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Abstract

The theory of complex multiplication has been a powerful tool for studying various aspects of

classical modular forms along with their generalizations. With the recent work of Borcherds there

has been an increase in the interest in studying modular forms on orthogonal groups of signature

(2, n) as well as the spaces on which they live. In this thesis, we study the special points (or CM-

points) that exist on these spaces. We develop cohomological classifications relating the special

points, their associated CM-fields and the spaces in which these points can be found.
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Resumé

La théorie de la multiplication complexe nous donne des outils puissants pour étudier des as-

pects divers des formes modulaires classiques, ainsi que leurs généralisations. Les travaux récents

de Borcherds donne une nouvelle motivation pour étudier les formes modulaires sur des groupes or-

thogonaux de signature (2, n), ainsi que les espaces sur lesquels ils agissent. Dans cette thèse, nous

étudierons les points spéciaux (ou points-CM) qui existent dans ces espaces. Nous développerons

des classifications cohomologiques concernant les points spéciaux, les corps-CM associés et les

espaces dans lesquels ces points peuvent être trouvées.
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CHAPTER 1
Motivation

The primary goal of this thesis is to attempt to understand the maximal Q-defined algebraic
tori with compact sets of real points that are contained in a given orthogonal group. The reason
why this problem is of interest comes out of a particular generalization of the concept of modular
forms, in particular a generalization of the domain for a space of modular forms.

A very general description of a modular form is a function f , defined on a hermitian symmetric
domain H, with values in C. The space H comes equipped with the action of a group Γ, where the
function f will be required to satisfy some sort of functional equation with respect to the action
of Γ. Generally, f is not invariant under the action of Γ but instead changes by some constant
power k (called the weight) of some factor of automorphy j : Γ × H → C. One typically takes
j ∈ H1(Γ,O(H)×) (so f(γ ·h) = j(γ, h)kf(h)). One usually also has holomorphicity requirements
defined by using the structure of H as a complex manifold.

In the classical case one has:

H := {z ∈ C|=(z) > 0} ' SL2(R)/ SO(2)(R) ' SO(2, 1)(R)/ SO(2)(R),

and Γ will be an arithmetic subgroup (more specifically a congruence subgroup) of SL2, with the
standard factor of automorphy j (( a bc d ) , z) := c · z + d.

In this setting there is a notion of points with complex multiplication (CM). These are points
where we expect to be able to use arithmetic information about elliptic curves to study the values of
modular forms; the CM-points are precisely the points τ such that Q(τ) is a quadratic imaginary
field, while under the SL2(R)/ SO(2)(R) interpretation, the CM-points are those points whose
stabilizer in SL2(C) is a maximal algebraic torus, defined over Q, having a compact set of R
points.

When one generalizes the above construction to take H := G(R)/K(R), with G a reductive
group over Q, and K a maximal compact subgroup, one arrives at the generalized notion of CM-
points as being those points in G(R), whose stabilizer contains a maximal torus defined over Q
having a compact set of real points. In the specific setting of taking G to be an orthogonal group of
signature (2, n), the problem we are interested in is precisely the classification and understanding
of these CM-points.

To begin with we look at the problem more generally, developing a system for classifying
certain conjugacy classes of k-defined subgroups contained in an algebraic group. We then apply
this to the specific case we are interested in, that is classifying the tori in an orthogonal group.
We next attempt to develop criterion for when a particular Q-isomorphism class of a torus is
embeddable into a given orthogonal group.
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CHAPTER 2
Background Material

2.1 Introduction to Algebraic Groups

Most of the material in this section is covered in: A. Borel “Linear Algebraic Groups” [Bor91],
T.A. Springer “Algebraic Groups” [Spr98] and Platonov and Rapinchuk “Algebraic Groups and
Number Theory”[PR94]; though many other good references exist.

For the remainder of this section, let k be a perfect field and k be an algebraic closure (most
of what follows would be true for non-perfect fields if one restricts to separable extensions).

Definition 2.1.1. An algebraic group G (over k) is an algebraic variety over k together with
a group structure where the group operations are morphisms of varieties. If G is a variety over k
and the group operations are k-morphisms then G may be called a k-group, or said to be defined
over k.

A homomorphism of algebraic groups is both a morphism of varieties and a group homo-
morphism. If the homomorphism is between two k-groups and is defined over k we may call it a
k-homomorphism.

Definition 2.1.2. A linear algebraic group (over k) is an algebraic group over k that is affine
as a variety over k.

Remark. Through the usual correspondence between affine varieties and rings, which associates
to a variety its ring of regular functions, the extra morphisms that give a variety a group structure
under this correspondence give the associated ring the structure of what is called a Hopf algebra.
In general a Hopf algebra A over a ring R is an R algebra (with R algebra structure map i : R→ A,
multiplication m : A⊗RA→ A) equipped additionally with a co-multiplication µ∗ : A→ A⊗RA, a
co-unit e∗ : A→ R and an antipode i∗ : A→ A which satisfy the following commutative diagrams:

A
µ∗

//

µ∗

��

A⊗R A
id⊗µ∗
��

A⊗R A
µ∗⊗id
// A⊗R A⊗R A

A
id

&&

µ∗
//

µ∗

��

A⊗R A
id⊗e∗
��

A⊗R A
e∗⊗id

// A

A
i◦e∗

&&

µ∗
//

µ∗

��

A⊗R A
m◦(id⊗i∗)
��

A⊗R A
m◦(i∗⊗id)

// A

One can check that such conditions on R-algebra maps would be equivalent to the associated
variety having a group structure.

In the remainder of this thesis we shall generally restrict our attention to the case of linear
algebraic groups, and as such the word “linear” shall often be omitted. That said, a number of
the results do hold more generally.

Theorem 2.1.3. [Bor91, 1.10] Every linear algebraic group G over k is isomorphic to a closed
subgroup of GLn(k) for some n. If moreover G is a k-group, then it is k-isomorphic to a closed
subgroup, defined over k, of GLn(k).

Sketch of proof. The first step is to prove a series of lemmas concerning G actions on k-varieties.
In particular one defines the actions of left/right translation of G on k[V ] for any k-variety V on
which G acts. That is λg : k[V ]→ k[V ] via λg(f)(v) = f(g−1 ◦ v). One then proves that we can
write k[G] = k[f1, . . . , fn] where E := k[f1, . . . , fn] is stable under right translation. left translation
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then gives us a representation of G into GL(E) which is defined over k. Finally, it is shown that
this gives us a closed immersion, thus defining G as being a closed subvariety of GLn(k).

With the above theorem we will in general be viewing linear algebraic groups as being closed
subgroups of some GLn, most often GLn(C).

As is often the case when talking about varieties, the notion of fields of definition come into
play. As such the following characterization will be useful.

Theorem 2.1.4. [Bor91, AG.14] Let G ⊆ GLn(k) be an algebraic group, then the following are
equivalent:

1. G can be defined over k as an algebraic group. ie:
The ideal defining G as a subvariety of G ⊆ GLn(k) is generated by polynomials over k
and the morphisms defining the group structure of G correspond to polynomials in k on the
coordinate ring of G.

2. G can be defined over k as a variety. ie:
The ideal a defining G as a subvariety of G ⊆ GLn(k) is generated by polynomials over k.

3. G(k) is invariant (as a subset of GLn(k)) under the action of Gal(k/k).

Sketch of proof. 1⇒ 2 is obvious from the definition.
2 ⇒ 1 follows from observing that the group law on GLn is defined by polynomials with integer
coefficients and so are immediately k defined for any G.
2⇒ 3 is clear by applying the Galois action to the equation being satisfied.
3⇒ 2 we need only to check the criterion on the variety being a k-variety. The Galois criterion for
varieties is proven by proving a similar statement about vector spaces then viewing the coordinate
ring as a k-vector space.

Lemma 2.1.5. Let V be a vector space over k and W be a subspace of Vk = V ⊗k k then W can
be defined over k if and only if W is defined over k and W (k) is Galois stable.

Proof of lemma. The “only if” assertion is clear.
For the “if” assertion notice that Wk := WGal(k/k) is defined over k so we only need to show that
W ′ := spank(Wk) = W . By considering W/W ′ we can reduce to the case Wk = 0 in which case we
wish to prove W = 0. We remark that to show that the invariants of W/W ′ would be 0 one uses
the additive version of Hilbert’s Theorem 90.

Indeed, choose a k basis ei for V . Choose an element 0 6= w ∈ W such that the number
of ei involved in expressing w is minimal. By reindexing and rescaling we can arrange so that
w = e1 + a2e2 + · · · + ajej. Since w is not in Wk, there exists σ ∈ Gal(k/k) with σ(w) 6= w, but
then 0 6= w − σ(w) ∈ W is expressed in j − 1 terms which is a contradiction.

Returning to the theorem, we denote by mx the ideal of functions vanishing at x and consider
J = ∩

x∈G
mx the ideal of functions vanishing on G. Then J is defined as a subspace of k[GLn] over

k. For σ ∈ Gal(k/k) we have:

σJk = ∩
x∈G(k)

σmx,k = ∩
x∈G(k)

mσ(x),k = ∩
x∈G(k)

mx,k = Jk.

The last equality following from the stability of G(k). Thus, by the Galois criterion for stability
of vector spaces, J is defined over k, from which it follows that G is.

We next note that as a consequence of the above we can show that for algebraic groups H ⊆ G
defined over k, the following objects will also be defined over k: the normalizer NG(H) of H in G,
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the centralizer CG(H) of H in G, the commutator subgroup (G,G) and the connected component
of the identity Go.

Since an algebraic group is a homogeneous space (because: ∀x, y ∈ G, translation by yx−1

is an automorphism taking x to y) we conclude that algebraic groups are smooth varieties, and
consequently their irreducible components are their connected components.

2.1.1 Characters, Co-Characters and Diagonalizable Groups

Definition 2.1.6. For an algebraic group G we define X∗(G) and X∗(G) to be the character group
and co-character respectively. That is:

X∗(G) := Hom(G, k
∗
) and X∗(G) := Hom(k

∗
, G).

There are two distinguished types of connected algebraic groups, tori and Borel subgroups.
These are defined as follows:

Definition 2.1.7. An algebraic group G is said to be diagonalizable if X∗(G) spans k[G] as
a k-vector space. A diagonalizable group D is called split over k if X∗(D)k := X∗(D) ∩ k[D]
spans k[D] or equivalently X∗(D)k spans k[D]. Conversely D is said to be anisotropic (over k) if
X∗(D)k = 0. A connected diagonalizable group is called an algebraic torus. These are precisely
those groups that are isomorphic over k to Gn

m := GL1(k)n for some n.

Remark. One should note that the conditions for an algebraic group to be diagonalizable are
equivalent to saying that for any faithful representation into GLn the group will in fact be diago-
nalizable in the sense that some conjugate over GLn(k) will consist only of diagonal matrices. To
see this fix a basis χ1, . . . , χn for X∗(D) as a Z-module and consider the natural representation
of D on spank(χ1, . . . , χn). This representation will map into the diagonal matrices. One can
moreover check that diagonalizability in this sense is independent of the choice of representation.

