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Abstract. We give a concrete characterization of the rational conjugacy classes of maximal tori
in groups of type Dn, with specific emphasis on the case of number fields and p-adic fields. This

includes the forms associated to quadratic spaces, all of their inner and outer forms as well as the Spin

groups, their simply connected covers. In particular, in this work we handle all (simply connected)
outer forms of D4.

1. Introduction

The primary goal of this work is the complete concrete classification of rational conjugacy classes
of algebraic tori in groups of type Dn, including especially the case of n = 4, the triality groups.

As an abstract classification in terms of Galois cohomology already exists (see [13, 11]), part of the
goal of this work is to relate the concrete descriptions we shall give with the Galois cohomology sets
they describe.

Many cases of what we are looking at have already been studied, the case of pure inner forms of
orthogonal groups in particular is well studied (see [7, 13, 6, 3, 4]), and much of what we will say about
this case can be deduced by combining the results of these various papers. The simply connected forms
are less well studied though some results about the spin groups can be deduced from [6]. Moreover,
concrete descriptions are largely lacking for the forms which are not pure inner forms, though some
results exist (see for example [4, 5]). Very little appears to be known about the triality forms of D4.

Throughout this paper we shall be considering algebraic structures over a field k. We shall always
be assuming that k does not have characteristic 2. Though a number of results are phrased with
the implication that the field is a local or global field, such an assumption is only necessary when we
make reference to an explicit classifications using cohomological invariants, where in a more general
setting higher cohomological invariants may be needed. We have tried to make it explicit when such
an assumption is needed in an argument.

The first few sections are very much expository, and are included for the benefit of non experts.
The sections of this paper are organized as follows:

• Section 2 covers the definitions relevant to understanding the construction and classification
of all groups of type Dn for n 6= 4 (and many of them in the case n = 4).
• Section 3 covers the definitions relevant to understanding the construction and classification

of all groups of type D4.
• Section 4 contains the main results of this paper and classifies the rational conjugacy classes

of maximal tori in groups of type Dn.

Many of the results concerning Dn (for n 6= 4) are direct generalizations from [6], which considered
only a restricted class of these groups. As many proofs proceed similarly, for the sake of brevity when
possible we will use directly the results from our earlier work.

We draw the readers attention to several important expository results which may be known to
experts, or otherwise appear in the literature. Specifically:

• Lemma 4.1 which gives general results about conjugacy classes of tori in covering groups.
• Lemma 4.2 which gives general results about tori in restriction of scalar groups.

Part of this work was done while the author was a Fields postdoctoral researcher at Queen’s University, further work

was done at the University of Calgary with support from the Pacific Institute for Mathematical Sciences (PIMS).
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• Theorem 4.12 which characterizes the rational conjugacy classes of a torus which embeds into
an orthogonal group.
• Theorems 4.14 and 4.16 which characterize when a torus will admit locally everywhere (but

not necessarily global) embeddings into an orthogonal group.
• Theorem 4.18 which gives certain local/global criterion for when maximal tori which embed

locally will embed globally.

We also draw their attention to the major new results of this work. Specifically:

• Theorem 4.22 which together with Definition 4.23 describes the structure of tori in spin groups.
• Theorem 4.27 which characterizes the conjugacy classes of tori in the spin group whose images

become conjugate in the special orthogonal group.
• Theorem 4.34 which characterizes the tori in simply connected groups of type D4.
• The work of Section 4.5.1 builds off this result, and allows for a more explicit understanding

of some of the conditions of Theorem 4.34, in particular those tori which can appear in groups
of type F4.

2. Quadratic Spaces and Algebras with Orthogonal Involutions

The groups we wish to consider will be associated to algebras with orthogonal involutions, as such
we first introduce the relevant background. Almost everything we are saying in this introduction comes
directly, or with minor modification, from [8]. We will at times make references to results concerning
the Galois cohomology of algebraic groups over local and global fields, however except when we are
doing this explicitly there are no restrictions on the field k. Good references for the much of the
material in this section are [12], [9], and [8].

Definition 2.1. By a quadratic space over k we mean a vector space V equipped with a non-
degenerate symmetric bilinear pairing B : V × V → k. The associated quadratic form is

Q(x) = B(x, x).

Definition 2.2. Let A be a central simple algebra of degree n over k, by an involution on A (of the
first kind) we mean a k-module map τ : A→ A such that:

(1) the map τ is k-linear.
(2) τ(xy) = τ(y)τ(x) for all x, y ∈ A.
(3) τ2(x) = x for all x ∈ A.

We say that τ is symplectic if dim(Aτ ) = n(n− 1)/2 and orthogonal if dim(Aτ ) = n(n+ 1)/2. By
[8, Prop 2.6] these are the only two options.

Let E be an étale algebra of dimension 2n over k, by an involution on E we mean an automorphism
σ of E of order 2 such that dim(Eσ) = n.

Theorem 2.3. Let A be a central simple algebra of degree n over k then A has an involution over k
if and only if A is isomorphic to its opposite algebra, in particular, if and only if A is a matrix algebra
or a matrix algebra over a quaternion algebra.

[8, Thm. 3.1].

Example 2.4.

• The transpose involution on M2(k) is an orthogonal involution.
• The standard involution x 7→ x on a quaternion algebra A is a symplectic involution.
• The involution

(
a b
c d

)
7→
(
d −b
−c a

)
is a symplectic involution of M2(k). This is the standard

involution on a M2(k) viewed as a quaternion algebra.
• Let (V,B) be a quadratic space, then the adjoint involution AdB on EndV is an orthogonal

involution.

Theorem 2.5. We have the following characterization of the simple algebras with orthogonal and
symplectic involutions over a field k.

• Let M be the matrix algebra Mn(k) and let t denote the transpose involution.
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– Let γ ∈ M be such that γt = −γ then the involution τ(x) = γ(xt)γ−1 is symplectic.
Moreover, all symplectic involutions on M arise this way.

– Let γ ∈ M be such that γt = γ then the involution τ(x) = γ(xt)γ−1 is orthogonal.
Moreover, all orthogonal involutions on M arise this way.

• Let A be a quaternion algebra with standard involution ·, and let M be the algebra Mn(A) with
involution τ(x) = xt.

– Let γ ∈ M be such that τ(γ) = −γ then the involution τγ(x) = γτ(x)γ−1 is orthogonal.
Moreover, all orthogonal involutions on M arise this way.

– Let γ ∈ M be such that τ(γ) = γ then the involution τγ(x) = γτ(x)γ−1 is symplectic.
Moreover, all symplectic involutions on M arise this way.

• Let A be a central simple algebra over k algebra with two symplectic involutions τ1 and τ2.
Then (A, τ1) and (A, τ2) are isomorphic as algebras with involutions.
• Let A be a central simple algebra over k algebra with two orthogonal involutions τ1 and τ2.

Then (A, τ1) and (A, τ2) are isomorphic as algebras if and only if there exists γ ∈ A such that
τ2(γxγ−1) = γτ1(x)γ−1

[8, Prop 2.20, 2.22].

Notation 2.6. Given an involution τ on a central simple algebra A and an element g ∈ A× such that
τ(g) = ±g we shall denote by:

τg = Intg ◦τ
the involution taking x to gτ(x)g−1.

We note that τg is not necessarily isomorphic to τ as isomorphisms have the form:

Intg ◦τ ◦ Intg−1 = τgτ(g).

We remark further that τ and τg have the same type (symplectic or orthogonal) if τ(g) = g, otherwise
they have different types. Moreover, by the above theorem all involutions arise this way.

Construction 2.7. Let (A, τ) be a central simple algebra of degree n with orthogonal involution τ .
We define the associated orthogonal group to be the group scheme OA,τ whose functor of points is:

OA,τ (R) = {g ∈ (A⊗k R)× | τ(g)g = 1}.
Further, we define the special orthogonal group SOA,τ to be:

SOA,τ (R) = {g ∈ (A⊗k R)× | τ(g)g = 1 and NA/k(g) = 1}
where NA/k denotes the reduced norm.

If n is odd this group is of type B(n−1)/2, if n is even it is of type Dn/2.
For the remainder of this paper we shall be largely focused on the case where n is even.

Remark 2.8. Given a quadratic space (V,B) then taking (A, τ) to be (EndV ,AdB) we obtain the
usual orthogonal and special orthogonal groups associated to (V,B).

2.1. Invariants of Algebras with Orthogonal Involutions. We now discuss some of the invariants
of algebras with orthogonal involutions. The invariants we shall discuss are sufficient to classify the
groups under consideration for both local and global fields. In other settings other invariants may be
needed for this purpose. Aside from being relevant in classifying the groups, the invariants we shall
focus on will be directly connected to the classification of tori in these groups.

The invariants we will discuss are the discriminant, the Clifford invariant and the index.

2.1.1. Discriminants.

Theorem 2.9. Let (A, τ) be a central simple algebra of degree 2n over k with orthogonal involution
τ . Let x ∈ A× be such that τ(x) = −x, then NA/k(x) is independent of the choice of x when viewed

as an element of k×/(k×)2.
We shall call NA/k(x) the discriminant of τ , and note that the discriminant of the adjoint invo-

lution is the discriminant of the associated quadratic form. The discriminant will be denoted D(τ).

[8, Prop 7.1].
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2.1.2. Clifford Algebras. For an explicit construction of the Clifford algebra we refer the reader to [8,
Ch. 9] we include here the details we shall need.

Construction 2.10. Let (A, τ) be a central simple algebra of degree 2n over k with orthogonal
involution. Let T (A) denote the tensor algebra of A (viewed as a k-module). There is an ideal J(A, τ)
for T (A) such that the Clifford algebra is given by:

C+
A,τ =

T (A)

J(A, τ)
.

The important features of this construction are summarized in the following theorem and remark.
These results follow from [8, Thm 9.12].

Theorem 2.11. Let (A, τ) be a central simple algebra of degree 2n over k with orthogonal involution.

• The Clifford algebra of (A, τ) is a central simple algebra over F = k[X]/(X2 − (−1)nD(τ)).
Recall D(τ) is the discriminant of (A, τ). When n is even the class of the Clifford algebra is
in the 2-torsion of the Brauer group, when n is odd it is in the 4-torsion.
• The involution τ on A induces an “involution” τ on C+

A,τ given by:

τ(x1 ⊗ · · · ⊗ xr) = τ(xr)⊗ · · · ⊗ τ(x1).

– τ restricts to a non-trivial involution of the center of C+
A,τ if n is odd.

– τ is orthogonal over F if n ∼= 0 (mod 4) and is symplectic if n ∼= 2 (mod 4).

Remark 2.12. Over a local field, the Clifford algebra has the following structure:

• If n is even, A is a matrix algebra, and the discriminant is non-trivial, then class of [C+
A,τ ] is

trivial.
• If n is even, A is not a matrix algebra, and the discriminant is non-trivial then [C+

A,τ ] is
non-trivial.
• If n is even, A is a matrix algebra, and the discriminant is trivial, then class of [C+

A,τ ] is a
direct sum of two isomorphic algebras, their triviality depends on the choice of τ .
• If n is even, A is not a matrix algebra, and the discriminant is trivial then [C+

A,τ ] is a direct
sum of two non-isomorphic algebras in the 2-torsion of the Brauer group, the isomorphism
class over the center depends on the choice of τ , note that the isomorphism class over k does
not.
• If n is odd, A is a matrix algebra, and the discriminant is non-trivial, then class of [C+

A,τ ] is
trivial.
• If n is odd, A is not a matrix algebra, and the discriminant is non-trivial then [C+

A,τ ] is trivial.

• If n is odd, A is a matrix algebra, and the discriminant is trivial, then class of [C+
A,τ ] is a direct

sum of two isomorphic algebras in the 2-torsion of the Brauer group, their triviality depends
on the choice of τ .
• If n is odd, A is not a matrix algebra, and the discriminant is trivial then [C+

A,τ ] is a direct
sum of the two non-isomorphic algebras which are 4-torsion in the Brauer group, the precise
isomorphism class over the center depends on the choice of τ , note that the isomorphism class
over k does not.

The structure over a global field can then be deduced from this, as the global structure is determined
by the local structure.

In order to avoid certain auxilliary constructions usually necessary to define the spin group we shall
use several results from [8, Sec. 13.A].

Proposition 2.13. There is a natural map C : Aut(A, τ) → Aut(C+
A,τ ) induced from the natural

action of Aut(A, τ) on T (A). By an abuse of notation we shall also denote the map:

C ◦ Inn : OA,τ → Aut(C+
A,τ ),

where Inn denotes the inner automorphism, by C.
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It follows from [8, Prop 13.5] that we may make the following (non-standard) definition of the Spin
group.

Construction 2.14. We define:

SpinA,τ = (SOC+
A,τ ,τ

×Aut(C+
A,τ ) Aut(A, τ))0.

Remark 2.15. Note that in the above SOC+
A,τ ,τ

might be more correctly expressed as one of SUC+
A,τ ,τ

or SpC+
A,τ ,τ

depending on the degree of A. The definition of SOA,τ , SUA,τ and SpA,τ are essentially

indistinguishable except for the conditions on the type of involution τ . Theorem 2.11 describes the
various possibilities of τ .

As usual there exists a map from the spin group to the special orthogonal group.

Proposition 2.16. The natural map SpinA,τ → Aut(A, τ) factors through a map:

SpinA,τ
χ→ SOA,τ → Aut(A, τ).

Moreover, the map C ◦ χ agrees with the usual map from C+
A,τ to Aut(C+

A,τ ).

See [8, Sec. 13.A].

2.1.3. Index. In order to obtain a complete set of invariants for real fields and consequently global
fields we shall need one further invariant.

Definition 2.17. Let (A, τ) be a central simple algebra of degree n over k with orthogonal involution
τ . A right ideal I of A is said to be isotropic if xτ(y) = 0 for all x, y ∈ I.

The index of A is the set:

ind(A, τ) = {dim(I) | I isotropic}.

Note that if A is a matrix algebra over a division algebra D of degree m then:

ind(A, τ) = {0,m, . . . , `m}

for some integer ` (see [8, 6.3]). We shall also refer to ` as the index.
Let ν denote a place of k, we shall denote by `ν the index of (A, τ) at kν .

2.2. Cohomological Interpretation and Classification over Local and Global Fields. The
following theorem essentially classifies groups of type Dn for n 6= 4 over local and global fields.

Theorem 2.18. Let k be a local or global field. Let SO2n denote the standard form of an orthogonal
group over k for a quadratic space of dimension 2n.

• Forms of SO2n are all of the form given by Construction 2.7.
• If k is a global or local field, then the following are a complete set of invariants:

– The discriminant δ (Theorem 2.9) as an element of k×/(k×)2.
– The even Clifford invariant (Construction 2.10) as an element of the Brauer group of the

algebra k[X]/(X2 − (−1)nδ).
– The indices `ν (Definition 2.17) at the real places ν of k.

Moreover, for n 6= 4, forms of Spin2n and PSO2n are classified by the same data.

