15. It follows from this setup that we may choose the local
coordinate si so that π∗(ti) = uis

ai
i with ai ≥ 1 and ui ∈ K(Z)×. The claim now follows from a

direct computations of lengths. In particular eRi = ai and eZ =
∏
i ai. �

Lemma 2.17. Consider π : X → Y a potentially ramified finite map between smooth projective
varieties. Let ∆(B) be the collection of irreducible components of the branch locus (on Y ) and
∆(R) = π−1(∆(B)) be the collection of (reduced) irreducible components of the ramification locus
(on X). Suppose ∆(B) and ∆(R) have simple normal crossings.

(1) If π(a) = b, and the monomial type of a and b are not the same then:

Ra = 0.

(2) If π(a) = b, and the monomial type of a and b are the same then in the formal expansion:

π∗(Bb) =
∏
i

π∗(Bi)
bi =

∏
i

 ∑
π(Rj)=Bi

eRjRj

bi

=
∑
π(a)=b

xaR
a

the coefficient xa of Rb is ERa.
(3) We have the following identity in the Chow ring:

π∗(Bb) =
∑
π(a)=b

ERaRa.
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Proof. The first statement follows immediately from Lemma 2.15, in particular if the monomial
exponents are not the same then the expression Ra involves intersecting two components which
map to the same Bi. If these two components do not have trivial intersection than the ramification
locus does not have simple normal crossings.

The second statement is a straightforward check and indeed is a basic property of multinomial
coefficients.

The third statement then combines the previous two by observing that Ra = 0 whenever the
coefficient of Ra is not ERa . �

Theorem 2.18. Logarithmic Chern classes respect pullbacks through ramified covers. That is, let
X and Y be smooth projective varieties of dimension n. Consider π : X → Y a potentially ramified
finite covering. Let ∆(B) be the collection of irreducible components of the branch locus (on Y ) and
∆(R) = π−1(∆(B)) be the collection of (reduced) irreducible components of the ramification locus
(on X). Suppose that ∆(R) and ∆(B) consist of simple normal crossing divisors. Then:

π∗(ΩY (log ∆(B)) = ΩX(log ∆(R))).

Recall that ∆(R) includes even those irreducible components of π−1(B) which are not themselves
ramified.

Proof. The claim can be checked locally on Y .
Suppose x1, . . . , xn are a local system of coordinates at some point x of X, and y1, . . . , yn are a

local system of coordinates near y = π(x). We may suppose that y1, . . . , y` define the branch locus

of π near y and further that π∗(yi) = xaii so that x1, . . . , x` define the ramification locus of π near
x (see proof of Lemma 2.16). Set εi = 1 if i ≤ ` and 0 otherwise. Then the bundle ΩY (log ∆(R))
has a basis of sections near y given by:

dy1

yε11

, . . . ,
dyn
yεnn

.

By the choice of εi we find that for all i:

d(π∗y)

(π∗y)εi
=
d(xaii )

xaiεii

= ai
dxi
xεii

we find that π∗(ΩY (log ∆(R))) has a basis of sections near x:

dx1

xε11
, . . . ,

dxn
xεnn

.

This precisely agrees with the bundle ΩX(log ∆(B)) near x. �

3. Logarithmic Euler Characteristic

Aside from its present application to a Riemann-Hurwitz formula, the following definition is
motivated in part by its appearance in Mumford’s work in [Mum77, Cor. 3.5].

Definition 3.1. Let X be a smooth projective variety and ∆ be a collection of smooth divisors
with simple normal crossings on X. We define the logarithmic Euler characteristic of a sheaf F on
X with respect to the boundary ∆ to be:

χ(X,∆,F) = Qn(ch(F); c1(Ω1
X

(log ∆)), . . . , cn(Ω1
X

(log ∆))).

Though it is not a priori clear what use this definition can have, the following theorem shows
that it in some sense behaves better than the standard Euler characteristic.

Theorem 3.2. Let X and Y be smooth projective varieties. Consider π : X → Y a potentially
ramified finite covering of degree µ. Let ∆(B) be the collection of irreducible components of the
branch locus (on Y ) and ∆(R) = π−1(∆(B)) be the collection of (reduced) irreducible components
of the ramification locus (on X). Suppose ∆(B) and ∆(R) have simple normal crossings.
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Let F be any coherent sheaf on Y then:

χ(X,∆(R), π∗(F)) = µ · χ(Y,∆(B),F).

