
Classification of Certain Subgroups of G2

Andrew Fiori

Department of Mathematics and Statistics, Queens University, Jeffery Hall, University Ave, Office 517, Kingston, ON, K7L 3N6,
Canada

Abstract

We give a concrete characterization of the rational conjugacy classes of maximal tori in groups of type G2, focusing
on the case of number fields and p-adic fields. In the same context we characterize the rational conjugacy classes
of A2 subgroups of G2. Having obtained the concrete characterization, we then relate it to the more abstract
characterization which can be given in terms of Galois cohomology.

We note that these results on A2 subgroups were simultaneously and independently developed in the work of
[Hoo14] whereas the results on tori were simultaneously and independently developed in the work of [BGL14].
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1. Introduction

A very natural problem in the theory of algebraic groups is to attempt to characterize or describe equivalences
classes of maps:

f : H → G.

For reductive groups H and G over an algebraically closed field, the problem is at least in some sense well understood.
Consequently, when we instead wish to work over a field k which is not algebraically closed, it is natural to consider
instead the following problem.

Fix reductive algebraic groups H̃k and G̃k and a map f̃k : H̃k → G̃k all defined over the algebraic closure k of
k. One would like a concrete description of all triples:

(Hk, Gk, f : Hk → Gk)

consisting of reductive groups Hk, Gk and a map between them, all defined over k, which become equivalent to
f̃k : H̃k → G̃k after base change to the algebraic closure. Here equivalence over k (respectively k) means Gk(k)

(respectively, G̃k(k)) conjugacy.
The numerous special cases of the above general problem have applications in a variety of fields, especially

number theory, where as a consequence of various functorialities such maps give results concerning the buildings
of the groups, automorphic forms on the groups or special cycles on associated Shimura varieties. In particular,
when Gk is associated to a Shimura variety, the characterization of maximal tori gives information about its special
points (see [Del71, 3.15]). Over p-adic fields, the structure of maximal tori gives information about the Bruhat-
tits building of the group Gk. Moreover, combining expected functorialities in the Langlands correspondence and
the local Langlands correspondence for tori, the structure of maximal tori gives information about the Langlands
correspondence for Gk and can be useful in constructing supercuspidal representations (see [Mor91b, Mor91a,
Roe11]).

Motivated by these and other reasons, several characterizations of maximal tori in reductive groups exist. A
very general, but not necessarily concrete description via Galois cohomology can be found in [Wal01] and [Ree11].
In specific cases some aspects of this classification have been made concrete, [Wal01], for example, gives a concrete
interpretation for the classification of the rational conjugacy classes of tori in pure inner forms of orthogonal and
unitary groups. The concrete problem of classifying when a given torus actually embeds in an orthogonal group is
the main subject of my previous paper [Fio12] and is also discussed in [BCKM03, BF13]. A detailed study of the
case of arbitrary forms of (special) unitary groups is the subject of my joint work with David Roe [FR14]. Other
results related to the case of unitary groups can be found in, for example, [CKM02]. The question of a local-global
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principle relating the existence of local embeddings to the existence of global embeddings is looked at, for example
in, [PR10, BF13]. Other work on this type of problem includes [Kar89].

In this paper we shall be working in the context of k a number field or one of its completions, and we shall be
taking G̃k to be the (unique) group of type G2. We shall be interested in two different cases for the group H̃k: the
case where it is a simply connect group of type A2, and the case of G2

m. In this later case we shall typically refer to
Hk as Tk to indicate it is an algebraic torus. The injective maps f shall be discussed in more detail later once we
give an adequate description of the group G2. For now we indicate only that the torus G2

m shall be a maximal torus
of G̃k and its map into G̃k shall factor through a unique simply connected A2 subgroup H̃k. The main result of
this paper is thus to give a characterization of the rational conjugacy classes of maximal tori in groups of type G2
over number fields. We also obtain auxiliary results concerning rational conjugacy classes of these A2 subgroups.

We note that these results on A2 subgroups were simultaneously and independently developed in the work of
[Hoo14] whereas the results on tori were simultaneously and independently developed in the work of [BGL14]. This
paper likely does not contain significant results not already found in one or the other of these. Our treatment may
be helpful to non-experts, as it might be more elementary than and includes many background facts which experts
will consider well-known.

This paper is organized as follows:

• In section 2 we give the basic properties of the octonions that are relevant in the sequel.

• In section 3 we describe the automorphisms of the octonions and introduce the groups Gk.

• In section 4 we give results concerning the forms of algebraic groups, focusing on the cases relevant in the
sequel.

• In section 5 we prove our main results concerning the rational conjugacy classes of maximal tori.

• In secti/on 6 we discuss the connection between our results and the abstract classification given in [Ree11]
using Galois cohomology.

The main results concerning A2 subgroups are as follows.

Theorem (5.1). Fix an octonion algebra O over k and let Gk be the algebraic group associated to its automorphism
group and set G̃k = Gk. Fix x ∈ O ⊗k k perpendicular to 1O. Fix H̃k = Stabx(Gk) to be the stabilizer in Gk of x
and fix its natural inclusion:

f̃ : H̃k ↪→ G̃k.

Then the set of triples (Hk, Gk, f : Hk → Gk), considered up to Gk(k)-conjugacy, that become G̃k(k)-conjugate to

f̃ : H̃k ↪→ G̃k after base change are in natural bijection with the isomorphism classes of quadratic étale algebras A
over k that have an embedding A ↪→ O.

The groups Hk of the above theorem are precisely the A2 subgroups we are considering.

Corollary (5.3). Fix an octonion algebra O over k and let Gk be the algebraic group associated to its automorphism
group. The isomorphism classes of simply connected A2 subgroups embedding in Gk are controlled by the structure
of O at the real places of k. In particular, fixing a real place kν of k we have the following cases:

• If O is definite at kν then all A appearing are imaginary extensions of kν (the place ν ramifies in A) and the
special unitary group Hkν is definite.

• If O is indefinite at kν and A is an imaginary extensions of kν then the special unitary group Hkν is indefinite.

• If O is indefinite at kν and A is a real extension of kν (the place ν splits in A), then the group Hkν is split,
that is, Hkν ' SL3,kν .

Concerning maximal tori we conclude the following.

Theorem (5.9). Fix an octonion algebra O over k and the group Gk = Autk(O). The Gk(k)-conjugacy classes
of maximal tori Tk in Gk are in bijection with triples (A,E, λ) consisting of a quadratic étale algebra A (with
involutions σ) which embeds in O, a cubic étale algebra E and an element λ ∈ (E×)/NE⊗kA/E((E⊗kA)×) Autk(E)
such that the A-Hermitian space E ⊗k A of dimension 3 with Hermitian form:

TrE⊗kA/A(λxσ(y))
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has discriminant 1 and is positive definite (respectively indefinite) at all the real places of k where the octonion
algebra is definite (respectively split). Note that the form is positive definite if and only if λ is totally positive and
E is totally real. Moreover, the discriminant of the form is NE⊗kA/A(λ)δE/k.

The torus Tk associated to this data is precisely TE⊗kA,σ,N whose points over R are:

TE⊗kA,σ,N (R) = {x ∈ (E ⊗k A⊗k R)× | xσ(x) = 1 and NE⊗kA/A(x) = 1}

where σ is induced from the non-trivial automorphism of A.

Proposition (5.11). We have the following restrictions on the algebras A and E and the signature of λ based on
the structure of O at each real place ν. The conditions can be summarized as follows:

• If O is definite at ν then A is a CM-algebra and E is totally real. Moreover, λ is positive at all the real places.

• If O is indefinite at ν then A is arbitrary and E is arbitrary. Furthermore,

If A is CM and E is totally real then λ is positive at a unique place.

If A is CM and E is not totally real then λ is negative at the unique real place.