[8, Thm. 26.15 and Sec. 31]

Remark 2.19. The case of Spin8 and PSO8 will be discussed in the coming sections.
The classification above is essentially equivalent to the classification of central simple algebras with

involutions, we note that it is not equivalent to the classification of quadratic forms, in particular the
Hasse invariant is not always determined by the even Clifford invariant.
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We briefly sketch the Galois cohomological interpretation of some of these results. Much more can
be said than what we will say here. For a more detailed discussion see [8].

Let (A, τ) be a central simple algebra of degree 2n over k with orthogonal involution τ . There are
exact sequences:

1→ SOA,τ → OA,τ → {±1} → 1

and

1→ Aut0
A,τ → AutA,τ → {±1} → 1

and

1→ Z(SpinA,τ )→ SpinA,τ → Aut0
A,τ → 1

and

1→ {±1} → SpinA,τ → SOA,τ → 1.

These lead to exact sequences in Galois cohomology.
We have the following:

• The set H1(Gal(k/k),AutA,τ ) gives a classification of either pairs (A, τ) of central simple
algebras of degree 2n with an orthogonal involution or of isomorphism classes of orthogonal
groups being the automorphism group of both.
• When A is the matrix algebra over a division algebra D then OA,τ is the automorphism group

of a quadratic space over D. Moreover,

H1(Gal(k/k),OA,τ )

classifies these quadratic spaces. That is, it is classifying elements x of A such that τ(x) = x,
up to equivalence x ∼ τ(y)xy−1 for y ∈ A×. The map

H1(Gal(k/k),OA,τ )→ H1(Gal(k/k), {±1}) = k×/(k×)2

gives the discriminant of the quadratic form, that is the discriminant of the symmetric element
defining it, hence

im
(
H1(Gal(k/k),SOA,τ )→ H1(Gal(k/k),OA,τ )

)
classifies forms with the same discriminant as τ .

When A is a central simple algebra we may explicitly describe H1(Gal(k/k),SOA,τ ) as a
torsor via the bijection:

H1(Gal(k/k),SOA,τ ) ' {(s, z) ∈ A× × k× | τ(s) = s and NA/k(s) = z2}/ ∼

where the equivalence relation on the right is given by (s′, z′) ∼ (s, z) if there exists a ∈ A×
with s′ = asτ(a) and z′ = NA/k(a)z (see [8, Sec 29.D eqn 29.27]).

The map:

H1(Gal(k/k),SOA,τ )→ H1(Gal(k/k),AutA,τ )

associates to (s, z) the algebra with involution (A, τs) whereas the map

H1(Gal(k/k),SOA,τ )→ H1(Gal(k/k),OA,τ )

associates to (s, z) simply the element s. Moreover, the group H0(Gal(k/k), µ2), which is the
kernel of the above map, acts on pairs (s, z) by z 7→ −z. Note that if A is a matrix algebra,
these two elements, (s, z) and (s,−z), will be equivalent.

We next note that the action of the image of

d ∈ k×/(k×)2 = H1(Gal(k/k), {±1}),

which is the kernel of the map H1(Gal(k/k),SOA,τ ) → H1(Gal(k/k),AutA,τ ), on such pairs
is by rescaling (s, z) 7→ (ds, dnz).
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• As above we find that:

H1(Gal(k/k),AutA,τ )→ H1(Gal(k/k), {±1})
allows us to associate the discriminant of the involution, and, as above

im
(
H1(Gal(k/k),Aut0

A,τ )→ H1(Gal(k/k),AutA,τ )
)

classifies pairs (A′, τ ′) where τ ′ has the same discriminant as τ . Likewise, as above, the
additional information captured by an element of H1(Gal(k/k),Aut0

A,τ ) is again described

by considering pairs (τ ′, z) where z ∈ k× is an element whose square is the norm of the
discriminant of τ ′ with the same equivalence as before.
• If n is even then the center of the spin group is:

Z(SpinA,τ ) ' ResF/k(µ2,F )

where F denotes the center of the even Clifford algebra and thus we obtain:

H1(Gal(k/k),SpinA,τ )→ H1(Gal(k/k),Aut0
A,τ )→ H2(Gal(k/k),ResF/k(µ2,F )).

The set
H2(Gal(k/k),ResF/k(µ2,F ))

gives the 2-torsion of the Brauer group of F , and gives the Clifford invariant. Over a local or
global field the set

H1(Gal(k/k),SpinA,τ )

is supported at the real places of k, as the group SpinA,τ is simply connected. One may check
that modulo the action of the image of

H1(Gal(k/k),ResF/k(µ2,F )) ' F×/(F×)2

a class here determines the index.
• If n is odd then the center of the spin group is:

Z(SpinA,τ ) ' µ1
4,F = ResF/k({g ∈ µ4,F | NF/k(g) = 1})

where F denotes the center of the even Clifford algebra and thus we obtain:

H1(Gal(k/k),SpinA,τ )→ H1(Gal(k/k),Aut0
A,τ )→ H2(Gal(k/k),ResF/k(µ1

4,F )).

The set
H2(Gal(k/k),ResF/k(µ1

4,F ))

gives the kernel of the corestriction map from F to k of the 4-torsion of the Brauer group of F ,
and again, gives the Clifford invariant. Note that the kernel of the corestriction map is trivial
for local fields, thus this kernel can only be non-zero at places where F splits.

For local and global fields the set

H1(Gal(k/k),SpinA,τ )

is supported at the real places of k, as the group SpinA,τ is simply connected.
One may check that modulo the action of the image of

H1(Gal(k/k),ResF/k(µ1
4,F ))

a class here determines the index.
• In a manner similar to the above, we may obtain cohomological invariants of quadratic forms,

if (A, τ) is associated to the endomorphism algebra of a quadratic space over a division ring,
the sequence:

1→ {±1} → SpinA,τ → SOA,τ → 1

associates to a quadratic form an element of the Brauer group of k, this sequence gives the
Witt invariant of the quadratic form and a signature at real places.

We remark that here we are obtaining an element of the Brauer group of k rather than F .
This agrees with the fact that a quadratic form is a more specific piece of information than its
associated involution. This difference can also be seen in a comparison also of Theorems 4.6
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and 4.14 where we see that passing from the one invariant to the other is done by restriction,
which may have a kernel, and is not typically surjective.

Remark 2.20. Finally, we should remark that in performing the analysis, the order of twisting that
we consider is:

(1) Pick a discriminant.
(2) Pick a Clifford invariant.
(3) Pick an index.

That is to say, we may always pick an arbitrary discriminant, this choice then determines in which
Brauer group the Clifford invariant lives. We may then pick the Clifford invariant, which will determine
the algebra A (and strongly restrict the choice of τ) noting that the choice of τ was specifically restricted
by the choice of discriminant. The choice of Clifford invariant then limits the choices for which indexes
can be chosen.

3. Triality and Groups of type D4

In order to extend the above classification to better handle the case of D4 groups, we shall need to
introduce the structures for which these groups will be the automorphism groups, this requires that
we discuss triality. In this section we will consider several types of algebras and their automorphism
groups. Each of the structures will allow us to define a group of type D4 as either its automorphism
group or the simply connected component of its automorphism group. In this way we shall be obtaining
different classes of pure inner (or in some cases outer) forms of groups of type D4.

The classes we obtain and the source of the forms are summarized below:

(1) Symmetric composition algebras are associated to classes from H1(Gal(k/k),Aut(S)), noting
that the type of Aut(S) is not unique.

(2) Twisted compositions associated to classes from H1(Gal(k/k), S3 n Spin).
(3) Trilitarian algebras associated to classes from H1(Gal(k/k), S3 n PSO).

The last of which allows us to obtain all the groups of type D4. The reason for introducing the other
classes is to allow us to construct examples of the later ones, but also because the structure of tori in
the earlier cases is simpler and it is desirable to be able to study these special cases more concretely.

Most of the content of this section can be found in [8], a more thorough treatment can be found
there.

3.1. Symmetric Compositions.

Definition 3.1. A (regular) composition algebra C = (C, ·, N) over k is a k-algebra (not necessarily
associative, commutative, or with identity) with a regular quadratic form N : C → k satisfying

N(xy) = N(x)N(y).

Denote the associated bilinear form B(x, y) = N(x+ y)−N(x)−N(y).
We call a composition algebra (C, ·, N) symmetric, if B(x · y, z) = B(x, y · z).

Proposition 3.2. A composition algebra is symmetric if and only if x · (y · x) = N(x)y = (x · y) · x.

[8, 34.1].

Example 3.3. Let (B, σ) be an octonion algebra and set N(x) = xσ(x), define an algebra (B, ∗, N)
by:

x ∗ y = σ(x) · σ(y).

The algebra (B, ∗, N) is a symmetric composition algebra.

Remark 3.4. Not all symmetric composition algebras are constructed as above. There are a small
number of families of constructions, see [8, 34.7] for a classification result. We are primarily interested
in the case of dimension 8.

Note that as with the example above, most symmetric composition algebras are not unital.
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Proposition 3.5. Let (S, ·, N) be a symmetric composition algebra of dimension 8 over k.
For all λ ∈ k there exists a map S → Endk(S ⊕ S) given by:

x 7→
(

0 λ`x
rx 0

)
which induces isomorphisms

αS : CλN → (Endk(S ⊕ S), σN⊕N ) and αS : C+
λN → (Endk(S), σN )⊕ (Endk(S), σN ).

Where here CλN denotes the Clifford algebra associated to quadratic space with quadratic form λN .

[8, 35.1].

Proposition 3.6. Let (C, ·, N) be a symmetric composition algebra of dimension 8 over k. Let g be
an isometry of (C,N) then there exists isometries g+ and g− of N such that:

g(x · y) = g+(y) · g−(x), g+(x · y) = g(y) · g−(x) and g−(x · y) = g+(y) · g(x)

moreover any one of these identities implies the others.

[8, 35.4].

Definition 3.7. Let (C, ·, N) be a regular symmetric composition algebra of dimension 8 over k.
We define the associated spin group to be the group scheme G whose points over R are:

Spin(C,·,N)(R) = {(g, g+, g−) ∈ O3
N | g(x · y) = g+(y) · g−(x)}

Theorem 3.8. There is an isomorphism:

Spin(C,·,N) ' Spin(C,N) .

In particular Spin(C,·,N) is a group of type D4, and moreover the above description realizes the S3

automophism group by way of the permutation group on the factors.

[8, 35.C].

3.2. Twisted Compositions. Much of the material of this section comes from [8, Ch. 36]. A more
thorough treatment of it can be found there.

Definition 3.9. Let L be a cubic étale algebra over k. Denote the norm map of L by NL/k and the
trace map TL/k. Let (V,Q) be a regular quadratic space over L. Let m : V → V be a quadratic map.
We call a quadruple (L, V,Q,m) a twisted composition if it satisfies the following conditions:

(1) `m(`v) = NL/k(`)m(v) for all ` ∈ L and v ∈ V .
(2) Q(v)Q(m(v)) = NL/k(Q(v)) for all v ∈ V .

Example 3.10. Let C = (C, ∗, N) be a symmetric composition algebra over k.Consider:

L = k × k × k, V = C ⊗k L ' C × C × C,

and Q be the natural extension of N to V . Define m : V → V by

m(x, y, z) = (v1 ∗ v2, v2 ∗ v0, v0 ∗ v1).

Then (L, V,Q,m) is a twisted composition. [8, 36.2]

Proposition 3.11. If (L, V,Q,m) is a twisted composition algebra, then for all λ ∈ L× so is(
L, V, λ−1NL/k(λ)Q,λm

)
.

[8, 36.1]

Proposition 3.12. Let (C, ·, N) be a symmetric composition algebra and associate (L, V,Q,m) as
above. Then for all λ ∈ L× we have that (L, V, λ−1NL/k(λ)Q,λm) is a twisted composition algebra.
Moreover, all twisted composition algebras over L = k × k × k arise this way.
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[8, 36.3]
What the above proposition says is that all twisted compositions over the split algebra L arise from

rescalings of symmetric compositions.

Example 3.13. Let L be a cubic étale algebra and fix ρ an element of order 3 of Aut(L/k). Let
C = (C, ∗, N) be a symmetric composition algebra. Let m : C ⊗k L→ C ⊗k L be the map

x⊗ ` 7→ (x⊗ ρ(`)) ∗ (x⊗ ρ2(`)).

Then (L,C,N,m) is a twisted composition. [8, 36.11]

Example 3.14. Let (B, σ) be an octonion algebra and C = (C, ∗, N) be the associated symmetric
composition algebra over k as in Example 3.3. Fix generators ρ of Aut(L ⊗k ∆L/∆L) and ι of
Aut(∆L/k) and let m̃ be the twisted composition over (C ⊗k L ⊗k ∆L) as in Example 3.13. Let
ι̃ : C ⊗k L⊗k ∆L → C ⊗k L⊗k ∆L be the map σ ⊗ 1⊗ ι and set

V = {x ∈ C ⊗k L⊗k ∆L | ι̃(x) = x}.
Then m̃ restricts to a map m : V → V and (L, V,N,m) is a twisted composition over L. [8, 36.C].

Proposition 3.15. Let L/k be a cubic étale algebra which is not a field, then every twisted composition
algebra over L is of the form:

(L, V, λ−1NL/k(λ)N,λm)

where (L, V,N,m) is as in Example 3.14 and λ ∈ L×.

[8, 36.29]

Remark 3.16. When L is a field, there typically exist twisted composition algebras over L not arising
from the above construction.

Theorem 3.17. Let (L, V,Q,m) be the twisted composition of dimension 8 associated to a symmetric
composition algebra (C, ·, N) then

Aut(L, V,Q,m) ' S3 n Spin(C,·,N),

the action of S3 is via the outer automorphisms as above.
Moreover, twisted compositions are classified by H1(Gal(k/k),Aut(L, V,Q,m)).

[8, 36.5 and 36.7]

Remark 3.18. If L/k is not a field, then L = k ⊕ F , and V has a corresponding decomposition
V = Vk ⊕ VF . The spin group Spin(L,V,Q,m) = Aut(L, V,Q,m)0 is isomorpic to the spin group of Vk
and VF is simply the spin representation of this group.

Corollary 3.19. Let (L, V,Q,m) be the twisted composition of dimension 8, then as a quadratic space
over L the form Q has trivial Clifford invariant and the discriminant of Q is the discriminant of L.

Proof. By Remark 3.18 the result is immediate if L is not a field as in this case the discriminant of
L is that of F which is also the discriminant of the center of the Clifford algebra. Moreover, as the
cohomological interpretation of the Clifford invariant is invariant under twisting by Spin they all share
the same Clifford invariant, which is trivial by example.

Suppose now L is a field, as L is cubic, base change to L is injective on discriminants and Clifford
invariants. After base change to L we have that

L⊗k L ' L⊕ (L⊗∆L)

and thus

(L, V,Q,m)⊗k L ' (L⊕ (L⊗∆L), V ⊕ V(L⊗k∆L), Q⊕Q(L⊗k∆L),m)

so that we are back in the case of Remark 3.18 (replacing k by the field L). We note the important
fact that the relevant quadratic space for the field factor L of L ⊗k L is simply V ⊗k L and thus we
conclude as above that the discriminant is δL and the Clifford invariant is trivial. �
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Remark 3.20. It is a consequence of the above that if L is not a field we still have:

Spin(L,V,Q,m)⊗kL ' SpinV,Q .

