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The following makes extensive use of Jan Brunier’s arcticle on Hilbert Modular forms contained
in ”The 1-2-3 of Modular Forms”.

1 Quadratic Spaces and Orthogonal Groups

The following definitions are far more general than what is needed. To simplify things you may
generally assume in the following that R = k is a field of characteristic not 2 and that M is a vector
space over k. The only more general setting we should need, is to consider discrete submodules of
these.

Definition 1.1. Let R be a commutative ring with unity, R∗ the group of units, V a finitely
generated R-module. A quadratic form on V is a mapping Q : V → R s.t.

1. Q(rx) = r2Q(x) for all r ∈ R and x ∈ V

2. B(x, y) := Q(x+ y)−Q(x)−Q(y) is bilinear

The pair (V,Q) will be called a quadratic module (or quadratic space) over R.

In general the first condition follows from the second if 2 ∈ R∗. (in this case Q(x) = 1
2
B(x, x))

Definition 1.2. Let x, y ∈ V , they are said to be ”orthogonal” if B(x, y) = 0

Using this definition one can define the notion of the orthogonal complement to a set.

Definition 1.3. Let A ⊂ V then A⊥ := {x ∈ V |B(x, y) = 0∀y ∈ A} is called the orthogonal
complement.

We now wish to define the notions of morphisms between quadratic spaces, we use the obvious
definition.

Definition 1.4. Let (V,Q) and (V ′, Q′) be quadratic spaces, an R-linear map σ : V → V ′ is called
an isometry if for all x ∈ V we have Q′(σ(x)) = Q(x).

Example. Reflections: for an element x ∈ M s.t. Q(x) ∈ R∗ define τx : M → M via τx(y) =
y − B(y, x)Q(x)−1x This is an isometry and in the vector space case can be seen as the reflection
in the hyperplane x⊥.

Eichler Elements: Let u ∈ M be isotropic (Q(u) = 0) and v ∈ M be s.t. B(u, v) = 0 define
Eu,v(y) = y +B(y, u)u−B(y, v)v −B(y, u)Q(v)u
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We now define the objects we actually wish to study, that is the orthogonal group for a quadratic
space.

Definition 1.5. Let (V,Q) be a quadratic space, the orthogonal group of V is: OV := {σ ∈
Aut(V )|σis an isometry}.

Definition 1.6. Suppose V is free and v1, ...vn is a basis for V , let S := (B(vi, vj))i,j then the
element det(S) ∈ R/(R∗)2 is independent of the choice of basis and is called the discriminant d(V ).
The space is non-degenerate if d(V ) 6= 0.

Remark. Choosing a symmetric matrix S and a basis is equivalent to giving a quadratic form.
Gram Schmidt process allows construction of an orthogonal basis for non-degenerate spaces.

Doing so allows us to always view our quadratic form as being given by a1v
2
1 + ...+ anv

2
n for some

elements ai ∈ R.

Choosing a basis for V also allows us to view the the elements of the orthogonal group as being
contained in ”GLn(R)” which allows us to make the following definition.

Definition 1.7. The special orthogonal group is then SOV := {σ ∈ OV | det(σ) = 1}

Example. Having a basis, and viewing the elements of V as column vectors allows us express B
as:

B(x, y) = txSy
As such the statement, M ∈ OV amounts to saying tMSM = S.
In the standard linear algebra case this is just tMM = id which gives us the usual notion of

orthogonal matricies

Theorem 1.8. Let R = k be a field of characteristic not 2, M a regular quadratic space (That
is, that for all x ∈ M,x⊥ 6= M). Then OM is generated by reflections and SOM is those that are
products of an even number of them.

Remark. The result over R is that every orthogonal matrix preserves a plane, this comes out of
properties of the eigenvalues and diagnolization over R. Once one has this one only needs to deal
with the 2 dimensional case.

It is not clear to me if the same arguments can be carried out over general fields.