If A is totally real then the choice of λ at ν is irrelevant (since the norm map from E ⊗k A to E is
surjective at ν).

Corollary (5.12). The Gk(k)-conjugacy classes of maximal tori Tk in Gk are in bijection with triples (A,E, λ)
where A and E are respectively quadratic and cubic extensions of k, the element λ is in the kernel of the map:

(E×)/NE⊗kA/E((E ⊗k A)×)/Autk(E)
NE/k−→ (k×)/NA/k(A×)

and such that the triple (A,E, λδE/k) satisfies the conditions of Proposition 5.11.

2. The Octonions

The purpose of this section is to introduce octonion algebras and some basic facts we shall need. Most, if not
all, of these basic facts are likely known to experts. Proofs or sketches of proofs are included for the benefit of
non-experts.

2.1. The Cayley-Dickson Construction

For the purpose of this section we will be considering algebras over a fixed field k of characteristic not equal to
2. Much of what follows can be done over a more general ring, however, modifications should be made to deal with
the characteristic 2 case (see [KMRT98, Sec. 33.C]). It should be noted before we begin, that the algebras being
considered are not necessarily commutative or even associative, though k, being a field, is both.

Definition 2.1. Let A be a k-algebra with involution σA such that NA(x) = xσ(x) is a non-degenerate k-valued
quadratic form on A. Fix δ ∈ k×. Consider the k-module B = A⊕ A. This can be given a k-algebra structure by
defining:

[x1, x2] · [y1, y2] = [x1y1 + δσA(y2)x2, y2x1 + x2σA(y1)].

We shall refer to this construction as the Cayley-Dickson construction and the algebra B as a CD-algebra.
Note that there is a natural inclusion A ↪→ B via x 7→ [x, 0]. Moreover, B comes equipped with a standard

involution σB defined as:
σB([x1, x2]) = [σA(x1),−x2].

The involution σB restricts to σA under the natural inclusion.
Every CD-algebra B is equipped with a k-valued quadratic form given by:

NB(x) = xσ(x).

This is also called the reduced norm of B.
The associated bilinear pairing is (x, y) 7→ 1

2 (xσ(y) + yσ(x)). Two elements x, y ∈ B are said to be orthogonal
or perpendicular if (x, y) = 0.

Proposition 2.2. Consider the CD-algebra B constructed from A and δ. Every non-zero element of B has a
multiplicative inverse if and only if every element of A has a multiplicative inverse and there is no x ∈ A such that
δ = xσA(x).
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Proof. The conditions that A has multiplicative inverses and that xσA(x) does not represent delta is equivalent to

the condition that NB(x) does not represent 0. In this case σ(x)
NB(x) will be a multiplicative inverse of a non-zero x.

If the norm form did represent zero then the algebra would have non-trivial zero divisors.

Proposition 2.3. The following properties of A imply properties of B:

1. The algebra B is commutative if and only if A = k.

2. The algebra B is associative if and only if A is commutative.

3. The algebra B is alternative (i.e. x(xy) = (x2)y and (yx)x = y(x2)) if and only if A is associative.

See [KMRT98, Lem. 33.16].

Sketch of proof. To prove each claim one can reduced it to a simpler check involving only a basis of B = A ⊕ A.
We shall fix an orthogonal basis for A which includes 1, and use the same basis on both factors. The relations one
needs to check are always obvious if one of the elements used is 1, or all of them are in A.

One can readily check the following:

1. If x is perpendicular to 1 then σ(x) = −x.

2. If 1, x, y are perpendicular to each other, then xy = −yx.

3. If x, y, z are mutually perpendicular basis vectors from the second A factor then (xy)z = −x(yz).

4. By the distributivity of products over sums, checking commutativity and associativity can be done on a basis.

5. To check alternativity one must additionally handle the case where x is the sum of two basis vectors one of
which is in A.

6. If x, y are perpendicular basis vectors chosen as above, then checking x(xy) = (xx)y involves only alternativity
in A.

7. For x the sum of two perpendicular basis vectors, one of which is in A, checking x(xy) = (xx)y requires
associativity of A.

Using the above we may deduce the results of the proposition.

Notation 2.4. Given a CD-algebra B, and an element x ∈ B with NB(x) ∈ k× and which is orthogonal to 1 we
shall denote by Ax = k〈x〉 the k-subalgebra generated by x.

More generally, given two elements x, y ∈ B with norms in k× each of which is orthogonal to the algebra Ai
generated by the other, we shall denote by Ax,y = k〈x, y〉 the k-subalgebra generated by x and y.

Finally, given three elements x, y, z ∈ B each of which has norm in k× and is orthogonal to the algebra Ai,j
generated by the other two, we shall denote by Ax,y,z = k〈x, y, z〉 the k-subalgebra generated by x, y and z.

The following propositions give some motivation to the choice of letter A to denote these algebras, in particular
these shall all be CD-subalgebras of B which can be used to inductively define B as a CD-algebra.

Proposition 2.5. Let B be a CD-algebra of rank at most 8 over k, and let x ∈ B be orthogonal to 1 ∈ B with
NB(x) ∈ k×. Then the subalgebra Ax generated by x is a quadratic algebra over k with σB the involution on B
restricting to the non-trivial involution of Ax.

Follows from [KMRT98, Thm. 33.17].

Sketch of Proof. Since B is alternative we know that k〈x〉 is associative and commutative. The condition that
(x, 1B) = 0 implies that σ(x) = −x. It follows that:

x2 = −NB(x) ∈ k.

The above argument shows in fact that all rank 2 subalgebras are commutative.

Proposition 2.6. Let B be a CD-algebra of rank 4 or 8 over k, and let x, y ∈ B have norms in k×. Suppose that
x is orthogonal to 1 and y is orthogonal to the subalgebra Ax. Then the subalgebra Ax,y generated by x and y is a
quaternion algebra. Moreover, σB, the involution on B, restricts to the standard involution of Ax,y. The algebra
Ax,y is obtained via the Cayley-Dickson construction with Ax and δ = −NB(y).

Follows from [KMRT98, Thm. 33.17].
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Sketch of Proof. It follows from the previous proposition that both x2 and y2 are elements of k and, moreover, that
σ(x) = −x and σ(y) = −y. The condition (x, y) = 0 implies that xσ(y) + yσ(x) = 0. From this it follows that
xy = −yx. Since B is alternative we can use this relation to show that k〈x, y〉 is associative, consequently, the
algebra is a quaternion algebra.

The above argument shows in fact that all rank 4 subalgebras are associative.

Proposition 2.7. Let B be a CD-algebra of rank at most 8. The norm NB is multiplicative and consequently does
not depend on parenthesis or rearrangement of terms.

See [KMRT98, Thm. 33.17].

Proof. It suffices to show that NB(xy) = NB(x)NB(y). This expression is being evaluated in the rank 4 subalgebra
generated by x, y. This is an associative algebra, and the result is thus clear.

Remark 2.8. We have shown that the following hold:

1. If A = k and σA is trivial then B is a quadratic extension of k.

2. If A is a quadratic algebra over k with σA the unique non-trivial involution, then B is a quaternion algebra.

3. If A is a quaternion algebra over k with σA the standard involution, then B is an octonion algebra.

Proposition 2.9. Let B be a CD-algebra of rank 8 over k, let x ∈ B be orthogonal to 1, let y ∈ B be orthogonal to
the subalgebra Ax generated by x and let z ∈ B be orthogonal to the subalgebra Ax,y generated by x and y. Suppose
further that all of x, y, z have norms in k×. Then the elements x, y, z generate B over k and B is isomorphic to
the algebra obtained by the Cayley-Dickson construction with Ax,y and δ = −NB(z).

Follows from proof of [KMRT98, Thm. 33.17].

Sketch of Proof. One can most easily confirm the multiplication law by using the fact that each of Ax,z, Ay,z and
Axy,z is a quaternion algebra.