Proposition 3.21. Let (L, V,Q,m) be a twisted composition of dimension 8. The center Z of
Aut(L, V,Q,m) arises from the exact sequence:

1→ Z → ResL/k(µ2,L)
NL/k−→ µ2,k → 1.

See proof of [8, Lem 44.14].

Proposition 3.22. Consider the the exact sequence:

H1(Gal(k/k), Z)→ H1(Gal(k/k),Aut(L, V,Q,m))→ H1(Gal(k/k),Aut(L, V,Q,m)adj).

The group
H1(Gal(k/k), Z) ' L×/k×(L×)2

acts by
(L, V,Q,m)→ (L, V, λ−1NL/k(λ)Q,λm).

Moreover, (L, V,Q,m) ' (L, V, λ−1NL/k(λ)Q,λm) if and only if Q ' λ−1NL/k(λ)Q.

[8, 36.9 and 36.10].

Example 3.23. As there are only two cubic étale algebras over R neither of which is a field we can
easily use Proposition 3.15 to describe all of the twisted compositions over R.

• When L ' R×R×R we have from Proposition 3.15 that every twisted composition over L is
of the form:

O×O×O
where O is either the split or non-split octonions. The quadratic form being either the standard
form for the octonions, or in the case of the non-split octonions we may replace any 2 of these
by their negatives.
• When L ' R × C we have from Proposition 3.15 that every twisted composition over L is of

the form:
V × (V ⊗ C)

The quadratic space V has signatures one of:

(7, 1), (3, 5)

as these are precisely those with trivial Clifford invariants and discriminant −1. Note that we
cannot simply replace Q by −Q because of the definition of m.

3.3. Trialitarian Algebras. Much of the material of this section comes from [8, Ch. 43]. A more
thorough treatment of it can be found there.

Definition 3.24. Let L be a cubic étale algebra over k. Denote by ∆L the discriminant algebra of L.
Let D be a central simple L-algebra with orthogonal involution τ . Let ρ be an order three element of
Gal(L⊗k ∆L/∆L). Let α be a ρ-skew linear isomorphism

α : (C+
D,τ , τ)→ρ (D ⊗k ∆L, τ ⊗ 1)

where in the above ρ means that the map is ρ-skew linear, that is the action of L on (D⊗k ∆L, τ ⊗ 1)
is via the map L→ L⊗k ∆L given by ` 7→ ρ(`⊗ 1).

We call a quadruple (L,D, τ, α) a trialitarian algebra.

Remark 3.25. Giving an isomorphism

α : (C+
D,τ , τ)→ρ (D ⊗k ∆L, τ ⊗ 1)

is equivalent to giving an isomorphism:

α̃ : (D, τ)⊕ (C+
D,τ , τ)→ (D ⊗k L, τ ⊗ 1)
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where α̃ restricts to the first factor of L⊗ L = L⊕ L⊗∆ by the natural inclusion.
This observation together with Proposition 3.29 and an argument as in Corollary 3.19 implies that

the discriminant of the involution τ is δL the discriminant of L.

Theorem 3.26. Let (L,D, τ, α) be a trialitarian algebra, then [D] is in the kernel of the corestriction
map from the Brauer group over L to the Brauer group over k. Moreover, over a number field, this
is sufficient, that is any [D] in the kernel of the corestriction map can be given the structure of a
trialitarian algebra.

[8, 43.6 and 43.8]

Remark 3.27. One may check conditions on the existence of an isomorphism locally, in this context
we are reduced to the cases which arise in Remark 2.12.

Example 3.28. Let (L, V,Q,m) be a twisted composition, then there exists a map

α : (C+
D,τ , τ)→ρ (D ⊗k ∆L, τ ⊗ 1)

such that the datum (L,EndL(V ),AdQ, α), is a trialitarian algebra [8, 36.19].

Proposition 3.29. Suppose that L is not a field, so that L = k⊕∆L. Then every trialitarian algebra
over L is of the form (L,A⊕ C+

A,τ , τ ⊕ τ, α) where (A, τ)⊗∆L ' C+
A,τ . Moreover, the choice of α is

unique up to unique isomorphism once a generator ρ of Aut(L⊗∆L/∆L) is chosen.

See [8, 43.15].

Corollary 3.30. Suppose k is a global field and that L is a degree three field extension. Suppose also
that [D] is in the kernel of the corestriction map from the Brauer group over L to the Brauer group
over k and that (D, τ1) and (D, τ2) admit trialitarian structures (L,D, τ1, α1) and (L,D, τ2, α2). Then
(D, τ1) ' (D, τ2) if and only this is true for all real places ν of k.

Suppose further that τ = τ1 = τ2, then, up to the choice of generator ρ, there is an automorphism
of (L,D, τ) taking (L,D, τ, α1) to (L,D, τ, α2).

Proof. From the proposition we have:

(D, τ1)⊗ L ' (D, τ1)⊕ (C+
D,τ1

, τ1) and (D, τ2)⊗ L ' (D, τ2)⊕ (C+
D,τ2

, τ2).

In particular:

D ⊕ C+
D,τ1
' D ⊗ L ' D ⊕ C+

D,τ2
.

It follows that τ1 and τ2 have the same discriminants and Clifford invariants. The first claim then
follows by the classification of algebras with involutions over global fields.

The second claim is clear as α1 ◦α−1
2 is an automorphism of (L,D, τ)⊗∆L and if there is an action

on ∆L, its effect is to interchange ρ with ρ. �

Remark 3.31. The above result can be compared with [8, 43.11 - 43.14] where the construction
depends only on the choice of an octonion algebra.

Theorem 3.32. Suppose that (L,D, τ, α) is the trialitarian algebra associated to a twisted composition
(L, V,Q,m) of dimension 8, then Aut(L,D, τ, α) ' Aut(L, V,Q,m)adj.

Moreover, trialitarian algebras are classified by H1(Gal(k/k),Aut(L,D, τ, α)).

[8, 44.2 and 44.5]

Theorem 3.33. Let (L,D, τ, α) be a trialitarian algebra over k, the connected component of the
identity Aut(L,D, τ, α)0 is the subgroup which acts trivially on L.

It suffices to check over the algebraic closure, see [8, 44.A].
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3.4. Classification of Groups of Type D4.

Construction. Let (L,D, τ, α) be a trialitarian algebra over k. Let C denote the canonical map from
AutL(D, τ) to AutL(C+

D,τ ). Let χ denote the canonical map from Spin(D, τ) to D. Then we may
construct the following groups:

Aut(L,D)0(R) = {g ∈ ResL/k(AutL(D, τ))(R) | α ◦ C(g) = (C ⊗ 1) ◦ α}
Spin(L,D,τ,α)(R) = {g ∈ ResL/k(Spin(D,τ)/L)(R) | α(g) = χ(g)⊗ 1}

They are respectively, adjoint, and simply connected groups of type D4.

Theorem 3.34. The adjoint groups (respectively simply connected groups) of type D4 are in bijection
with the trialitarian algebras over k, both are classified by H1(Gal(k/k),Aut(L,D, τ, α)) the bijection
associates to a trialitarian algebra, the groups defined above.

[8, 44.8].
We briefly sketch the cohomological interpretation of the above, see [8, Ch. 44] for more details.

We have an exact sequence:

H1(Gal(k/k),Aut(L,D)0)→ H1(Gal(k/k),Aut(L,D))→ H1(Gal(k/k), Sξ3)

The group Aut(L,D) is both the automorphism group of the trialitarian algebra as well as the auto-
morphism group of Aut(L,D)0. Hence, H1(Gal(k/k),Aut(L,D)) classifies both. In the above exact

sequence the map to H1(Gal(k/k), Sξ3) is associating an étale algebra of degree 3, in particular, the
algebra L. Note that in considering the classification one typically would use as base point the split

form of the group in which case Sξ3 ' S3. In the case where the group is split, Aut(Gal(k/L), D)0 is the
automorphism group of the matrix algebra with the transpose involution preserving the determinant,
and H1(Gal(k/k),Aut(L,D)0) classifies central simple algebras with orthogonal involution and trivial
discriminant. The first map thus is associating to a class of H1(Gal(k/k),Aut(L,D)0) a trialitarian
algebra over L constructed as in Example 3.10 and 3.28.

Moreover, the natural inclusion:

Aut(L,D)0 ↪→ ResL/k(AutL(D, τ))

Results in maps:

H1(Gal(k/k),Aut(L,D)0)→ H1(Gal(k/k),ResL/k(AutL(D, τ)0))→ H1(Gal(k/L),AutL(D, τ)0).

The Galois cohomology set H1(Gal(k/L),AutL(D, τ)0) classifies algebras with orthogonal involutions
over L of the same discriminant (this being equal to the discriminant of L by Theorem 3.26). Further
analysis reveals that the algebras in the image of the map are also all in the kernel of the corestriction
map to k, this follows directly from Theorem 3.26 but can also be shown by considering appropriate
exact sequences, see [8, Lem. 44.14].

Remark 3.35. If L/k is not a field, then L = k ⊕ F , and D has a corresponding decomposition
D = Dk ⊕DF . The spin group Spin(L,D,τ,α) = Aut(L,D, τ, α)0 is isomorpic to the spin group of Dk

and DF is simply the Clifford algebra of Dk.
If follows, that even if L is not a field we still have:

Spin(L,D,τ,α)⊗kL ' SpinD,τ .

4. Maximal Tori in Dn

The main This section contains the major results of this paper, that is it describes the rational
conjugacy classes of maximal tori in groups of type Dn.

We shall first need to give two auxiliary results on tori in specific situations.
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4.1. Conjugacy Classes of Tori in Covering Groups. We first describe how to characterize the
difference in conjugacy class between a group and a covering group. We shall apply this in the cases
PSO,SO,Spin.

Lemma 4.1. Let T be a torus in a connected semisimple group G, and let G̃ be a connected cover
of G and let Z be the kernel of the map from G̃ to G. The rational conjugacy classes of tori T ′ ⊂ G̃
whose image in G is a rational conjugates of T are in bijection with:

im
(
H0(Gal(k/k), G)→ H1(Gal(k/k), Z)

)
/ im

(
H0(Gal(k/k), T )→ H1(Gal(k/k), Z)

)
.

Proof. In the following for brevity shall we omit the Galois group in when we write cohomology groups,
ie: H∗(X) = H∗(Gal(k/k), X). Firstly, we recall that the rational conjugacy classes of tori in a group
G are in bijection with:

ker
(
H1(NG(T ))→ H1(G)

)
as arising from the exact sequence:

H0(G)→ H0(G/NG(T ))→ H1(NG(T ))→ H1(G)).

In the case of the comparison between G̃ and G we may consider the exact diagram:

H0(G) // H1(Z) // H1(G̃) // H1(G)

H0(NG(T )) //

OO

H1(Z) //

'

OO

H1(NG̃(T ′)) //

OO

H1(NG(T ))

OO

from which we deduce that we we have a bijection

ker
(
H1(NG(T ))→ H1(G)

)
' im

(
H0(G)→ H1(Z)

)
/ im

(
H0(NG(T ))→ H1(Z)

)
.

Next, by considering the exact diagram:

H0(NG(T )/T ) // H1(T ) // H1(NG(T )) // H1(NG(T )/T )

H0(NG̃(T ′)/T ′) //

'

OO

H1(T ′) //

OO

H1(NG̃(T ′)) //

OO

H1(NG̃(T ′)/T ′)

'

OO

H1(Z)

OO

' // H1(Z)

OO

we deduce that we have:

im
(
H0(NG(T ))→ H1(Z)

)
' im

(
H0(T )→ H1(Z)

)
.

This gives the desired result. �

4.2. Tori in Restriction of Scalars Groups. The following result is not strictly used in the sequel,
but motivates some of the ideas we shall use when looking at tori in groups of type D4.

Lemma 4.2. Let G be a reductive group over L a finite extension of k an infinite field.

H = ResL/k(G).

Let T ⊂ H be a maximal k-torus of H, then:

T = ResL/k(T ′)

for T ′ a maximal L-torus of G.

Proof. The collection of k-points of T are all k-points of H = G(L) and hence are L points of G. Set
T ′ to be the center of their centralizer in G, it is thus an L-torus of G. Then, the Zariski closure of
T (k) ⊂ ResL/k(T ′), but T (k) is dense in T , and thus ResL/k(T ′) = T ′. �
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Remark 4.3. The result can be extended to finite fields by considering an appropriate base change
and using Galois descent. As we shall not use this result, we omit the details.

4.3. Tori in Orthogonal Groups. We shall first handle the case of orthogonal groups. For orthog-
onal groups coming from quadratic spaces, this was handled in our previous work [6].

The key results are the following:

Proposition 4.4. Let q be a quadratic form on V over k and let Oq be the associated orthogonal group.
Let T ⊂ Oq be a maximal k-torus. Then there exists an étale algebra with involution (E, σ) over k
such that T = TE,σ. Moreover, suppose TE,σ ⊂ Oq is a maximal torus. Then there is an identification
of E with V so that

q(x) = qE,λ(x) = 1
2 TrE/k(λxσ(x))

for some choice of λ ∈ (Eσ)×.
Given q and TE,σ the choice of λ is unique as an element of (Eσ)×/NE/Eσ (E×) Autk(E, σ). More-

over, two isomorphic tori T1 ' T2 ' TE,σ embedded into Oq with respect to λ1 and λ2 are k-conjugate
if and only if λ1 = λ2 in (Eσ)×/NE/Eσ (E×) Autk(E, σ).

See [6, Prop. 2.13], or for a Galois cohomological interpretation see [13, Ex. 6.126].

Remark 4.5. The group Autk(E, σ) which appears is naturally identified with

W (k) = (NG(T )/T )(k)

the rational points of the Weyl group.

Theorem 4.6. Let (E, σ) be an étale algebra with involution over k of dimension 2n and let λ ∈ (Eσ)×.
Then the invariants of qE,λ(x) = 1

2 TrE/k(λxσ(x)) are:

(1) D(qE,λ) = (−1)nδE/k,
(2) H(qE,λ) = H(qE,1) · CorEσ/k(λ, δE/Eσ ),
(3) W (qE,λ) = W (qE,1) · CorEσ/k(λ, δE/Eσ ).
(4) For a real infinite place ν of k the quadratic form has signature (n+ r

2 −
s
2 , n−

r
2 + s

2 )ν where
s (respectively r) is the number of real embeddings ρ ∈ Homk−alg(E

σ,R) of Eσ which are
ramified in E with ρ(λ) > 0 (respectively ρ(λ) < 0).

[6, Thm. 3.3 and Lem. 5.2].

Theorem 4.7. Let Oq be an orthogonal group over a number field k defined by a quadratic form q of
dimension 2n or 2n+ 1, and let (E, σ) be an étale algebra over k with an involution and of dimension
2n. Then Oq contains a torus of type (E, σ) locally everywhere (but not necessarily globally) if and
only if the following three conditions are satisfied:

(1) Eφ splits the even Clifford algebra W orth(q) for all σ-types φ of E.
(2) If dim(q) is even then δE/k = (−1)nD(q).
(3) Let ν be a real infinite place of k and let s be the number of homomorphisms from E to C

over ν for which σ corresponds to complex conjugation. The signature of q is of the form
(n − s

2 + 2i, n + s
2 − 2i)ν if the dimension is even and either (n − s

2 + 2i + 1, n + s
2 − 2i)ν or

(n− s
2 + 2i, n+ s

2 − 2i+ 1)ν if ν((−1)nD(q)δE/k) is respectively positive or negative when the
dimension is odd, where 0 ≤ i ≤ s

2 .