Proof. By Theorem 2.18 (and functoriality) we have that:

π∗(ch(F)Todd(Ω1
Y (log ∆(B)))) = ch(π∗(F))Todd(Ω1

X(log ∆(R))).

The result then follows by recalling that the effect of pullback on the degree of a class is to multiply
by µ. �

4. Logarithmic Euler Characteristic vs The Euler Characteristic

The key to obtaining our results is the following comparison between the usual Euler characteristic
and the logarithmic Euler characteristic we have just defined.

Theorem 4.1. Let X be a smooth projective variety and let F be any coherent sheaf on X. Suppose
∆ is a collection of smooth divisors with simple normal crossings on X. Then

χ(X,F)− χ(X,∆,F) =
∑
|b|≥1

(−1)|b|δbD
bQn−|b|(ch(F); c1(Ω1

X(log ∆)), . . . , cn−|b|(Ω
1
X(log ∆))).

The notation Db is introduced in 2.1.(9), the polynomial Q is defined in Theorem 2.2, the constants
δb are introduced in 2.6.(1).

Proof. Recall that by Proposition 2.4 we have:

Qn(ch(x); y1, . . . , yn) =
∑

`+m=n

Q`(ch(x);u1, . . . , u`)Qm(1; v1, . . . , vm).

In this context if we set xi = ci(F), ui = ci(Ω
1
X(log ∆)), and vi = (−1)i∆i then by Proposition

2.10 we have in the setting of Proposition 2.4 that yi = ci(Ω
1
X) and it follows that we can rewrite

Qn(ch(F); c1(Ω1
X), . . . , cn(Ω1

X)) as being equal to:∑
`+m=n

Q`(ch(F); c1(Ω1
X(log ∆)) . . . , c`(Ω

1
X(log ∆)))Qm(1; (−1)1∆1, (−1)2∆2, . . . , (−1)m∆m).

The result then follows from the observation that:

Qm(1; (−1)1∆1, (−1)2∆2, . . . , (−1)m∆m) =
∑
|b|=m

(−1)|b|δbD
b. �

Notation 4.2. If a is multiplicity free, so that Da has no self intersections, then we may write

Da =
∑
j

xj [Cj ] where

(
∩

ai 6=0
Di

)
red

= ∪
j
Cj

in this setting we interpret χ(Da,∆′,F|Da) to mean:

χ(Da,∆′,F|Da) =
∑
i

miχ(Ci,∆
′,F|Ci)

the weighted sum of the logarithmic Euler characteristics of the irreducible components of Da, the
weights being precisely the intersection multiplicities. We interpret χ(Da,F|Da) similarly. Both
of these expressions most naturally live on the disjoint unions of irreducible components of Da.
Note that in the context of simple normal crossings the intersection will already be reduced and the
multiplicities, mi, will all be 1.

When a is MF we have by Proposition 2.11 that

χ(Da,∆′,F|Da) = DaQn−|α|(ch(F); c1(Ω1
X(log ∆)), . . . , cn−|α|(Ω

1
X(log ∆)))

when this expression is viewed as an equality on the disjoint union of the irreducible components
of Da.
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12 ANDREW FIORI

By an abuse of notation we shall extend this to the case where there may be self intersections
and denote by:

χ(Da,∆′,F|Da) = DaQn−|α|(ch(F); c1(Ω1
X(log ∆)), . . . , cn−|α|(Ω

1
X(log ∆)))

even when ai are potentially greater than 1 so that we may interpret χ(Da,∆′,F|Da) as an object
on X. This interpretation is compatible with the interpretation as a push-forward whenever a is
MF.

Corollary 4.3. With the same notation as in the Theorem, if the irreducible components of ∆ have
trivial self intersection, then:

χ(X,F)− χ(X,∆,F) =
∑
|b|≥1

(−1)|b|λbχ(Db,F|Db).

The notation Db is introduced in 2.1.(9), the constants λb are introduced in 2.6.(4).

Proof. In the above notation Theorem 4.1 gives us that:

χ(X,F)− χ(X,∆,F) =
∑
|b|≥1

(−1)|b|δbχ(Db,∆′,F|Db).

As the same result allows us to compute χ(Db,∆′,F|Db)−χ(Db,F|Db) whenever b is MF a recursive
process will allow us to write:

χ(X,F)− χ(X,∆,F) =
∑
|b|≥1

ebχ(Db,F|Db).