Moreover, the multiplicitivity of the norm allows one to check that {1, x, y, xy, z, xz, yx, x(yz)} are an orthogonal
basis.

Remark 2.10. The multiplication rules for {1, x, y, xy, z, xz, yx, xyz} are entirely described by the fact that the
pairs {x, y}, {x, z}, {y, z} generate quaternion algebras, that (xy)z = −x(yz) and that z, xz, yx, x(yz) are inter-
changeable in the previous statement.

2.2. Auxilliary Structures on CD-Algebras

In this section we shall construct some auxilliary structures on CD-algebras. These shall all be constructed using
the algebra operations of the underlying CD-algebra. Consequently, automorphism of the algebra which preserve
the data defining the structure, must also preserve the structure. These structures will thus allow us to study the
automorphism group of the algebra.

Proposition 2.11. Let B be a CD-algebra of rank at most 8 over k, and let x ∈ B be orthogonal to 1 with
NB(x) ∈ k×. Let Ax be the subalgera generated by x and A⊥x be the k-submodule of B consisting of elements
perpendicular to Ax. Then A⊥x and B have the canonical structure of an Ax-module.

Proof. We first show that B has an Ax-module structure. As left multiplication by elements of Ax is linear on B,
the main concern is that for a1, a2 ∈ Ax and y ∈ B we need to show:

(a1a2)y = a1(a2y).

We need only check this on a basis of B, thus can assume NB(y) ∈ k×. In this case all of these operations take
place in the algebra Ax,y, which is a quaternion algebra, and hence associative.

It now only remains to show that this action of Ax descends to an action of A⊥x . All elements of Ax are of the
form a + bx, such an element acts on y ∈ A⊥x by sending it to ay + bxy. As ay ∈ A⊥x , it remains only to show
bxy ∈ A⊥x , or equivalently, xy ∈ A⊥x . This is true in the quaternion algebra Ax,y, hence is true in B.
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Proposition 2.12. Let B be a CD-algebra of rank at most 8 over k, and let x ∈ B be orthogonal to 1 with
NB(x) 6= 0. Let Ax be the subalgera generated by x. Then:

(ay, z) = (y, σ(a)z)

for all a ∈ Ax and y, z ∈ B. Moreover, the bilinear form:

S(y, z) = (xy, z)

is an alternating form on B.

Proof. By the multiplicativity of the norm (and the polarization identity) we have:

(ay, az) = NB(a)(y, z).

It follows that if NB(a) ∈ k×:

(ay, a(a−1)z)) = (aσ(a))(y, a−1z) = (y, σ(a)z).

Since it suffices to check this identity for a = x, the result follows immediately.

Proposition 2.13. Let B be a CD-algebra of rank at most 8 over k, and let x ∈ B be orthogonal to 1. Let Ax be
the subalgera generated by x.

Then A⊥x has the (canonical up to rescaling) structure of an Ax-Hermitian space by applying the polarization
identity to the k-valued form NB |A⊥x . More concretely the form:

H(y, z) = 1
2 (y, z) + 1

2x (xy, z)

is an Ax-valued Hermitian form on A⊥x .

Proof. It is clear that the form H is k-linear. We must check Ax-linearity, and conjugate symmetry. For conjugate
symmetry notice:

H(y, z) = 1
2 (y, z) + 1

2x (xy, z)

= 1
2 (z, y) + 1

2x (y,−xz)
= 1

2 (z, y) + 1
2x (−xz, y)

= 1
2 (z, y)− 1

2x (xz, y)

= σ(H(y, z)).

For Ax-linearity it suffices to check the linearity with respect to the action of x. Indeed we compute

H(xy, z) = 1
2 (xy, z) + 1

2x (x2y, z)

= 1
2 (xy, z) + x2

2x (y, z)

= x( 1
2x (xy, z) + 1

2 (y, z))

= xH(y, z).

Proposition 2.14. Let B be a CD-algebra of rank at most 8 over k, let x ∈ B be orthogonal to 1, and let Ax be
the subalgera generated by x. There is a map Π : A⊥x ×A⊥x → A⊥x given by

(a, b) 7→ 1
2 (ab− ba−H(ab− ba, 1B)).

The map Π is alternating and σAx-linear.

Proof. The map is manifestly alternating and k-linear. We may thus work with a basis for A⊥x . Fix y, z as usual.
By the symmetry of the setup it suffices to consider the cases (a, b) = (y, y), (y, xy), (y, z). In the first two cases
Π(a, b) is easily checked to be zero as the computations all taking place in the quaternion algebra Ax,y. In the third
case Π(y, z) = yz. We recall that (xy)z = −x(yz) and conclude that Π is σAx -linear.

Remark 2.15. The above map is analogous to the cross product.
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Proposition 2.16. Let B be a CD-algebra of rank at most 8 over k, let x ∈ B be orthogonal to 1, and let Ax be
the subalgera generated by x.

The Ax-valued k-trilinear map:

T (a, b, c) = 1
2H(c, ab− ba) = H(c,Π(a, b))

on A⊥x is a non-trivial Ax-linear alternating map.

Proof. The formula for T in terms of Π follows from the observation that H(ab− ba, 1B) ∈ Ax is perpendicular to
c ∈ A⊥x . The Ax-linearity is then clear in light of the previous proposition. The map is also clearly alternating with
respect to a, b, so it suffices to check with respect to a, c. Thus it suffices to check:

T (a, b, a) = 0

for all a, b ∈ A⊥x . We may do this with respect to an Ax-basis {y, z, yz}. We already know this holds for cases
where a = b. Moreover, as the setup is algebraically symmetric with respect to any choice of two non-equal basis
elements, it suffices to take a = y and b = z.

T (y, z, y) = H(y, yz − zy)

= H(y, 2yz)

= H(σ(y)y, 2z)

= 0.

Remark 2.17. The trilinear form T is essentially giving the Ax-module determinant on A⊥x .

It is important to note that the Ax-module structure, the Hermitian structure, the alternating form and the
trilinear map are defined only using the CD-structure on B and the subalgebra Ax.

It is also important to note that the Ax-module structure maps are not automorphisms of B.

Finally, it is worth noting that the Hermitian form and bilinear form satisfy:

(y, z) = TrAx/k(H(y, z)).

2.3. Classifications of CD-algebras

In this section we shall classify the CD-algebras of ranks 2, 4 and 8 over p-adic fields and number fields.

Proposition 2.18. The isomorphism class of a CD-algebra B of rank at most 8 is determined by its rank and its
isomorphism class as a quadratic space.

See [KMRT98, Thm. 33.19].

Sketch of proof. We proceed somewhat inductively. The isomorphism class of a rank 2 CD-algebra Ax is determined
by x2 = −xσ(x) = NAx(x) ∈ k×. The value for NAx(x) must be represented by a vector perpendicular to an element
of norm 1.

The isomorphism class of a rank 4 CD-algebra Ax,y is determined by a choice of subalgebra Ax and an element
y ∈ A⊥x . The options for the isomorphism class of Ax come from values represented by the form NAx(x) on a
subspace perpendicular to vector of norm 1. (The isomorphism class of such a quadratic space is well-defined.)
The choice of values for y2 comes from those values represented in A⊥x . By construction, A⊥x ' δAx as a quadratic
space, and thus the choice of δ is well-defined up to norms of Ax once Ax is chosen. It is well-known a quaternion
algebra is determined by a choice Ax and an element of δ ∈ k×/NAx/k(A×x ).

For CD-algebras of rank 8, as above we will find A⊥x,y ' δAx,y. Thus δ is determined up to norms from Ax,y
by the choice of subalgebra Ax,y and the quadratic space. By construction an octonion algebra is determined by
Ax,y and an element of k×/NAx,y/k(A×x,y). Note that, as with quaternion algebras, non-isomorphic Ax,y may give
isomorphic Ax,y,z under the appropriate choice of δ.