Moreover, for any E satisfying condition (2) we have that
√
D(q) ∈ Eφ for every σ-type φ of E.

[6, Thm. 5.1]
We now reinterpret these in the context of orthogonal groups attached to algebras with orthogonal

involutions. The statements here appear more complicated largely as a consequence of the fact that
wheras above we had a natural basepoint, the quadratic form qE,1(x), there is no one canonical
orthogonal involution to use as a base point for comparison.

The following proposition is meant to enumerate a number of useful facts concerning the structure
of tori in these groups.
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Proposition 4.8. Let (A, τ) be a central simple algebra over k with a symplectic involution τ .

(1) Suppose δ in A× is such that τ(δ) = −δ and let T ⊂ OA,τδ be a maximal k-torus. Then there
exists an étale algebra with involution (E, σ) over k such that T = TE,σ and T ⊂ OA,τδ arises
from an inclusion

(E, σ) ↪→ (A, τδ).

(2) Fix an orthogonal involution τ ′ on A, any inclusion

ρ : (E, σ) ↪→ (A, τ ′)

induces an inclusion of the torus TE,σ ↪→ OA,τ ′ .
(3) Fix ρ : (E, σ) ↪→ (A, τ) for each δ ∈ E× such that σ(δ) = −δ we have an inclusion:

(E, σ) ↪→ (A, τρ(δ)).

(4) Fix an embedding ρ : (E, σ) ↪→ (A, τ). The set of orthogonal involutions τ ′ on A for which:

ρ : (E, σ) ↪→ (A, τ ′)

is precisely the set of involutions τρ(δ) for δ ∈ E× with σ(δ) = −δ.
(5) Fix an orthogonal involution τ ′ on A, and any inclusion ρ′ : (E, σ) ↪→ (A, τ ′). Then there

exists g ∈ A× such that

Intg ◦ρ′ : (E, σ) ↪→ (A, τ) and Intg ◦ρ′ : (E, σ) ↪→ (A, Intg ◦τ ′ ◦ Intg−1)

In particular there exists δ ∈ E× such that σ(δ) = −δ and

(A, τ ′) ' (A, Intg ◦τ ′ ◦ Intg−1) = (A, τIntg ◦ρ′(δ)).

(6) Fix ρ : (E, σ) ↪→ (A, τ). Consider any ρ′ : (E, σ) ↪→ (A, τ) then there exists g ∈ A× such that:

ρ′ = Intg ◦ρ

In particular for any collection:

(E, σ,A, τ ′, ρ′)

(where τ ′ and ρ′ are what may vary) it is equivalent to one of the form:

(E, σ,A, τ ′, ρ′) ∼ (E, σ,A, τ ′′, ρ)

(where only τ ′′ may vary).
(7) Fix ρ : (E, σ) ↪→ (A, τ). The isomorphism classes of collections:

(E, σ,A, τ ′, ρ′)

(that is, varying τ ′ and ρ′) are in bijection with

{δ ∈ E× | σ(δ) = −δ}/k×NE/Eσ (E×)

Moreover, fixing τ ′, the isomorphism classes of collections:

(E, σ,A, τ ′, ρ′)

(that is, varying ρ′) are in bijection with the subset of the above δ such that τδ ' τ ′.
Proof.

• The first claim follows from Galois descent from the result over k. Over k we may invoke
Proposition 4.4.
• The second and third claims are essentially immediate.
• For the forth claim, we note that all of the orthogonal involutions are of the form τε for ε ∈ A×

with τ(ε) = −ε. The requirement that ρ : (E, σ) ↪→ (A, τε) is a map of algebras with involution
given that ρ : (E, σ) ↪→ (A, τ) is precisely that ε centralize the image of ρ. We may check over
the algebraic closure that E is its own centralizer in A.



MAXIMAL TORI IN GROUPS OF TYPE Dn 17

• For the fifth claim we observe that for any δ′ ∈ E× with σ(δ′) = −δ′ we have:

τ ′δ′ ' τ
and that τ ′δ = Intg−1 ◦τ ◦ Intg for some g ∈ A×. As we have

ρ′ : (E, σ) ↪→ (A, τ ′δ) = (A, Intg−1 ◦τ ◦ Intg)

we immediately conclude:

Intg ◦ρ′ : (E, σ) ↪→ (A, τ)

and

Intg ◦ρ′ : (E, σ) ↪→ (A, Intg ◦τ ′ ◦ Intg−1).

It follows by the previous claim that there exists a δ so that

(A, Intg ◦τ ′ ◦ Intg−1) = (A, τIntg ρ′(δ)).

• For the sixth claim it is an easy check that over k we may find:

g̃ ∈ A⊗k k
such that Intg̃ ◦ρ = ρ′. Now consider any ϕ ∈ Gal(k/k) then as gρ(x)g−1 = ρ′(x) we have

ϕ(gρ(x)g−1) = ϕ(ρ′(x)) = ρ′(x) = gρ(x)g−1.

It follows that g̃ϕ(g̃−1) centralizes ρ(E) and thus g̃ϕ(g̃−1) ∈ (E ⊗ k)×. By Hilbert’s Theorem
90 there exists e ∈ (E ⊗ k)× with g̃ϕ(g̃−1) = eϕ(e−1) for all ϕ ∈ Gal(k/k). We then have that
g = g̃ρ(e−1) ∈ A× satisfies:

Intg ◦ρ = ρ′.

• For the final claim we notice that by the above any datum:

(E, σ,A, τ ′, ρ′)

is equivalent to one of the form:

(E, σ,A, Intg ◦τ ′ ◦ Intg−1 , ρ)

As we have fixed ρ : (E, σ) ↪→ (A, τ) it further follows that Intg ◦τ ′ ◦ Intg−1 = τδ.
The ambiguity in the choice of τδ which would in general be up to the action of A×, is now

up to the elements of A× which preserve ρ. In particular the elements of A× which centralize
ρ(E), that is, the elements of E× acting by inner automorphism on A through ρ.

The action of e ∈ E× on τδ is τeσ(e)δ as τ(e) = σ(e) and δ commutes with σ(e). �

In the setting of endomorphism algebra’s we had a natural base point, that is a choice of τ ′ from
which we could build our classification. There is no canonical orthogonal involution, this is why in
the above we continuously made use of symplectic involutions. In combination with the above, the
following justifies why if we are contemplating any tori associated to (E, σ) in (A, τ ′) there will exist
a symplectic involution to use as a base point.

Proposition 4.9. Let (A, τ) be a central simple algebra over k with a symplectic involution τ . Let
(E, σ) be an étale algebra with involution over k. Then (E, σ) ↪→ (A, τ) if and only if E ↪→ A.

[5, Prop. 5.7]
When dealing with endomorphism algebras we used λ ∈ (Eσ)×, the following corollary, proposition

and theorem rephrase the above in terms of this normalization.

Corollary 4.10. Fix (A,E, σ) with E ↪→ A. The isomorphism classes of collections

(A, τ ′, E, σ, ρ)

are in bijection with elements λ ∈ (Eσ)× modulo k× ·NE/Eσ (E×).
Moreover, the k-isomorphism classes of the embeddings of TE,σ into any SOA,τ ′′ are in bijection

with the equivalence classes of collections above where (A, τ ′) ' (A, τ ′′).
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Proof. By fixing any one δ with σ(δ) = −δ all other such are of the form λδ for λ as above. The results
is then immediate from the proposition. �

We now wish to upgrade the result from a k-isomorphism classes of embeddings of tori to a result
about k-conjugacy classes of embeddings of tori in SOA,τ . The distinction between k-conjugacy classes
of tori in SOA,τ and k-isomorphism classes of embeddings is characterized by conjugations not possible
by SOA,τ (k) but that are possible using PSOA,τ (k), modulo conjugations by T (k). This is precisely the
result of Lemma 4.1. The elements (Eσ)×/NE/Eσ (E×)k× capture the conjugacy classes in PSOA,τ .

Our goal now is to explain why (Eσ)×/NE/Eσ (E×) characterizes conjugacy classes in SOA,τ (just
as in the case of classical quadratic spaces). In order to make sense of this we will need a concrete
description of:

H1(Gal(k/k),SOA,τ )

so as to normalize elements of λ as we do in the classical case with respect to an explicit quadratic
form.

Recall from Section 2.2 that we have a bijection:

H1(Gal(k/k),SOA,τ ) ' {(s, z) ∈ A× × k× | τ(s) = s and NA/k(s) = z2}/ ∼

where the equivalence relation on the right is given by (s′, z′) ∼ (s, z) if there exists a ∈ A× with
s′ = asτ(a) and z′ = NA/k(a)z. Recall also that the group H1(Gal(k/k), µ2) ' k×/(k×)2 acts on the
elements by (s, z) 7→ (ds, dnz).

Proposition 4.11. Fix both an algebra with orthogonal involution (A, τ) as well as an element

(s, z) ∈ H1(Gal(k/k),SOA,τ )

which we use to determine another involution τs of A. To any inclusion

ρ : (E, σ) ↪→ (A, τs)

we can associate the subset

{λ ∈ (Eσ)× | (λ,NEσ/k(λ)) ∼ (s, z)}/NE/Eσ (E×) ⊂ (Eσ)×/NE/Eσ (E×)

the image of which in (Eσ)×/NE/Eσ (E×)k× is {λ}, where λ is the element associated to the datum

(E, σ,A, τs, ρ)

This subset is in bijection with the conjugacy classes of embeddings TE,σ into SOA,τ which are isomor-
phic to the embedding ρ.

In particular, the rational conjugacy classes of all embeddings TE,σ into SOA,τ are in bijection with
those elements λ ∈ (Eσ)×/NE/Eσ (E×) for which (λ,NEσ/k(λ)) is equivalent to (s, z).

Proof. We already know that we may associate

λ̃ ∈ (Eσ)×/NE/Eσ (E×)k×

for which τλ̃ is equivalent to τs. We note that under the map

H1(Gal(k/k),SOA,τ )→ H1(Gal(k/k),AutA,τ )

we have that the classes of τs and τλ̃ are respectively the images of (s, z) and (λ̃, NEσ/k(λ̃)). The

images are equivalent (s, z) and (λ̃, NEσ/k(λ̃)) thus differ by the action of

d ∈ k×/(k×)2 = H1(Gal(k/k), µ2)

Thus, there is a scalar multiple λ = dλ̃ such that

(s, z) ∼ (λ,NEσ/k(λ)).

This proves that the association from the datum (E, σ,A, τs, ρ) to the subset

{λ ∈ (Eσ)× | (λ,NEσ/k(λ)) ∼ (s, z)}/NE/Eσ (E×)
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gives a set whose image in (Eσ)×/NE/Eσ (E×)k× is precisely the λ already associated to the isomor-
phism class.

We now claim that the fiber of this map is naturally in bijection with the conjugacy classes of
embeddings in SOA,τ which have the same isomorphism class.

Indeed, by Lemma 4.1 the distinct conjugacy classes in SOA,τ which give the same isomorphism
class are in bijection with

im
(
H0(Gal(k/k),PSOA,τ )→ H1(Gal(k/k), µ2)

)
/ ker

(
H1(Gal(k/k), µ2)→ H1(Gal(k/k), T )

)
.

We note that

im(H0(Gal(k/k),PSOA,τ )→ H1(Gal(k/k), µ2))

is precisely the stabilizer of (s, z) for the rescaling action of H1(Gal(k/k), µ2)) on

H1(Gal(k/k),SOA,τ ).

This is precisely the subset of k×/(k×)2 for which (ds, dnz) ∼ (s, z), but as we can replace (s, z) by
(λ,NEσ/k(λ)) this is also the subset for which (dλ, dnNEσ/k(λ)) ∼ (s, z). We may identify this with

the elements λ in fiber of the map (Eσ)×/(k×)2 → (Eσ)×/k× for which (λ,NEσ/k(λ)) ∼ (s, z).
Next we note that that

ker(H1(Gal(k/k), µ2)→ H1(Gal(k/k), T ))

is precisely those elements of K×/(k×)2 which are norms from E, so that

im(H0(Gal(k/k),PSOA,τ )→ H1(Gal(k/k), µ2))/ ker(H1(Gal(k/k), µ2)→ H1(Gal(k/k), T ))

is naturally identified with elements λ in fiber of the map (Eσ)×/NE/Eσ (E×) → Eσ/NE/Eσ (E×)k×

for which (λ,NEσ/k(λ)) ∼ (s, z).
This gives the claimed result. �

Theorem 4.12. Fix (A, τ) a central simple algebra over k with a symplectic involution τ . Let (E, σ)
be an étale algebra with involution over k, and fix δ =

√
δE/Eσ so that E ' Eσ(δ). Fix an inclusion

(E, σ) ↪→ (A, τ). Suppose TE,σ ⊂ OA,τ ′ as a maximal k-torus. Then there exists λ ∈ (Eσ)× for which
(A, τ ′) ' (A, τλδ) and the inclusion TE,σ ⊂ OA,τ ′ arises from the fixed inclusion (E, σ) ↪→ (A, τ).

The rational conjugacy classes of the images of TE,σ in SOA,τ ′ are in bijection with the elements of

λ ∈ E×/NE/Eσ (E×) Autk(E, σ)

for which (λ,NEσ/k(λ)) ∈ H1(Gal(k/k),SOA,τ ′) is equivalent to a fixed one chosen to define τ ′.

Proof. By Proposition 4.11 we have that the association (A, τ ′, E, σ, ρ) 7→ λ is well defined up to
NE/Eσ (E×).

However, given any element ϕ ∈ Autk(E, σ) we have that

(A, τ ′, E, σ, ρ) and (A, τ ′, E, σ, ρ ◦ ϕ)

will give the same torus (with a potentially different embedding).
Conversely, if

(A, τ ′, E, σ, ρ) and (A, τ ′, E, σ, ρ′)

have ρ(E) = ρ′(E) then there exists an element of ϕ ∈ Autk(E, σ) such that ρ′ = ρ ◦ ϕ.
It follows that having fixed a base point (E, σ) ↪→ (A, τ) we may associate to any torus TE,σ ⊂ OA,τ ′

an element λ well defined up to NE/Eσ (E×) Autk(E, σ). �

Remark 4.13. As in Remark 4.5 one can show that the group Autk(E, σ) can be identified with the
rational points of the Weyl group (see [13]).

Fixing (A, τ,E, σ) not all options for λ are associated to a fixed τs, indeed the choice of λ determines
the isomorphism class of τλ, and different choices of λmay result in non-isomorphic (A, τλ). Moreover as
in the classical case of quadratic forms, the classification above comes from considering those elements
for which (λ,NEσ/k(λ)) ∼ (s, z), that is fixing a pure inner form, rather than only requiring τλ ∼ τs. In
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the classical case this is seen in that non-isomorphic quadratic forms may give isomorphic orthogonal
groups.