We must only show that eb = (−1)bλb
The coefficient of χ(Db,F|Db) can be computed by explicitly writing out the result of the recursive

process. The process will yield a sequence of formulas, indexed by `, of the form:

χ(X,F)− χ(X,∆,F) =
`−1∑
k=1

(−1)k+1
∑

(b1,...,bk)

 k∏
j=1

(−1)|bj|δbj

χ(D
∑k

j=1 bj ,F|
D

∑k
j=1

bj
)

+(−1)`+1
∑

(b1,...,b`)

∏̀
j=1

(−1)|bj|δbj

χ(D
∑k

j=1 bj ,∆′,F|
D

∑`+1
j=1

bj
)

In the summations the elements of the tuples (b1, . . . , bk) always have disjoint support and
∣∣bj∣∣ ≥ 1.

We note that in the context of this corollary we need never consider any terms where b =
∑`

j=1 bj
is NMF as for each such term we have Db vanishes.

The base case of the induction, the case ` = 1, is precisely the statement of Theorem 4.1.
The formula for `+ 1 is obtained from that for ` by simply expanding every term:

χ(D
∑k

j=1 bj ,∆′,F|
D

∑`
j=1

bj
) = χ(D

∑`
j=1 bj ,F|

D
∑`

j=1
bj

)−
∑
c

(−1)|c|δcχ(Dc+
∑k

j=1 bj ,∆′,F|
D

c+
∑`+1

j=1
bj

)

with each term c in the summation avoiding the support of
∑k

j=1 bj . This recursion terminates as

soon as ` > n because then Db is an intersection of more than n divisors, hence empty.
By regrouping terms on χ(Db,F|b) we find that the coefficient of this term is precisely

(−1)|b|λb = (−1)|b|
∑
k≥0

∑
(b1,...,bk)∑

bj=b

 k∏
j=1

δbj

 .

In the summation we consider only terms with all
∣∣bj∣∣ ≥ 1 and where in the tuple (b1, . . . , bk) all of

bj have disjoint support. For k sufficiently large the inner sum is an empty sum. �
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Remark 4.4. The proofs of the above theorem and corollary work formally when we replace
Q(x1, . . . , xn; y1, . . . , yn) by any other polynomial which is a multiplicative sequence in the yi with
respect to products of varieties and such that the xj are ‘functorial’ with respect to restriction.

We should also note that in light of Propositions 2.7 and 2.8 the coefficient (−1)|b|λb can be

rewritten as δ
|b|
(1) whenever b is MF (as in the Corollary above or below). Also, by Proposition 2.9

the constants λb in the Corollary below are typically 0 when b is NMF.

Corollary 4.5. With the same notation as in the Theorem, we have:

χ(X,F)− χ(X,∆,F) =
∑
b MF

|b|≥1

(−1)|b|λbχ(Db,F|Db)

+
∑
b NMF

(−1)|b|λbχ(Db,∆′,F|Db).

The notation Db is introduced in 2.1.(9), the terminology MF and NMF is from 2.6.(2), the constants
λb are introduced in 2.6.(4).

Proof. The argument is the same as above, except rather than being able to completely ignore
any NMF term which may appear, we simply include their contribution separately. The constant
λb is defined precisely so as to count the appropriate weighted count of the number of possible

factorizations of Db in which terms have disjoint support and only the final term is potentially
NMF. �

5. Riemann-Hurwitz

In this section we establish our main result.

Theorem 5.1. Consider π : X → Y a potentially ramified finite covering of degree µ between
smooth projective varieties of dimension n. Let ∆(B) be the collection of irreducible components of
the branch locus (on Y ) and ∆(R) = π−1(∆(B)) be the collection of (reduced) irreducible components
of the ramification locus (on X). Let F be any coherent sheaf on Y . Suppose that ∆(R) and ∆(B)
consist of simple normal crossing divisors. We have that:

χ(X,π∗(F))− µ · χ(Y,F) =
∑
a

(−1)|a|δa(ERa − 1)χ(Ra,∆(R)′, π∗(F)).

The notation Db is introduced in 2.1.(9), the constants δb are introduced in 2.6.(1), the notation
ERa is from 2.14, and the notation χ(Ra,∆(R)′, π∗(F)) is from 4.2.

Proof. Firstly, by Theorem 4.1 we have:

χ(X,π∗(F))− µ · χ(Y,F) =
∑
|a|≥0

(−1)|a|δaχ(Ra,∆(R)′, π∗(F)|Ra)

− µ

∑
|b|≥0

(−1)|b|δbχ(Bb,∆′,F|Bb)

 .