It should be noted that every diagonalizable group is split over some finite algebraic extension
of the base field (to see this just consider the element of GLn(k) that diagonalize G, adjoining the
entries of the matrix to k gives a splitting field). We call such a field a splitting field of the group.

We notice that for an algebraic group G defined over k we will have a natural action of
Gal(k/k) on X∗(G). In particular for σ ∈ Gal(k/k) and χ ∈ X∗(G) we have:

(σ ◦ χ)(g) := σ(χ(σ−1(g))).

Using this structure we can obtain the following:
Theorem 2.1.8. [Bor91] Let K/k be a finite Galois extension with Galois group Γ := Gal(K/k).
The functor from the category of diagonalizable groups defined over k split in K to the category of
Z[Γ]-Modules taking D 7→ X∗(D) is a contravariant equivalence of categories. Moreover, the full
subcategory of tori corresponds to the subcategory of Z-torsion free Z[Γ]-Modules.

Sketch of proof. The proof of the first statement amounts to understanding the Hopf algebra struc-
ture on the coordinate ring in relation to the fact that the character group spans the coordinate
ring. The proof of the statements about the subcategory of tori amounts to checking that con-
nected implies torsion free character module, which follows from fact that Gm has no non-trivial
connected subgroups.

Definition 2.1.9. Let T be an algebraic torus. Define Ta and Td to be the maximal anisotropic and
respectively split subtori of T . These can be shown to exist by construction or via the equivalence
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of categories stated above. One can construct Ta, Td as:

Ta :=
⋂

χ∈X∗(T )k

Ker(χ) Td := 〈im(χ)|χ ∈ X∗(T )k〉.

In order to see that these are tori one only needs to check that they are connected. For Td this is
obvious as it is the union of the continuous image of connected sets containing a common point.
The character module for Td is X∗k(T ). To show that Ta is connected one uses that its character
module X∗(Ta) ' X∗(T )/X∗(T )k is Z-torsion free. Note that since (Ta ∩ Td)◦ is trivial. Ta ∩ Td is
finite. We should also note that Ta, Td are functorial in their constructions.

Definition 2.1.10. A Borel subgroup of an algebraic group G is a subgroup which is maximal
for the property of being connected and solvable.

We now mention an important property of Borel subgroups which is the basis for proving a
number of results about them.

Theorem 2.1.11. [Bor91, IV.11.2] Let G be a connected algebraic group and P a closed subgroup.
Then G/P is projective (or complete) if and only if P contains a Borel subgroup.

As a consequence of the above theorem we make the following definition:
Definition 2.1.12. A subgroup P of an algebraic group G is called parabolic if G/P is projective.

Theorem 2.1.13. [Spr98, CH2 3.2.2] Let G be an algebraic group over k, then there exists a
maximal torus T in G that is defined over k.

In contrast to the above result, there need not exist Borel subgroups which are defined over
k. When there is, the group G is said to be quasi-split over k.

Theorem 2.1.14 (Conjugacy of Maximal Tori). [Bor91, IV.11.3] Let G be a (linear) algebraic
group over k. Then all maximal tori in G are conjugate over G(k), that is to say, there is for any
two tori an element of G(k) which conjugates one to the other.

Sketch of Proof. The important points of the proof are as follows:
1. All Borel subgroups are conjugate over G. [Bor91, IV.11.1]
2. Any two maximal tori in a solvable group are conjugate. [Bor91, III.10.6]
3. Every maximal torus is contained in a Borel subgroup (tori are connected and solvable, hence

contained in maximal such objects).
4. Hence, any two maximal tori are conjugate.

One can say slightly more in the case of maximal k-split torus.

Theorem 2.1.15. [Bor91, V.15.14] Let G be connected and k perfect. Then the maximal k-split
tori of G are conjugate over G(k).
Examples. Examples of Algebraic Groups:

1. The first example is G = GLn(k), in this case we have k[G] = k[xij, det(xij)
−1] A maximal

torus here is Dn(k) the diagonal matrices. An example of a Borel subgroup is the upper
triangular matrices. In general the Borel subgroups consist of those matrices which stabilize
a maximal flag, that is which stabilize a sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vn where
dim(Vi) = i. We define Gm := GL1(k).

2. The next is G = SLn(k), where we have k[G] = k[xij]/(det(xij)− 1). A maximal torus here
is T ⊂ Dn(k) given by requiring the bottom right to be such that the determinant is 1. An
example of a Borel subgroup consists of upper triangular matrices of determinant 1.

3. We also have the subgroup Ga ⊂ SL2(k) given by Ga :=
{

( 1 x
0 1 ) |x ∈ k

}
. We have k[Ga] = k[x]

A maximal torus here is trivial. The entire group is itself a Borel subgroup.
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4. The next example is a general construction. Let S ∈ GLn(k) then the matrices:

G := {M ∈ GLn(k)|tMSM = S}

form an algebraic group, the structure of which depends highly on the choice of S. If S has
entries in k, then G is defined over k. It should be noted that the group G′, defined in terms
of tNSN where N ∈ GLn(k), is related to G via G′ = N−1GN and thus the resulting groups
are k-isomorphic. As such, various similarity theorems can be used to convert our group to
a ‘nicer’ form.
(a) If S is symmetric (S = tS) with non-zero determinant then we get an orthogonal group

(char(k) 6= 2). Specifically, if Sm =

(
1 0

...
0 1

)
we get the usual orthogonal group. A

maximal torus is of the form: A1 0
. . .

0 Am


where the Ai are two by two blocks of the form:{(

a b
−b a

)
|a2 + b2 = 1

}
=

{
1

2

(
x+ 1

x
i(x− 1

x
)

−i(x− 1
x
) x+ 1

x

)
| x ∈ k

}
(where i is some square root of −1 in k) along the diagonal. We remark that the
character module for each of the Ai is generated by the map x. If n is odd then an
additional 1 would appear in the lower right entry.

(b) If S is skew-symmetric (S = −tS) with non-zero determinant then we get a symplectic
group. If Sm =

(
0 1m
−1m 0

)
we get the group Sp2m. A maximal torus here consists of the

matrices:  t1
·
tm

t−1
1 ·

t−1
m

 .

In both of the last two cases a Borel subgroup consists of the subgroup of matrices which
stabilize a maximal flag of the form:

V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊆ V ⊥m ⊂ · · · ⊂ V ⊥1

where each Vi has dimension i and the Vi are isotropic for the form on k
n
. For the case of

Sp2m an example is the subgroup of upper triangular matrices it contains.

2.1.2 Restriction of Scalars

The next section gives another method of constructing an algebraic group. It is a method
of constructing one algebraic group from another via manipulation of the fields of definition. In
particular the construction goes as follows: Let L/k be a finite field extension of degree d. Fixing
a basis for L/k we may view L as a d-dimensional vector space over k. Then the action of L on
L via multiplication on the left gives us a map L ↪→ GLd(k). Now, let G be an algebraic group
defined over L. The set of equations defining both its variety and group structure have coefficients
in L, We can translate these into matrix equations via the map L ↪→ GLd(k), expanding out
the matrix equations will yield a set of equations over k. We then define RL/k(G) to be the
algebraic group whose structure is given by these equations. Concretely, if G ↪→ GLn(L) then
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RL/k(G) ↪→ GLnd(k). We note that this construction is independent of the initial choice of basis
for L up to k-isomorphism. The restriction of scalars construction enjoys a number of very nice

properties.
1. If L/k is separable and N is the normal closure of L, then there exists an N -isomorphism
RL/k(G) '

∏
σ

Gσ where σ ranges over the k-embeddings of L into N and Gσ is the same as G

but with defining equations corresponding to the embedding of L into N by σ. In particular
for any k-algebra A we have RL/k(G)(A) = G(L⊗k A).

2. The restriction of scalars operation can also be applied to morphisms of algebraic groups,
thus becoming functorial. This functor is however not full. We can however conclude that,
X∗(RL/k(G))k = X∗(G)L, a statement which is particularly useful when applied to tori.

One special case of the restriction of scalars construction is in applying it to a non-algebraic group
defined over one field to get an algebraic group defined over the base field.
Example. Let L/k be a finite Galois extension. Then the set {x ∈ L|NL/k(x) = 1} is not algebraic
in L, however viewing L as a k vector space, the corresponding set is algebraic over k, and so the
equations defining it give us a closed subvariety of RL/k(Gm). Following the notation in Platinov
& Rapinchuk we define:

R
(1)
L/k(Gm) := {x ∈ RL/k(Gm)| NL/k(x) = 1}

where NL/k is the k-linear extension of the map defining NL/k on L as a k-vector space.
More specifically, we note that under the regular representation for L the norm map NL/k

becomes the determinant map and so R
(1)
L/k = {x ∈ RL/k(Gm)| det(x) = 1}. In particular one sees

that this is indeed an algebraic condition.
Specifically, consider the case L = k(

√
D). If we fix the basis for L/k of 1,

√
D then the

regular representation of L maps the element a + b
√
D 7→ ( a bDb a ). Consequently we have that

RL/k(Gm) = {( a bDb a ) |a2− b2D 6= 0} . Over L this diagonalizes to the form {
(
a+b
√
D 0

0 a−b
√
D

)
} with

the characters thus corresponding to the two embeddings of L over k and the non-trivial Galois
element acting on X∗(RL/k(Gm)) by interchanging them. The torus R

(1)
L/k(Gm) is then precisely

{( a bDb a ) |a2 − Db2 = 1}. The character module is generated by the character ( a bDb a ) 7→ a + b
√
D

and the non-trivial Galois element maps this to the inverse a − b
√
D. We remark finally that a

different choice of k basis for L would correspond to conjugation in GL2(k).

2.2 The Lie Algebra of an Algebraic Group

There are many good references for the formal definitions of Lie algebras, for example see
A. Borel “Linear Algebraic Groups” [Bor91], T.A. Springer “Linear Algebraic Groups”[Spr98] or
Fulton and Harris “Representation Theory” [FH91]. The treatment we give below is less formal
and primarily intended to give a framework for understanding the dimension of an algebraic group.

For a Lie group, the idea of the Lie algebra is that it is supposed to be the elements of the
group that are infinitesimally close to the identity of the group. That is the elements X such
that (1 + X) ∈ G and X is “close” to 0. That is to say, it is precisely the tangent space to the
“manifold” at the identity (Te). One of the motivations for looking at this space is that in general
one typically finds that a neighborhood of the identity generates most of the group, and as such
understanding this infinitesimal neighborhood may give much information.

For the case of the algebraic group GLn, the map GLn → An2
makes it clear that the coordinate

functions are just the components of the matrix. (To be pedantic one should look at first an
embedding into Mn+1; we will not do this here.) It is also easy to see, since the condition of being
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in GLn is an open condition on An2
that you can travel in any direction (at least a small distance)

from the identity and stay in GLn and that these directions are all independent. Thus we have
that Lie(GLn) = Mn. We note that the exponential map exp : A 7→ 1+A+A2/2!+A3/3! . . . maps
Lie(GLn) to GLn. This phenomenon is in fact much more general.