We also note that just as in the more classical case of quadratic forms, and as is often the case
when dealing with Galois cohomology one should interpret the collection of λ as a torsor relative to a
fixed base point. Notice that in Proposition 4.11 we need to fix the information of τ , a choice s, and
a preliminary embedding of (E, σ). In the case of quadratic forms, we have often fixed the base point
TrEσ/E(xσ(x)), but it is not the only choice and it may actually be more natural to prefer a different
choice such as one which has trivial Clifford invariant and maximal index (see for example [6, Lem.
3.6]).

Based on the above we have that the group (Eσ)×/NE/Eσ (E×) acts transitively on the set of
collections

(A, τ ′, E, σ, ρ)

where τ ′ is an orthogonal involution. We wish to be able to describe the invariants of the resulting
forms.

Theorem 4.14. Let (A, τ) be a central simple algebra of degree 2n over k with a symplectic involution
τ , and (E, σ) be an étale algebra with involution over k such that E ↪→ A.

Fix a representative δ =
√
δE/k

The invariants of τ ′ = τλδ are as follows:

• The discriminant of τ ′ is given by D(τ) = (−1)nδE/k where δE/k is the discriminant of E.
• If (A, τ ′′, E, σ, ρ) = λ ◦ (A, τ ′, E, σ, ρ) then

[CA,τ ′′ ] = [CA,τ ′ ] + ResZ/k CorEσ/k((δE/Eσ , λ)).

In particular:

[CA,τλδ ] = [CA,τδ ] + ResZ/k CorEσ/k((δE/Eσ , λ)).

In the above Z = k(
√

(−1)nD(τ)) is the center of the Clifford algebra.
• Suppose A is a matrix algebra over a quaternion algebra. Let r (respectively s) be the number

of real places of Eσ which ramify in E where λ > 0 (respectively λ < 0). The index of (A, τ)
is precisely:

(n− |r − s| /2)/deg([A])

Proof. The first point follows immediately from the definition of the discriminant of an orthogonal
involution, and the definition of the discriminant of an étale algebra.

The second point is precisely [4, Prop. 5.3].
For the third point, we need only consider the case E = Cn and A = Mn(H) as all other cases

are handled by Theorem 4.7. We note that the inclusion (E, σ) ↪→ (A, τλδ) induces the structure of
a quadratic module on E. We claim the index of (A, τλδ) is the same as the index of this quadratic
space, from which the result follows. By comparing to the structure of the “quadratic space” we can
define on Hn the result then follows by an explicit check. �

Remark 4.15. We should point out that the expression ResZ/k CorEσ/k((δE/Eσ , λ)) depends only
on λ if the discriminant D(τ) is trivial and δE/Eσ is non-trivial. It is worth comparing this to the
possibilities considered in Remark 2.12 as well as contrasting this result with Theorem 4.6 which gives
the Witt invariant of the related quadratic form.

Before proceeding we note that the following theorem makes use of results from the next section,
but that there are no circular dependencies in the proofs.

Theorem 4.16. Let k be a global field. Let (A, τ ′) be a central simple algebra with orthogonal involution
over k of degree 2n. Let (E, σ) be an étale algebra over k with an involution and of dimension 2n.
Then OA,τ ′ contains a torus of type (E, σ) locally everywhere (but not necessarily globally) if and only
if the following four conditions are satisfied:

(1) E ↪→ A.
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(2) δE/k = (−1)nD(τ), in particular the center of the even Clifford algebra has discriminant δE/k.

(3) Eφ as an algebra over k(
√
δE/k) splits the even Clifford algebra C+

A,τ over its center for all
σ-types φ of E.

(4) Let ν be a real infinite place of k and let s be the number of homomorphisms from E to C over
ν for which σ corresponds to complex conjugation. The index of τ is of the form n − s

2 + 2i
where 0 ≤ i ≤ s

2 . Note that if Aν is a quaternion algebra then s = 2n from the first condition.

Proof. By Theorem 4.14 the only thing that we must show is that the condition related to the reflex
algebra is equivalent to the isomorphism class of the Clifford algebra depending on λ.

Now, we make note of Theorem 4.19, whose proof does not depend on this result, that whenever
(E, σ) does embed, then Eφ will split C+

A,τ over its center. In particular, the conditions above are all
necessary, we must show they are sufficient.

Moreover, as this result reduces to Theorem 4.7 when A is an endomorphism algebra, we need only
treat the cases where A is a matrix algebra over a quaternion algebra.

In particular, we must only show that whenever (E, σ) does not embed in (A, τ ′) then Eφ do not
all split the even Clifford algebra over the center.

We complete the result with a case by case analysis, first we will look at the case where we are
working over a p-adic local field kν . The key observation is that by Remark 2.12 there are at most two
τ to consider for each choice of A.

• If there is a unique orthogonal involution on A of discriminant δE/k then the assumption
E ↪→ A implies (using Proposition 4.9) that (E, σ) ↪→ (A, τ ′) and thus we have nothing to
show.
• If there are two orthogonal involutions on A of discriminant δE/k and the isomorphism class of

C+
A,τ over its center depends on λ, then (E, σ) embeds into both (A, τ1) and (A, τ2) and again

we have nothing to show.
• If there are two orthogonal involutions on A of discriminant δE/k and the isomorphism class

of C+
A,τ over its center does not depend on λ, then (by Theorem 4.19) Eφ splits C+

A,τ for the

choice of involution τ for which (E, σ) ↪→ (A, τ). It remains only to show that it does not split
it for the other possible isomorphism class.

By [6, Lem. 5.5] and [6, Cor. 2.6] we see that if the isomorphism class does not depend
on λ then EΦ has a field factor k. The options for the Clifford algebra are A ×M where [A]
is 2-torsion and [M ] is trivial over center k × k or A × Aop where [A] is 4-torsion over k × k.
Since EΦ must have a field factor k, the Clifford algebra it split must be A×M .

Noting that EΦ can then not split M ×A as the k factor would now need to split [A], which
it does not, completes the result.

We now deal with the case of kν = R. Most cases are already covered by our previous result
(Theorem 4.7) the only case we still need to consider is E = Cn, in which case, the isomorphism class
of C+

A,τ depends on λ whenever the discriminant provides for more than one possible isomorphism
class of τ . The conditions about the index are automatic in this case. �

Remark 4.17. We should point out that our proof makes direct use of the structure of the Brauer
groups for local fields via the use of Remark 2.12 to classify the possible τ over local fields.

The question of when a torus which embeds locally everywhere embeds globally is somewhat subtle,
for a thorough treatment of this question one may look at [10], [3], [1], or [2]. We remark first that the
local global obstruction is one which relates to the algebra E, and not the algebra (A, τ). We further
point out that the conditions all come from attempting to find a global λ given that one can find
local everywhere λν . As such, the case of central simple algebras is no different from that of quadratic
spaces.

We now summarize several sufficient conditions on when an étale algebra will satisfy the local global
principal.
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Theorem 4.18. Let (E, σ) = ⊕i(Ei, σi)⊕ (F ⊕ F, σ) where the (Ei, σi) are all fields. Then if (E, σ)
satisfies any of the following conditions, then TE,σ embeds as a maximal torus in Oq globally, if and
only it does locally everywhere.

• For each pair i, j there exists p a prime of k and pi, pj |p primes of Ei, Ej such that pi, pj are
both not split respectively over Eσi , E

σ
j .

• E is a field.
• The algebra ⊕i(Ei, σi) is a CM-algebra.

• Let Ẽ =
∏
iEi be the compositum of the Ei, there exists σ̃ an involution on Ẽ such that

σ̃|Ei = σi.

The first condition is from [10], the second is an immediate consequence. The third condition is
precisely [3, Cor. 4.1.1] and the fourth is simply replacing complex conjugation with σ̃ in the proof of
[3, Lem. 2.2.2 and Cor. 4.1.1].

4.4. Tori in Spin Covers of Orthogonal Groups.

Theorem 4.19. Let (A, τ) be a central simple algebra with orthogonal involution over k and let (E, σ)
be an étale algebra with involution over k such that TE,σ ↪→ Oq as a maximal subtorus.

Then EΦ embeds into CA,τ as a maximal étale algebra over k(
√
δE/k) stable under the canonical

involution of CA,τ . Moreover, the canonical involution restricts to σ on EΦ.

Proof. This is precisely [6, Thm. 2.18] translated to this context. We will use the notation from there.
Recall that eρ denotes the idempotents of E⊗k k which are naturally in bijection with ρ ∈ Hom(E, k).

We shall obtain the result by way of Galois descent working over the algebraic closure.
The inclusion E ↪→ A gives us an inclusion of the idempotents eρ into A⊗k k, we shall denote the

image in A ⊗k k of eρ by δρ to avoid confusing the algebra structures when we eventually consider

T (A⊗k k).
Working over the algebraic closure k we may identify A ⊗k k with the endomorphism algebra of

E ⊗k k (as a k-module). Indeed, as E gives a maximal étale subalgebra of A any realization of A as
an endomorphism algebra of a vector space gives that vector space the structure of a rank 1 module
over E ⊗k k. Fix any isomorphism ϕ : A ⊗k k ' Endk(E ⊗k k). By construction the inclusion of

E ↪→ Endk(E ⊗k k) induced by the inclusion of E ↪→ A and the map ϕ agrees with the inclusion

E ↪→ Endk(E ⊗k k) induced from left multiplication of E on E.
We shall need the following:

Lemma 4.20. In [6, Thm. 2.18] the association of δρ = 1
ρ(λ)eρ ⊗ eρ◦σ ∈ C+

A,τ is the same as the

association defined above of δρ = eρ under the inclusion E ↪→ A ↪→ C+
A,τ .

Proof. Indeed, as an element of Endk(E ⊗k k) the element 1
ρ(λ)eρ ⊗ eρ◦σ acts as left multiplication by

eρ. �

Using this it follows that the formal properties of the δρ as defined in [6, Thm. 2.18] hold for δρ as
defined above. In particular we have that:

(1) The action of σ on δρ agrees with the canonical involution of C+
A,τ ,

(2) δ2
ρ = δρ,

(3) δρσ(δρ) = 0 and δρ + σ(δρ) = 1,
(4) the δρ all commute, and
(5) the Galois action on {δρ} is the same as that on {eρ}.

Now for each σ-type φ ∈ Φ of E set δφ =
∏
ρ∈φ δρ. These elements then satisfy the following properties:

(1) δ2
φ = δφ,

(2) δφ1
δφ2

= 0 for φ1 6= φ2,
(3)

∑
φ δφ =

∏
ρ(δρ + δρ◦σ) = 1, and

(4) the Galois action on {δφ}φ∈Φ is the same as that on {φ}φ∈Φ.
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Thus the δφ are Galois stable orthogonal idempotents and hence by taking Galois invariants give an

étale subalgebra of C+
A,τ . As the Galois action on idempotents matches that of EΦ, this gives an

embedding of EΦ into C+
A,τ . Moreover, this algebra is preserved by the canonical involution of C+

A,τ ,
and the involution restricts to σ on it.

The algebra is maximal as an étale subalgebra for dimension reasons.
Finally, we observe that EΦ has the subalgebra k(

√
δE/k) defined as follows: Fix any one reflex

type φ let:

Φ+ = {φ′ | |φ ∩ φ′| is even}
and

Φ− = {φ′ | |φ ∩ φ′| is odd}
Then {Φ+,Φ−} does not depend on φ (though the order does) and admits a natural action of the
Galois group. We may then define:

δΦ± =
∑
φ∈Φ±

δφ

Then the étale sub-algebra of both EΦ and CA,τ defined by δΦ± is the center of CA,τ and isomorphic

to k(
√
δE).

In particular EΦ embeds in CA,τ viewing both as algebras over k(
√
δE). �

Example 4.21. Let k be a non-archimidean local field, Suppose A a central simple algebra of degree
2n is not a matrix algebra, and τ , an orthogonal involution on A has (−1)nD(τ) = 1. Suppose that
E = F × F with σ acting to interchange factors so that δE/Eσ = 1 is trivial. Suppose E ↪→ A.

In this setting there were 2 choices for τ , these choices are distinguished by the isomorphism class
of [C+

A,τ ] over its center, Z ' k × k. We recall (Remark 2.12) that C+
A,τ is the direct sum of two

non-isomorphic central simple algebras, hence one is a matrix algebra, the other is not. Even though
these algebras are isomorphic over k, the algebra (E, σ) injects into only one of the two algebras as
ResZ/k CorEσ/k((δE/Eσ , λ)) does not depend on λ. What we have is that (EΦ, σ), as a k-algebra, has
a unique non-quadratic factor k× k, on which σ acts by interchanging factors. When (E, σ) ↪→ (A, τ)
then as an algebra over Z = k × k, the center of the Clifford algebra, this k × k factor of EΦ sits over
the same k-factor of Z over which the matrix algebra sits. It follows that this can occur for only one
of the two choices of τ .

Theorem 4.22. Let (A, τ) be a central simple algebra with orthogonal involution over k.
Let T be a torus in SpinA,τ , then there exists (E, σ) an étale algebra with involution over k such

that TE,σ ↪→ OA,τ . The map χ : SpinA,τ → OA,τ maps T to TE,σ.
The torus T ↪→ TEΦ,σ and is isomorphic to the natural image of the map:

TE,σ
NΦ

−→ TEΦ,σ

defined by sending x ∈ E to its reflex norm in EΦ. The composition of the maps χ ◦ NΦ is the map
x 7→ x2 of TE,σ.

We may thus view T as the subtorus of TEΦ,σ × TE,σ defined by either:

T = {(x, y) ∈ TEΦ,σ × TE,σ | y = χ(x)} = {(x, y) ∈ TEΦ,σ × TE,σ | NΦ(y) = x2}0.

Proof. To check this result we need to explicitly understand the map χ : SpinA,τ → SOA,τ . We have
avoided giving the explicit construction of this map. However, all of the results can be checked over
an algebraic closure of k.

In this setting we may use the standard construction of this map using the full Clifford algebra. The
full Clifford algebra is a quotient of T (V ) where V is the underlying vector space for a quadratic form.
We note that in our setting we may write T (V ) = V ⊗ T (End(V )) = E ⊗ T (A) via the identification
of the underlying vector space with E. This gives us a new map E ↪→ CA,τ . We note that this map is
injective and as in the proof of the previous theorem it takes eρ to eρ. The spin group is contained in
the subgroup of CA,τ for which gEg−1 ⊂ E and it is this natural action on E that induces the map χ.
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A direct computation as in the remark following [6, Thm. 2.18] or in more detail the proof of [4,
Lemma. 4.5] allows us to compute the actions of δρ on eρ′ and from this we may compute the action
of NΦ(x) on E. In particular, we find that χ ◦ NΦ is the map x 7→ x2. The other claims are then a
direct consequence. �

Definition 4.23. We define a map Ψ : EΦ → E ⊗k EΦ as follows:

Ψ

∑
φ

aφeφ

 =
∑

φ1∩φ2={ρ}

aφ1aφ2eρ ⊗ (eφ1 + eφ2 + eφ1
+ eφ2

).