Next, by Theorem 3.2 we have that:

χ(X,∆(R), π∗(F))) = µ · χ(Y,∆(B),F))

so that these terms cancel out in the above expression.
With the remaining terms we can naturally group together those terms involving a and those

with π(a) = b in the summation above. The error term arising from a in the expansion is:

(−1)|a|(µδbχ(Bb,∆(B)′,F))−
∑
π(a)=b

δaχ(Ra,∆(R)′, π∗(F))).
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Next, we observe that:

µ · χ(Bb,∆(B)′,F)) = µ(BbQn(ch(F); c1(Ωi
Y (log ∆(B))), . . . , cn(Ωi

Y (log ∆(B))))

= π∗(BbQn(ch(F); c1(Ωi
X(log ∆(B))), . . . , cn(Ωi

X(log ∆(B))))

= π∗(Bb)Qn(ch(π∗(F)); c1(Ωi
X(log ∆(R))), . . . , cn(Ωi

X(log ∆(R)))).

By Lemma 2.17 we have that

π∗(Bb) =
∑
π(a)=b

ERaRa

and so we obtain:

µ · χ(Bb,∆(B)′,F)) =
∑
π(a)=b

ERaχ(Ra,∆(R)′, π∗(F)).

Grouping the terms on a we now immediately see that the contribution from the a terms is:

(−1)|a|δa(ERa − 1)χ(Ra,∆(R)′, π∗(F))).

Collecting these over all a we obtain the theorem. �

The coefficients in the following corollary can be rewritten using Propositions 5.3 and 5.4.

Corollary 5.2. Consider π : X → Y a potentially ramified finite covering of degree µ between
smooth projective varieties of dimension n. Let ∆(B) be the collection of irreducible components of
the branch locus (on Y ) and ∆(R) = π−1(∆(B)) be the collection of (reduced) irreducible components
of the ramification locus (on X). Let F be any coherent sheaf on Y . Suppose that ∆(R) and ∆(B)
consist of simple normal crossing divisors. Then the difference χ(X,π∗(F)))− µ · χ(Y,F) is equal
to:

∑
a MF

(−1)|a|

∑
a′≤a
|a′|≥1

(−λa−a′δa′)(ERa′ − 1)

χ(Ra, π∗(F)))

+
∑
a NMF

(−1)|a|

δa(ERa − 1) +
∑
a′≤â
|a′|≥1

(−λa−a′δa′)(ERa′ − 1)

χ(Ra,∆(R)′, π∗(F))).

The notation Db is introduced in 2.1.(9), the constants δb are introduced in 2.6.(1), the terminology
MF and NMF is from 2.6.(2), the constants λb are introduced in 2.6.(4), the notation ERa is from
2.14, and the notation χ(Ra,∆(R)′, π∗(F)) is from 4.2.

Proof. The proof is the same as that for Corollary 4.5. The terms −λa−a′δa′(ERa′−1) account for the

contribution to the coefficient of χ(Ra, π∗(F))) from the expansion of the terms χ(Ra
′
,∆′, π∗(F)))

where a′ is MF. The term δa(ERa − 1) in the NMF case accounts for the contribution of the term
which already appears in Theorem 5.1. �

Proposition 5.3. If a is MF and Ra = R1 · · ·Rk then:

(−1)|a|
∑
a′≤a
|a′|≥1

(−λa−a′δa′)(ERa′ − 1) = δa

k∏
i=1

(1− eRi).

Proof. When a is MF we have by Proposition 2.8 that:

(−1)|a|λa−a′δa′ = (−1)a
′
δa.
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It follows that:

(−1)|a|
∑
a′≤a
|a′|≥1

(−λa−a′δa′)(ERa′ − 1) = δa
∑
a′≤a
|a′|≥1

(−1)|a
′|(1− ERa′ ).

A direct computation yields that:∑
a′≤a
|a′|≥1

(−1)a
′
(1− ERa′ ) =

k∏
i=1

(1− eRi)

from which the result follows. �

Proposition 5.4. If a is NMF and |â| ≥ 1 then:

δa(ERa − 1) +
∑
a′≤â
|a′|≥1

(−λa−a′δa′)(ERa′ − 1) = δa(ERa − ERâ).