Algebraically, there are a variety of different definitions one may take for the Lie algebra. One
may take the Lie algebra to be the space of left invariant derivations, the tangent space at the
identity or define it to be the dual to the cotangent space which has a natural algebraic definition
as mid/m

2
id. We will try to avoid getting into the algebraic formalism here. For a group G ⊂ GLn

we will view Lie(G) as X ∈ Mn = Lie(GLn) such that “idG + εX ∈ G” where ε2 = 0.
We wish to compute the Lie algebra for OV , this can be done in several ways. The seemingly

informal ways we present now can actually be made rigorous. Essentially one needs to make the
argument that the operations we perform on matrices, can be carried out componentwise with the
same effect.
Example (Lie Algebra of an Orthogonal Group). Let V be a vector space over k, a field of
characteristic not 2; fix a basis for V and let S be a symmetric matrix with non-zero determinant.
Let Q be the quadratic form given by Q(x) := (tx)Sx.

The basis for V gives us an isomorphism, Aut(V ) ' GLn(k), under which:

OV ' {M ∈ GLn(k)|tMSM = S}.

We then wish to view the tangent space of OV as a subspace of the tangent space of GLn. The
tangent space is then the elements X ∈ Mn(k) such that (1 + X) ∈ OV “mod squares”. that is:
t(1 +X)S(1 +X) = S which gives the condition:

tXS + SX = 0

where we consider tXSX a square since “it has 2 Xs”. Rigourously tXSX is actually a square in
the sense we mean, componentwise all the functions it contains will be generated by products of 2
coordinate functions each from the maximal ideal, and it is this that we are modding out by.

We will now compute the dimension of the Lie algebra, which from general theory will also
be the dimension of the orthogonal group (as a manifold).

It suffices to consider the situation over the algebraic closure of k since dimensions won’t
change under extension(flatness), and here we may assume our quadratic form is the most trivial
one, given by S = idn the identity matrix. The condition tXS + SX = 0 then just says X is
skew-symmetric. The space of skew symmetric matrices in Mn(k) is easily seen to have dimension
n(n− 1)/2. Therefore,

dim(OV ) =
n(n− 1)

2
where dim(V ) = n.

2.3 Orthogonal Groups and their Symmetric Spaces

Much of the material for this section can be found in J. Brunier “The 1-2-3 of Modular forms”
[Bru08]. The material on quadratic spaces can also be found in J.P. Serre “A Course in Arithmetic”
[Ser73], and the construction of the Clifford algebra and spin group, at least for the complex case,
is also done in Fulton and Harris “Representation Theory”[FH91]. A more detailed construction
of the symmetric spaces can also be found in J. Brunier “Borcherds products on O(2,1) and Chern
classes of Heegner divisors” [Bru02].
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The purpose of this section is to develop more concretely an understanding of the spaces we
are trying to work with. We have the goal of understanding the special points in certain hermitian
symmetric domains, but what are these and which are we intending to look at?

2.3.1 Hermitian Symmetric Spaces

In this section we will attempt to quickly define the general sorts of spaces that one typically
considers modular functions on, that is, hermitian symmetric spaces. The general definitions for
hermitian spaces can be found in all sorts of sources; our definitions here are based on those from
J. Milne “Introduction to Shimura Varieties” [Mil05]. Another source on the topic is J. Helgason
“Differential Geometry and Symmetric Spaces” [Hel01].

Definition 2.3.1. A real manifold M of dimension n is a separated topological space M , locally
isomorphic to Rn, with a countable basis for the topology.

Definition 2.3.2. A smooth manifold M is a manifold together with a sheaf OM of smooth
R-valued functions, such that (M,OM) is locally isomorphic to Rn with its usual sheaf of smooth
functions.

Remark. To give a complex structure on M amounts to giving instead of a sheaf of R-valued
functions a sheaf of C-valued functions that makes M locally isomorphic to Cn with its sheaf of
analytic functions.

To give a complex structure on an R-vector space V amounts to giving a function J : V → V
such that J2 = −1.

Definition 2.3.3. Denote by OM,p the germs of smooth functions at a point p ∈ M ; TpM the
space of R-derivations OM,p → R; and by TpM

∨ the vector space dual of TpM .
A smooth vector field on an open set U ⊂ M is a collection (Xp ∈ TpM)p∈U such that for

all f ∈ OM(U) the map p 7→ Xp(f) is smooth.
A smooth r-tensor field on an open set U ⊂ M is a collection (tp : TpM

r → R)p∈U such
that for all smooth vector fields X(1), . . . , X(r) on U the map p 7→ tp(X

(1), . . . , X(r)) is smooth.
A smooth (r,s)-tensor field on an open set U ⊂M is (tp : TpM

r × (TpM
∨)s → R)p∈U with

a similar smoothness condition.

Definition 2.3.4. A riemannian metric on M is a smooth 2-tensor field g on M such that for
each p ∈M the pairing gp : TpM × TpM → R is symmetric and positive definite.

Definition 2.3.5. An almost complex structure on a smooth manifold M is a smooth (1,1)-
tensor field Jp : TpM → TpM on M such that J2

p = −1 for each p. That is, it is a smoothly varying
family of complex structures on the tangent spaces.

Remark. An actual complex structure induces an almost complex structure.

Definition 2.3.6. A hermitian metric is a riemannian metric such that g(JX, JY ) = g(X, Y )
for all vector fields X, Y .

Definition 2.3.7. A hermitian space is a smooth real manifold M with a complex structure
and a hermitian metric.

Definition 2.3.8. A homogeneous space is a manifold M such that Aut(M) acts transitively
on M .

Definition 2.3.9. A homogeneous space is called symmetric if for some point p (equivalently
any point) there exists a symmetry sp such that s2

p = id and for some open neighborhood U of p,
p is the only fixed point of sp in U .

Example. We present a few examples of hermitian symmetric spaces:
• H, the standard upper half plane, is a symmetric space with volume element dxdy

y2
which has

automorphism group SL2(R)/{±1}. ( 0 −1
1 0 ) acts as a symmetry at i.
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Concretely, at a point p = (x, y) the tangent space has basis ∂
∂x
, ∂
∂y

. We then have that the

pairing is given by the formula gp(a1
∂
∂x

+ a2
∂
∂y
, b1

∂
∂x

+ b2
∂
∂y

) = a1b1+a2b2
y2

. One checks that the

complex structure J : ∂
∂x
7→ ∂

∂y
, J : ∂

∂y
7→ − ∂

∂x
preserves this pairing. Moreover, one can

check that the action of SL2(R) also preserves the form.
• More generally, the Hilbert modular spaces Hn are hermitian symmetric spaces.
• The Siegal upper half space Hg := {Z = X + iY ∈ Mg(C)|Z = tZ, Y � 0} is a hermitian

symmetric space. The group Sp2g acts blockwise analogously to the first example. That is
for (

A B
C D

)
◦ Z = (AZ +B)(CZ +D)−1,

(
A B
C D

)
∈ Sp2g.

One must check that this action is well defined.
It is our goal in the coming sections to develop a further example of a hermitian symmetric

space constructed from certain orthogonal groups.

2.3.2 Quadratic Spaces

The following definitions are in some sense far more general than what is needed. To simplify
things one may generally assume in the following that R = k is a field of characteristic not 2 and
that M is a vector space over k. The only more general setting we should need, is to consider
discrete modules contained in these (that is lattices).

Definition 2.3.10. Let R be a commutative ring with unity, R∗ the group of units, V a finitely
generated R-module. A quadratic form on V is a mapping Q : V → R such that:

1. Q(rx) = r2Q(x) for all r ∈ R and x ∈ V ;
2. B(x, y) := Q(x+ y)−Q(x)−Q(y) is bilinear.

The pair (V,Q) will be called a quadratic module (or quadratic space) over R. The space is said
to be non-degenerate if for any x ∈ V we have B(x, y) = 0 for all y ∈ V , then we have x = 0.

We remark that in general the first condition follows from the second if 2 ∈ R∗ as in this case
Q(x) = 1

2
B(x, x).

Example. Let R = R be the real numbers, let (p, q) ∈ N2, let V = Rp+q have coordinates given
by x1, . . . , xp, y1, . . . , yq. Define Q(v) = x2

1 + · · · + x2
p − y2

1 − · · · − y2
q . Then this gives a quadratic

form on V . We will denote this quadratic space (V,Q) by Rp,q

It turns out, that up to isomorphism (to be defined) these give all non-degenerate quadratic
spaces over R. One often calls (p, q) the signature of such a quadratic space. Later on, we shall
discuss the various invariants attached to quadratic forms over Q and thus their classification.

Definition 2.3.11. Two vectors x, y ∈ V are said to be orthogonal if B(x, y) = 0.

Using this definition one can define the notion of the orthogonal complement to a set.

Definition 2.3.12. Let A ⊂ V then A⊥ := {x ∈ V |B(x, y) = 0 ∀y ∈ A} is called the orthogonal
complement of A.

We now wish to define the notion of morphism between quadratic spaces; we use the most
natural definition.

Definition 2.3.13. Let (V,Q) and (V ′, Q′) be quadratic spaces over R. We call an R-linear map
σ : V → V ′ an isometry if for all x ∈ V we have Q′(σ(x)) = Q(x).

Example. Reflections: for an element x ∈M such that Q(x) ∈ R∗, define τx : M →M via:

τx(y) = y −B(y, x)Q(x)−1x.
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This is an isometry and in the vector space case can be seen as the reflection in the hyperplane
x⊥. Namely it fixes x⊥ and takes x to −x.

Eichler Elements: Let u ∈M be isotropic (Q(u) = 0) and let v ∈M be such that B(u, v) = 0.
Define:

Eu,v(y) = y +B(y, u)u−B(y, v)v −B(y, u)Q(v)u.

Eu,v leaves {u, v}⊥ fixed and has Eu,v(u) = u, Eu,v(v) = v − 2Q(v)v. Moreover, for v1, v2 ∈ u⊥
these elements satisfy Eu,v1 ◦ Eu,v2 = Eu,v1+v2 .

We now define the objects we actually wish to study, that is the orthogonal group for a
quadratic space.

Definition 2.3.14. Let (V,Q) be a quadratic space. The orthogonal group of V is:

OV := {σ ∈ Aut(V )| σ is an isometry}.

Definition 2.3.15. Suppose V is free and v1, . . . , vn is a basis for V , let S := (B(vi, vj))i,j then
the element det(S) ∈ R/(R∗)2 is independent of the choice of basis and is called the discriminant
d(V ). One can show that the space is non-degenerate if and only if d(V ) 6= 0.

Remark. When the characteristic is not 2 giving a symmetric matrix S and a basis for V is
equivalent to giving a quadratic form since any bilinear form is determined by its evaluation on a
basis.