First, we note that the image of this map actually lands in a certain subalgebra Ẽ of E ⊗k EΦ, in
particular the image is stable under both the involution 1⊗ σ and the involution which takes eρ ⊗ eφ1

to eρ ⊗ eφ2
where φ2 ∩ φ1 ⊂ {ρ, ρ}. We shall make some use of this later. For now, the key feature of

this map which we shall use is that Ψ ◦ NΦ : E× → E ⊗ EΦ is the map x 7→ (N(x)xσ(x)−1) ⊗ 1 so
that in particular on restriction to TE,σ it is the map x 7→ x2 ⊗ 1.

It follows that in the above theorem we have the intrinsic description of T as:

T = {(x, y) ∈ TEΦ,σ × TE,σ | y ⊗ 1 = Ψ(x)}
moreover χ and Ψ essentially define the same map.

Remark 4.24. If one wanted to understand the previous theoem and above definition without passage
to the algebraic closure the key to carrying out the above computation explicitly is the observation that
our maps arise from the inclusion E ↪→ A ↪→ T (A). As the even Clifford algebra is a quotient of T (A) it
is this inclusion of E into C+

A,τ which via inner automorphisms induces the map C : SOA,τ → Aut(C+
A,τ )

as in the definition of the spin group (Proposition 2.13). It thus suffices to check that the image of
x ∈ TE,σ through this inclusion agrees with the image of NΦ(x) ∈ EΦ. To check this identification
one uses the relations from the ideal J2 as used to define the Clifford algebra in [8, Def. 8.7].

An alternate approach, more in line with the direct computations referred to above could use the
Clifford bimodule [8, Ch. 9].

We now consider the problem of understanding the rational conjugacy classes of these tori. Because
of Lemma 4.1 it is natural to look at the following:

Lemma 4.25. Let T = TE,σ and consider T ′ the unique torus which can cover it in a spin group and
the exact sequence:

1→ µ2 → T ′ → T → 1.

In the associated long exact sequence we have that:

im
(
H0(Gal(k/k), T )→ H1(Gal(k/k), µ2)

)
' NE/k(E×)/(k×)2 ⊂ k×/(k×)2.

Proof. We consider the exact diagram:

µ2

��

ResEσ/k(µ2)

NEσ/k

55

%%
H

99

// T
NΦ //

x2

  

T ′

Ψ

��

T

from which we deduce that

im
(
H0(Gal(k/k), T )

δΦ−→ H1(Gal(k/k),±1)
)
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is

NEσ/k

(
im

(
H0(Gal(k/k), T )

δx2−→ H1(Gal(k/k),ResF/k(µ2))

))
.

We then recall that im
(
H0(Gal(k/k), T )→ H1(Gal(k/k),ResEσ/k(µ2))

)
is precisely

ker
(
H1(Gal(k/k),ResEσ/k(µ2))→ H1(Gal(k/k), T )

)
which is precisely NE/Eσ (E×)/((Eσ)×)2.

The result then follows immediately. �

Remark 4.26. We can concretely interpret the coboundary map T (k) → H1(Gal(k/k), µ2) as fol-
lows. Every element f ∈ T (k) is of the form f = e/σ(e) for some e ∈ E. The image of f in
H1(Gal(k/k), µ2)/(k×)2 is precisely N(e).

Theorem 4.27. Let T = TE,σ be a torus in SOA,τ , the rational conjugacy classes of tori T ′ ⊂ SpinA,τ
whose image in SOA,τ is a rational conjugates of T are in bijection with a subset of:

k×/NE/k(E×)(k×)2.

In particular, it is the subset generated by the images of NẼ/k(Ẽ×) in k×/(k×)2 as we vary over all

pairs (Ẽ, σ) which give tori in SOA,τ .
The subgroup of k×/(k×)2 which must be considered is precisely the image of the spinor norm, which

is the value group of the quadratic form. In the specific case of a local or global field k this is:

{x ∈ k×|ν(x) > 0 for ν real place of k where SOA,τ is compact}.

Proof. The first claim follows immediately from the Lemmas 4.1 and 4.25.
The claim about the structure of the image follows from the fact that the coboundary map is a

group homomorphism and orthogonal group is generated by semi-simple elements. The final claim in
the case of local or global fields follows by observing that the H1(SpinA,τ ) is supported at the real
places, and concretely studying the possible tori in this case. �

Remark 4.28. To concretely interpret the above what it says is that if we conjugate a torus T by an
element whose spinor norm (its image in H1(Gal(k/k), µ2)) is not in (k×)2 then the preminage of that
torus in the spin group is not conjugate to the original unless there is an element f ∈ T (k) with the
same spinor norm. As the spinor norms of elements T (k) are in NE/k(E×) this explains the result.

4.5. Tori in Simply Connected Groups of type D4.

Lemma 4.29. Let (L,D, τ, α) be a trialitarian algebra. Then every maximal torus:

T ⊂ Spin(L,D,τ,α)(R) = {g ∈ ResL/k(Spin(D,τ)/L)(R) | α(g) = χ(g)⊗ 1}

is contained in a unique maximal torus of ResL/k(SpinD,τ ).

Proof. The center of the centralizer of T in ResL/k(Spin(D,τ)/L) is a k-torus containing T . To show

that it is maximal it suffices to consider the base change to k.
Since over k the group ResL/k(Spin(D,τ)/L) is a product group we may consider the centralizer for

each factor separately and compute it with respect to the projection onto each factor. This projection
gives a maximal torus in each factor, we thus conclude that the centralizer is in each case a maximal
torus. �

Lemma 4.30. Let (L,D, τ, α) be a trialitarian algebra. Let T ⊂ Spin(D,τ)/L be a maximal torus. Let

(E, σ) be the étale algebra over L associated to the torus TE,σ in SOD,τ whose preimage contains T in
ResL/k(Spin(D,τ)/L).

Then α induces a k-algebra isomorphism (EΦ, σ) → (E ⊗k ∆L, σ ⊗ 1) which restricts to ρ on the

subalgebra L ↪→ L⊗k ∆L. Consequently we have an isomorphism β : (E, σ)⊗k L
∼→ (E × EΦ, σ × σ)

given by:
e⊗ ` 7→ (`e, ρ−1(`)α−1(e)).
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Proof. Recall that by definition α is a map

(C+
D,τ , τ)→ρ (D ⊗k ∆L, τ ⊗ 1).

We have by Lemma 4.20 that EΦ ↪→ C+
D,τ and thus α|EΦ gives a map (EΦ, σ)→ρ (D⊗k ∆L, τ ⊗1).

Now, over the algebraic closure, the map α is essentially unique (see Proposition 3.29) and an
explicit check in this case shows that the restriction of α to SpinD,τ gives a map:

SpinD,τ ↪→ SOD,τ ×SOD,τ

where the decomposition on the right is with respect to ∆L⊗k = k×k. Moreover, both projections to
SOD,τ can be viewed as the map arising in the definition of SpinD,τ (see Proposition 2.16). It follows
then that

α(T (k)) ⊂ TE,σ(k).

and hence by descent that:
α(T (R)) ⊂ TE,σ(R)

for all k-algebras R. Next, by noting that E is the L -linear span of TE,σ(L) and EΦ is the L-linear
span of T (k), it follows by the Lρ-linearity of α that:

α(EΦ) = E ⊗k ∆L.

The final claim follows by exploiting that L⊗k L ' L× L⊗k ∆L. �

Remark 4.31. Via the isomorphism (D, τ) ⊗k L = (D, τ) × (D, τ) ⊗L ∆L we obtain a projection
onto (D, τ) and one onto (D, τ) ⊗L ∆L. As the base change of Spin(L,D,τ,α)/L to L preserves this
decomposition we obtain maps from it to the groups preserving the other remaining structure. The
projection onto the (D, τ) factor is giving the map from Spin(L,D,τ,α)/L to SO(D,τ)/L whereas the

projection onto (D, τ)⊗L∆L is inducing the map Spin(L,D,τ,α)/L to Spin(D,τ)/L. This latter fact follows
from the definition of β and the definition of Spin(L,D,τ,α)/L relative to α. The group Spin(D,τ)/L is
precisely the double cover of SO(D,τ)/L given by χ and this projection is in fact giving χ.

Note well that these maps only exist after base change to L (or if L is not a field).

Lemma 4.32. Let (L,D, τ, α) be a trialitarian algebra. Let T ⊂ Spin(L,D,τ,α) be a maximal torus and

(E, σ) the associated algebra as above and denote by β the isomorphism:

β : (E, σ)⊗ L ∼→ (E × EΦ, σ × σ).

Then T = TE,σ,β ⊂ TE,σ is the torus:

TE,σ,β(R) = {x ∈ (E ⊗k R)× | xσ(x) = 1, β(x) = (xE , xEΦ) satisfy Ψ(xEΦ) = xE ⊗ 1}.
Where Ψ is the map

Ψ : EΦ → E ⊗k EΦ

defined in Definition 4.23.

Proof. The content of this Lemma is the intrinsic conditions which define T . The proof follows by
inspecting the definition of Spin(L,D,τ,α) as

Spin(L,D,τ,α)(R) = {g ∈ ResL/k(Spin(D,τ)/L)(R) | α(g) = χ(g)⊗ 1}
and relating the maps α and χ to the maps β and Ψ.

The connection between Ψ and χ is discussed in Definition 4.23.
The connection between β and α is discussed in the proceeding remark. �

Lemma 4.33. Let (L,D, τ) be a datum for which there exists α′ making it a trialitarian algebra. Let
(E, σ) be the étale algebra over L associated to a torus TE,σ in SOD,τ . Suppose further that we have
a map:

β : (E, σ)⊗k L
∼→ (E × EΦ, σ × σ).

Then β induces a ρ-isomorphism α : EΦ →ρ (E, σ)⊗k ∆L: which in turn extends uniquely to a map

α̃ : (C+
D,τ , τ)→ρ (D, τ)⊗k ∆L
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making (L,D, τ, α̃) into a trialitarian algebra for which TE,σ,β is a torus of the associated spin group.
The isomorphism class of α̃, that is its rational conjugacy, is uniquely determined by β (and ρ.)

Proof. First we recall that by [8, Section 43.A] the existence of the map:

β : (E, σ)⊗k L
∼→ (E × EΦ, σ × σ).

is equivalent to that of the map:
α : EΦ →ρ (E, σ)⊗k ∆L.

Next we note that (EΦ, σ) is a maximal étale subalgebra of (C+
D,τ , τ) and (E, σ) is a maximal étale

subalgebra of (D, τ) so that (E, σ) × (EΦ, σ) is a maximal étale subalgebra of (D, τ) × (C+
D,τ , τ) and

(E, σ) ⊗k L is a maximal étale subalgebra of (D, τ) ⊗k L. The map β is thus giving an isomorphism
between maximal étale subalgebras of (D, τ)× (C+

D,τ , τ) and (D, τ)⊗k L.

The assumption that a map α′ exists implies (D, τ)× (C+
D,τ , τ) and (D, τ)⊗kL are isomorphic. The

classification of maximal étale subalgebras with involutions of such algebra’s with involutions implies
then that β is the restriction of a unique isomorphism α : (D, τ)× (C+

D,τ , τ)→ (D, τ)⊗k L.
The map α̃ is then the corresponding map induced by α. �

Theorem 4.34. Let (L,D, τ, α) be a trialitarian algebra.
The tori T ⊂ Spin(L,D,τ,α) are of the form:

TE,σ,β(R) = {x ∈ (E ⊗k R)× | xσ(x) = 1, β̃(x) = (xE , xEΦ) satisfy Ψ(xEΦ) = xE ⊗ 1}
for algebras (E, σ) for which:

• E is an étale algebra over L.
• (E, σ) is associated to a torus in SO(D,τ).
• the unique extension of the isomorphism:

β : (E, σ)⊗k L
∼→ (E × EΦ, σ × σ).

to a map from (D, τ)⊗k L to (D, τ)× C+
D,τ , τ) induces the map α (as opposed to say α′).

Recall that if we are working over a global field then by Corollary 3.30 there is a unique
choice of α for any triple (L,D, τ) which admits any α, in particular in this context all β
induce the same α.

The rational conjugacy classes of TE,σ,β in Spin(L,D,τ,α) are classified by:

• The rational conjugacy class of the torus TE,σ in SO(D,τ).
• The rational conjugacy class of the torus TEΦ,σ in Spin(D,τ). Note that the image of the chosen

torus through the natural map must be the chosen torus from SO(D,τ).

Proof. The theorem is an immediate consequence of Lemmas 4.32 and 4.33. �

Remark 4.35. Criterion under which (E, σ) is associated to a torus in SO(D,τ) are discussed in Section
4.3, specifically Theorem 4.14 or in the case of global fields Theorem 4.16. The rational conjugacy
classes of the torus TE,σ in SO(D,τ) are characterized in Theorem 4.12. The rational conjugacy classes
of tori TEΦ,σ in Spin(D,τ) covering a particular torus are characterized in Theorem 4.27.

4.5.1. Explicit Combinatorics of the Galois Sets for E and EΦ for D4. The purpose of this section is
to to describe the explicit combinatorics of the Galois set structure for E and EΦ for the case of tori
in groups of D4. This allows for a more concrete understaning of the condition of which E can admit
maps:

E ⊗k L→ E ⊕ EΦ

and it will allow for a semi-explicit construction of twisted composotions containing a given torus. The
case of tori for twisted compositions is of particular interest as all tori in groups of type F4 are of this
type.

For notational convenience we shall write the set:

HomL(E,L) = {1, 2, 3, 4,−1,−2,−3,−4}
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We note that the first that the Galois group Gal(L/L) action on this set factors through S4n{±1}4, we
shall eventually make use of a more explicit presentation of this group. Next we look at HomL(EΦ, L),
we shall characterize the sets φ by specifying φ ∩ {1, 2, 3, 4}

{1} {134} {124} {123} {234} {2} {3} {4}
{1234} {34} {24} {23} ∅ {12} {13} {14}

Note that we shall make some explicit use of the ordering of this set into rows and columns. In
particular, without loss of generality we may designate the first row as Φ+ and the second as Φ−.

Proposition 4.36. Suppose L = k⊕ k⊕ k so that ∆L = k⊕ k, and (E, σ) is an algebra over k whose
discriminant is a square. Then:

(1) EΦ splits over k as EΦ+ ⊕ Eφ− ,
(2) (EΦ+)Φ ' E ⊕ Eφ− , and
(3) (EΦ−)Φ ' E ⊕ Eφ+ .

In particular if we interpret E ⊕ EΦ+ ⊕ Eφ− as an algebra over L then:

(E ⊕ EΦ+ ⊕ Eφ−)Φ ' (E ⊕ EΦ+ ⊕ Eφ−)⊗k ∆L

as a twisted map of L-algebras.

Proof. The first point is clear. The key observation behind (2) and (3) is that there are two types of
σ-types for EΦ+ and EΦ− . For for each ρ ∈ Homk(E, k) there is a σ-type of EΦ+ given by:

{φ ∈ Homk(EΦ+ , k) | ρ ∈ φ}
and for each φ′ ∈ Homk(EΦ− , k) there is:

{φ ∈ Homk(EΦ− , k) | |φ ∩ φ′| = 1}.
The final claim now follows immediately from the definition of the reflex algebra. �

Proposition 4.37. Suppose L = k ⊕∆L and (E, σ) is an algebra over k whose discriminant is that
of ∆L. Then as an algebra over ∆L we have:

(EΦ)Φ = E ⊗k ∆L ⊕ EΦ ⊗k ∆L

In particular if we interpret E ⊕ EΦ as an algebra over L then:

(E ⊕ EΦ)Φ ' (E ⊕ EΦ)⊗k ∆L

as a twisted map of L-algebras.