To complete the proof observe that two CD-algebras are isomorphic if and only if they can both be constructed
from the same pair A and δ. The options for A are determined by the quadratic form, and δ is determined by the
quadratic form once A is chosen.

Remark 2.19. Not all quadratic spaces of a given rank can arise from a CD-algebra.
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The following facts are reasonably well-known consequences of the above.

Proposition 2.20. There is exactly one isomorphism class of CD-algebra over C of any given rank.

There is only one quadratic space over an algebraically closed field.

Proposition 2.21. There are exactly two isomorphism classes of CD-algebras over R for each rank 2, 4 and 8.

The CD-construction ensures the quadratic spaces have signatures (n/2, n/2) or (n, 0).

Proposition 2.22. Let k be a local field other than R or C and of residue characteristic not 2. Then there are
precisely 4 isomorphism classes of CD-algebras of rank 2 over k.

As the quadratic space represents 1, the Hasse invariant is trivial and the quadratic space is determined by the
discriminant. The structure of the unit group modulo squares is well-known.

Proposition 2.23. Let k be a local field of residue characteristic 2, with ramification degree e and inertial degree
f over the prime subfield. There are precisely 21+e+f isomorphism classes of CD-algebras of rank 2 over k.

The argument is the same as the previous proposition.

Proposition 2.24. Let k be a local field other than R or C. Then there are precisely 2 isomorphism classes of
CD-algebras of rank 4 over k.

The CD-construction ensures the discriminant is 1. Hence the forms are determined by their Hasse invariant.

Proposition 2.25. Let k be a local field other than R. Then there is precisely 1 isomorphism class of CD-algebra
of rank 8 over k.

The CD-construction ensures the discriminant and Hasse invariant are trivial. There is thus only one such form.

Proposition 2.26. Let k be a global field. Let s be the number of real embeddings of k. There are precisely 2s-many
isomorphism classes of CD-algebras of each rank 8 over k.

This completes our classification of forms of CD-algebras.

3. The Groups of type G2

For the remainder of this section fix O an octonion algebra over k. We shall denote by O0 the traceless elements
of O, that is, those perpendicular to 1. In this section we shall study the group scheme:

G(K) = AutK(K ⊗k O).

Such a G will be a semi-simple algebraic group of type G2. Moreover, all groups of type G2 arise this way for
different choices of O (see Proposition 4.2).

Convention. Whenever we write Ax, Ax,y or Ax,y,z we shall assume that all of x, y, z ∈ O0 have norms in k× and
that each of x, y and z are orthogonal to the algebra generated by the other two.

3.1. Some Elements of G

Before describing the structure of the group G, we shall construct some special elements of G.

Proposition 3.1. Any automorphism ϕ of Ax,y can be extended to an automorphism ϕ̃ of Ax,y,z acting trivially
on z. The map takes [a, b] 7→ [ϕ(a), ϕ(b)].

Sketch of proof. As the multiplication in Ax,y,z is defined k-linearly in terms of that of Ax,y there is no obstruction
and one easily checks that ϕ preserves both σ and multiplication on Ax,y,z.

Notation 3.2. We shall denote by A1
x the elements of Ax of norm 1.

We shall denote by TAx,σ the associated algebraic torus whose functor of points is:

TAx,σ(R) = {y ∈ Ax ⊗k R | yσ(y) = 1}.
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Proposition 3.3. Let a ∈ Ax be an element of norm 1. The map Ax,y → Ax,y defined by:

1 7→ 1 x 7→ x y 7→ ay

can be extended to an automorphism ϕa,y of Ax,y. The map ϕa,y acts trivially on Ax and as multiplication on the
left by a on the k-span of y and xy.

Sketch of proof. The element ay has the same norm as y, hence Ax,y ' Ax,ay.

Proposition 3.4. Denote by A1
x the elements of Ax of norm 1. For any choice of a, b ∈ A1

x the automorphisms
ϕ̃a,y and ϕ̃b,z of Ax,y,z commute.

Sketch of proof. We have a decomposition:

Ax,y,z = 〈1, x〉 ⊕ 〈y, xy〉 ⊕ 〈z, xz〉 ⊕ 〈yz, x(yz)〉.

We identify each of the four factors with Ax in the obvious way. The map ϕ̃a,y acts trivially on the first and third
factor, as multiplication by a on the second and multiplication by σ(a) on the fourth. The map ϕ̃b,z acts trivially
on the first and second factor, as multiplication by b on the third and multiplication by σ(b) on the fourth. These
actions are clearly compatible and hence commute.

Proposition 3.5. The map Φ : A1
x ×A1

x → Aut(O) given by:

(a, b) 7→ ϕ̃a,yϕ̃b,z

is an injective homomorphism.

Sketch of proof. We can recover the values of a and b from the action on the second and third factors, respectively.

Remark 3.6. The above map induces a map Φ from the algebraic torus (TAx,σ)2 into G.

Proposition 3.7. Fix a ∈ A1
x. Left multiplication by a induces a map ma : A⊥x → A⊥x which commutes with the

image of Φ. The map ma induces a map TAx,σ → SOO0 , however, it is only an automorphism of O if a3 = 1.
Moreover, the image of Φ is its own centralizer in Aut(O).

Sketch of proof. The commutativity is clear given the compatibility of the actions; one easily checks that it preserves
the norm form.

First, notice that the centralizer of Φ in SOO0 is generated by the image of Φ and ma. The claim about
centralizers now follows by observing that whenever a3 = 1 the image of ma is in the image of Φ.

The following proposition is an immediate consequence of the above.

Proposition 3.8. The torus (TAx,σ)2 embedded into G via Φ is a maximal torus in G.

3.2. Describing Automorphisms of O
In this section we give several methods of describing automorphisms of O which shall be of use in describing the

embeddings of groups of type A2 into those of type G2.
We now give several methods of describing or specifying an element of G.

1. Fix an isomorphism O ' Ax,y,z.
The automorphism group of O is in bijection with the set of triples (x′, y′, z′) in O0 with N(x) = N(x′),
N(y) = N(y′), N(z) = N(z′), x′ perpendicular to y′, and z′ perpendicular to the algebra generated by x′

and y′. Given such a triple we obtain the automorphism which takes x 7→ x′, y 7→ y′ and z 7→ z′. By the
Cayley-Dickson construction we have isomorphisms Ax′ ' Ax, Ax′,y′ ' Ax,y and Ax′,y′,z′ ' Ax,y,z. It is clear
that all automorphisms arise uniquely this way.

2. The following description is an easy consequence of the first. As automorphisms of O must preserve both the
identity element of O and the norm on O we find that conclude that G has an embedding:

G ↪→ SOO0 ↪→ GL(O0).

As O = Ax,y,z is generated by x, y and z, an automorphism of O is determined by where it sends these
generators.
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The condition that G ⊂ SOO0 implies that these will be taken to orthogonal elements of the same length. It
is clear we shall need the conditions g(xy) = g(x)g(y), g(xz) = g(x)g(z), g(yz) = g(y)g(z) and g((xy)z) =
g(xy)g(z). The multiplicativity of the norm means that these conditions do not actually result in restrictions
on the possible images of x, y and z. The only additional condition that describes G as a subgroup of SOO0

is that g(z) must be perpendicular to g(x)g(y). As once this is satisfied, the triple (g(x), g(y), g(z)) satisfies
the conditions of the first description. In particular:

G = {g ∈ SOO0 | g(xy) = g(x)g(y), · · · , g((xy)z) = g(xy)g(z) and (g(z), g(x)g(y)) = 0}.