2 The Lie Algebra - Informal

For a Lie Group, the idea of the lie algebra is that it is supposed to be the elements of the group
that are infinitesimally close to the identity of the group. That is the elements X s.t. (1 +X) ∈ G
and X is ”close” to 1. That is to say, it is precisely the tangent space to the Manifold at the
identity (Te). One of the motivations for looking at this space is that in general one typically finds
that neighborhood of the identity generates most of the group, and as such understanding this
infinitesimal neighborhood may give much information.

For the case of the algebraic group GLn, the map GLn → An2
makes it clear that the coordi-

nate functions are just the components of the matrix (to be pedantic one should look at first an
embedding into Mn+1 we will not do this here). It is also easy to see, since the condition of being
in GLn is an open condition on An2

that you can travel in any direction (at least a small distance)
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from the identity and stay in GLn and that these directions are all independent. Thus we have
that Lie(GLn) = Mn. We note that the exponential map exp : A 7→ 1 +A+A2/2! +A3/3!... maps
Lie(GLn)→ GLn.

More rigourously one might want to use the dual of the cotangent space by computing me/m
2
e.

Actually computing the lie algebra for OV can be done in several ways. The seemingly informal
ways we present now, actually can be made rigorous, though doing so thoroughly could be quite
painful in general. Essentially one needs to make the agrement, that the operations we perform
on matricies, can be carried out componentwise to the same effect.

Example (Lie Algebra of an Orthogonal Group). Let V be a V.S. over k a field of characteristic
not 2, fix a basis for V and S a symmetric matrix with non-zero determinant. Let Q be the
quadratic form given by Q(x) := xStrx.

Fixing a basis for V gave us an isomorphism Aut(V ) ' GLn(k) under which OV ' {M ∈
GLn(k)|MStrM = S} We then wish to view the tangent space of OV as a subspace of the tangent
space of GLn

The tangent space is then the elements X ∈ Mn(k) s.t. (1 +X) ∈ OV ”mod squares”. that is:
(1 + X)Str(1 + X) = S which gives the condition XS + StrX + XStrX = 0 where we consider
XStrX a square since it has 2 Xs. Rigourously XStrX is actually a square in the sense we mean,
componentwise all the functions it contains will be generated by products of 2 coordinate functions
each from the maximal ideal, and it is this that we are modding out by.

Alternatively ”differentiating” the condition MS(trM) = S yields (dM)S + S(trdM) = 0 and
taking dM as X ∈Mn(k) gives the same relation.

We will now compute the dimension of the Lie Algebra, which from general theory will also be
the dimension of the orthogonal group (as a manifold).

It suffices to consider things over the algebraic closure of k since dimensions won’t change under
extension(flatness), and here we may assume our quadratic form is the most trivial one given by
S = idn the identity matrix. The condition XS + StrX = 0 then just says X is skew symmetric.
The space of skew symmetric matricies in Mn(k) is easily seen to have dimension (n)(n− 1)/2

3 The Clifford Algebra - For an Orthogonal Group

As before, Let R be a commutative ring with unity, and let (V,Q) be a finitely generated quadratic
space over R. For an R algebra A we will denote Z(A) its center.

Definition 3.1. Let TV be the tensor algebra of V , that is TV :=
⊕∞

m=0 V
⊗m.

Let IV be the two-sided ideal in TV generated by the elements v ⊕ v −Q(v) for v ∈ V .
Then the Clifford algebra for V is CV := TV /IV .

Notice that V injects naturally into CV
The Clifford Algebra satisfies the following universal property:

Proposition 3.2. Let A be any R-algebra, f : V → A an R-linear map s.t. f(v)2 = Q(v)idA for
all v ∈ V then there exists unique g : CV → A s.t. f(v) = g(v).

Proof. (sketch) The proof of this fact is to appeal to the universal property of tensor products and
to note that the map descends to the quotient by IV because of the condition f(v)2 = Q(v)idA.
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In particular the assignment V → CV is a functor from category of quadratic spacers over R
to category of associative R algebras.