Proof. The proof is as in the previous case, the only complexity is the correct interpretation of reflex
algebras over algebras which are not fields. �

In what follows we shall implicitly focus on the case where L is a field, however everything that we
are saying translates over to the more general case under the correct interpretations. The case where
L is not a field shall not really be needed in the sequel as the various D4 groups in this case admit
classical descriptions.

We shall now describe the possible Galois set structures on E and EΦ, which are both once again
algebras over L, a cubic étale extension of k.

Consider first the subgroup H generated by:

a = (12)(34) A = (1, 1,−1,−1)

b = (13)(24) B = (1,−1, 1,−1)

c = (14)(23) C = (1,−1,−1, 1)

Z = (−1,−1,−1,−1)

Notice these satisfy the relations:

xX = Xx xY = ZY x Zx = xZ ZX = XZ

for x 6= y with x, y lower case and X,Y upper case.
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Denote next by δ1 = (−1, 1, 1, 1), δ2 = (1,−1, 1, 1), δ3 = (1, 1,−1, 1), and δ4 = (1, 1, 1,−1).
The outer automorphism group of H is S3 × S3, this group act by permuting respectively the rows

and columns of:
a A ZaA
b B ZbB
c C ZcC

The first S3 factor can be interpreted as the S3 subgroup S4 which stabilizes {1} and acts on {2, 3, 4}.
The element of the second S3 factor which interchanges the first and third columns is δ1. Denote

by τ the three cycle which sends the first column to the second, the second to the third and the third
to the first.

Lemma 4.38. The action of the Galois group Gal(L/L⊗k∆L) on both HomL(E,L) and HomL(EΦ, L)
factors through the simultaneous action of the group G = (S3 × 〈1〉) nH.

If E⊗k L ' E⊕EΦ then the action of Gal(k/k) on Homk(E,L) factors through some action of the
group (S3 × S3) nH.

Proof. The first point follows by observing that these are the elements of the automorphism group of
(E, σ)⊗L L

The second point follows by observing that these are the automorphisms of (E, σ, β)⊗k k) for β a
map (EΦ, σ)→ (E, σ)⊗k ∆L. �

Notice that If we attempt to identify the G-set {1, 2, 3, 4,−1,−2,−3,−4} with the G-set which is
the first row according to the listed order of presentation, we find that we must twist the action by the
automorphism τ . If we instead identify {1, 2, 3, 4,−1,−2,−3,−4} with the second row we must twist
the action by the automorphism τ2. In particular, we can make the collection

1 2 3 4 -1 -2 -3 -4
{1} {134} {124} {123} {234} {2} {3} {4}
{1234} {34} {24} {23} ∅ {12} {13} {14}

into a G-set by assigning the S3 new factor to interchange rows. We shall prove in Proposition 4.43
that up to automorphisms of EΦ this is the identification created by β.

In order to characterize the options we shall want to understand the possible images of Gal(k/k) in
(S3 × S3) nH) and as such characterize the subgroups. The following Lemmas shall be helpful.

Lemma 4.39. If L is a field, and there is a map β : EΦ → E⊗k ∆L then E ' Eσ ⊕Eσ with σ acting
as the exchange involution if and only if the image of Gal(k/k) is in (S3 × S3). That is, the image
contains no elements of H.

This is immediate.

Lemma 4.40. If L is a field, and there is a map β : EΦ → E ⊗k ∆Lthen up to relabelling the
elements of {1, 2, 3, 4,−1,−2,−3,−4} the image of Gal(k/k) in (S3×S3)nH contains one of (1× τ)
or ((234)× τ) in S3 × S3.

If the image in S3 × S3 contains ((234) × τ) and any other non-trivial element than the image
contains (1× τ).

Proof. First notice that the inner automorphisms of (S3 × S3) n H induced by (S3 × 〈δ1〉) n H all
correspond to relabellings of {1, 2, 3, 4,−1,−2,−3,−4}. Second, notice that if the image contains Z
times one of the above then it contains the element.

Next, by observing

xτx = Xxτ XτX = Zxτ (ZxX)τ(ZxX) = ZXτx xY τY x = xZyXτ yY XτXY y = Y xτ

we see that we can relabel so as to ensure that the element that acts as a three cycle on Homk(L, k)
has image in (S3 × S3)× 〈Z〉.

Relabellings using the S3 factor complete the result. �
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Lemma 4.41. Suppose L is a field and there is a map β : EΦ → E ⊗k ∆L. Suppose further that the
image of Gal(k/k) contains τ , then up to relabellings of {2, 3, 4} the image of Gal(k/k) in H is one of:

{1}, {1, Z}, {1, Za, ZA, aA}, {1, Z, a, Za,A, ZA, aA,ZaA}, H.

If L is not Galois then the option {1, Za, ZA, aA} does not occur. If the image in S3 × S3 is larger
than 〈(34)〉 × S3 then options {1, Za, ZA, aA} and {1, Z, a, Za,A, ZA, aA,ZaA} do not occur.

If the image of Gal(k/k) contains τ×(234), then up to relabellings of {2, 3, 4} the image of Gal(k/k)
in H is one of:

{1}, {1, Z}, 〈Z, a,B, cC〉, H.

If the image in S3 × S3 is larger than 〈(234)× τ〉 then option 〈Z, a,B, cC〉 does not occur.

Proof. First, note that if we have any two of a, b, c, Za, Zb, Zc which are not Z multiples then we will
generate the whole group.

By using the orbit structure of τ and τ × (234) in H a simple case analysis covers the other
possibilities. �

Remark 4.42. The above does not exhaust all the limitations we can place on the Galois group. For
example in a most of the cases we can show that the image J ⊂ S3 × S3 has a section of the form
J n {1} inside the total image of the group in (S3 × S3) nH.

Claim. If the image of Gal(k/k) contains τ and the image in H is:

• {1} then E = L⊕ L⊕ F ⊕ F where F is cubic over k, and σ acts as to exchange factors.
• {1, Z} then E = (L⊕ F )⊗K where F is cubic over k and K is quadratic over k, and σ acts

on K.
• {1, Za, ZA, aA} then E = K1 ⊗K2 ⊕K2 ⊗K3 where on one side σ acts through K1 and the

other side through K2. The action of the (cyclic) Galois group of L is to permute the three
quadratic subextensions of K1⊗K2. If the element((34)× 1)n 1 is in the image it acts on K3.
• {1, Z, a, Za,A, ZA, aA,ZaA} then E = K1 ⊗K2 ⊕K3 ⊗K4 where sigma acts on K1 and K3.

The action of the Galois group of L is to permute the fields K1,K2 and K3.
• H then E is a field. If the element ((34)× 1) n 1 is in the image it acts on K4.

If the image of Gal(k/k) contains (234)× τ and not τ and the image in H is:

• {1} then E = L⊕ L⊕ (L⊗k L)⊕ (L⊗k L) and σ acts to exchange factors.
• {1, Z} then E = (L⊕ (L⊗k L))⊗K where K is quadratic over k and σ acts on K.

• 〈Z, a,B, cC〉 then E is a field, its Galois closure E over L is Galois over k. E = E
B

is the

fixed field of B, EΦ+ ' E
ZcC

and EΦ+ ' E
a
. There are elements D1, D2, D3 ∈ L permuted

by the (cyclic) Galois group of L so that

L(
√
D1) = E

B,cC,Z
L(
√
D2) = E

a,B,Z
L(
√
D3) = E

a,cC,Z

Moreover Eσ = L(
√
D1)⊗ L(

√
D2), (EΦ+)σ = L(

√
D3)⊗ L(

√
D1), and (EΦ−)σ = L(

√
D2)⊗

L(
√
D3), in particular E

σ
= E

Z
= L(

√
D1,
√
D2,
√
D3).

• H then E is a field.

The argument is tedious, and we omit the details.

Proposition 4.43. With notation as above, if β : EΦ → E ⊗k ∆L is an L-skew isomorphism then,
up to automorphisms of EΦ the action of Gal(k/k) on the Gal(k/k)-set Homk(E, k) factors through
an action of (S3 × S3) nH under an identification of the elements of Homk(E, k) as:

1 2 3 4 -1 -2 -3 -4
{1} {134} {124} {123} {234} {2} {3} {4}
{1234} {34} {24} {23} ∅ {12} {13} {14}

Moreover, the kernel of the quotient map onto the second S3 factor gives Gal(k/L⊗k∆L), the subgroup
fixing L and ∆L. The element τ whose image generates Aut∆L

(L⊗k ∆L) acts by permuting the rows.
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Proof. Without loss of generality we may suppose that we have labelled things to be in one of the
cases of the previous lemma.

By observing that:

E ⊗k L ' E ⊗L L⊕ (E ⊗k ∆L)⊗ρ,L L ' E ⊗L L⊕ EΦ ⊗ρ,L L

we see that there must exist some identification, and any such identification can be presented in terms
of columns which indicate the orbits of τ .

Next we observe that if we have an admissible identification, the interchanging φ↔ φ for all φ ∈ Φ
would also give an admissible identification. Thus, without loss of generality we may assume that
1 ∈ φ1 = τ · 1. We also observe that if the Galois set Φ decomposes into multiple orbits with respect
to the image inside (〈δ1〉 × S3) nH we can perform the interchange φ ↔ φ separately on each orbit
and still obtain an admissible identification.

We consider first the case where the image of Gal(k/k) contains τ and H
Because aAτ = τZA and A · 1 = 1 we must have aA · (τ · 1) = τ · −1. But the only elements φ ∈ Φ

with φ = aAφ are {1}, {2}, {234}, {134}. A similar argument with bB rules out {2} and {134}. Thus,
without loss of generality, τ · 1 is {1}. Next, because ZAτ = τZa we can conclude that τ · 2 = Aτ · 1
is {134}. Similar arguments complete the second row.

A similar argument with aZτ2 = τ2ZA allows us to conclude that τ2·1 is one of {1234}, {12}, ∅, {34}.
Here bB rules out {12} and {34}.

There are now two cases, either the image of the Galois group contains δ1 (or any element which
interchanges the second and third row) or it does not. If it does not, then by the separation of Φ+ and
Φ− as orbits we can arbitrarily conjugate Φ− and ensure that τ2 · 1 = {1234}. However, if there was
an interchange element, then because τ2 = δ1τδ1 we can conclude that the third row is as given.

A tedious case analysis covers the cases where the image does not cover H. For example when we
do not contain bB, but do contain ZA then there will be an automorphism of the orbit of 1 which
interchanges {1} and {134}. This will complete the diagram for 1, 2,−1,−2. A symmetric argument
covers the diagram under 3, 4,−3,−4. If the image contains only {1, Z} then there are typically many
admissible identifications.

When instead the image contains (234) × τ similar tricks involving the observation that B · 1 = 1
allow us to conclude τ · 1 = (234)τ ·B1 = ZcC(234)τ · 1 for which the only options are {1} and {234}.
We are free to prefer {1}. Because the subgroup of H acts transitively on {1, 2, 3, 4,−1,−2,−3,−4}
we can immediately conclude the result for the second row. The same argument works for the third
row. �

Remark 4.44. In the above if E and EΦ are fields over k then the only choices being made in the
normalization of the map β are labellings and possibly pre/post composition with the automorphism

σ. More generally if EΦ+

and EΦ− are fields the only choices are pre/post compositions with σ acting
separately on the two factors. In general, all of the choices constitute pre/post composition with
automorphisms of EΦ as an algebra with involution.

The presentation above seems to makes many non-canonical choices, in particular the ordering and
labelling of the Galois sets. A labelling compatible with the one above can be selected after one
considers an appropriate map β. For example, if ∆L = k ⊕ k and E = L8, so that EΦ = L16, there
may exist many maps β.

Proposition 4.45. With notation as above, if β : EΦ → E⊗k ∆L is an L-skew isomorphism then the
set Homk(E ⊗k ∆L, k) is identified with the Galois set:

HomL(E,L)× {+,−} t (Φ+ t Φ−)× {+,−}

Where the Galois group acts on {+,−} through an identification with Homk(∆L, k).
The set Homk(EΦ, k) is identified with the Galois set:

Φ+ × {µ1} t Φ− × {µ1} t Φ− × {µ2} tHomL(EΦ, L)× {µ2} tHomL(EΦ, L)× {µ3} t Φ+ × {µ3}

Where the action of the Galois group on {µ1, µ2, µ3} through an identification with Homk(L, k).
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The map β identifies the Galois sets under the association:

Φ+ × µ1 ↔ Φ+ ×+ Φ− × µ1 ↔ Φ− ×−
Φ− × µ2 ↔ Φ− ×+ HomL(EΦ, L)× µ2 ↔ HomL(EΦ, L)×−
HomL(EΦ, L)× µ3 ↔ HomL(EΦ, L)×+ Φ+ × µ3 ↔ Φ+ ×−.

This follows as in Proposition 4.36 and 4.37 by base change.

Lemma 4.46. With notation as above τ translates relations between HomL(EΦ, L), Φ+ and Φ− as
follows. Let ρ ∈ HomL(EΦ, L), φ+ ∈ Φ+ and φ− ∈ Φ− then:

• ρ ∈ φ+ if and only |τ(ρ) ∩ τ(φ+)| = 1
• ρ 6∈ φ+ if and only |τ(ρ) ∩ τ(φ+)| = 3
• ρ ∈ φ− if and only if τ(φ−) ∈ τ(ρ)
• ρ 6∈ φ− if and only if τ(φ−) 6∈ τ(ρ)
• |φ+ ∩ φ−| = 1 if and only if τ(φ−) ∈ τ(φ+).
• |φ+ ∩ φ−| = 3 if and only if τ(φ−) 6∈ τ(φ+).

From which it follows further that {ρ} = φ+ ∩ φ− if and only if {τ(φ−)} = τ(ρ) ∩ τ(φ+).

This is a direct check.
We shall now work to construct a map from E to E which shall act like a twisted composition.
First recall the map Ψ : EΦ → Ẽ ⊂ E ⊗L EΦ. We may write the definition as:

Ψ

∑
φ

aφeφ

 =
∑

φ1∩φ2={ρ}

aφ1aφ2eρ ⊗ (eφ1 + eφ2 + eφ1
+ eφ2

).

In our present case, we note that for each ρ, there are precisely 4 pairs φ1,φ2 with φ1 ∩ φ2 = {ρ}.
It follows that the image of Ψ is contained in the 32 dimensional subalgebra Ẽ of E ⊗L EΦ whose
idempotent are eρ ⊗ (eφ1 + eφ2 + eφ1

+ eφ2
) for φ1 ∩ φ2 = {ρ}. This algebra Ẽ is a degree 4 algebra

over E.

