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1. General Setup

We recall the basic definitions.

Definition 1.1. A symmetric space is a riemannian manifold M such that for each x ∈ M
there exists an isometric involution sx of M for which x is locally a unique fixed point.
M is said to be hermitian if it has a complex structure making it hermitian.

It is a basic consequence of the definition that we shall have:

Proposition 1.2. Fix x ∈ M , G = Isom(M), K = StabG(x) and let sx act on G by conjugation
then M ' G/K and (Gsx)0 ⊂ K ⊂ Gsx.

Moreover, given any real lie group G, inner automorphism s of order 2 and K such that (Gs)0 ⊂
K ⊂ Gs then M = G/K is a symmetric space.

The requirement that M have complex structure is more subtle, Essentially the requirement is
the existance of an isometry i of M such that i2 = s. In the event that M is irreducible, this
amounts to saying that Z(K) = SO2(R).

There are three main types of symmetric spaces:

(1) Compact Type
In general these come from compact lie groups G,

(2) Non-Compact Type
In general these arise when K0 is the maximal compact connected lie subgroup of G, or

equivalently when sx is what is known as a cartan involution
(3) Euclidean Type

These generally arise as quotients of Euclidean space by discrete subgroups.

There are boundary cases to the above, for example SO2(R) is R/Z Euclidean type even though
it is compact. The definitions are made precise by looking at the Lie algebra’s.

Proposition 1.3. Every Symmetric space decomposes into a product of the three types.

We are interested most in the case where we are either compact or non-compact and G = G(R)
are the real points of a reductive algebraic group. (Maximal (closed) connected unipotent [upper
triangularizable with 1’s on diagonal] normal subgroup is trivial)

(Semi-simple is no connected normal abelian subgroup [implies trivial center])
(Borel is Maximal connected solvable closed)
(Parabolic is contains a Borel)

Proposition 1.4. There exists a duality between the compact and non-compact types, under which,
if M is of the compact type, there exists a dual symmetric space M̆ such that M ↪→ M̆ .

For M a hermitian symmetric space of the non-compact type and M̆ its compact dual we have
the primary objects of interest are:

• The Lie algebra g of G.
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• The Lie sub-algebra k ⊂ g of K.
• The Killing form B(X, Y ) = Tr(Ad(X) ◦ Ad(Y )) on g.
• The orthogonal complement p of k under B.
• The center U of K and its lie algebra u.

Through these one can construct:

• A G invariant metric on M (via B).
• The Dual lie algebra g∗ = k⊕ ip.
• The ideals p+, p− ⊂ pC which are the eigenspaces of u.
• The parabolic subgroup P− = kC ⊕ p−.
• The embedding M = G/K ↪→ GC/P

− ' M̆ .

To compute Lie algebra’s we wish to view them as an infinitessimal neighbourhood of the identity.
We shall view all Lie algebra’s for matrix groups (or groups which are isogenous to matrix groups)
as sub-Lie algebras of that of GLn. In particular they are subalgebras of Mn with lie bracket
[X, Y ] = XY − Y X.

So g = Lie(G) = {X ∈M2g|1 + εX ∈ G} where we view ε ∈ R[ε]/(ε2).
We might then expect the killing form to be up to constant multiples that of gln in particular

a constant multiple of Tr(XY ). One can can certainly produce subalgebras for which this would
not hold. However, for semi-simple lie algebras one has that the Killing form must always be a
constant multiple of that for gln.

2. Symplectic Group

We now consider the case G = Sp2g(R).

Recall that G = {g ∈ GL2g |gtJg = J} where J =

(
0 Idg

− Idg 0

)
.

So writing g =

(
A B
C D

)
this gives AtC,DtB symmetric and AtD − CtB = Idg. From this one

can conclude that g−1 =

(
Dt −Bt

−Ct At

)
, Indeed:(

Dt −Bt

−Ct At

)(
A B
C D

)
=

(
DtA−BtC DtB −BtD
AtC − CtA AtD − CtB

)
= Id2g

We now see that Ug = SO2g ∩ Sp2g, since SO2g are the elements of GL2g fixed by transpose

inverse the above formula for the inverse gives the result. (Ug =

(
A B
−B A

)
.)

From this we see that the involution s : g 7→ (gt)−1 of G is such that K = Ug = Gs. One can
recover this as an inner automorphism as conjugation by J .

J−1MJM t = Id2 g

From which we see conjugation by J gives the inverse of the transpose.

2.1. Why is Ug maximal compact? Noticing that when A is Idg except −1 on the i diagonal

then any quadratic form stabilized by K is of the form

(
W X
Y Z

)
with all matricies diagonal. The

matricies ( 0 1
1 0 ) allow us to show that W,X, Y, Z must be a constant multiple of hte identity. The

matrix J then implies that W = Z and X = −Y . This gives us a complete characterization of
every bilinear form preserved by Ug under its usual representation.