3. The number of additional equations in the previous description makes it unwieldy to work with directly. An
alternative description is as follows.
Every element of SOO0 , and hence of G stabilizes a non-isotropic k-linear subspace of O0, and consequently,
also its orthogonal complement. We may select a k-rational basis element x of this non-isotropic space. Thus
every element of G is determined by a choice of x it stabilizes and an element of Stabx(G) ↪→ SOA⊥x

. Note
that the choice of x may not be unique, though it is generically unique.
Fix two elements y, z of A⊥x which are Ax-perpendicular (that is, perpendicular with respect to the Ax-
Hermitian form on A⊥x ). Any element of G which stabilizes x must preserve the Ax-Hermitian pairing H on
A⊥x . Thus we conclude that Stabx(G) ⊂ UA⊥x

. Note that preserving H implies that the images of y, z have
the appropriate lengths, that g(xy) = g(x)g(y) and that (g(z), g(x)g(y)) = 0. Furthermore, an element of G
must also preserve the Ax-trilinear form T on A⊥x , that is, it must have trivial Ax-determinant. In particular
Stabx(G) ⊂ SUA⊥x

. We claim this inclusion is an equality.
Now, an element of Stabx(G) is determined by where it sends y and z. The only condition being that y
and z must be perpendicular with respect to H. The third Ax-basis element yz of A⊥x must then be sent to
g(y)g(z). By contrast, an element UA⊥x

must send y and z to elements which are H-perpendicular, however,
the condition on where it sends yz is only that it must be H perpendicular to both y and z. This space is
one-dimensional (over Ax), thus the choice is only determined up to A1

x. The additional condition that T be
preserved removes this ambiguity and implies that, for an element of SUA⊥x

the image of yz is determined by
the images of y and z. We claim these conditions imply that yz must be sent to g(y)g(z). Indeed we have:

H(g(yz), g(yz)) = H(yz, yz) = T (y, z, yz) = T (g(y), g(z), g(yz)) = H(g(y)g(z), g(yz))

which implies that for g ∈ SUA⊥x
we will have g(yz) = g(y)g(z).

We conclude that we may describe G as:

G(R) = ∪
x∈O×R/R×

SUA⊥x
(R).

Moreover we have maps:
StabxG ↪→ G� Gx

with the orbit Gx of x being six dimensional and SUA⊥x
being eight dimensional, thus G is 14 dimensional.

The discussion above allows us to conclude the following:

Proposition 3.9. The group G(k) acts transitively on elements of O0 of a given norm.

Proposition 3.10. Two subgroups SUA⊥x
and SUA⊥y

of G are conjugate and isomorphic if and only if Ax ' Ay.

Proposition 3.11. The group G has rank 2 and dimension 14.

Remark 3.12. We have already exhibited some maximal tori of G, namely the images of the maps Φ. Not all
maximal tori arise this way.

4. Forms of Algebraic Groups

In order to fully describe triples (Hk, Gk, Hk → Gk): which after base change become isomorphic to our fixed
triple: (Hk, Gk, Hk → Gk) it shall first be necessary to understand the forms of Gk and of Hk.

In this section we shall briefly recall several standard results concerning the Galois cohomology of algebraic
groups which allow for a concrete descriptions of the groups we wish to study. Most of the results of this section are
given with little or no proof. A more thorough and rigourous treatment of this material can be found in [KMRT98].
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Proposition 4.1. Fix an algebraic group Gk over k. The isomorphism classes of groups G̃k over k with G̃k ' Gk
is in bijection with:

H1(Gal(k/k),Aut(Gk(k))).

This is a standard result of Galois descent, see [Ser02, Cor III.1.3].
In order to compute H1(Gal(k/k),Aut(Gk(k))) we observe that we have exact sequences:

1→ Z(Gk)→ Gk → Gadj
k → 1

and
1→ Gadj

k → Aut(Gk)→ Out(Gk)→ 1

where Out(Gk) denotes the outer automorphisms and Gadj
k denotes the adjoint form of Gk.

4.1. Forms of G2

It is well-known that for a semi-simple group Out(Gk) corresponds to automorphisms of the Dynkin diagram.
For G2 this group is trivial. As the center Z(Gk) is also trivial, it follows that:

H1(Gal(k/k),Aut(Gk(k))) = H1(Gal(k/k), Gk(k)) = H1(Gal(k/k),Aut(Ok)).

Proposition 4.2. The cohomology group:

H1(Gal(k/k),Aut(Ok))

is in bijection with isomorphism classes of algebras Õk such that Õk ' Ok.

Moreover, the forms of Gk are all of the form Aut(Õ) where Õ is a form of O.

See [KMRT98, Thm. 26.19].

Remark 4.3. Though we have shown already that all of the forms of O come from the real places of k, this can now
also be seen as a consequence of the fact that G is simply connected, as the local cohomology of simply connected
groups is trivial for local fields other than R. Hence,

H1(Gal(k/k), Gk(k)) ↪→
∏
ν

H1(Gal(kν/kν), Gk(kν)) =
∏
ν||∞

H1(Gal(kν/kν), Gk(kν)).

4.2. Forms of A2

We sketch the classification of forms of simply connected groups of type A2, more thorough treatements of this
material with complete proofs can be found in [KMRT98].

Simply connected groups H of type A2 have an outer automorphism group of order 2 and a center of order 3
which we shall denote µξ3. Note that µξ3 is a twisted form of the group of cube roots of unity.

From the exact sequence:

H1(Gal(k/k), Hadj
k (k))→ H1(Gal(k/k),Aut(Hk))→ H1(Gal(k/k), {±1}).

We deduce that associated to a form of H is an element of H1(Gal(k/k), {±1}). This determines a quadratic étale
algebra A over k.

From the exact sequences:

H1(Gal(k/k), Hk(k))→ H1(Gal(k/k), Hadj
k (k))→ H2(Gal(k/k), µξ3)

we associate to a form of H an element of H2(Gal(k/k), µξ3).

The group µξ3 arises from the following exact sequence:

1→ µξ3 → TA,σ
[3]→ TA,σ → 1.

The group TA,σ denoting the torus of norm one elements of A over k. We obtain the following exact sequence:

H1(Gal(k/k), TA,σ)
[3]→ H1(Gal(k/k), TA,σ)→ H2(Gal(k/k), µξ3)→ H2(Gal(k/k), TA,σ)
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The group H2(Gal(k/k), TA,σ) classifies the kernel of the corestriction map from the Brauer group of A to that of
K. The group H1(Gal(k/k), TA,σ) is isomorphic to k×/NA/k(A×).

Extending the exact sequence we find we may associate to H a degree 3 central simple algebra M over A such
that M ⊗A,σ A ' Mop. These are precisely the central simple algebras M with involutions τ restricting to the
non-trivial involution of A.

Inspecting the exact sequence further we observe that the map [3] surjects onto k×/NA/k(A×) and thus we only
obtain the trivial class in this cohomology group.

Finally, to a form of H we may associate an element of H1(Gal(k/k), Hk(k)). As H is simply connected, this
cohomology is supported at the real places ν of k. If Aν ' kν × kν then Hkν is SL3 as there are no degree three
central simple algebras over R. In this case H1(Gal(k/k), Hk(k)) is trivial. If Aν ' C then H is the special unitary
group for a Hermitian form on a 3 dimensional space. In this case H1(Gal(k/k), Hk(k)) classifies the Hermitian
forms with the same discriminant as the one defining H. There are precisely two, a definite form and an indefinite
form.

Remark 4.4. Note that when using the above exact sequences to describe H1(Gal(k/k),Aut(Hk)) one must twist

by elements of H1(Gal(k/k), {±1}) before considering the kernel H1(Gal(k/k), Hadj
k (k)). The effect is that one

picks the étale agebra, A then the algebra M and then the definiteness of the form at real places which ramify in
A.

Construction. Let A be a rank 2-étale algebra over k. Let M be a degree 3 simple algebra over A, with an
involution τ restricting to the involution σ on A. Let J be an element of M such that τ(J) = J .