Example. C0,0 = R, C1,0 = R⊕ R, C0,1 = C, C2,0 = M2(R), C1,1 = M2(R), C0,2 = H

Notice that because the relation defining IV involves only tensors of even length, there is a
natural Z/2Z grading on CV s.t. CV = C0

V ⊕ C1
V where C0

V , C
1
V are the even and odd length

tensors respectively. Note that C0
V is a subalgebra, but C1

V is just a vector subspace.
Noting that multiplication by −1 on V is an isometry and induces the canonical automorphism

J of the clifford algebra it is easy to see that (if 2 is a unit in R) C0
V = {x ∈ CV |J(x) = x}

There is another involution (called the canonical involution) on CV , t : x1⊗...⊗xn 7→ xn⊗...⊗x1.
We can use this to define the clifford norm N(x) = txx. Note that this extends Q from V to

CV .
We now fully restrict our attention to the case R = k a field of characteristic not 2. Let

(V,Q) be a non-degenerate quadratic space and let v1, ..., vn be an orthonormal basis of V . set
δ = v1 ⊗ ...⊗ vn in CV .

Theorem 3.3. The center of CV is given by: Z(CV ) = k if n is even, k + δk if n is odd. The
center of C0

V is given by: Z(C0
V ) = k + δk if n is even, k if n is odd.

Proof. (sketch)
It is easy to check that the centers contain the given elements.
To check that those elements are the center is a technical argument.
First observe that if a basis vector vi is to commute with a linear combination of tensors it will

need to commute with each elementary tensor.(provided things are expressed in terms of tensors
of the orthogonal basis elements).

A basis vector vi commutes with an elementary tensor iff it does not appear it in and the tensor
is of odd length or it does appear and the tensor is of even length.

Thus, if an elementary tensor is to commute with every basis vector, it must either contain
none and be of even length or all and be of odd length. This completes the argument

Example. if n = 1 then CV ' k[X]/(X2 − d(V )/2)
if n = 2 then CV is a quaternion algebra of type (Q(v1), Q(v2)) and C0

V ' k[X]/(X2 + d(V ))
if n = 3 then C0

V is a quaternion algebra of type (−Q(v1)Q(v2),−Q(v2)Q(v3)).
if n = 4 then C0

V is a quaternion algebra of type (−Q(v1)Q(v2),−Q(v2)Q(v3)) over Z(C0
V )

Moreover the conjugation and norm on C0
V correspond to the main involution and clifford norm.

4 The Spin Group

The goal of this section is to define the Spin Group, which is meant to be the covering space of
the orthogonal group.

Remark. We would like to remark 2 things, firstly, given any Semi-simple group G, there are
two natural other groups to consider. These are These are the Adjoint group, G/Z(G) and the
universal covering space of the group. In general the former has finite index in the latter, and
many of the properties of one are shared by the others, In particular the share Lie algebras. Both
of these 2 groups are often easier to study than the original.
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Secondly, I would like to remark that the term spin group, comes from physics. The notion
is that physical laws should not depend on which coordinate system we are using to measure
things and so isometries of the universe should be equally configurations. It turned out that
under appropriate modelling of subatomic particles there was an extra degree of freedom for the
configuration space that did not correspond to vector valued locations or directions but was rather
a binary measure on particles. It was decided that this was the ’spin’ of the particle. Once one
actually applies mathematical language to this model of the universe, this extra spin parameter
corresponds to the what is additionally captured by the covering space of an orthogonal group.

The first step towards the construction of this covering is to define the Clifford Group

Definition 4.1. The Clifford Group is defined to be:
CGV := {x ∈ CV |x invertable and xV J(x)−1 = V }

It is an easy check to see that this is a group.
Notice that for each x ∈ CGV have αx(v) = xvJ(x)−1 an automorphism of V . We thus have a

representation: α : CGV → AutR(V ) called the vector representation.
We observe that t : CGV → CGV and thus so does the clifford norm.

