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Abstract. We give a classification, up to consideration of component groups, of sub-Shimura

varieties of those Shimura Varieties attached to orthogonal groups of signature (2, n) over Q.

1. Introduction

The purpose of this article is to give a complete classification of the connected components of sub-

Shimura varieties of the Shimura varieties associated to quadratic forms of signature (2, n). These

sub-Shimura varieties are important algebraic cycles in the Chow ring and often have important

applications. For example, Heegner cycles have an important role in the theory of Borcherds lifts

(See for example [2], [3], or [13]) and the various reinterpretations of the theory of singular moduli

(See for example [11], [5], [4], [14] [10]).

This sort of problem has been looked at for other Shimura varieties. In particular, the work of

[16] and [1] looked at the sub-Shimura varieties of the Shimura varieties associated to Symplectic

groups.

The main result of this paper is Theorem 3.6 which completely characterizes the possible sub-

Shimura varieties of the Shimura varieties attached to orthogonal groups of signature (2, n) up to

considerations of component groups.

This paper is organized as follows:

• In Section 2 we use the theory of Hermitian symmetric spaces and real lie groups to deduce

information about the possible sub-Shimura varieties.
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• In Section 3 we apply the theory of algebraic groups over Q to obtain further information

about the groups associated to the sub-Shimura varieties and prove the main theorem.

• In Section 4 we state a natural generalization of our result to certain base changes from

totally real fields.

• In Section 5 we briefly discuss several problems that this work leaves open.

2. Hermitian Symmetric Spaces

In this section we will be working over R and C using the connection between Shimura varieties

and Hermitian symmetric domains. We refer the reader to [12] and [15] for the relevant background

on the theory of Hermitian symmetric spaces and the connection to Shimura varieties. The key

feature of this connection we shall use is that maps of Shimura varieties induce maps of Hermitian

symmetric domains and that in both cases, the maps come from a map between associated algebraic

groups.

The key feature of the case of orthogonal Hermitian symmetric spaces we shall use is that the

relevant groups have real rank at most 2 and that the vast majority of irreducible representations of

simple non-compact real lie groups cannot land in an orthogonal group with such small real rank.

Simple Hermitian symmetric spaces of the non-compact type are completely classified. From the

following classification we can already rule out sub-Shimura varieties of most types based simply on

the real rank of the associated group. Ultimately we hope to determine for which H below there

can exist a map ρ : H → SO(2, n) which induces a non-trivial map of Hermitian symmetric spaces.

List of simple Hermitian symmetric spaces of non-compact type
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.

Group Conditions Real Rank

SU(p, q) 1 ≤ p ≤ q p

SO(2, n) n > 4 2

SO∗(n) n > 4 bn/2c

Sp(2n) n ≥ 1

E6 2

E7 3

Remark 2.1. We have the following remarks about the classification:

• The group SO∗(1) is isomorphic to SO(2) which is compact.

• SO∗(2) is not simple, the spin cover is associated to the Shimura curve over a totally real

quadratic extension which is definite at one place and indefinite at the other.

• The spin cover of SO∗(3) is SU(1, 3), and these give the same symmetric spaces.

• The spin cover of SO∗(4) is the same as that of SO(2, 6), and gives the same symmetric

space.

• We have that SU(2, 2) ∼ SO(2, 4) give the same symmetric space.

• We have that Sp(4) ∼ SO(2, 3) give the same symmetric space.

• We have that SO(2, 2) ∼ Sp(2)× Sp(2) is not simple, and give the same symmetric space.

• We have that Sp(2) = SU(1, 1) ∼ SO(2, 1) all give the same symmetric space.

The following Lemma gives us a stronger criterion than rank to characterize which real orthogonal

groups a given representation can factor through.

Lemma 2.2. Let χ : Gm → H be a cocharacter, let ρ : H ↪→ GL(V ) be any representation.

Let V∞ be the subspace such that for v ∈ V∞ we have

lim
t→∞

ρ ◦ χ(t)(v) = 0.
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If there exists a quadratic form on V whose orthogonal group contains the image of H its rank is

at least λ(ρ, χ) = dim(V∞)

The following Lie theoretic description of the quantity λ(ρ, χ) will provide a simpler method for

establishing lower bounds on it.

Proposition 2.3. Let H be the a real form, with real rank at least one, of a simple lie group with

complex root datum (X,X∨,Φ,Φ∨). Let χ̃ be the element of the cocharacter lattice X∨ associated

to map χ : Gm → H defined over R. Let ρ be any representation of H defined over R.