Proof. When a is NMF and |â| ≥ 1 the same will be true for a−a′ for all choices of a′ except a′ = â.
We thus have by Proposition 2.9 that:

δa(ERa − 1) +
∑
a′≤â
|a′|≥1

(−λa−a′δa′)(ERa′ − 1) = δa(ERa − 1)− λa−âδâ(ERâ − 1).

By noting that λa−âδâ = δa the result now follows immediately. �

6. Handling Self Intersections

The purpose of this section is to describe a method for interpreting the logarithmic Euler charac-
teristic when there are self intersection terms. In particular we will show that these can be viewed
as a weighted sum of the Euler characteristics of the components of the self intersection. The ex-
pressions one obtains are ‘non-canonical’ but may be amenable to computation depending on the
context.

In order to carry out the procedure outlined here, one needs to have a good understanding of
the Chow ring of the variety X. In particular the process may require a large number of relations
consisting entirely of elements with simple normal crossings. The reason we need an alternate
approach is that though ideally we would be able to write:

D`ci(ΩX(logD)) = ci(ΩD`),

this is simply not true if ` > 1. In order to handle this, we must have at least enough information
to compute D`. In particular we will need to make use of relations:

D ∼
∑
i

uiEi

with the Ei not being equal to any other divisor already in use, and with the total collection Ei,
D, and every other divisor in use, having simple normal crossings.

Lemma 6.1. Let X be a smooth projective variety and let F be any coherent sheaf on X. Suppose
∆ is a collection of smooth divisors with simple normal crossings on X. Fix D ∈ ∆ and a relation

D ∼
∑
i∈I

uiEi

with simple normal crossings as above. We may rewrite:

DaD`Qm(ch(F); c1(ΩX(log ∆)), . . . , cm(ΩX(log ∆)))
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as:

DaD`−1
m∑
k=1

(−1)k−1δ(k−1)

∑
i

uiE
k
i Qm−k+1(ch(F); c1(ΩX(log ∆ ·Ei)), . . . , cm−k+1(ΩX(log ∆ ·Ei))).

The constant δ(k−1) is defined in 2.6.(1).

Proof. This follows immediately by a comparison between

Qm(ch(F); c1(ΩX(log ∆)), . . . , cm(ΩX(log ∆)))

and
Qm(ch(F); c1(ΩX(log ∆ · Ei)), . . . , cm(ΩX(log ∆ · Ei)))

as in Theorem 4.1. �

Lemma 6.2. Let X be a smooth projective variety and let F be any coherent sheaf on X. Let ∆
be a collection of smooth divisors with simple normal crossings on X.

Suppose we are given sufficiently many rules in the Chow ring of X of the form:

(a) Dj ∼
∑
i∈Ija

uiEi and (b) Ej ∼
∑
i∈Ijb

uiEi

expressed with respect to a collection of divisors Ei indexed by I = tIja, a universal family of shared
indices and such that the total collection of divisors Di, Ej has simple normal crossings, then we
may rewrite:

DaD`Qm(ch(F); c1(ΩX(log ∆)), . . . , cm(ΩX(log ∆)))

as a weighted sum of terms:

DãEbQn−|ã|−|b|(ch(F); c1(ΩX(log ∆ · Eb)), . . . , cn−|ã|−|b|(ΩX(log ∆ · Eb)))
with bi ≤ 1.

Proof. The key is to inductively apply the previous lemma.
We observe that at each application of the lemma we produce new terms of the form:

Da′Eb
′
Qn−|a′|−|b′|.

However, each new term introduced either satisfies:

(1) The number of self intersections has been decreased, or
(2) The subscript on Qm has decreased.

It follows that the inductive process terminates provided we have enough rules to carry it out. �

Proposition 6.3. In the setting of the Lemma, the coefficient of

DãEbQm(ch(F); c1(ΩX(log ∆ · Eb)), . . . , cm(ΩX(log ∆ · Eb))
in the formal expansion of

DaQm(ch(F); c1(ΩX(log ∆)), . . . , cm(ΩX(log ∆)))

is: ∏
i

(ubii δ(yi))

where yj =
∣∣∣∪
z
Ijz ∩ b

∣∣∣ , that is, yj is the number of rules that must be used in the expansion of Ej.