Lemma 4.2. If R = k a field of characteristic not 2, then ker(α) = k∗ and the clifford norm gives
a homomorphism N : CGV → k∗.

Proof. It is easy to see that k∗ is in the ker(α), this is because the J map acts trivially on C0
V .

Conversely let x ∈ ker(α). we can write x = x0 + x1 with xi ∈ Ci
V . We have then that:

xvJ(x)−1 = v for all v ∈ V
Thus (x0 + x1)v(x0 − x1)

−1 = v for all v ∈ V .
So then we get: x0v + x1v = vx0 − vx1 looking at the Ci

V components and noting that V
generates CV as an algebra we get that: x0 ∈ Z(CV ) ∩ C0

V = k∗.
To show that x1v = vx1 ⇒ x1 = 0 is done similarly to computing the center of CV .
This completes the first assertion that ker(α) = k∗.
We next notice that, for v ∈ V we have:
αx(v) = −tJ(αx(v)) so that:
xvJ(x)−1 = tx−1vJ(tx) so thus:
N(x)vJ(N(x))−1 = v in particular N(x) ∈ k∗.

Lemma 4.3. For each x ∈ CGV , αx is an isometry.

Proof. for v ∈ V we have:
Q(ax(v)) = N(ax(v)) =t J(x−1)tvtxxvJ(x−1) = Q(v).

In particular this gives us a map α : CGV → OV . Moreover, if x ∈ CGV ∩ V , then Q(x) ∈ R∗
and αx corresponds to the reflection in the plane x⊥. This can be seen by checking directly the
action of the elements and seeing that it corresponds to the map we had previously defined as the
reflection.

Definition 4.4. We define the groups GSpinV and SpinV as follows:
GSpinV := CGV ∩ C0

V

SpinV := {x ∈ GSpinV |N(x) = 1}
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In the case where reflections generate the orthogonal group (which is the case when V is a
regular quadratic space) we get exact sequences:

1→ k∗ → CGV
α−→ OV → 1

And since SOV are generated by even numbers of reflections:

1→ k∗ → CSpinV
α−→ SOV → 1

We then have, that since N : CGV → k∗ we can construct an induced homomorphism:

θ : OV → k∗/(k∗)2

called the spinor norm. It is defined by taking a section of α and computing the norm in CGV ,
one must check that different choices of sections give the same result up too (k∗)2, this is an easy
check. We observe that for τv the reflection at v we get θ(τv) = Q(v)

We then obtain the exact sequence:

1→ µ2 → SpinV
α−→ SOV

θ−→ k∗/(k∗)2

We remark that over the algebraic closure of k this would tell us precisely that SpinV is the cover
of SOV .

For the purpose of doing computations in low dimensions, the following lemma is usefull.

Lemma 4.5. If dim(V ) ≤ 4 then GSpinV = {x ∈ C0
V |N(x) ∈ k∗}, SpinV := {C0

V |N(x) = 1}
Proof. The important observation in the proof, is that for dim(V ) ≤ 4 we have V = {g ∈ C1

V |gt =
g}. To prove that assertion just amounts to checking that a tensor of length 3 of orthogonal
elements satisfies xt = −x.

The other observations of note then are that if N(x) ∈ k∗ then xtN(x)−1 is the inverse of x
and that N(x)vN(x)−1 = v implies that xvx−1 = (xvx−1)t would imply x ∈ CGV .

Example. From the examples of the previous section, we get that the Spin groups correspond to
the norm 1 elements of a quaternion algebra.

5 The Symmetric Space

Let (V,Q) be a quadratic space over Q. V (R) := V ⊗R will be isomorphic to Rp,q for some choice
of p, q.

If K ⊂ OV (R) is a maximal compact subgroup, then it will turn out that OV (R)/K is a
symmetric space (every point has a symmetry where it is the unique local fixed point). It turns
out that these only have complex structures (ie will be hermitian) if one of p or q is 2. Since
interchanging p, q does not change the orthogonal group (it amounts to replacing Q by −Q) we
suppose that p = 2.