Moreover, when we are working over a field the Gram Schmidt process allows for the con-
struction of an orthogonal basis for non-degenerate spaces. Doing so allows us to always view our
quadratic form as being given by a1v

2
1 + · · · + anv

2
n for some elements ai ∈ R. Over more general

rings it may not always be possible to fully diagonalize.
Choosing a basis for V also allows us to view the elements of the orthogonal group as being

contained in “GLn(R)” which allows us to make the following definition.

Definition 2.3.16. The special orthogonal group is the subgroup of the orthogonal group
consisting of elements of determinant 1, that is:

SOV := {σ ∈ OV | det(σ) = 1}.

Remark. One should remark that the above definition is independent of choice of basis and
embedding into GLn.
Example. Having a basis, and viewing the elements of V as column vectors we can express B as:

B(x, y) = txSy.

As such, the statement M ∈ OV amounts to saying tMSM = S. In the S = id case this is just
tMM = id, which gives us the usual notion of orthogonal matrices.

Theorem 2.3.17. Let R = k be a field of characteristic not 2, M a regular quadratic space (that
is, for all x ∈ M, {x}⊥ 6= M). Then OM is generated by reflections and SOM is the subgroup of
elements that are products of an even number of reflections.

Sketch of proof. The first step is to observe that if for x, y ∈ V we have Q(x) = Q(y) 6= 0 then
either τx+y(y) = x or τx(τx−y(y)) = x.

The next step is to observe that V must contain a non-isotropic vector x, and any orthogonal
map M carries it to another vector y with Q(x) = Q(y) 6= 0. Then composing the orthogonal map
with τ as appropriate from above, we get τ ◦M is an orthogonal map fixing x and thus stabilizing
x⊥. Since dimk(x

⊥) < dimk(x) we can apply induction and conclude the result.
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Classification of Quadratic Forms (over Q)

We now wish to define the invariants of quadratic forms that allows for their classification over
Q. Most of the material of this section can be found in J.P. Serre “A Course in Arithmetic”[Ser73].
First we introduce the Hilbert symbol.

The Hilbert Symbol

Definition 2.3.18. Let K be a (local) field then the Hilbert Symbol:

(−,−)K : K∗ ×K∗ → ±1

is defined via the rule:

(a, b)K = 1⇔ x2 − ay2 − bz2 = 0 has non-trivial solutions in K.

Although the definition essentially makes sense for any field K, some of the following results
require K to be a local field.

What the Hilbert symbol is computing in actuality is whether or not the quaternion algebra
of type (a, b) is split over K. It is in this sense telling you information about the class of the
quaternion algebra (a, b) in the Brauer group Br(K).

One can check that the Hilbert Symbol satisfies the following properties:
Proposition 2.3.19. [Ser73] For all a, b, c ∈ K∗ one has:

1. (a, b)K = (b, a)K;
2. (1, 1)K = (a, 1)K = (a, 1− a)K = (a, c2)K = 1;
3. (a, b)K(a, c)K = (a, bc)K.

The first two assertions are immediate, the last is a consequence of local class field theory.
Over the various completions of the rational numbers, the Hilbert symbol satisfies the following

closed form:
Proposition 2.3.20. [Ser73, 3.1.2] Let p be a prime, a, b ∈ Q with a = pαu, b = pβv where u, v
coprime to p.
if p is odd then:

(a, b)νp = (−1)αβ(p−1)/2

(
u

p

)β (
v

p

)α
if p = 2 then:

(a, b)νp = (−1)(u−1)(v−1)/4+α(v2−1)/8+β(u2−1)/8

if p =∞ then:
(a, b)νp = −1⇔ a, b < 0.

Moreover, for almost all valuations ν we have (a, b)ν = 1 and
∏
ν

(a, b)ν = 1.

In the above
(
u
p

)
denotes the Legendre symbol.

There is also the following important result about the existence of rational numbers with
prescribed Hilbert symbols.

Theorem 2.3.21. [Ser73, 3.2.2] Let (ai)i∈I be a finite collection of elements of Q∗ and let
(ei,ν)i∈I,ν∈V ∈ {±1}. In order that there exist x ∈ Q∗ such that (ai, x)ν = ei,ν for all i ∈ I
and ν ∈ V it is necessary and sufficient that:

1. for almost all ν and i we have ei,ν = 1.
2. for all i ∈ I we have

∏
ν

ei,ν = 1.

17



3. for all ν ∈ V there exists xν ∈ Q∗ν such that (ai, xν)ν = ei,ν for each i ∈ I.

Invariants of Quadratic Forms (over Q)

We now proceed to define the invariants of a quadratic form:

Definition 2.3.22. Let q(x1, . . . , xn) =
∑n

i=1 aix
2
i ai ∈ Q then the invariants are:

1. The discriminant dq :=
∏n

i=1 ai ∈ Q∗/Q∗2.
2. The Hasse-Witt invariants eνp for each valuation νp of Q, where eνp :=

∏
i<j

(ai, aj)νp .

3. The signature (r, s), where r := #{ai < 0} and s := #{ai > 0}.
Remark. One should note that we can also view these as cohomological invariants (see 3.1 for
the definition of group cohomology) via the identifications:

dq ∈ Q∗/Q∗2 = H1(Gal(Q/Q),Z/2Z)

(eνp)νp ∈ H2(Gal(Q/Q),Z/2Z) = Br(Q)[2].

The first identification comes via the exact sequences:

1→ {±1} → Q∗ x2−→ Q∗ → 1

0→ {±1} → Q∗ x2−→ Q∗ → H1(Gal(Q/Q),Z/2Z)→ H1(Gal(Q/Q),Q∗) = 0.

Which gives:
H1(Gal(Q/Q),Z/2Z) ' Q∗/Q∗2.

The second identification comes out of the fact that the Brauer Group of a field K classifies
finite dimensional central simple division algebras over K and moreover the 2-torsion classifies the
quaternion algebras over that field. The primary invariant of a quaternion algebra over Q is how
it splits at the various places. In particular the map:

H2(Gal(Q/Q),Z/2Z)→
∏
p

H2(Gal(Qp/Qp),Z/2Z)

allows us to detect if a quaternion algebra is split at the various primes. It is in this way that one
associates a collection of values (eνp = ±1) to a quaternion algebra. The element of the Brauer
group associated to a quadratic form is the class of the algebra

⊗
i<j(ai, aj).

One can also remark that under the general method of classifying forms which we shall describe
(see 3.1) one has that quadratic spaces are classified by:

H1(Gal(Q/Q),Aut(V,Q)) = H1(Gal(Q/Q),OV ).

One can use spectral sequences and other methods to construct maps:

H1(Gal(Q/Q),OV ) ↪→ ⊕
i
H i(Gal(Q/Q),Z/2Z)

which allow one to realize the above construction. For a more detailed account see “Cohomological
Invariants in Galois Cohomology” [GMS03]. One can then interpret the following theorems as
saying that this map remains injective even when we project onto the i = 1, 2 components. The
result is true over Q, more generally a similar statement holds for number fields.

We cite here some of the key theorems concerning the classification of quadratic forms over
Q and their invariants.
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Theorem 2.3.23. [Ser73] Let (V1, q1), (V2, q2) be quadratic spaces over Q, then they are isomorphic
(as quadratic spaces) if and only if q1 and q2 have all the same invariants.

Theorem 2.3.24 (Existence of Quadratic Forms). [Ser73, p44] Let d ∈ Q∗/Q∗2, eνp ∈ {±1}νp for
each νp and (r, s) ∈ Z≥0 × Z≥0. Let n = r + s. In order that there exist a quadratic form q with
this prescribed set of invariants. It is necessary and sufficient that:

1. eνp = 1 for almost all νp and
∏
ν

eν = 1.

2. (a) if n = 1 then eνp = 1 for all νp;
(b) if n = 2 then either the image of d in Q∗νp/Q

∗
νp

2 6= −1 or eνp = 1;
(c) if n ≥ 3 there are no additional conditions.

3. dν∞ = (−1)s and eν∞ = (−1)s(s−1)/2.
Proposition 2.3.25. Let q be a quadratic form as above, λ ∈ Q∗, then the quadratic form qλ := λq
has invariants:

1. dλ = λnd;
2. eνpλ = eνp(λ, λ)

n(n−1)/2
νp (λ, dn−1)νp;

3. (rλ, sλ) = (r, s) if λ > 0; (s, r) otherwise.

Proof. The only difficult check is that of the Witt invariants, it follows from the computation:∏
i<j

(λai, λaj)νp =
∏
i<j

(λ, λ)νp(λ, aj)νp(ai, λ)νp(ai, aj)νp

=(λ, λ)n(n−1)/2
νp

∏
i<j

(λ, aiaj)νp
∏
i<j

(ai, aj)νp

=(λ, λ)n(n−1)/2
νp (λ,

∏
i<j

aiaj)νp
∏
i<j

(ai, aj)νp

=(λ, λ)n(n−1)/2
νp (λ, dn−1)νp

∏
i<j

(ai, aj)νp

Proposition 2.3.26. Let q1, q2 be quadratic forms over Q. Let the quadratic forms qi have invari-
ants di, eνpi, (ri, si), ni. Then the quadratic form q := q1 ⊕ q2 has invariants:

1. dq = d1d2;
2. eνpq = (d1, d2)νpeνp1eνp2;
3. (rq, sq) = (r1, s1) + (r2, s2).

Proof. The only non-immediate check is that of the Witt invariants, it follows from the computa-
tion:

eνpq =
∏
i<j

(ai, aj)νp
∏
i<j

(bi, bj)νp
∏
i,j

(ai, bj)νp

=eνp1eνp2

∏
i,j

(ai, bj)νp

=eνp1eνp2

∏
i

(ai, d2)νp

=eνp1eνp2(d1, d2)νp
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Proposition 2.3.27. Let q1, q2 be quadratic forms over Q with invariants as above, λ ∈ Q∗, then
the quadratic form q := (λq1)⊕ q2 has the following invariants:

1. dq = λn1d1d2;

2. eνpq = eνp1eνp2(λ, λ)
n1(n1−1)/2
νp (λn1d1, d2)νp(λ, d

n1−1
1 )νp;

3. (rq, sq) = (r1, s1) + (r2, s2) if λ > 0, (s1, r1) + (r2, s2) otherwise.

Proof. This follows immediately from previous two propositions.

The Clifford Algebra of a Quadratic Space

As before, let R be a commutative ring with unity, and let (V,Q) be a finitely generated
quadratic space over R. For an R algebra A we will denote Z(A) its center.

Definition 2.3.28. Let TV be the tensor algebra of V , that is TV :=
∞⊕
m=0

V ⊗m. Let IV be the

two-sided ideal in TV generated by the elements v ⊗ v − Q(v) for v ∈ V . Then the Clifford
algebra for V is

CV := TV /IV .

Remark. One should notice that V has a natural embedding into CV via v 7→ v. There may
however be in some special cases more than one way to embed V into CV . However, unless
explicitly mentioned we always take V ⊂ CV in the natural way.