Define H̃k to be the algebraic group whose functor of points is:

H̃k(R) = {g ∈ (M ⊗k R)× | τ(g)Jg = J}.

It is an easy exercise to check that H̃ is isomorphic to H over k.

Remark 4.5. Note that the choice of J is equivalent to the choice of τ (see [KMRT98, Prop. 2.18]).
At real places of k which ramify in A we may suppose that τ is the conjugate transpose, in which case the

definiteness or indefiniteness of H̃k is controlled by whether the eigenvalues of J all have the same sign, or different
signs at ν.

Proposition 4.6. The forms of Hk are precisely the groups H̃k as constructed above.

See [KMRT98, Thm. 26.9].
It follows that given a form H̃ of Hk, the algebras A and M are uniquely determined, as is the definite-

ness/indefiniteness of J .

4.3. Forms of G2
m

In this section we sketch the basic Galois cohomological concepts related to the classification of tori, more
thorough treatments can be found in [Ree11] or [Wal01].

It is well-known that the automorphisms of tori come from automorphisms of the character lattice, from this we
conclude:

Proposition 4.7. The forms of G2
m are in bijection with:

H1(Gal(k/k),GL2(Z)).

This is the specialization of Proposition 4.1 to this context.
Computing H1(Gal(k/k),GL2(Z)) is, however, unnecessary for our applications, as we are not interested in all

forms of G2
m, only those that appear in G. We give only sketches of the following, as they will not be needed in the

sequel.

Proposition 4.8. Fix a split semi-simple algebraic group G of rank r, a split maximal torus T , with Weyl group
W = NG(T )/T . Denote by O the outer automorphism group of G whose action on G stabilizes T . The forms of T
appearing in forms of G are a subset of:

H1(Gal(k/k), O nW ) ↪→ H1(Gal(k/k),Aut(T )).

The map arising from the action of O nW on the root lattice of G.
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Sketch of Proof. We remark that we may actually select a representative section for O acting as automorphisms of G
so that O preserves T . Denote by N the normalizer in G of T so that W = N/T . We obtain maps OnW → Aut(T )
and O nN → Aut(G) and thus maps:

H1(Gal(k/k), O nW ) ↪→ H1(Gal(k/k),Aut(T ))

and
H1(Gal(k/k), O nN) � H1(Gal(k/k),Aut(G)).

The surjectivity of the second map is deduced from [PR94, Lem 6.10].
An element in the image ofH1(Gal(k/k), OnN) now twists T in two ways. Firstly via the map toH1(Gal(k/k),Aut(T ))

and secondly via its restriction to T in H1(Gal(k/k),Aut(G)). One checks that these give the same twisting.
Finally, that all tori in forms of G arise this way follows by the observation that if we select any other torus

T̃ ⊂ G̃ then there is an k map φ : Gk → G̃k taking T to T̃ . One checks that we may use φγ(φ−1) to obtain the

desired element of H1(Gal(k/k), O nN).

Proposition 4.9. Fix a split semi-simple algebraic group G, a split maximal torus T with Weyl group W . Denote
by O the outer automorphism group of G whose action on G stabilizes T . Fix Φ the collection of weights of G
appearing in a faithful k-rational representation ρ of G. Denote by ΣΦ the symmetric group on Φ. The map
W ×O ↪→ ΣΦ induces a map:

ϕ : H1(Gal(k/k), O nW )→ H1(Gal(k/k),ΣΦ).

The set H1(Gal(k/k),ΣΦ) classifies étale algebras of dimension |Φ|.
Finally, if T ↪→ G is associated to ξ ∈ H1(Gal(k/k), O n W ) then ϕ(ξ) is associated to an algebra E with

T ↪→ TE = ResE/k(Gm). The subtorus T ⊂ TE is defined by equations induced from relations on the characters Φ
of TE coming from the relations on Φ viewed as weights of G.

Sketch of Proof. The étale algebra E may be taken to be the center of the centralizer of ρ(T ). The idempotents of
E are the weights of ρ and thus the Galois action on Φ defined by the map W × O ↪→ ΣΦ determines the algebra
E. By construction we have T ↪→ TE = ResE/k(Gm).

Remark 4.10. One can modify the previous two results to not depend on split groups and split maximal tori by
twisting all the exact sequences. In so doing one replaces for example ΣΦ by a twisted form ΣξΦ. The cohomology

set H1(Gal(k/k),ΣξΦ) still classifies étale algebras over k, simply with a new base point (in particular the algebra
corresponding to the twisting ξ).

The classification of triples Tk ↪→ Gk thus amounts to classifying the algebras E, describing the subtori T , and
classifying the rational conjugacy classes of such maps.

5. Classifications of certain Subgroups of G2

In this section we shall obtain our main results, that is, we shall classify the Gk(k)-conjugacy classes of special
unitary groups and maximal tori in groups of type G2.

5.1. Classification of Special Unitary Groups in G2

Theorem 5.1. Fix an octonion algebra O over k and let Gk be the algebraic group associated to its automorphism
group and set G̃k = Gk. Fix x ∈ O ⊗k k perpendicular to 1O. Fix H̃k = Stabx(Gk) to be the stabilizer in Gk of x
and fix its natural inclusion:

f̃ : H̃k ↪→ G̃k.

Then the set of triples f : Hk → Gk considered up to Gk(k)-conjugacy, that become G̃k(k)-conjugate to f̃ : H̃k ↪→ G̃k
after base change are in natural bijection with the isomorphism classes of quadratic étale algebras A over k that
have an embedding A ↪→ O.

Proof. It is clear that as the group H̃k is defined as the stabilizer of an element x, any Gk(k)-conjugate must also

be the stabilzer of an element x′ ∈ O0⊗k k. We could equivalently have defined it to be the stabilizer of the line kx′

spanned by x′. Each Gk(k)-conjugate of H̃k stabilizes a unique line in O0, and the k-rationality of the conjugate is
equivalent to the k-rationality of this line. It follows that the collection of triples f : Hk → Gk we are interested in
is in bijection with Gk(k)-conjugacy classes of k-rational lines which are G̃k(k)-conjugate to the line kx.
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We have seen that the automorphism group of the octonions acts transitively on lines containing an element
of any given norm. In particular G̃k(k) acts transitively on non-isotropic lines, whereas Gk(k) acts transitively on
lines with a k-rational point of a fixed norm. The norm of a k-rational point on a non-isotropic k-rational line is
well defined up to (k×)2. Such a point uniquely determines a quadratic étale algebra A ' Ax together with an
embedding A ↪→ O. Conversely any quadratic étale algebra A embedding in O determines such a k-rational line up
to Gk(k)-conjugacy.

Corollary 5.2. Fix an octonion algebra O over k and let Gk be the algebraic group associated to its automorphism
group. The isomorphism classes of simply connected A2 subgroups embedding in Gk are special unitary groups for
quadratic étale algebras A which embed in O. For each A embedding in O there is a unique isomorphisms class of
special unitary group over k embedding in Gk.

Proof. The only new claim here is that there are no other embeddings of A2 subgroups in Gk besides those
already being considered. Indeed, any such embedding must take a maximal torus of the A2 subgroup to that of
Gk. This maximal torus determines uniquely the underlying representation. There are only two six dimensional
representations of A2. They are isomorphic and are interchanged by the outer automorphism of A2 hence give the
same embedded subgroup in G2.

Note that we shall see that Gk(k) contains an element acting as the outer automorphism (Prop 6.3), hence these
representations are moreover Gk(k)-conjugate.

Corollary 5.3. Fix an octonion algebra O over k. The isomorphism classes of simply connected A2 subgroups
embedding in Gk = Autk(O) are controlled by the structure of O at the real places of k. In particular, fixing a real
place kν of k we have the following cases:

• If O is definite at kν then all A appearing are imaginary extensions of kν (the place ν ramifies in A) and the
special unitary group Hkν is definite.