Then λ(ρ, χ) is precisely the number of weights α (counted with multiplicity) appearing in ρ for

which (α, χ) > 0.

Denote by λ(ρ) the maximum value of λ(ρ, χ) as we run over all χ.

In light of Proposition 2.3, we have the following trivial lower bound on λ(ρ).

Proposition 2.4. If the group H is simple then the quantity λ(ρ) is bounded below by the number

of non-trivial C-irreducible factors in the representation ρ multiplied by the real rank of the group.

From the above, we immediately obtain also the strictly stronger lower bounds:

Corollary 2.5. If H ′ ⊂ H are simple, then the quantity λ(ρ) is bounded below by the number of

non-trivial C-irreducible factors in the representation ρ|H′ times the real rank of H ′.

We shall now use the above Corollary to rule out most representations of the groups listed above.

The following propositions follow immediately from the well known classification of representa-

tions of special unitary groups as well as the well known branching rules, see for example [9].

Proposition 2.6. Consider the group H = SU(2, q), where q ≥ 2 and the subgroup H ′ = SU(2, q−1)

. For every representation of H except the standard representation, ρ|H′ has at least two non-trivial

R-irreducible factors.
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Proposition 2.7. the standard representation for SU(p, q) over R is reducible over C and has two

C-irreducible factors.

Corollary 2.8. The only non-trivial maps from a group SU(2, q) to a group SO(2, n) come from

the isogeny SU(2, 2) ∼ SO(2, 4).

Proof. Proposition 2.6 immediately rules out the existence of maps SU(2, q)→ SO(2, n) not arising

from the standard representation of SU(2, q) for q > 2. (Note that for q = 2, the rank of SU(2, 1)

is only 1 and hence this is not an obstruction).

Proposition 2.7 immediately rules out the existence of maps SU(2, q)→ SO(2, n) which do arise

from the standard representation of SU(2, q) for all q ≥ 2.

A simple check shows that SU(2, 2) has two representations whose restriction to SU(2, 1) is the

standard representation, the second is the isogeny SU(2, 2) ∼ SO(2, 4) and that this is the only

non-trivial representation of SU(2, 2) landing in an SO(2, n) group. �

For simplicity we will consider SU(2, 2) via its isogenous form SO(2, 4).

The following proposition is again an immediate consequence of the classification of representa-

tions of special unitary groups and their branching rules.

Proposition 2.9. Consider H = SU(1, q) where q ≥ 2 and H ′ = SU(1, 1). For every representation

of H except the standard representation, ρ|H′ has at least one copy of the standard representation

and one other non-trivial representation, hence at least three C-irreducible factors.

The following corollary is an immediate consequence.

Corollary 2.10. The only non-trivial maps from a group SU(1, q) to a group SO(2, n) for q ≥ 2

come from the standard representation of SU(1, q).

The following proposition is again an immediate consequence of the classification of representa-

tions of special orthogonal groups and their branching rules.
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Proposition 2.11. • Consider H = SO(2, 2n+1) with n ≥ 2 and H ′ = SO(2, 2n). For every

representation other than the standard representation ρ|H′ has at least two R-irreducible

factors.

• Consider H = SO(2, 2n+2) with n ≥ 2 and H ′ = SO(2, 2n). For every representation other

than the standard representation ρ|H′ has at least two R-irreducible factors.

Note that SO(2, 2) has a second representation into SO(2, 4) via the map SO(2, 2) ∼ SO(1, 2) ×

SO(1, 2). The inclusion SO(1, 2)× SO(1, 2) ↪→ SO(2, 4) does not give a map of symmetric spaces.

The following corollary is an immediate consequence.

Corollary 2.12. The only non-trivial maps from a group SO(2, `) to a group SO(2, n) inducing a

map of symmetric spaces for ` > 1 come from the standard representation of SO(2, `).

The following follows from an explicit check on the representations of SL2.

Proposition 2.13. The group SU(1, 1) = SL(2) ∼ SO(2, 1) admits three maps into orthogonal

groups of rank 2, namely:

• The inclusion of SU(1, 1) into SO(2, 2).

• The symmetric squares representation to SO(2, 1).

• Two copies of the symmetric squares representation to SO(2, 1)× SO(2, 1) ↪→ SO(2, 4); this

final map does not give a map of symmetric spaces,

The following is a consequence of work of Satake (see [16]) which gives a classification of possible

sub-symmetric spaces for Sp(2n).