One should also observe that the relation v ⊗ v − Q(v) implies v1 ⊗ v2 + v2 ⊗ v1 = B(v1, v2)
for vi ∈ V . In particular, if R is a field (or a nice enough ring), and if we choose an orthogonal
basis {v1, . . . , vn} for V , then we have the basis for CV given by:

{vi1 ⊗ · · · ⊗ vij | 0 < i1 < · · · < ij ≤ n, 1 ≤ j ≤ n}.

In particular CV has dimension 2n over R.
The Clifford algebra satisfies the following universal property:

Proposition 2.3.29. Let A be any R-algebra and f : V → A an R-linear map with f(v)2 = Q(v)1A
for all v ∈ V . Then there exists unique R-algebra homomorphism g : CV → A such that f(v) = g(v)
for all v ∈ V .

Proof. (Sketch) The proof of this fact is to appeal to the universal property of tensor products and
to note that the map descends to the quotient by IV because of the condition f(v)2 = Q(v)1A.

Example. If we let Cp,q be the Clifford algebra for Rp,q we can compute that:
C0,0 ' R C1,0 ' R⊕ R
C0,1 ' C C2,0 ' M2(R)
C1,1 ' M2(R) C0,2 ' H

(where H is the hamiltonian quaternions). To demonstrate the computation observe that C0,2 is
an algebra over R in two non-commuting indeterminants x, y with the relations x2 = y2 = −1,
xy = −yx. This gives the usual presentation of the quaternions.

We next observe that because the relation defining IV involves only tensors of even length,
there is a natural Z/2Z grading on CV with CV = C0

V ⊕ C1
V where C0

V ,C
1
V are the even and odd

length tensors respectively. Note that C0
V is a subalgebra, called the even Clifford algebra, but C1

V

is just a vector subspace.
Since multiplication by −1 on V is an isometry we can use it to induce an automorphism J

of the Clifford algebra called the canonical automorphism. It is easy to see that (if 2 ∈ R∗)
C0
V = {x ∈ CV |J(x) = x}.
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Next we define the canonical involution x 7→ tx on CV . It is defined by linearly extending
t(x1 ⊗ · · · ⊗ xn) = xn ⊗ · · · ⊗ x1. We can use this to define the Clifford norm:

N(x) = txx,

which extends Q from V to CV .
We now fully restrict our attention to the case R = k a field of characteristic not 2. Let (V,Q)

be a non-degenerate quadratic space and let v1, . . . , vn be an orthogonal basis of V . Set:

δ = v1 ⊗ . . .⊗ vn ∈ CV .

It follows from the fact that one can move from any one orthogonal basis to any other by steps
which modify only two of the basis elements, and by inspecting what such changes can do, that
the choice of δ is canoncial up to scaling by k∗.

Theorem 2.3.30. The center of CV is given by: Z(CV ) = k if n is even, k + δk if n is odd. The
center of C0

V is given by:

Z(C0
V ) =

{
k + δk n even

k n odd.

Sketch of Proof. The Clifford algebra is generated over k by the images of x1⊗ · · · ⊗ xl. It is thus
easy to check that the centers contain the given elements. To check that those elements are the
entire center follows from the following observations:

1. If a basis vector vi is to commute with a linear combination of the basis tensors described
above it will need to commute with each individual basis tensor involved. (This is because
failure to commute with such a basis tensor is only off by multiplication by −1).

2. A basis vector vi commutes with a tensor of the form vl1 ⊗ · · · ⊗ vlj if and only if it does
not appear it in and the tensor is of even length or it does appear and the tensor is of odd
length. (this follows from inspecting when you do/don’t have the −1 error).

Thus, if an elementary tensor is to commute with every basis vector, it must either contain none
and be of odd length or all and be of even length. This completes the argument.

Example. Let V be a non-degenerate vector space over k of dimension n and v1, . . . , vn an or-
thogonal basis for V .

1. if n = 1 then CV ' k[X]/(X2 −Q(v1)/2);
2. if n = 2 then CV is a quaternion algebra of type (Q(v1), Q(v2)) and moreover we have that

C0
V ' k[X]/(X2 +Q(v1)Q(v2));

3. if n = 3 then C0
V is a quaternion algebra of type (−Q(v1)Q(v2),−Q(v2)Q(v3));

4. if n = 4 then C0
V is a quaternion algebra of type (−Q(v1)Q(v2),−Q(v2)Q(v3)) over the ring

Z(C0
V ) = k + δk.

Moreover in all the above cases the conjugation and norm on C0
V correspond to the main

involution and Clifford norm respectively. To see how one shows this, observe that for the n = 4
case, every even length tensor can be arrived at by taking products of v1v2, v2v3 and δ, Thus
v1v2, v2v3 generate C0

V over Z(C0
V ). It remains then only to check that the relations give the

quaternion algebra structure. Moreover, one can see that δ2 = Q(v1)Q(v2)Q(v3)Q(v4).

The Spin Group

The goal of this section is to define the spin group, which will be the covering space of the
special orthogonal group.
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We would like to make two remarks. Firstly, given any semi-simple (connected) algebraic
group G, there are two natural other groups to consider. These are the adjoint group, G/Z(G)
where Z(G) is the center of G, and the universal covering space of G. In general (for semi-simple
groups) the former always has finite index in the latter, and many of the properties of one are
shared by the others. In particular, they share Lie algebras. Both groups are often easier to
study than the original. The spin group shall arise as the universal covering space of the special
orthogonal group.

Secondly, the term spin group arises from physics. The notion is that physical laws should be
independent of choices made by observers and so any coordinate system an observer uses to model
the universe should be equally valid. As a consequence of this one concludes that the laws ought
to be preserved under isometric transformations. It turned out that under appropriate modeling
of certain subatomic particles there was an extra degree of freedom for the configuration space
that did not seem to correspond to vector valued locations or directions but was rather a binary
property of individual particles. This property was labeled as the “spin” of the particle. Once
one applies mathematical language to this model, this extra spin parameter corresponds to what
is additionally captured by the covering space of an orthogonal group. For examples of the spin
group in physics see S. Weinberg “Quantum Theory of Fields” [Wei99].

The first step towards the construction of this covering is to define the Clifford group.

Definition 2.3.31. The Clifford group CGV is defined to be:

CGV := {x ∈ CV |x invertible and xV J(x)−1 = V }.

It is easy to check that this is a group.

Notice that for each x ∈ CGV the function:

αx(v) = xvJ(x)−1

is an automorphism of V . We thus have a representation:

α : CGV → AutR(V ),

called the vector representation. We observe that t : x 7→ tx takes CGV to itself and thus so does
the Clifford norm.
Example. Starting with a vector space V over a field k of characteristic not 2, and given an
orthogonal basis v1, . . . , vn then every elementary tensor vi1⊗· · ·⊗vij is invertible and moreover for
each k we have (vi1⊗· · ·⊗vij)vkJ(vi1⊗· · ·⊗vij)−1 = ±Q(vi1) · · ·Q(vij)vk and so vi1⊗· · ·⊗vij ∈ CGV .
Lemma 2.3.32. If R = k a field of characteristic not 2, then Ker(α) = k∗ and the Clifford norm
gives a homomorphism N : CGV → k∗.

Proof. It is easy to see that because the J map acts trivially on C0
V we have k∗ ⊂ Ker(α).

Conversely let x ∈ Ker(α). we can then write x = x0 + x1 with x0 ∈ C0
V and x1 ∈ C1

V . Using
that for all v ∈ V we have xvJ(x)−1 = v we get (x0 + x1)v(x0 − x1)−1 = v and so rearranging
this we have x0v + x1v = vx0 − vx1. Looking at the C0

V and C1
V components and noting that V

generates CV as an algebra we can conclude:

x0 ∈ Z(CV ) ∩ C0
V = k∗.

The implication x1v = vx1 ⇒ x1 = 0 is proven similarly to computing the center of CV . This
completes the first assertion that Ker(α) = k∗.

22



Now, for v ∈ V we have αx(v) ∈ V and so αx(v) = −tJ(αx(v)); it follows then that we have
xvJ(x)−1 = tx−1vJ(tx) and so:

N(x)vJ(N(x))−1 = v.

In particular N(x) ∈ Ker(α) = k∗.

Lemma 2.3.33. For each x ∈ CGV , αx is an isometry.

Proof. For v ∈ V we have:

Q(ax(v)) = N(ax(v)) = (tJ(x−1))(tv)(tx)xvJ(x−1) = Q(v).

In particular this gives us a homomorphism α : CGV → OV with kernel k∗. Moreover, if
x ∈ CGV ∩ V , then Q(x) ∈ k∗ and thus we have:

αx(v) = xv(−x)Q(x)−1 = (vx−B(x, v))Q(x)−1x = v −B(x, v)Q(x)−1x

corresponds to the reflection in the plane x⊥.

Definition 2.3.34. We define the groups GSpinV and SpinV as follows:
GSpinV := CGV ∩C0

V SpinV := {x ∈ GSpinV |N(x) = 1}.
In the case where reflections generate the orthogonal group (which is the case when V is a

regular quadratic space) we get the exact sequence:

1→ k∗ → CGV
α−→ OV → 1

and since SOV is the subgroup of elements which are products of an even numbers of reflections
we also have:

1→ k∗ → GSpinV
α−→ SOV → 1.

Using that N : CGV → k∗, we can construct an induced homomorphism

θ : OV → k∗/(k∗)2,

called the spinor norm. It is defined by taking a section of α and computing the norm in CGV .
One must check that different choices of sections give the same result up to elements of (k∗)2.
Indeed, since Ker(α) = k∗, a different section of α will give a k-multiple of the original choice,
since the norm map acts on k by squaring, this is the desired result.

We observe next that for x ∈ V and τx the associated reflection we get θ(τx) = Q(x). To see
this recall that τx = αx and thus can be lifted to x and N(x) = Q(x).

We then obtain the exact sequence:

1→ µ2 → SpinV
α−→ SOV

θ−→ k∗/(k∗)2.

Remark. We remark that the sequence:

1→ µ2 → SpinV → SOV → 1
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is exact as a sequence of algebraic groups over k in the sense that SOV ' SpinV /µ2. This statement
implies that for any k algebra L the sequence on points:

1→ µ2(L)→ SpinV (L)→ SOV (L)

is exact. However, the mapping SpinV (L)→ SOV (L) is not in general surjective. However, given
any L there exists a finite extension L′ of L such that the image of SpinV (L′) contains SOV (L).
Consequently we have that:

1→ µ2(k)→ SpinV (k)→ SOV (k)→ 1

is exact. Taking Gal(L/L) invariants we find:

1→ µ2(L)→ SpinV (L)→ SOV (L)→ H1(Gal(L/L), µ2)

is exact. This tells us that the obstruction to exactness lies in H1(Gal(L/L), µ2) ' L∗/L∗2.