• If O is indefinite at kν and A is an imaginary extensions of kν then the special unitary group Hkν is indefinite.

• If O is indefinite at kν and A is a real extension of kν (the place ν splits in A), then the group Hkν is split,
that is, Hkν ' SL3,kν .

Proof. The first case follows from the observation that Gkν (kν) is compact. The second case follows from the
observation that the Hermitian form which arises must be indefinite. The third case is a consequence of the fact
that this is the unique Hermitian space for a split extension.

Remark 5.4. The forms of A2 whose construction involves non-trivial cubic division algebras do not appear. This
can be seen in two ways, firstly they do not have (non-trivial) representations of dimension six, secondly such forms
do not arise from Hermitian structures on A-vector spaces whereas the forms we construct do.

5.2. Classification of Maximal Tori in G2

Proposition 5.5. Every maximal torus Tk of Gk factors through a unique A2 subgroup Hk.

Proof. First, we claim that every maximal torus Tk of Gk has in its action on O0 a trivial eigenspace spanned by a
k-rational element x. The existence of a trivial eigenspace can be checked over k, that the eigenspace is k-rational
follows from the fact that the torus is k-rational. We claim that this eigenspace is non-isotropic. This again can
be checked over k and over the algebraic closure all maximal tori are conjugate, and hence all of these subspaces
are conjugate. As there exist maximal tori for which this subspace is non-isotropic (Prop 3.8), it follows that it is
non-isotropic for all maximal tori.

It follows that Tk ↪→ Stabx(Gk) embeds into the stabilizer of x. The group Stabx(Gk) is precisely one of the
groups Hk considered above.

Theorem 5.6. The Gk(k)-conjugacy classes of maximal tori in Gk are in bijection with pairs (H,T ) consisting of
a Gk(k)-conjugacy class H of A2 subgroup and an H(k)-conjugacy class T of maximal torus T in H.

Proof. Since for each maximal torus T of G the subgroup H containing T is unique, we may partition the Gk(k)-
conjugacy classes according to the conjugacy class of the group H containing it.

To complete the result we must now show that distinct H(k)-conjugacy classes give distinct G(k)-conjugacy
classes. To see this we must show that any element of G(k) which normalizes H, takes T to an H(k)-conjugate of T .
Indeed, the normalizer of H in Gk is generated by a single element g of order 2 (see Prop 6.3) and conjugation by
g acts as the outer automorphism of H. The outer automorphism of H comes from the composition of the adjoint
map on the Hermitian space and the inverse. As tori in unitary groups are self adjoint, g takes T to T .

14



Theorem 5.7. Let (A, σ) be a quadratic étale algebra with non-trivial involution σ and let (M, τ) be a degree 3
central simple algebra over A with an involution τ restricting to σ on A.

The rational conjugacy classes of maximal tori T in SUA,τ are in bijection with pairs (E, λ) where E is a cubic
étale algebra over k such that E ⊗k A ↪→ M and λ ∈ ker(E×/NE⊗kA/E((E ⊗k A)×)W → k×/NA/k(A×)) where
W = Autk(E) = (NSUA,τ (T )/T )(k) are the k rational points of the Weyl group of T subject to the additional
constraint that at any real place ν of k where A is ramified and E is totally real, λ is totally positive if and only if
SUA,τ (kν) is compact.

The torus T is isomorphic to TE⊗kA,σ,N , its points over a ring R are:

TE⊗kA,σ,N (R) = {x ∈ (E ⊗k A⊗k R)× | xσ(x) = 1 and NE⊗kA/A(x) = 1}.

Fixing any embedding E ↪→ A, for which τ restricts to σ on E ↪→ A, the involutions τλ(x) = λ−1τ(x)λ satisfies
(M, τ) ' (M, τλ) and thus SUA,τ ' SUA,τλ , the image of E ↪→ A under the different embeddings give the different
conjugacy classes of T as we vary λ.

This is a specialization of the results of [FR14] to the case of Hermitian spaces of rank 3, the case of pure inner
forms which we shall actually use in the sequel is also covered in [Wal01, Ex. 6.129].

Remark 5.8. In the cases that shall be relevant in the sequel, the algebra M shall always be a matrix algebra, in
which case, the condition E ⊗k A ↪→M is automatic. Moreover, in this setting, we may concretely view SUA,τλ as
the isomotries of the Hermitian space with Hermitian form:

TrE⊗kA/A(λδxσ(y))

where δ ∈ k×/NA/k(A×) is the discriminant of the Hermitian space with which we are working.

Putting all these pieces together we obtain our first formulation of the main result.

Theorem 5.9. Fix an octonion algebra O over k and the group Gk = Autk(O). The Gk(k)-conjugacy classes
of maximal tori Tk in Gk are in bijection with triples (A,E, λ) consisting of a quadratic étale algebra A (with
involutions σ) which embeds in O, a cubic étale algebra E and an element λ ∈ (E×)/NE⊗kA/E((E⊗kA)×) Autk(E)
such that the A-Hermitian space E ⊗k A of dimension 3 with Hermitian form:

TrE⊗kA/A(λxσ(y))

has discriminant 1 and is positive definite (respectively indefinite) at all the real places of k where the octonion
algebra is definite (respectively split). Note that the form is positive definite if and only if λ is totally positive and
E is totally real. Moreover, the discriminant of the form is NE⊗kA/A(λ)δE/k.

The torus Tk associated to this data is precisely TE⊗kA,σ,N whose points over R are:

TE⊗kA,σ,N (R) = {x ∈ (E ⊗k A⊗k R)× | xσ(x) = 1 and NE⊗kA/A(x) = 1}

where σ is induced from the non-trivial automorphism of A.

Remark 5.10. Replacing λ by δE/kλ we see that satisfying the discriminant condition is always possible. Moreover,
as the discriminant of the form TrE⊗kA/A(λxσ(y)) is precisely NE/k(λ)δE/k this replacement also would allow us
to instead consider λ in the kernel of the map

(E×)/NE⊗kA/E((E ⊗k A)×) Autk(E)
NE/k−→ (k×)/NA/k(A×)

subject to the signature conditions. We see that locally the kernel of the above map is non-trivial only at places of
k which split in E for which the corresponding places in A do not split. For the purpose of this renormalization
and its effect on the following proposition it is useful to note that δE/k is positive at a real ν of k if and only if ν
does not ramify in E.

Proposition 5.11. We have the following restrictions on the algebras A and E and the signature of λ based on
the structure of O at each real place ν. The conditions can be summarized as follows:

• If O is definite at ν then A is a CM-algebra and E is totally real. Moreover, λ is positive at all the real places
of E over ν.
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• If O is indefinite at ν then A is arbitrary and E is arbitrary. Furthermore,

If A is CM and E is totally real then λ is positive at a unique place.

If A is CM and E is not totally real then λ is negative at the unique real place (using the normalization
of Theorem 5.9) or positive at the unique real place (using the normalization of Remark 5.10).

If A is totally real then the choice of λ at ν is irrelevant (the norm map from E ⊗k A to E is surjective
at ν).

These conditions are immediate from the structure of the trace form TrE⊗kA/A(λxσ(y)).
As in the previous remark, by replacing λ by δE/kλ we obtain that the following corollary.

Corollary 5.12. The Gk(k)-conjugacy classes of maximal tori Tk in Gk are in bijection with triples (A,E, λ) where
A and E are respectively quadratic and cubic extensions of k, the element λ is in the kernel of the map:

(E×)/NE⊗kA/E((E ⊗k A)×)/Autk(E)
NE/k−→ (k×)/NA/k(A×)

and such that the triple (A,E, λ) satisfies the conditions of Proposition 5.11.