Proposition 2.14. There is no map from the Hermitian symmetric space associated to E6 into

any Hermitian symmetric space associated to Sp(2n) for any n.

There is a map from the Hermitian symmetric space for SO(2, `) into one associated to Sp(2n)

for some n.
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It follows that there is no map from the Hermitian symmetric space associated to E6 into any

Hermitian symmetric space associated to SO(2, `).

The various lemmas and propositions above allow us to conclude:

Lemma 2.15. We can characterize those simple non-compact Hermitian symmetric spaces which

embed into the Hermitian symmetric space associated to an orthogonal group of type (2, n) as follows,

they are up to isogeny:

• SU(1, q) or U(1, q) where the map is given by the standard representation.

Note that the map U(1, q)→ U(1, q)×SO(2) is up to isogeny of symmetric spaces equiva-

lent to considering SU(1, q)×SO(2) or U(1, q)×SO(2) and we have chosen to ignore compact

factors.

• SO(2, `) where the map is given by the standard representation.

Moreover, the only possible product of simple non-compact type Hermitian symmetric spaces which

can embed into such a Hermitian symmetric space come from the natural inclusion of SO(2, 2) into

SO(2, n).

Theorem 2.16. If H → SO(2, n) gives rise to a map of Hermitian symmetric spaces of the non-

compact type then up to isogeny:

H ∼ (Hnc ×Hc)

where Hc is compact, Hnc is non-compact, and, up to isogeny, Hnc is one of:

SO(2, `) or SU(1, `) or U(1, `).

Moreover, the map respects an orthogonal decomposition of the vector space into V nc ⊥ V c where

V nc has signature (2, r) and V c has signature (0, s) with s+ r = n.
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3. Shimura Varieties

In this section we will exploit the properties of algebraic groups over Q to obtain conditions on

the possible Q-structure of the groups whose Shimura varieties will admit maps into the Shimura

varieties attached to orthogonal groups of signature (2, n).

The key idea of this section is the following. If V is the vector space on which SO(2, n) has its

standard representation we associate to any inclusion ρ : H → SO(2, n) a sub-algebra of End(V ).

We shall use in this section the connection between algebras with involution and algebraic groups

to conclude that ρ factors through a certain class of subgroup. We finally exploit the results of the

previous section to conclude that ρ surjects onto our constructed group.

Notation 3.1. Let (V, q) be a quadratic space of signature (2, n) over Q.

Let ρ : H ↪→ SO(V, q) be an inclusion of groups giving rise to a map of Shimura varieties.

Denote by V ρ the subspace of ρ(H)-fixed vectors.

Remark 3.2. We are assuming that this map is an inclusion. This both limits the component

group of the Shimura variety associated to H but also has some impact on existence of compact

Q-simple factors.

The following lemma gives a useful first step in the reduction.

Lemma 3.3. There exists a decomposition of V = V ρ⊕ (V ρ)⊥ where V ρ denotes the ρ-fixed vectors

of V . Moreover, V ρ has signature (0,m) for some m and the map ρ factors through:

H → SO((V ρ)⊥)→ SO(V ).

From the above, we may without any loss of generality suppose that V ρ = {0} and work inside

the Heegner cycle associated to V ρ.

Construction 3.4. Denote by A the algebra generated by ρ(H(Q)) inside End(V ), denote by E

the center of this algebra.
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The adjoint involution σ associated to q on End(V ) stabilizes both A and E and hence these are

both algebras with involution.

Let F = Eσ be the sub-algebra of σ-fixed elements and B be the centralizer of F . The algebra

B is again an algebra with involution, its center is F .

Decompose F = ⊕Fi into a product of fields. The idempotents for the Fi decompose V = ⊕Vi,

E = ⊕Ei, A = ⊕Ai and B = ⊕Bi.

Then each Vi is an Fi, Ei, Ai and Bi-module. Moreover, we have that Bi = EndFi(Vi) is an

algebra with involution and hence there exists an Fi-valued quadratic form qi on Vi inducing the

involution σ|Bi . By uniqueness, and polarization we can rescale qi so that q|Vi = TrFi/Q(qi).

Packaging these together we find:

q = TrF/Q(⊕iqi)

and that the inclusion of H into SO(V ) factors through the inclusion:

ResF/Q(×i O(qi))→ ×i O(TrFi/Q(qi)).