We wish to construct these spaces along with their complex structure for this case.

Remark. For the next while, we will be discussing the structure of R points, and as such the
only invariants of significance are these values p, q. However, when we mention ’Rational Boundry
Points’ all of a sudden the remaining details about the structure over Q become important. So
although topologically, the spaces we define in what follows may be isomorphic, the rational struc-
tures on them may not be so simple.
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5.1 The Grassmanian - Maximal Compacts

We consider (V,Q) to be of type (2, n)
We consider the Grassmannian of 2-dimensional subspaces of V (R) on which the quadratic

form Q restricts to one which is positive definite.

Gr(V ) := {v ⊂ V |dim(v) = 2, Q|v > 0}

By Witt’s extension theorem, the group OV will act transitively on Gr(V ). If we fix v0 ∈ Gr(V )
then its stabilizer Kv0 will be a maximal compact subgroup (and K ' O(2)×O(n) over R). Thus
Gr(V )/Kv0 realizes a hermitian symmetric space.

Remark. Though this is an easy realization of the space, It is not clear from this construction
what the complex structure should be.

5.2 The Projective Model - Complex Structure

We consider the complexification V (C) of the space V and the projectiviztion P (V (C)).
We then consider the zero quadric:

N := {[Z] ∈ P (V (C))|(Z,Z) = 0}

It is a closed algebraic subvariety of the projective space.

κ := {[Z] ∈ P (V (C))|(Z,Z) = 0, (Z,Z) > 0}

is a complex manifold of dimension n consisting of 2 connected components.

Remark. One must check that these spaces are in fact well defined, that is that the conditions
do not depend on a representative Z. Indeed (cZ, cZ) = c2(Z,Z) and (cZ, cZ) = cc(Z,Z).

The assertions about the dimension and connected components is easily seen once we consider
the tube domain model later. However one can see that projectivization removes one dimension
as does the (Z,Z) = 0 condition, the (Z,Z) > 0 condition cuts the space into 2 components
separating Z from Z and removing the real points.

The orthogonal group OV (R) acts transitively on κ

Remark. One must first check that it acts (conditions are preserved) this is easy once we rephrase
conditions below.

To show transitivity observe:
for Z ∈ V (C) the condition [Z] ∈ κ is:
(X + iY,X + iY ) = 0 and (X + iY,X − iY ) > 0 but:
(X + iY,X + iY ) = (X,X)− (Y, Y ) + 2i(X, Y ) and (X + iY,X − iY ) = (X,X) + (Y, Y ).
thus [Z] ∈ κ iff (X,X) = (Y, Y ) > 0 and (X, Y ) = 0.
Thus, we can get an O in OV (R) that maps X 7→ X ′ Y 7→ Y ′ via witts extension theorem.
This O will then map [Z]to[Z ′].
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The subgroup O+
V (R) of elements whose spinor norm equals the determinant preserves the 2

components of κ whereas OV − O+
V (R) interchanges them. This fact is most easily seen once you

have the isomorphism to the Gr(V ) model and look at how the spinor norm and determinant check
if the element preserves orientation of positive definite planes. Pick one component of κ denote it
κ+.

For Z ∈ V (C) we will write Z = X + iY where X, Y ∈ V (R).

Lemma 5.1. The assignment [Z] 7→ v(Z) := RX + RY defines a real analytic isomorphism
κ+ → Gr(V )

Proof. • Must check well definedness.

The mapping gives us a pos-def plane by checking conditions.

That it does not depend on representative amounts to checking that multiplying by C∗ just
rotates and rescales the plane. indeed (a + ib)(X + iY ) = (aX − bY ) + i(aY + bX) so we
have just changed the basis for the plane.

• Must check subjectivity.