Remark 5.13. In order to account for the action of Autk(E) on the options for rational conjugacy classes we
observe that for a cubic étale extension this group is either Σ3 is E is totally split, C3 if E is a cyclic field extension,
C2 if E ' ∆× k or trivial otherwise (E is a field extension but not a Galois extension).

For a localization kν where Aν is not split (so that the kernel is not trivial to begin with), we have the following
cases:

• Autk(E) ' Σ3 then there are 2 orbits of Σ3, the orbit of the trivial element and the orbit of non-trivial
elements.

• Autk(E) ' C3, and Eν splits, then there are 2 orbits of C3, the orbit of the trivial element and the orbit of
non-trivial elements.

• Autk(E) ' C3, and Eν does not split, then the kernel is already trivial, and there is a unique orbit.

• Autk(E) ' C2, and Eν splits, then the kernel has 4 elements, and they are in 3 orbits under Autk(E).

• Autk(E) ' C2, and Eν does not split, then the kernel has 2 elements, and they are in 2 orbits under Autk(E).

• Autk(E) ' {1}, and Eν does not split, then the kernel is already trivial, and there is a unique orbit.

• Autk(E) ' {1}, and Eν splits completely, then the kernel has 4 elements, and there are 4 orbits.

• Autk(E) ' {1}, and Eν splits partially, then the kernel has 2 elements, and there are 2 orbits.

Note that for a global field, Autk(E) is acting on the global points of (E×)/NE⊗kA/E((E ⊗k A)×) and not each
localization separately. That is, it acts diagonally on the adelic points.

6. Group Cohomology Interpretation

In this final section we describe the connection between the concrete description of the previous section and that
which would arise via Galois cohomology. For the purpose of this section fix k, an octonion algebra O over k, the
group Gk, a maximal torus Tk and the unique A2 subgroup Hk containing Tk.

Theorem 6.1. Fix a semisimple algebraic group G defined over k, a subgroup H defined over k and let N denote
the normalizer of H in G. Then the kernel of the map:

H1(Gal(k/k), N(k))→ H1(Gal(k/k), G(k))

classifies the G(k)-conjugacy classes of G(k)-conjugates of H which are defined over k.

See [Ree11, Lemma 6.2].

Remark 6.2. Via twisting the set H1(Gal(k/k), N(k)) can be seen to classify G(k)-conjugates of H which happen
to be defined over k appearing in pure inner forms of G. For the groups G of type G2, the set of pure inner forms
coincides with the set of forms. Thus the goal of this section is to relate the results of the previous section to a
description of the map:

H1(Gal(k/k), N(k))→ H1(Gal(k/k), G(k)).
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Proposition 6.3. We have the following:

• The normalizer Nk of Tk contains an outer automorphism of Hk.

• There is a group Ãk together with maps:

Hk ↪→ Ãk � Aut(Hk)

where the kernel of the map Ãk → Aut(Hk) is the image of the center Z(Hk) of Hk.

Proof. Let x be a k-rational point of O0 stabilized by Hk. Consider the element g ∈ Gk which takes x to −x, and
fixes y, z. This element then fixes yz and takes each of x, xy, xz, (xy)z, respectively, to −x,−xy,−xz, (−xy)z. Such
a map is induced by conjugation on the underlying Hermitian space A⊥x , hence gives the outer automorphism of
Hk. By base change to the algebraic closure, we can check that the outer automorphism acts as inversion on the
torus, in particular all tori in Hk are self adjoint and this action induces an involution of Tk.

Define Ãk to be the normalizer of Hk in Gk. It is clear that Ãk is generated by Hk and the element g as in the
proposition.

Proposition 6.4. The forms of Hk which may embed in some form of Gk are the “pure outer forms” of Hk,
namely they arise from

H1(Gal(k/k), Ãk(k))→ H1(Gal(k/k),Autk(Hk)).

The forms of Hk which embed in Gk are additionally in the kernel of the map:

H1(Gal(k/k), Ãk(k))→ H1(Gal(k/k), Gk(k)).

Remarks on Proof. This is a restatement of Theorem 6.1, but notice that the first statement agrees with our results
from Theorem 5.1 in light of Proposition 4.6. The fact that rational conjugacy is equivalent to rational isomorphism
is clear in the observation that H1(Gal(k/k), Ãk(k)) classifies both.

In light of this, we may reinterpret Corollary 5.3 and Proposition 4.2 as giving a concrete description of the second
map. Thus proving the second statement amounts to showing that certain explicit cocycles in H1(Gal(C/R), Ãk(C))
split in H1(Gal(C/R), Gk(C)).

Proposition 6.5. Let Mk be the normalizer in Hk of T . The forms of T which embed in Hk are those in the image
of:

H1(Gal(k/k),Mk(k))→ H1(Gal(k/k),Autk(T ))

and in the kernel of:
H1(Gal(k/k),Mk(k))→ H1(Gal(k/k), Hk(k)).

The concrete relation between this and our description is found in either [FR14] or [Wal01, Ex. 6.129].

Remark 6.6. There is an exact sequence:

1→ Tk(k)→Mk(k)→ Σ3 → 1.

Where Σ3 denotes the symmetric group on three elements. It is known that H1(Gal(k/k),Σ3) classifies degree 3
étale algebras over k.

Proposition 6.7. Let Nk denote the normalizer of T in Gk. The forms of T which embed in Gk are those in the
image of:

H1(Gal(k/k), Nk(k))→ H1(Gal(k/k),Autk(T ))

and in the kernel of:
H1(Gal(k/k), Nk(k))→ H1(Gal(k/k), Gk(k))

Remarks on proof. This is a restatement of Theorem 6.1, but notice that the statement follows by combing the
results from Theorems 5.6 and 5.7 and Propositions 6.4 and 6.5.

Moreover, there is an exact sequence:

1→ Tk(k)→ Nk(k)→ Σ2 × Σ3 → 1
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H1(Gal(k/k),Σ2×Σ3) describes pairs of quadratic étale and cubic étale algebras. The fact that rational conjugacy
and rational isomorphism are not equivalent is a result of the fact that the map from Nk(k) → Aut(T ) has kernel
T and

H1(Gal(k/k), T (k))

is not necessarily trivial. This cohomology group is calculated via the exact sequence:

H0(Gal(k/k), TE(k))→ H0(Gal(k/k), TEσ (k))→ H1(Gal(k/k), T (k))→ H1(Gal(k/k), TE(k))

and the observation that by Hilbert’s Theorem 90, the group H1(Gal(k/k), TE(k)) = {1}. Completing the compu-
tations agrees precisely with what is obtained from Proposition 4.9 and Theorem 5.9.

For the second claim notice that we have maps:

H1(Gal(k/k), Nk(k))→ H1(Gal(k/k), Ãk(k))→ H1(Gal(k/k), Gk(k)).

The second claim is thus made equivalent to Proposition 6.5 and Corollary 5.3.

7. Concluding Remarks

We have been able to accomplish our three important goals:

1. We have given a concrete description and classification of the rational conjugacy classes of maximal tori in
groups of type G2.

2. We have given a concrete description and classification of the rational conjugacy classes of simply connected
A2 subgroups of G2.

3. Finally, we have been able to relate these concrete descriptions to the more abstract cohomological descriptions
that were already available.

It remains a goal to give concrete classifications for the rational conjugacy classes of maximal tori in all semi-
simple and reductive groups. The families of classical groups admit systematic approaches, and the work of [Fio12,
FR14] already handles many (though not all) of these.

The group G2 being the simplest of the exceptional groups was a natural candidate to be the first exceptional
group to consider. Though the approach here seems ad-hoc given the heavy reliance on the structure of O, it is
expected that similar methods will work for the group F4 (this is an ongoing project) and with other ideas it is
hoped that the cases of E6, E7 and E8 may be handled.
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