The following claim can be checked after base change to R.

Claim. The algebra F must be totally real, and F has exactly one factor for which TrFi/Q(qi) is

indefinite.

Proof. Notice that the inclusion

×i SO(TrFi/Q(qi))→ SO(q)

gives a map of symmetric spaces through which the inclusion of the Hermitian symmetric space for

H must factor. It follows that each map H(R) → O(TrFi/Q(qi))(R) induces a map of symmetric

spaces.

Thus, by the results of the previous section we can conclude that H(R) has non-compact im-

age in at most one of O(TrFi/Q(qi))(R). It follows that there is at most one (and hence exactly
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one) of O(TrFi/Q(qi))(R) which is non-compact, for if H(R) had compact image in a non-compact

O(TrFi/Q(qi))(R) this would induce a refinement of F by virtue of the structure of the maximal

compact subgroup of O(TrFi/Q(qi))(R).

Next we must now rule out the possibility that this non-compact factor comes from a complex

factor Fj of F . Indeed the only possibilities for:

ResC/R(O(qj)) ↪→ O(TrC/R(qj))

which give quadratic forms with real rank at most 2 are when Vj has dimension 1 or 2 over C.

Suppose Vj has dimension 1 over C = Fj , so it has dimension 2 over R. However, H(R) factors

through ResC/R(O(qj))(R) = {±1}. We can then readily check that regardless of whether the image

of H(R) is {1} or {±1} we will not have that C is contained in the center of the algebra generated

of the image.

In the second case, when Vj has complex dimension 2 over C, so it has dimension 4 over R,

we find that ResC/R(O(qj))(R) ' {±1} n C× and the only maps of Hermitian symmetric domains

which factor through this are discrete. It follows that H(R) is compact and thus the image inside

O(TrFj/Q(qj))(R) is the torus associated to a CM-algebra. The algebra it generates inside End(Vj)

can thus not be C× C with the exchange involution.

In particular, we have shown that Fj 6= C, so that there are no complex factors of F . �

We now consider two cases for the structure of the image of H in the non-compact factor over

Fj . The 2 cases to consider are Ej = Fj , or Ej a non-trivial CM -extension of Fj .

Construction 3.5. If Ej is a non-trivial CM -extension of Fj . In this case, the form qj on Vj is

the restriction of an Ej-valued Hermitian form on Vj , which we will denote q′j .

If Ej = Fj , we find that through base change to R, we have:

H(R)→ SO(2, `)× SO(2 + `)× · · · × SO(2 + `)
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and by the classification result of the first section, the projection onto the first factor SO(2, `) is

surjective.

We conclude that H = ResFj/Q(SO(qj)).

Similarly, in the second case we find that through base change to R, we have:

H(R)→ U(1, `)× U(1 + `)× · · · × U(1 + `)

and by the classification result of the first section, the projection onto at least the SU(1, `) part of

the first factor is surjective.

We conclude that ResFj/Q(SU(q′j)) ⊂ H ⊂ ResFj/Q(U(q′j)).

We now consider the following modifications to our group H.

Consider the simply connected cover H̃ of H, decompose H̃ = H̃nc × H̃c over Q into a compact

part and a non-compact part. Denote by H ′ the image in H of H̃nc.

Claim. Up to consideration of component groups the Shimura varietes associated to H ′ and H are

isomorphic as are theier inclusions into the Shimura variety associated to SO(2, n).

Because of the structure of H ′, it admits no maps into Q-compact factors ResC/R(O(qj)). In

particular if we replace H by H ′, and repeat all of the above constructions, we obtain the same

map of Shimura varieties (up to consideration of component groups) and we may assume that F is

a field.

The following theorem is now an immediate consequence of the various proceeding claims and

propositions.

Theorem 3.6. Up to consideration of component groups, the Sub-Shimura varieties of O(2, n) type

Shimura varieties are of the following sort:

They arise from the restriction of scalars from a totally real field F of
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• the Shimura variety attached to a quadratic form q′ which has signature (2, `) at one place,

and is negative definite at all other places.

• the Shimura variety attached to a Hermitian form q′ associated to CM -extension E of F

which has signature (1, `) at one place of F , and is negative definite at all other places.

The only condition on the existence of these sub-Shimura varieties is that we can write:

q = TrF/Q(q′)⊕ qρ or q = TrE/Q(q′)⊕ qρ.