This amounts to the iff in the condition for inclusion in κ above plus noting that can pick
[X + iY ] or [Y + iX] at least one of which is in κ+, that is the assertion that [X + iY ] and
[X − iY ] are in different components of κ

• Must check analyticity.

This amounts to saying that we can continuously analytically assign orientations to the ele-
ments of the grassmannian. This follows (either from what follows and considering homology)
or by observing that O+

V (R) acts transitively and continuously analytically on G(V ) so it can
be used to continuously analytically assign an orientation to each plane.

5.3 The ”Tube Domain” Model

Remark. The term tube domain appears to refer to the imposition of positivity conditions on
only the imaginary part of your vectors.

Pick e1 a non-zero isotropic vector in V , pick e2 s.t. B(e1, e2) = 1
define V := W ∩ e⊥2 ∩ e⊥1 , we then may express elements of V (C) as (z, a, b)
Then we get V = W ⊕Qe2⊕Qe1 and W is a quadratic space of type (1, n− 1) (a Lorentzian).

Definition 5.2. We define the tube domain H := {z ∈ W (C)|Q(=(z)) > 0}.

Lemma 5.3. The map ψ : H → κ given by ψ(z) 7→ [(z, 1,−Q(z)−Q(e2))] is biholomorphic.

Proof. One first checks that this is well defined,
Indeed we have that:

Q(z + e2 + (−Q(z)−Q(e2))e1) = Q(z) +Q(e2) +B(e2, e1)(−Q(z)−Q(e2)) = 0

.
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Additionally:

B(z + e2 + (−Q(z)−Q(e2))e1, z + e2 + (−Q(z)−Q(e2))e1)

= B(z + e2 + (−Q(z)−Q(e2))e1, z + e2 + (−Q(z)−Q(e2))e1)

= B(z, z) + 2Q(e2) + (−Q(z)−Q(e2)) + (−Q(z)−Q(e2))

= B(z, z)− (1/2)B(z, z)− (1/2)B(z, z)

= (1/2)(B(z, z − z) +B(z − z, z))

= (1/2)(B(2=(z), z)−B(2=(z), z))

= 2B(=(z),=(z))

= Q(=(z)) > 0

for [Z] ∈ κ that X, Y span a positive definite plane tells us that B(Z, e2) 6= 0, this is because W
contains no positive definite plane, and so Z interacts with e1⊕ e2, however e1 is isotropic so there
it is not orthogonal to e2. We can thus write [Z] = [(z, 1, b)]. Reversing the above calculations
give us that b = −Q(z)−Q(e2) and Q(=(z)) > 0.

The biholomorphicity is infered from the fact that in one directions we have a map that is
essentially polynomial, in the reverse it is essentially a projection.

H ends up having 2 components, this follows from the fact that W (R) is a space of type
(1, n − 1) and by inspecting the defining condition, one of these thus corresponds to κ+ we shall
label that one H+.

It is this H+ that is the analog of the usual upper half plane, we have an action of O+
V (R)

acting on it through its action on κ. This action as before will be transitive.

6 Discrete Subgroups - Lattices

Let V be a non-degenerate quadratic space over Q of type (2, n).

Definition 6.1. A Lattice in V is a Z-module L s.t. V = L⊗Z Q
We say a lattice L is integral if B(x, y) ∈ Z∀x, y ∈ L.
We say a lattice is even if Q(x) ∈ Z∀x ∈ L.
The dual lattice is L∨ := {x ∈ V |B(x, y) ∈ Z∀y ∈ L}

Note that L is integral iff L ⊂ L∨ in which case L∨/L is a finite abelian group called the
discriminant group. |L∨/L| = |det(S)| where S is the matrix for Q coming from a lattice basis for
L. For the remainder L is an even lattice. Then OL ⊂ OV is a discrete subgroup.

Let Γ ⊂ OL be a subgroup of finite index then Γ acts properly discontinuously (every element
of the space has a nhd s.t. the group maps the nhd outside that nhd) on Gr(V ), κ+, and H+.