The following example shall be of some use to us later:
Example. Consider the quadratic space R2,n and consider a positive definite plane V ⊂ R2,n and
its orthogonal complement V ⊥ which is a negative definite space. Let V have orthogonal basis
x1, x2 and V ⊥ have orthogonal basis x3, . . . , xn+2. Consider the orthogonal maps Mi which sends
xi 7→ −xi and xj 7→ xj for i 6= j. Then we note that det(Mi) = −1 for each i.

However, we have that since Mi is the reflection τxi we get θ(Mi) = Q(xi) = 1 for i = 1, 2 and
θ(Mi) = Q(xi) = −1 otherwise.

In particular, det(Mi) = θ(Mi) whenever the reflection preserves the orientation of a positive
definite plane. Since reflections generate the orthogonal group, this statement is in fact true for
all orthogonal maps.

For the purpose of doing computations in low dimensions, the following lemma is useful.
Lemma 2.3.35. If dim(V ) ≤ 4 then GSpinV = {x ∈ C0

V |N(x) ∈ k∗}, SpinV := {C0
V |N(x) = 1}.

Proof. The first observation is that for dim(V ) ≤ 4 we have:

V = {g ∈ C1
V |tg = g}.

This follows by checking that a tensor of length 3 of orthogonal elements satisfies xt = −x.
The next observations is that if N(x) ∈ k∗ then xtN(x)−1 is the inverse of x. Consequently,

the equation N(x)vN(x)−1 = v implies that xvx−1 = (xvx−1)t which implies that x satisfies the
conditions to be in C0

V . This completes the result.

Example. From the examples of the previous section we get that the groups Spinn for n = 1, . . . , 4
correspond to the elements of norm 1 from particular algebras. Specifically, in the cases n = 3, 4
we had the norm 1 elements of a particular quaternion algebra.

2.3.3 The Symmetric Space of an Orthogonal Group

Let (V,Q) be a quadratic space over Q. The real quadratic space V (R) := V ⊗R is isomorphic
to Rp,q for some choice of p, q.

If K ⊂ OV (R) is a maximal compact subgroup, then it will turn out that OV (R)/K is a
symmetric space (every point has a symmetry for which it is the unique local fixed point). It turns
out that these only have complex structures (and thus are hermitian) if one of p or q is 2. Since
interchanging p, q does not change the orthogonal group (it amounts to replacing Q by −Q) we
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suppose that p = 2. We wish to construct these spaces along with their complex structure for this
case.
Remark. For the next while, we will be discussing the structure of R points, and as such the only
invariants of significance are these values p, q. However, when we mention rational boundary points
the remaining details about the structure over Q become important. So although topologically,
the spaces we define in what follows may be isomorphic, the rational structures on them may not
be so simple.

The Grassmannian - Maximal Compacts

Let (V,Q) be a quadratic space over Q of type (2, n). We consider the Grassmannian of
2-dimensional subspaces of V (R) on which the quadratic form Q restricts to one which is positive
definite, that is:

Gr(V ) := {v ⊆ V (R)| dim(v) = 2, Q|v > 0}.

Theorem 2.3.36. (Witt’s Extension Theorem) [Ser73, IV.1.5] If (V,Q) and (V ′, Q′) are non-
degenerate isometric quadratic spaces, then every injective isometry s : U ↪→ V ′ from a subspace
U ⊂ V extends to an isometry s : V → V ′.

Proof. For simplicity of notation we may assume that V = V ′ since they are isomorphic.
We first handle the case where U is degenerate by extending s to some U ′ containing U which

is non-degenerate. Let x ∈ U such that B(x, u) = 0 for all u ∈ U . Then since V is non-degenerate
there exists y ∈ V such that B(x, y) 6= 0, we can replace y by y

B(x,y)
so that B(x, y) = 1 and we

can then replace y by y − 1
2
B(y, y)x so that B(y, y) = 0. We now consider the linear operator on

s(U) defined by l(u′) = B(s−1(u′), y). By non-degeneracy of V this linear operator takes the form
B(u′, y′) for some y′ ∈ V . As with y we may arrange so that B(y′, y′) = 0. We may now extend
the original map to U ⊕ span(y) by taking y 7→ y′. The conditions on y′ guarantee this map is an
isometry. We can perform this process repeatedly so long as U is degenerate.

We may now assume U is non-degenerate. We proceed by induction on the dimension of U .
• dim(U) = 1

Fix x ∈ U and let y = s(x) then one can check that one of x + y, x − y is non-isotropic
call this z. Let H = z⊥. Let s′ be the map which sends z 7→ −z and fixes H, that is the
reflection in z⊥. Then s′ extends s to V .
• dim(U) > 1

We can non-trivially orthogonally decompose U = U1⊕U2, then by induction s|U1 extends to
a map σ on V . take r = σ−1 ◦ s then r acts as the identity on U1 and so r : U2 → U2 = U⊥1 .
By induction r|U2 extends to a map r′ : U⊥1 → U⊥1 . We extend r′ to V by having it act as
the identity on U1. The map s′ = σ ◦ r′ then extends s to V .

Induction then completes the result.

By Witt’s extension theorem, the group OV (R) acts transitively on Gr(V ).
Claim. Fix v0 ∈ Gr(V ) and let Kv0 be the stabilizer of v0 in OV (R). Then Kv0(R) is a maximal
compact subgroup of OV (R).

Proof. First observe that since Kv0 preserves the plane v0 it also preserves its orthogonal comple-
ment, consequently by correct choice of basis we can write Kv0 ' O2×On over R.

Lemma 2.3.37. Let (V ′, q′) be a quadratic space, then Oq′(R) is compact if and only if q′ is
definite.

Proof. The forward direction is clear. Indeed, if q′ is indefinite then it must contain as a subgroup
the image of SO(1, 1) = {( a bb a ) | a2 − b2 = 1} which is non-compact as it is unbounded. This is
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because once we diagonalize the form over R we find there is a two dimensional subspace where
the quadratic form must take the shape q′(x1v1 +x2v2) = x2

1−x2
2. We can consider the subgroup of

Oq′ that acts on this subspace as SO(1, 1) and stabilizes the orthogonal complement, this subgroup
is not compact.

For the reverse direction, observe that for a matrix M ∈ Oq′(R), expressed via an orthogonal
basis v1, . . . , vn, we have that the columns ci of M viewed as vectors in Rn satisfy ‖ci‖ = ±Q(vi)
in particular the norms of the columns are bounded in the usual Euclidean norm. Consequently
Oq′ is bounded in the real topology in Rn2

. Since Oq′(R) is a closed subset of Mn(R) it is thus
compact.

It follows from the claim that Kv0(R) is compact as it is the product of two compact sets.
To see that it is maximal, we first remark that a maximal R compact in GLn+2(R) is given by

the usual orthogonal group On+2(R). To see this remark that any strictly larger subgroup contains
an element which does not preserve the metric on Rn+2, thus we can construct an element g and
find an x ∈ Rn+2 such that g(x) = ax with a > 1. Consequently gn is unbounded. We remark
further that any two maximal compacts in GLn+2(R) are conjugate (this is a consequence of the
Iwasawa decomposition) and that this corresponds to a different choice of inner product on Rn.

From this we conclude that the compact group O2(R) × On(R) must be contained in some
maximal compact subgroup of GLn+2(R). Indeed O2(R)×On(R) = On+2(R) ∩OV (R). It follows
from the proof of Lemma 4.1.1 that O2(R) × On(R) preserves no other inner products except for
independent re-scalings of the inner product on the 2 and n dimensional subspaces. Any of these
re-scalings would give the same intersection. This completes the result.

In addition to being maximal compact, having chosen a basis so that Kv0 ' O2×On, if
we denote the action of conjugation by diag(−1,−1, 1, . . . , 1) on OV as σ then we observe that
Stabσ(OV ) = Kv0 . We can describe the corresponding action of σ on Gr(V ) ' OV /Kv0 as
follows. Suppose the plane v0 has basis X, Y and that Z1, Z2 ∈ {X, Y }⊥, then we have that
σ ◦ span{X +Z1, Y +Z2} = span{X −Z1, Y −Z2}. Under a suitable metric on Gr(V ) such a map
would be isometric and so by [Hel01] Gr(V ) ' OV /Kv0 will realize a symmetric space.
Remark. Though this is a simple and useful realization of the space, it is not clear from this
construction what the complex structure should be.

The Projective Model - Complex Structure

We consider the complexification V (C) of the space V and the projectivization P (V (C)). We
then consider the zero quadric:

N := {[Z] ∈ P (V (C))|B(Z,Z) = 0}.

It is a closed algebraic subvariety of the projective space. We now define:

κ := {[Z] ∈ P (V (C))|B(Z,Z) = 0, B(Z,Z) > 0};

κ is a complex manifold of dimension n consisting of 2 connected components.
Remark. One must check that these spaces are in fact well defined, that is that the conditions
do not depend on a representative Z. Indeed B(cZ, cZ) = c2B(Z,Z) and B(cZ, cZ) = ccB(Z,Z).

The assertions about the dimension and connected components is easily seen once we consider
the tube domain model later. However one can see that projectivization removes one dimension as
does the B(Z,Z) = 0 condition. Moreover, the B(Z,Z) > 0 condition disconnects the space into
two components separating Z from Z via removing the real points which all satisfy B(Z,Z) = 0.
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Remark. The orthogonal group OV (R) acts transitively on κ.
We can reformulate the condition that a given Z ∈ V (C) will have [Z] ∈ κ by observing that:

B(X+iY,X+iY ) = B(X,X)−B(Y, Y )+2iB(X, Y ) and B(X+iY,X−iY ) = B(X,X)+B(Y, Y ).
And so the conditions B(X + iY,X + iY ) = 0 and B(X + iY,X − iY ) > 0 give us that:

[Z] ∈ κ⇔ B(X,X) = B(Y, Y ) > 0 and B(X, Y ) = 0.

It follows from this then that OV (R) will in fact act on κ. To show that it acts transitively observe
that we can get a transformation M in OV (R) that maps X 7→ X ′ and maps Y 7→ Y ′ by appealing
to Witt’s extension theorem. This transformation will then map [Z] to [Z ′].

Consider the subgroup O+
V (R) of elements whose spinor norm equals the determinant. As was

discussed in the example following the definition of the spinor norm, this consists of those elements
which preserve the orientation of any, and hence all, positive definite planes. Then O+

V (R) preserves
the 2 components of κ whereas OV \O+

V (R) interchanges them. To see this, note that any element
of OV (R) which takes [X + iY ] to [X − iY ] will have spinor norm not equal to its determinant.
This is because it changes the orientation on the positive definite plane generated by X, Y .

Pick one component of κ denote it κ+. For Z ∈ V (C) we will write Z = X + iY where
X, Y ∈ V (R).
Lemma 2.3.38. The assignment [Z] 7→ v(Z) := RX + RY defines a real analytic isomorphism
κ+ → Gr(V ).

Proof. The first step is to check that this map is well defined. To see that the assignment gives
us a positive definite plane we appeal to the arguments made in the preceeding remark about the
conditions for an element to be in κ.