Remark 3.7. The isomorphism class of the cycles described above depends on the choice of F

(respectively E) and q′, the isomorphism class of these (together with that of q) will determine that

of qρ. Such a qρ need not exist for any given pair F, q′ (respectively E, q′) when the codimension is

small. Moreover, the isomorphism class need not determine the rational conjugacy class.

The ideas needed to study these questions are entirely different from those we are using here,

and thus the questions are outside the scope of the current paper. We refer the interested reader

to several places where work on this has been done.

Heegner cycles (and generalized Heegner cycles) correspond to taking E = Q. Various features

of this case are studied in the work of [13].

Special points correspond to taking E a CM -field and q′ a one dimensional quadratic space. A

more thorough study of this case was undertaken in [6]. Note that this is the only case we consider

where the group H(R) is compact.

The authors Thesis [7] and the preprint [8] includes some discussion of how to compute the

invariants of these restrictions of trace forms.

Remark 3.8. We note that the Shimura varieties considered above (both the cycles we are con-

sidering and the variety in which we are embedding them) are generally disconnected.

We note however, that by composition of maps every sub-Shimura variety of GSpin(2, n) leads to

a sub-Shimura variety for SO(2, n) and conversely, if H → SO(2, n) gives a sub-Shimura variety for
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SO(2, n) then H ×SO(2,n) GSpin(2, n) → GSpin(2, n) gives a sub-Shimura variety for GSpin(2, n).

Up to possibly subtle considerations of the component groups, we obtain essentially the same sub-

Shimura varieties in each case. Again, a study of these component groups, though a very interesting

question both in terms of the action of the Galois group on them and even the simpler question of

the possible sizes, requires entirely different techniques and is outside the scope of this paper.

4. Restrictions of Scalars Shimura Varieties

The following two theorems are essentially corollaries of Theorem 3.6, the proofs are left to the

reader.

Theorem 4.1. Let F be a totally real field, let q be an F valued quadratic form which has signature

(2, `) at one place, and is negative definite at all other places. The sub-Shimura varieties of the

associated Shimura variety are of the following sort:

They arise from the restriction of scalars from a totally real field F ′ which is an extension of F

of

• the Shimura variety attached to a quadratic form q′ which has signature (2, `) at one place,

and is negative definite at all other places.

• the Shimura variety attached to a Hermitian form q′ associated to CM -extension E of F ′

which has signature (1, `) at one place of F ′, and is negative definite at all other places.

The only condition on the existence of these sub-Shimura varieties is that we can write:

q = TrF ′/F (q′)⊕ qρ or q = TrE/F (q′)⊕ qρ.

The isomorphism class of such a cycle depends on the choice of F ′ (respectively E) and q′; the

isomorphism class of these with that of q will determine that of qρ. When the codimension is small

there is no guarentee that given q and a pair F ′, q′ (respectively E, q′) that any form qρ can actually

be found.
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Theorem 4.2. Let E be a CM-field, let q be a Hermitian form which has signature (1, q) at one

place, and is negative definite at all other places. The sub-Shimura varieties of the associated

Shimura variety are of the following sort:

They arise from the restriction of scalars from a CM-field E′, an extension of E, of the Shimura

variety associated to a Hermitian form q′ which has signature (1, `) at one place of E′, and is

negative definite at all other places.

The only condition on the existence of these sub-Shimura varieties is that we can write:

q = TrE′/E(q′)⊕ qρ.

The isomorphism class of such a cycle depends on the choice of E′ and q′; the isomorphism class

of these with that of q will determine that of qρ. Given q, E′ and q′ such a form qρ need not exist

when the codimension is small.

5. Further Questions

For SU(p, q) with p > 1 and SO∗(n) with n > 4, the idea of using branching rules and rank as

was done here are adaptable to this setting. However, the number of representations that must be

considered grows considerably; it is likely a more detailed study of the representations would be

necessary and it is not immediately clear what results one can even hope for.

A careful inspection of the component group considerations which we have ignored would be

worthwhile. The techniques we have applied here are not well suited for studying the effect of

non-Q-simple compact factors. In particular all representations of compact groups can map into a

sufficiently large orthogonal group.

As discussed in the paper, determining the precise local/global conditions under which a cycle

of a given rational isomorphism class will embed into the Shimura variety with a specified rational

isomorphism class is worthy of some study, as is the more refined question of describing precisely

the rational (or even integral) conjugacy classes of these embeddings.
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