We consider the space: Y (Γ) := Γ \ H+, it is a normal complex space and is compact if and
only if V is anisotropic (does not take on the value 0 over Q). If it is not compact, it can be
compactified by adding rational boundary components, in the κ+ model these are the non-trivial
isotropic subspaces of V (R).

If an isotropic boundry component is a line in V (R) then we call it a special point, otherwise
the component is called generic. A special point is considered to be a 0-dimensional boundary
component.
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If F ⊂ V (R) is an isotropic subspace, the set of all generic boundary points corresponding to
elements of F (C) is called a one-dimensional boundary component.

Lemma 6.2. There is a bijective correspondance between boundary components of κ+ in N and
non-zero isotropic subspaces of V (R) of a corresponding dimension.

We consider a boundary component to be rational if the corresponding space F is defined over
Q. we define (κ+)∗ to κ+ together with its rational boundary components.

OV (Q)∩O+
V (R) acts on (κ+)∗ and by the theory of baily-borel, X(Γ) := (κ+)∗/Γ together with

baily-borel topology is a compact hausdorff space which can be given a complex structure. (one
can construct an ample line bundles, hence it is projective algebraic)

Remark. does he mean quotient on left?

6.1 Heegner Divisors

These are special divisors on the space X(Γ).
For λ ∈ L∨ with Q(λ) < 0 then Vλ := λ∨ ⊂ V is a rational quadratic space of type (2, n− 1).

If we consider this in κ+ we get: Hλ = {[Z] ∈ κ+|(Z, λ = 0)} which is an analytic divisor.
In H+ this would be Hλ = {z ∈ H+|aQ(z)− (z, λW )− aQ(e2)− b = 0} (λ = λW + ae2 + be1).
Fix β ∈ L∨/L and m < 0 then H(β,m) =

∑
λ∈β+L,Q(λ)=mHλ called a Heegner givisor of

discriminant (β,m). (If Γ acts trivially on L∨/L this descends to an algebraic divisor on Y (Γ).
Can also consider H(m) = (1/2)

∑
βH(β,m) which is Γ invariant and thus descends to Y (Γ).

7 Modular Forms for O(2,n)

Let κ+ = {Z ∈ V (C)|[Z] ∈ κ+} be the cone over κ+.

Definition 7.1. Let k ∈ Z, χ be a character of Γ. A meromorphic function on κ+ is a modular
form of weight k and character χ for the group Γ if:

1. F is homogeneous of degree −k, ie F (cZ) = c−kF (Z) for c ∈ C− {0}.

2. F is invariant under Γ, ie F (gZ) = χ(g)F (Z) for any g ∈ Γ.

3. F is meromorphic on the boundary.

If F is holomorphic on κ+ and on the boundary, we call it a holomorphic modular form.

The Koecher principle implies condition (3) is automatic if the witt rank of V (dimension of
maximal isotropic subspace) is less than n. Note that for type (2, n) the Witt rank is always less
than 2, and will often be less.

7.1 Siegel Theta Function

Examples of modular forms on these spaces can be constructed either through eisenstien series or
using lifts via the Siegal Theta Function, we shall not describe this here.
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8 Isomorphism of Hilbert Modular Group and 0(2,2)

Let F/Q be a real quadratic field, so F = Q(
√
d). Consider the 4-dimensional Q vector space

Q⊕Q⊕F . With the quadratic form given by Q(a, b, x+ y
√
d) = (x+ y

√
d)(x− y

√
d)− ab. Then

V is a rational quadratic space of type (2, 2) so all of the proceeding construction applies.
We consider the basis v1 = (1, 1, 0), v2 = (1,−1, 0), v3 = (0, 0, 1), v4 = (0, 0,

√
d).