To see that the map does not depend on the choice of representative notice that multiplying
a representative [Z] ∈ κ by C∗ just rotates and rescales the resulting plane. Indeed, if we rescale
to chose a different representative we find that (a+ ib)(X + iY ) = (aX − bY ) + i(aY + bX) so the
result is that we have just changed the basis for the plane.

The next step is to check that the map is surjective. Indeed, the condition for inclusion of
elements in κ in the remark was an if and only if condition. Additionally we note that we can pick
either [X + iY ] or [Y − iX] at least one of which shall be is in κ+.

Finally we must check analyticity. First remark that since Gr(V ) does not yet have a complex
structure we must only show real analycity and then use this to transport a complex structure
under which we will then have a complex analytic map.

The mappings Z 7→ X and Z 7→ Y are real analytic as maps from V (C) to V (R). From this
it follows that outside the region where aX = bY the assignment of the plane generated by X, Y
in Gr(V ) is then a real analytic map from V (C) into Gr(V ). The mapping κ → Gr(V ) we have
described can be defined by giving a covering of P (V (C)) by affine opens Ui = {[z1, . . . , zn]|zi 6= 0}
and taking the analytic section [z1, . . . , zn] 7→ (z1/zi, · · · , zn/zi) into V (C) and composing with
this map.

If we wish to show that the inverse map is also real analytic, we must show that our choice
of orientation, that was the choice of [X + iY ] or [Y − iX] to land in κ+ can be done analytically.
Indeed, by observing that O+

V (R) acts transitively on Gr(V ) and real analytically on V it can be
used to continuously analytically assign an orientation to each plane, that is, by fixing one plane P
and an ordered basis X0, Y0 we can for M ∈ O+

V (R) assign the orientation MX0,MY0 to MP .
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The “Tube Domain” Model

Pick e1 a non-zero isotropic vector in V , pick e2 such that B(e1, e2) = 1 (note that ei may
not be defined over Q when n ≤ 4 though for computations it is useful to when possible pick ones
that are). Define W := V ∩ e⊥2 ∩ e⊥1 , we then may express elements of V (C) as (z, a, b), where
z ∈ W ,a, b ∈ C via the decomposition:

V = W ⊕ Ce2 ⊕ Ce1.

Note that W is a quadratic space of type (1, n− 1) (“Lorentzian”).

Definition 2.3.39. We define the tube domain H := {z ∈ W (C)|Q(=(z)) > 0}. where =(z) is
the imaginary part of the complex vector z.

Lemma 2.3.40. The map ψ : H → κ given by:

ψ(z) = [(z, 1,−Q(z)−Q(e2))]

is bi-holomorphic.

Proof. Observing that Q(ae1 + be2) = 1
2
(B(ae1, ae1) + 2B(ae1, be2) + B(be2, be2)) = ab + b2Q(e2)

allows us to check that this is well defined. Indeed we have that:

Q(z + e2 + (−Q(z)−Q(e2))e1) = Q(z) +Q(e2) +B(e2, e1)(−Q(z)−Q(e2)) = 0.

Additionally:

B(z + e2 + (−Q(z)−Q(e2))e1, z + e2 + (−Q(z)−Q(e2))e1)

= B(z + e2 + (−Q(z)−Q(e2))e1, z + e2 + (−Q(z)−Q(e2))e1)

= B(z, z) + 2Q(e2) + (−Q(z)−Q(e2)) + (−Q(z)−Q(e2))

= B(z, z)− (1/2)B(z, z)− (1/2)B(z, z)

= (1/2)(B(z, z − z) +B(z − z, z))

= (1/2)(B(2=(z), z)−B(2=(z), z))

= 2B(=(z),=(z))

= Q(=(z))

> 0.

Given an element [Z] ∈ κ with Z = X + iY the condition that X, Y span a positive definite
plane tells us that under the decomposition V (C) = W (C)⊕Ce2⊕Ce1 we have Z = (z, a, b) with
b 6= 0. We can see this fact by observing first that W (Q) contains no positive definite plane, and
so under the decomposition not both a, b are zero. However, since e1 is isotropic it is an easy check
that W (Q) ⊕ Qe1 also contains no positive definite planes and so we conclude a 6= 0. We can
thus rescale and write [Z] = [(z, 1, b)]. Reversing the above calculations allows us to conclude that
b = −Q(z)−Q(e2) and Q(=(z)) > 0.

The bi-holomorphicity of the map follows from the fact that in one direction the map is a
polynomial mapping z 7→ (z, 1, Q(z)−Q(e2)). In the reverse direction we may cover P (V (C)) by
open affines. one of which, U , is the one corresponding to the requirement that the a component
of [(z, a, b)] has a 6= 0. The complex structure on such an affine can be defined by the mapping
U → Cn−1 given by [(z, a, b)] 7→ (z/a, b/a) this mapping is then, by definition holomorphic, and
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consequently so to is the projection onto z/a. For this appropriate choice of affine covering, κ ⊂ U
and consequently this ‘projection’ is holomorphic on κ.

H, like κ, has 2 components. This follows from the fact that W (R) is a space of type (1, n−1)
and by inspecting the defining conditions. That is Q has the form Q(x1, . . . , xn) = a1x

2
1 − a2x

2
2 −

· · · − anx2
n with ai > 0 and the condition is that Q(=(Z)) > 0 writing =(Z) = (x1, . . . , xn) we see

that we have 2 components corresponding to the cases x1 > 0 and x1 < 0. Under the map one of
these thus corresponds to κ+ we shall label that one H+.

It is this H+ that is the analog of the usual upper half plane, we have an action of O+
V (R)

acting on it through its action on κ. This action as before is transitive.
The advantage to viewing the symmetric space under this interpretation is that it corresponds

far more directly to some of the more classically constructed symmetric spaces. This shall be made
more explicit once we construct the correspondence between the classical SL2 case and the (2,1)
case as well as the correspondences of the Hilbert modular surfaces for real quadratic fields to
orthogonal groups of signature (2,2).

Discrete Subgroups - Lattices

Let V be a non-degenerate quadratic space over Q of type (2, n).

Definition 2.3.41. A lattice in V is a Z-module L such that V = L⊗Z Q. The lattice L is said
to be integral if B(x, y) ∈ Z ∀x, y ∈ L. It is moreover called even if Q(x) ∈ Z ∀x ∈ L.

We define the dual lattice to be L∨ := {x ∈ V |B(x, y) ∈ Z ∀y ∈ L}. Note that L is integral
if and only if L ⊂ L∨ in which case L∨/L is a finite abelian called the discriminant group. A
lattice is said to be unimodular if |L∨/L| = | det(S)| = 1 where S is the matrix for Q coming
from a lattice basis for L.

The following along with more thorough descriptions and proofs, can be found in Brunier and
Frietag “Local Borcherds Products” [BF01].

For the remainder L is an even lattice. Then OL ⊂ OV is a discrete subgroup. Let Γ ⊂ OL

be the subgroup of finite index corresponding to elements which act trivially on L∨/L then Γ
acts properly discontinuously on Gr(V ) in the sense that every element x of the space has a
neighborhood U such that for all g ∈ Γ we have g(U) ∩ U = {x}.

We then consider the space: Y (Γ) := Γ \H+, it is a normal complex space and is compact if
and only if V is anisotropic (recall that this means that Q does not take on the value 0 on V (Q)).
If it is not compact, it can be compactified by adding rational boundary components. In the κ+

model the boundary components are precisely the non-trivial isotropic subspaces of V (R). The
rational boundary components are those which are defined over Q.

If an isotropic boundary component is a line in V (R) then we call it a special boundary point.
If an isotropic boundary component is a plane in V (R) then we shall call it a generic boundary
component. We note that by the choice of signature (2, n) all isotropic subspaces have dimension
at most 2.

We then define (κ+)∗ to be κ+ ∪ {rational boundary components}.
We have that OV (Q)∩O+

V (R) acts on (κ+)∗ and by the theory of Baily-Borel, X(Γ) := (κ+)∗/Γ
together with Baily-Borel topology is a compact hausdorff space which can be given a complex
structure. Moreover, using modular forms one can construct an ample line bundle, hence it is
projective algebraic.

2.3.4 Modular Forms for O(2,n)

Let κ+ = {Z ∈ V (C)|[Z] ∈ κ+} be the cone over κ+.
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Definition 2.3.42. Let k ∈ Z, χ be a character of Γ. A meromorphic function on κ+ is a modular
form of weight k and character χ for the group Γ if:

1. F is homogeneous of degree −k, i.e. F (cZ) = c−kF (Z) for c ∈ C− {0}.
2. F is invariant under Γ, i.e. F (gZ) = χ(g)F (Z) for any g ∈ Γ.
3. F is meromorphic on the boundary.

If F is holomorphic on κ+ and on the boundary, we call it a holomorphic modular form.

Remark. The Koecher principle (see for example Freitag “Hilbert Modular Forms” [Fre90]), which
says that if the codimension of the cusps is sufficiently large then analyticity at the cusps is
automatic, implies condition (3) is automatic if the Witt rank of V (the dimension of maximal
isotropic subspace) is less than n, where the dimension of V was n + 2. Note that for type (2, n)
the Witt rank is always at most 2, and will often be less whenever n ≤ 2.

One should find this definition a bit troubling in that our function F isn’t defined as being a
function on κ+ which is largely counter to the usual situation one expects. However, we do have
that H+ ' κ+ sits quite naturally inside κ+ in that H+ ↪→ V (C) via [Z] 7→ (z, 1,−Q(z)−Q(e2)).
It is when we restrict F to H+ in this way that we can get a function on H+. We shall denote the
function on H constructed in this way as f . Moreover, it is under this interpretation that a factor
of automorphy will appear. That is, there is a unique action of O+

V (R) on H (denoted by σg) so
that for each g ∈ O+

V (R) the diagram:

κ+ [Z]7→[gZ]
// κ+

H+ σg
//

ψ

OO

H+

ψ

OO

becomes commutative. We know that:

ψ−1 ◦ g([Z]) = ψ−1 ◦ g([z, 1,−Q(z)−Q(e2)]) = ψ−1([z′, a′, b′]) = z′/a′

and so:
σg(z) = B(g ◦ (z, a,−Q(z)−Q(e2)), e1)−1ρW (g ◦ (z, a,−Q(z)−Q(e2))).

Where ρW is the projection onto the W component. We then have that the function j : O×H → C
given by:

j(g, z) = B(g ◦ (z, a,−Q(z)−Q(e2)), e1)

defines a factor of automorphy. That is, it satisfies the cocycle condition:

j(g1g2, z) = j(g1, σg2z)j(g2, z).