Remark 4.47. In light of Lemma 4.46 and Proposition 4.45 the definition which we have just given
as a map over L can also be expressed as a map over k as:

Φ

∑
ρ,µ

aρ,µeρ,µ +
∑
φ,µ

aφ,µeφ,µ

=
∑

φ1∩φ2={ρ}

aφ1,µ1
aφ2,µ1

eρ,µ1
⊗ (eφ1,µ1

+ eφ2,µ1
+ eφ1,µ1

+ eφ2,µ1
)+

aφ2,µ2aρ,µ2eφ1,µ2 ⊗ (eρ,µ2 + eφ2,µ2 + eρ,µ2 + eφ2,µ2
)+

aρ,µ3
aφ1,µ3

eφ2,µ3
⊗ (eρ,µ3

+ eφ1,µ3
+ eρ,µ3

+ eφ1,µ3
)

 .

With this definition, we can observe that the torus TE,σ,β is precisely:

TE,σ,α(R) = {x ∈ (E ⊗k R)× | xσ(x) = 1, x⊗ 1 = Ψ ◦ α−1(x)}.

We next notice that the algebra Ẽ admits a natural L-linear to E by.

TrẼ/E

(∑
aφ1,φ2

eρ ⊗ (eφ1
+ eφ2

+ eφ1
+ eφ2

)
)

=
∑

aφ1,φ2
eρ

this is precisely the trace map from Ẽ to E.
Now, given an element Λ in Ẽ we obtain a map mΛ : E → E through the composition of maps:

E −→ E ⊗k ∆L
β−1

−→ EΦ Ψ−→ Ẽ
[Λ]−→ Ẽ

TrẼ/E−→ E.

This map is explicitly given as:∑
φ+∩φ−={ρ}

Λρ,φ+,φ−,µ1aφ+aφ−eρ + Λφ−,ρ,φ+,µ2aφ−aρeφ+ + Λφ+,φ−,ρ,µ3aρaφ+eφ− .
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Lemma 4.48. Using the notation above, for all x ∈ E and for all ` ∈ L we have:

`m1(`x) = NL/k(`)mΛ(x).

For all e ∈ TE,σ,β(R) we have:
emΛ(x) = mΛ(ex).

Moreover, every quadratic map from E to E satisfying these properties is of the form mΛ for some
choice of Λ.

Proof. The first claim is a direct check by observing that ` acts on aρ, eρ through µ1(`) on aφ+
, eφ+

through µ2(`) and aφ− , eφ− through µ3(`).
The second claim follows immediately from the definition of TE,σ,β and the effective linearity of mΛ.
The third claim follows immediately by a comparison of eigenspaces. �

Construction 4.49. With notation as above, consider the algebra:

V = E ⊕ (L8 ⊗∆L)

as a module over:
M = L⊕ L⊗∆L.

Let Q̃ be a ∆L quadratic form on (L8 ⊗∆L) and let λ̂ ∈ Eσ, and be such that the M quadratic form:

Q̂ = TrEσ/L(λ̂xσ(x))⊕ Q̃
admits the structure of a twisted composition over M . That is, suppose that the Clifford invariant of
the form is trivial. Let (M,V, Q̂, m̂) be such a twisted composition.

Then m̂ induces a quadratic map Φ̃ : EΦ → E:∑
φ+∩φ−={ρ}

Λρ,φ+,φ−aφ+aφ−eρ

for some Λ ∈ Ẽ as follows:
Firstly, because we are dealing with a twisted composition which does not come from a field we

have that SOE,Q|E is the image of Spin(M,F,Q̂,m̂). Thus the inclusion of TE,σ,β → Spin(M,F,Q̂,m̂) gives

the spin representation space (that is (L8 ⊗∆L)) the structure of a free EΦ module, compatible with
the ∆L structure. Identify (L8⊗∆L) by picking a basis element. It follows that m̂ is actually inducing
a quadratic map from EΦ to E. The fact that TE,σ,β is a torus in Spin(M,F,Q̂,m̂) implies the form for

the map is as in the previous lemma. Moreover, it follows that Q̃ is of the form:

TrEΦ/∆L
(λ̃xσ(x))

for some λ̃ ∈ (EΦ)σ.
Next, because m is actually a twisted composition, it follows that if we write:

Q = TrEσ/L(λ̂xσ(x))

the map Φ̃ satisfies:
Q ◦ Φ̃(x) = N∆L/L(Q̃(x)).

To see the consequences of this we expand out both sides. First:

Q ◦ Φ̃(x) =
∑
{ρ,ρ}

 ∑
φ1∩φ2={ρ}

Λρ,φ1,φ2
aφ1

aφ2

 ∑
φ4∩φ3={ρ}

Λρ,φ3,φ4
aφ3

aφ4


Expanding out the product this sum decomposes into two parts, those where {φ1, φ2} = {φ3, φ4} and
those where it does not. There are exactly 16 terms where {φ1, φ2} = {φ3, φ4} and 48 where they are
not equal. These latter come naturally in pairs as there are exactly 24 configurations of {φ1, φ2, φ3, φ4}
which can arise this way.

In particular, if {φ1, φ2} 6= {φ3, φ4} then a term containing:

aφ1aφ2aφ3aφ4
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appears for exactly 2 different {ρ, ρ}.
If we expand out the right hand side we obtain only terms of the first type. Thus the coefficients

Λρ,φ1,φ2
ensure that these duplicate terms of the second type cancel in the sum.

Moreover, what remains on the left hand side after this cancellation is the sum:∑
{φ1,φ2,φ3,φ4}

λρΛρ,φ1,φ2Λρ,φ3,φ3aφ1aφ2aφ3aφ4

Over the 16 terms {φ1, φ2, φ3, φ4} with φ1 ∩ φ2 = φ3 ∩ φ4 = {ρ}, φ1 = φ3 and φ2 = φ4. On the right
hand side the sum is precisely: ∑

{φ1,φ2,φ3,φ4}

λφ1λφ2aφ1aφ2aφ3aφ4 .

We thus conclude that:

λρΛρ,φ1,φ2
Λρ,φ3,φ3

= λφ1
λφ2

.

Lemma 4.50. If L is a field, then to ensure that:

(L,E,Tr(λxσ(x)),mΛ)

is a twisted composition it suffices to ensure that when we expand

∑
{ρ,ρ}

 ∑
φ+∩φ−={ρ}

Λρ,φ+,φ−,µ1
aφ+

aφ−

 ∑
φ+∩φ−={ρ}

Λρ,φ+,φ−,µ1
aφ+

aφ−


as: ∑

(φ1,φ2,φ3,φ4)

λρΛρ,φ1,φ2,µ1Λρ,φ3,φ4,µ1aφ1aφ2aφ3aφ4

we have that

(1) The terms where φ1∩φ2 = φ3 ∩ φ4 = {ρ} each term where |φ1 ∩ φ3| = 2 cancels with the other
term contributing aφ1

aφ2
aφ3

aφ4
( specifically the term (φ1, φ4, φ2, φ3))

(2) The terms for which φ1 = φ3 and φ2 = φ4 satisfy

λρΛρ,φ1,φ2,µ1Λρ,φ3,φ4,µ1 = λφ1λφ2

Proof. The only content in this lemma which does not immediately follow by base change over L from
the construction above is that it suffices to check only the terms over µ1. However, this follows from
the fact that because L is a field the action of the Galois group, which permutes embeddings of L,
also permutes the formulas which need to be checked for µ2 and µ3. The conditions being checked are
Galois stable, and thus checking for a single µi suffices. �

Construction 4.51. Suppose L is a field. With notation from Construction 4.49, that is an element

λ = λ̂⊕ λ̃ ∈ Eσ ⊗ (EΦ)σ = Eσ ⊗k L

for which there is Λ ∈ Ẽ defining a twisted composition

(L⊗k L,E ⊕ EΦ,Tr(λxσ(x)), m̂)

over L⊗k L as in Construction 4.49.
If λ ∈ Eσ ⊗ 1 then

(L,E,Tr(λxσ(x)),mΛ)

is a twisted composition over L
This is immediate from the lemma because Λρ,φ1,φ2

= Λρ,φ1,φ2,µ1
.

Remark 4.52. The above construction gives a method to effectively descend a twisted composition
over L⊗L to one over L provided the element λ which defines the quadratic form over L has a special
shape.
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Lemma 4.53. If we have a datum (λ̂, λ̃,Λ) which gives a twisted composition on E⊕EΦ over L then

for any e ∈ (EΦ)× so too does the datum (λ̂, eλ̃,Ψ(e)Λ)

Proof. It is an immediate check that a change of the sort either:

(λ̂, eλ̃,Λ) or (λ̂, λ̃,Ψ(e)Λ)

does not effect the terms which cancel. It is also immediate that making both changes at the same
time precisely preserves the appropriate equality between terms which do not cancel. �

Construction 4.54. If (λ̂, λ̃,Λ) is any datum as constructed in Construction 4.49 then the datum(
λ̂, α−1(λ̂),Φ

(
α−1(λ̂)

λ̃

)
Λ

)
satisfies the conditions of Construction 4.51 and thus with

Λ̂ = Φ

(
α−1(λ̂)

λ̃

)
Λ

we have that

(L,E,Tr(λ̂xσ(x)),mΛ̂)

is a twisted composition over L

Remark 4.55. The above gives an effective construction that every torus TE,σ under consideration
embedds into some twisted composition provided only that there exists a λ such that a twisted com-
position exists.

We now characterize the set of all twisted compositions with can contain the torus TE,σ.

Lemma 4.56. If we have a datum (λ̂, λ̃,Λ) which gives a twisted composition on E⊕EΦ over L then
for any e ∈ E for which Ψ(α−1(e)) = e⊗ 1 so too does the datum(

eσ(e)λ̂, eσ(e)λ̃,Φ

(
α−1(λ̂)

λ̃

)
(
1

e
⊗ 1)Λ

)
.

This is an immediate check.

Remark 4.57. In general it is hard to modify a datum by making an arbitrary modification to the
first coordinate. This reflects the fact that for some choices, there would be no possible correction.

Lemma 4.58. Consider the algebra Ẽσ and the map:

π1 : Eσ × Ẽ → Ẽσ

given by (e1, e2) 7→ e1e2σ(e2). If we have a datum (λ̂, λ̃,Λ) which gives a twisted composition on

E ⊕ EΦ over L then for (e1, e2) ∈ Eσ × Ẽ the datum(
e1λ̂, α

−1(e1)λ̃, e2Λ
)
.

Satisfies compatibility conditions on the terms which don’t cancel if and only if π1(e1, e2) = 1.

This is an immediate check.
We have a decomposition of the algebra:

E ⊗L E ' E ⊕ F1

where F1 is rank 24 étale algebra whose idempotents over L are naturally indexed by the ordered
pairs (x, y) ∈ {1, 2, 3, 4,−1,−2,−3,−4}2 for which x 6= y. This algebra admits a canonical involution
induced by interchanging factors (equivalently (x, y)↔ (y, x)).
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Lemma 4.59. Consider the algebra F1 and the map:

π2 : Eσ × Ẽ → F1

given by :

π2

 ∑
φ1∩φ2={ρ}

Λρ,φ1,φ2
aφ1

aφ2

 =
∑
(x,y)

λρ1
Λφ1,φ2

Λφ3,φ4

λρ2
Λφ1,φ4

Λφ3,φ2

e(x,y)

where φ1 ∩ φ3 = {ρx, ρy} = φ2 ∩ φ4, φ1 ∩ φ2 = {ρ1}, and φ1 ∩ φ4 = {ρ2}. If we have a datum (λ̂, λ̃,Λ)

which gives a twisted composition on E ⊕ EΦ over L then for (e1, e2) ∈ Eσ × Ẽ the datum(
e1λ̂, α

−1(e1)λ̃, e2Λ
)
.

Satisfies cancellations conditions to be a twisted composition if and only if π2(e1, e2) = 1.

There is a decomposition of the algebra:

Eσ ⊗L Eσ ' Eσ ⊕ F2

where F2 is rank 12 étale algebra whose idempotents over L are indexed by ordered pairs (x, y) ∈
{1, 2, 3, 4}2 for which x 6= y. This algebra admits a canonical involution induced by interchanging
factors (equivalently (x, y)↔ (y, x).

Both Ẽσ and F1 admit maps to F2, the maps π1 and π2 induce a map:

π3 : TẼ
π1×π2−→ TẼσ ×TF2

TF1
.

Lemma 4.60. If we have a datum (λ̂, λ̃,Λ) which gives a twisted composition on E⊕EΦ over L then

for (e1, e2) ∈ Eσ × Ẽ the datum (
e1λ̂, α

−1(e1)λ̃, e2Λ
)
.

gives a twisted composition if and only if π3(e1, e2) = 1.

Define M to be the kernel of the map π3.

Corollary 4.61. Twisted compositions containing for which the spin group contains T(E,σ) are in
bijection with M(k).

Remark 4.62. It would be interesting to have a more complete description of M(k) as well as infor-
mation about the equivalences relation on it. In particular it would also be interesting to understand
how elements of M(k) change the isomorphism classes of the associated twisted compositions. We
shall not give a complete description here.

For local and global fields, the very restrictive classification of twisted compositions makes this a
somewhat less interesting question, in particular as H1(Spin) typically vanish, isomorphism classes are
more easily studied in this case (see Example 3.23).

More generally Proposition 3.22 describes how the cohomology of the center acts to effect isomor-
phism classes. Aside from the action of the center, the isomorphism classes of twisted compositions
should primarily be determined by the datum (L, V,Q).

4.5.2. Tori for Twisted Compositions. The following is an immediate corollary of Theorem 4.34 to-
gether with the construction of trialitarian algebras from twisted compositions (see [8, 36.19]).

Corollary 4.63. Let (L, V,Q,m) be a twisted composition and let T ⊂ Spin(L,V,Q,m) be a maximal
torus. Then

T ↪→ Spin(L,V,Q,m) ↪→ ResL/k(SOQ)

and the centralizer of the image of T is a maximal torus in ResL/k(SOQ) and thus

T ↪→ ResL/k(TE,σ)

for (E, σ) an étale algebra with involution over L.

• The algebra E has the same discriminant over L as L does over k.
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• There exists an isomorphism β : (E ⊗L ∆L, σ ⊗L 1) ' (EΦ, σ)
• The torus T is:

TE,σ,β(R) = {x ∈ (E ⊗k R)× | xσ(x) = 1, if β(x) = (xE , xEΦ) then Ψ(xEΦ) = xE}.
The rational conjugacy classes of TE,σ,β in Spin(L,V,Q,m) are classified by:

• The rational conjugacy class of the torus TE,σ in SO(V,Q).
• The rational conjugacy class of the torus TEΦ,σ in Spin(V,Q). Note that the chosen torus must

have image through the natural map the the chosen torus in SO(V,Q).

Remark 4.64. As with Theorem 4.34 we point out that the criterion under which (E, σ) is associated
to a torus in SO(D,τ) are discussed in Section 4.3, specifically Theorem 4.14 or in the case of global
fields Theorem 4.16. The rational conjugacy classes of the torus TE,σ in SO(D,τ) are characterized in
Theorem 4.12. The rational conjugacy classes of tori TEΦ,σ in Spin(D,τ) covering a particular torus are
characterized in Theorem 4.27.
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