We then have (as in the notation of clifford algebras) that δ2 = d and so Z := Z(C0
V ) = Q+Qδ

and moreover C0
V = Z +Zv1v2 +Zv2v3 +Zv1v3 is isomorphic to the split quaternion algebra over

M2(F ). The map coming from linearly extending:

1 7→
(

1 0
0 1

)
v1v2 7→

(
1 0
0 −1

)
v2v3 7→

(
0 1
−1 0

)
v1v3 7→

(
0 1
1 0

)
The canonical involution in C0

V is given by:

∗ :

(
a b
c d

)
7→
(
a b
c d

)∗
=

(
d −b
−c a

)
The clifford norm is given by the determinant:

N :

(
a b
c d

)
7→ ad− bc

We thus have that SpinV ∼= SL2(F ) ∼= ResF/Q(SL2). Thus ΓF = SL2(OF ) are arithmetic
subgroups of SpinV . In fact, one can show that ΓF = SpinL where L is the lattice Z⊕Z⊕OF ⊂ V .

We now explicitly describe the vector representation (That is, how does SpinV act on V ). let
σ : x 7→ v1xv

−1
1 be Ad(v1). then δσ = −δ. Then σ agrees with conjugation on F when acting on

the center of C0
V . On M2(F ) the action is expressed as:

σ :

(
a b
c d

)
7→
(
a b
c d

)σ
=

(
d′ −c′
−b′ a′

)

Let V = {X ∈M2(F )|X∗ = Xσ} = {X ∈M2(F )|X tr = X ′} = {
(
a v′

v b

)
|a, b ∈ Q, v ∈ F}

We see in particular that V is isomorphic to V
So from now on we work with V . Where the quadratic and bilinear forms are given by:

Q(X) = −det(X) and B(X, Y ) = −tr(XY ∗)

Moreover, SpinV ∼= SL2(F ) acts via g ◦X = gXg−σ = gXg′tr

We next notice that we have: V (C) = M2(C) (really! it isn’t a subspace) and so:

κ = {[Z] ∈ P (M2(C))|det(Z) = 0,−tr(ZZ∗) > 0}

Take e1 =

(
−1 0
0 0

)
and e2 =

(
0 0
0 1

)
. Observe that Q(e1) = 0 and B(e1, e2) = 1.

We set W = V ∩ e⊥1 ∩ e⊥2 . Noting that B(

(
a b
c d

)
, e1) = d and B(

(
a b
c d

)
, e2) = −a. We

conclude that W = {
(

0 b
c 0

)
∈ V }
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Then W (C) ∼= C2 and H ∼= {(z1, z2) ∈ C2| im(z1z2) > 0}
For z = (z1, z2) ∈ H put:

M(z) =

(
z1z2 z1

z2 1

)
This corresponds to the map H → κ from before.
If we choose for H+ the component where im(z1) = im(z2) = 1 then it is immediately clear we

have an isomorphism H2 ∼= H+ ∼= κ+.
This map commutes with the action of SL2(F ) where the action on κ+ is given as before (that

is through SpinV ∼= SL2(F )).

In particular

(
a b
c d

)
∈ SL2(F ) acts on M(z) ∈ κ+ as:

(
a b
c d

)(
z1z2 z1

z2 1

)(
a′ c′

b′ d′

)
=

(
(az1z2 + bz2)a

′ + (az1 + b)b′ (az1z2 + bz2)c
′ + (az1 + b)d′

(cz1z2 + dz2)a
′ + (cz1 + d)c′ (cz1z2 + dz2)c

′ + (cz1 + d)d′

)
And acting on H as: (

a b
c d

)
◦ (z1, z2) = (

az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′
)

Applying M gives:(
az1+b
cz1+d

a′z2+b′

c′z2+d′
az1+b
cz1+d

a′z2+b′

c′z2+d′ 1

)
= N(cz + d)

(
(az1 + b)(a′z2 + b′) (az1 + b)(c′z2 + d′)
(a′z2 + b′)(cz1 + d) (cz1 + d)(c′z2 + d′)

)
In particular this shows that γM(z) = N(cz + d)M(γz).
In particular we see that for parallel weight modular forms, our definitions agree.
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