To see that all the compacts in GLn are in orthogonal groups consider:

Q(~x) =

∫
G

|g~x|2 dg

which is a non-degenerate G invariant positive definite quadratic form whenever G is compact.

2.2. Some remarks. One should be warned that the isometry group of Sp2g(R)/Ug(R) is actually
PSp2g(R) and not Sp2g(R) as − Id2g acts trivially.

It is perhaps also worth noting that even though Sp2g(C) is simply connected, Sp2g(R) has non-
trivial fundamental group and hence admits non-trivial non-algebraic covers. The double cover is
the metaplectic group.

2.3. Lie Algebra’s. The Lie algebra sp2g is given by:

sp2g = {X ∈M2g|(Id2g +X tε)J(Id2g +Xε) = J}

The condition is then X tJ + JX = 0. For a matrix X =

(
A B
C D

)
this becomes C,B symmetric

and A = −DT .
(Since the lie algebra of so2g is skew-symmetric matricies) we have that the lie subalgebra k of

K = so2g ∩ sp2g is given by X =

(
A B
−B A

)
where A is skew symmetric and B is symmetric.

One can compute the killing form to be given by B(X, Y ) = (2g + 2) Tr(XY ). (This is done by
computing B(X,X) for X coming from a cartan subalgebra and using conjugacy invariance and
density of these elements.

We can then check that p = k⊥ are the elements X =

(
D C
C −D

)
where C,D are symmetric.

The space is naturally a complementary space, the calculation(
A B
−B A

)(
D C
C −D

)
=

(
AD +BC ∗
∗ −(AD +BC)

)
shows that it is perpendicular.

The center ofK = Ug is Z(Ug) = {
(
a Idg b Idg

−b Idg a Idg

)
} ' SO2(R) its lie algebra is u = {

(
0 x Idg

−x Idg 0

)
}.

We observe that the adjoint action of u on g has the following eigenspaces:
The zero eigenspace is k.

The + eigenspace p+ = {
(
C iC
iC −C

)
| C symmetric}.

The − eigenspace p− = {
(

C −iC
−iC −C

)
| C symmetric}.

The corresponding parabolic subgroup is P−

{
(

1 + C −iC
−iC 1− C

)
| C symmetric} · Ug(C)

This is precisely the subgroup of matricies in Sp2g(C) which perserve the subspace F = span(x,−ix)
(where x are vector of dimension g).



2.4. The compact form. The compact form of the group corresponds to the lie subalgebra k⊕ip.
The associated lie group is Spg which is the subgroup of invertible g × g quaternionic matricies

which preserve the hermitian pairing on Hg given by
∑

i xiyi.
One views this as a subgroup of GL2g by the usual interpretation of H as a matrix group.(
a b
−b a

)
Under this interpretation one sees that transpose conjugate is conjugation.

One can then view Spg as {M =

(
A B
−B A

)
} which satisfy MM

t
= Id2g.(

A
t −Bt

B
t

At

)(
A B
−B A

)
=

(
A

t
A−BtB AtB −BtA
∗ ∗

)
The condition is thus that AtB is hermitian symmetric and A

t
A − BtB = Idg. From this one

concludes the inverse is

(
A

t −Bt

B
t

At

)
and again we see Ug = O2g ∩ Spg.

3. Orthogonal Group

Now the case G = SO(2, n)(R)

Recall that G = {g ∈ GLn |gtJg = J} where J =

(
− Id2 0

0 Idn

)
.

A maximal compact here is K = SO(2, n)(R) ∩ SO(2 + n)(R) = S(O(2)×O(n)).
The involution again is s given by transpose-inverse (which again corresponds to conjugation by

J)
The lie algebra is those matricies such that X tJ + JX = 0, This condition implies that X =(
A C
Ct D

)
where A,D are skew symmetric of dimension 2, n respectively (C is arbitrary).

The killing form is given by nTr(XY ).

The lie subalgebra of k is

(
A 0
0 D

)
where A,D are skew symmetric, and thus p are the matrices(

0 C
Ct 0

)
.

For n 6= 2 the center of K is the S part of its O2 factor, its lie algebra u is given by

(
A 0
0 0

)
.

(For n = 2 the symmetric space is not irreducible, indeed it is given by H×H.)
The eigenspaces for its adjoint action decompose Ct as (x, ix) and (x,−ix) where x is a 1 × n

column vector.
The parabolic P− is then precisely the stabilizer of (1, i, 0, . . . , 0).
The compact dual group is SO(2 + n).