Proof. The appearance of the
∏
i u

bi
i δ(yi) is apparent from the lemma, as these are precisely the

terms that appear when we apply it. The only remaining question is the computation of yi based
on the shape of b. One readily checks the given formula. �

The only information we still lack about our expansion is which Eb actually appear. This depends
on choices made during the inductive process, however, if one orders the rules one can obtain a
systematic result. The following proposition is an immediate consequence of the inductive process.
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Proposition 6.4. Carrying out the inductive procedure as above, if the rules:

(a) Dj ∼
∑
i∈Ija

uiEi and (b) Ej ∼
∑
i∈Ijb

uiEi

are ordered by (a) and (b) and we always select the first rule which does not conflict with choices
already made then the collection Eb which appear in the expansion are precisely those which satisfy:

(1) |b ∩ Ijc| = 0, 1.
(2) For each Dj, the number of a for which |b ∩ Ija| = 1 is aj − 1.
(3) |b ∩ Ijc| = 1 and c > 0 implies |b ∩ Ijc−1| = 1.
(4) |b| ≤ n− |ã|.

Remark 6.5. Because DãEbQm(ch(F); c1(ΩX(log ∆ · Eb)), . . . , cm(ΩX(log ∆ · Eb))) is computing
a logarithmic Euler characteristic on DaEb the above expansion gives a weighted sum of the log-
arithmic Euler characteristics for some representative cycles for various Dx. We note that

∏
i u

bi
i

is somehow related to the coefficient that would have appeared had we been computing the self
intersection whereas the coefficient

∏
i δ(yi) is universal. None the less, we note that this process

involves a number of non-canonical choices.
It is worth noting that by performing a further induction, as in Corollary 4.3, we could replace

the Logarithmic Euler characteristics with the actual Euler characteristics of the same components
of the self intersections, simply with different weights.

Example 6.6. Suppose we have relations:

D ∼ E1 + E2 E1 ∼ E3 ∼ E4 E2 ∼ E5 ∼ E6 E3 ∼ E7 E5 ∼ E8.

(Note that the implied relation E3 ∼ E4 (respectively E5 ∼ E6) is not being viewed as a rule for
E3 (respectively E5). Then we may carry out the procedure above as follows:

D2Q2(ch(F); c1(ΩX(log ∆)), c2(ΩX(log ∆)))

= DE1Q2(ch(F); c1(ΩX(log ∆ · E1)), c2(ΩX(log ∆ · E1)))

+DE2
1δ(1)Q1(ch(F); c1(ΩX(log ∆ · E1))) +DE3

1δ(2)Q0(ch(F); )

+DE2Q1(ch(F); c1(ΩX(log ∆ · E2)), c2(ΩX(log ∆ · E2)))

+DE2
2δ(1)Q1(ch(F); c1(ΩX(log ∆ · E2))) +DE3

2δ(2)Q0(ch(F); )

= DE1Q2(ch(F); c1(ΩX(log ∆ · E1)), c2(ΩX(log ∆ · E1)))

+DE1E3δ(1)Q1(ch(F); c1(ΩX(log ∆ · E1E3))) +DE1E
2
3δ(1)δ(1)Q0(ch(F); )

+DE1E3E4δ(2)Q0(ch(F); )

+DE2Q1(ch(F); c1(ΩX(log ∆ · E2)), c2(ΩX(log ∆ · E2)))

+DE2E5δ(1)Q1(ch(F); c1(ΩX(log ∆ · E2E5))) +DE2E
2
5δ(1)δ(1)Q0(ch(F); )

+DE2E5E6δ(2)Q0(ch(F); ).

Which we can ultimately express as:

= χ(DE1,∆
′,F|DE1) + δ(1)χ(DE1E3,∆

′,F|DE1E3)

+ δ(1)δ(1)χ(DE1E3E7,∆
′,F|DE1E3E7) + δ(2)χ(DE1E3E4,∆

′,F|DE1E3E4)

+ χ(DE2,∆
′,F|DE2) + δ(1)χ(DE2E5,∆

′,F|DE2E5)

+ δ(1)δ(1)χ(DE2E5E8,∆
′,F|DE2E5E8) + δ(2)χ(DE2E5E6,∆

′,F|DE2E5E6).

In particular we can express the result purely as a sum of logarithmic Euler characteristics.
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7. Conclusions and Further Questions

We have obtained a natural generalization of the Riemann-Hurwitz results to the algebraic Euler
characteristic. The formulas given are certainly more complicated than for the standard Euler
characteristic.

It is natural to ask to what extent any of the results here can be generalized outside the context
in which we are able to prove them.
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