When we reinterpret conditions (1) and (2) when viewing F as a function on H we find that F is
not invariant under the action of Γ on H through σ. Indeed, for γ ∈ Γ we have:

f(σγz) = f(B(γ ◦ (z, 1,−Q(z)−Q(e2)), e1)−1ρW (γ ◦ (z, 1,−Q(z)−Q(e2))))

= F (j(γ, z)−1(γ ◦ (z, 1,−Q(z)−Q(e2))))

= j(γ, z)kF (γ ◦ (z, 1,−Q(z)−Q(e2)))

= j(γ, z)kF ((z, 1,−Q(z)−Q(e2)))

= j(γ, z)kf(z).
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Example. The first standard example of modular forms are the Eisenstein series. We will first
describe the general construction somewhat vaguely and then explain how this relates to the
classical Eisenstein series for SL2.

The idea is that one first fixes a Borel subgroup B ⊂ O (recall that for an orthogonal group
the Borel subgroups are those which stabilize a maximal isotropic flag in V ) or more generally
one can fix a parabolic subgroup P ⊂ O (that is a proper subgroup containing a Borel subgroup).
One then fixes a function Φ that will be invariant under the action of P . One then averages this
function over (P ∩OL)\OL (remark here that we are using the discrete subgroup OL and not the
full group). What we arrive at is the formula:

f(z) =
∑

γ∈(P∩OL)\OL

j(γ, z)−kΦ(γz).

If we ignore issues of absolute convergence then it is an easy check that under the action of OL

on this function we would pull out the factor of automorphy to the kth power and rearrange the
summation. Consequently if we do have absolute and uniform convergence on a sufficiently nice
neighborhood then this would define a modular form.

In the classical SL2 case, one can use the Borel subgroup of upper triangular matrices, that is
{( a t

0 a−1 )}. One then considers the function Φ to be the constant function 1. The observation that
an element ( w x

y z ) ∈ SL2(Z) can be written uniquely as a product:(
w x
y z

)
=

(
1 t
0 1

)(
0 c−1

−c d

)
allows us to write the sum: ∑

γ∈(B∩OL)\OL

j(γ, z)−kΦ(γz) =
∑
(c,d)

(cz + d)−k

which recovers the classical weight k Eisenstein series. Remark in particular though that for k = 2
this does not converge absolutely, and it turns out that consequently this case does not give a
modular form.

Borcherds Products

The next construction of modular forms for these orthogonal spaces comes out of fairly recent
results of Borcherds. For details on the theory see R. Borcherds’ article “Automorphic forms on
Os+2,2(R) and infinite products” [Bor95] or J. Brunier’s article and book “Infinite Products in
Number Theory and Geometry” [Bru04] and “Borcherds Products on O(2,l) and Chern classes of
Heegner divisors” [Bru02].

A nearly holomorphic modular form for SL2(Z) is a holomorphic function on the upper half
plane, with the usual transformation behavior but with the relaxed requirement that the function
may have a pole of finite order at the cusp. Such a function f has a fourier expansion at the cusp
at infinity of the form:

f(q) =
∑

n>n0>−∞

c(n)qn.

The non-holomorphic part of the fourier expansion:∑
0>n>n0

cnq
n
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is called the principal part.
On Γ\OV (R)/K(R) there is a notion of certain special divisors, ‘Heegner divisors’, these arise

through the embedding of sub-orthogonal groups of type (2,n− 1) (where OV has type (2,n)) into
OV .

Borcherds discovered a lifting from nearly holomorphic modular forms of weight 1 − n/2 to
meromorphic modular forms on orthogonal spaces of type (2,n).

Suppose L ⊂ V is an even unimodular lattice. Let K = L∩W where V (C) = W ⊕Ce1⊕Ce2

as in the construction of the tube domain model. For a function f as above, we consider the
product:

Ψ(Z) = eB(%f (M),Z)
∏
λ∈K

B(λ,M)>0

(
1− eB(λ,Z)

)c(Q(λ))

where %f (M) ∈ K ⊗Q is a Weyl vector (see [Bru02, 3.5] for a definition of this). The variable Z
is taken to be in the orthogonal upper half space H.
Theorem 2.3.43. (Borcherds) [Bru04] Let f be a nearly holomorphic modular form for SL2(Z)
whose fourier expansion is as above and whose principal part has integral coefficients. Then the
product Ψ(Z) converges for =(Z) sufficiently large, and Ψ(Z) can be continued to a meromorphic
function of the symmetric space H associated to OV . Moreover, this function satisfies the following:

1. The function is a meromorphic modular form for OL with a finite multiplier system.
2. The weight of Ψ is c(0)/2.
3. The divisor of Ψ is determined explicitly by the principal part of f .

Remark. It should be remarked that the construction of this lifting can be realized as a regularized
theta lift via the dual reductive pairing of SL2 ' Sp2 and O2,n (see [Bru02] for details on this).

Example. We now briefly present a few examples of this lifting.
• Consider the weight 1/2 Jacobi theta series give by 12θ(q) = 12

∑
n∈Z

qn
2
. By the theorem this

lifts to the modular form:
∆(q) = q

∏
n>0

(1− qn)24

for an orthogonal group of type (2,1). Once we have seen that the (2,1) case corresponds to
the classical upper half space we see that we recover the classic weight 12 cusp form ∆.

• For the next example we consider the j function, that is j =
E3

4

∆
where E4 is the normalized

weight 4 Eisenstein series. Consider now J := j − 724. Since J has weight 0 it lifts to a
modular form on an orthogonal group of type (2,2). It turns out that under the isomorphism
between this space and H×H (that we shall see shortly) this lifting gives us the modular
function j(z1)− j(z2) which then has q-expansion:

q−1
1

∏
m>0
n∈Z

(1− qm1 qn2 )c(mn)

where c(mn) gives us the fourier coefficients of the function J .
• It can be shown that Ek for k = 4, 6, 8, 10, 14 are Borcherds lifts of certain half integral

weight modular forms.

2.3.5 The Isomorphism of O(2,1) and SL2

It turns out, that as a consequence of some exceptional isomorphisms between Lie groups in
low dimension that there is an isomorphism between SL2 and SpinV where V is a quadratic space
of type (2,1). We wish now to present this isomorphism.
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Consider the vector space V of traceless matrices in M2. That is V = {( a b
c −a )}. The determi-

nant then defines a quadratic form on V of type (2,1). SL2 acts on V through conjugation and this
action preserves the determinant and hence the quadratic form. The kernel of the map is

( −1 0
0 −1

)
and one can check that the images all have determinant 1 and thus lie in SO(2, 1). Hence this gives
us a map of SL2 to SO(2, 1). By connectedness and for dimension reasons we see that this map
is surjective. Moreover, in this case we know that the even Clifford algebra C0

V is a quaternion
algebra and we can check that it is split, thus C0

V ' M2. Consequently since the Clifford norm is
the determinant we have that SpinV ' SL2.

Consider the basis for V given by:

v = ( 1 0
0 −1 ) e1 = ( 0 −1

0 0 ) e2 = ( 0 0
1 0 ) .

The action of SpinV on V is through conjugation. Computing what this means on κ+ we have
that for ( a bc d ) ∈ SL2 and (z, 1, z2) ∈ κ+ we get:

( a bc d ) ◦ (z, 1,−z2) = ( a bc d )
(
z −z2
1 −z

) (
d −b
−c a

)
=
(
az+b −az2−bz
cz+d −cz2−dz

) (
d −b
−c a

)
=
(
adz+bd+acz2+bcz −abz−b2−a2z2−abz
cdz+d2+c2z2+cdz −cbz−db−acz2−adz

)
= (cz + d)2

(
az+b
cz+d

−(az+b
cz+d

)2

1 −az+b
cz+d

)
.

Consequently then the action on H is given by ( a bc d ) ◦ z = az+b
cz+d

. However we notice that the factor
of automorphy is now (cz + d)2 rather than the usual (cz + d). This means that our notion of
weight is off by a multiple of 2 from the classical case (That there are no classical modular forms
of odd weight and trivial character is perhaps reassuring).

2.3.6 The Isomorphism of O(2,2) and the Hilbert Modular Space

We would now like to explain how the exceptional isomorphism of SL2× SL2 ' Spin4 relates
to the isomorphism of Hilbert modular spaces for real quadratic fields and with spaces of type
(2,2).

We recall quickly the definitions for the Hilbert modular space in the real quadratic case. Let
F/Q be the real quadratic field F = Q(

√
d), where d > 0 and square free. Let a′ denote the

conjugate of a in F . The Hilbert modular space is H×H together with the diagonal action of
SL2(F ) via fractional linear transformation on each component via the two distinct embeddings of
F ↪→ C. A Hilbert modular form of (parallel) weight k is a holomorphic function f : H×H→ C
satisfying holomorphicity conditions as well as modularity with respect to the action of SL2(OF ).
That is:

f (( a bc d ) ◦ (z1, z2)) := f

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
= (cz1 + d)k(c′z2 + d′)kf(z1, z2), ∀ ( a bc d ) ∈ SL2(OF ).

What we wish to do now, is to show that these spaces can be realized as a special case of the
previous construction for certain quadratic forms of signature (2,2).

As above, let F/Q be the real quadratic field F = Q(
√
d). Consider the 4-dimensional Q

vector space Q⊕Q⊕ F , with the quadratic form given by:

Q(a, b, x+ y
√
d) = (x+ y

√
d)(x− y

√
d)− ab.
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Then V is a rational quadratic space of type (2,2) so all of the proceeding constructions apply.
We consider the basis v1 = (1, 1, 0), v2 = (1,−1, 0), v3 = (0, 0, 1), v4 = (0, 0,

√
d). We then

have (as in the notation of Clifford algebras) that δ2 = d and so Z := Z(C0
V ) = Q + Qδ ' F and

moreover C0
V = Z + Zv1v2 + Zv2v3 + Zv1v3 is isomorphic to the split quaternion algebra M2(F ).

The isomorphism is obtained by linearly extending the mapping:

1 7→ ( 1 0
0 1 ) v1v2 7→ ( 1 0

0 −1 ) v2v3 7→ ( 0 1
−1 0 ) v1v3 7→ ( 0 1

1 0 ) .

The canonical involution in C0
V is given by: ∗ : ( a bc d ) 7→ ( a bc d )

∗
=
(
d −b
−c a

)
.

The Clifford norm is given by the determinant: N : ( a bc d ) 7→ ad− bc.
We thus have that SpinV

∼= SL2(F ) ∼= RF/Q(SL2). Thus ΓF = SL2(OF ) is an arithmetic
subgroup of SpinV . In fact, one can show that ΓF = SpinL where L is the lattice Z⊕Z⊕OF ⊂ V .

We now explicitly describe the vector representation (that is, how does SpinV act on V ). let
σ : x 7→ v1xv

−1
1 be Ad(v1). Then δσ = −δ and so σ agrees with conjugation on F when acting on

the center of C0
V . On M2(F ) the action is expressed as:

σ : ( a bc d ) 7→ ( a bc d )
σ

=
(
d′ −c′
−b′ a′

)
.

Let V = {X ∈ M2(F )|X∗ = Xσ} = {X ∈ M2(F )| tX = X ′} =
{(

a v′
v b

)
| a, b ∈ Q, v ∈ F

}
,

Where the quadratic and bilinear forms are given by:

Q(X) = − det(X) and B(X, Y ) = −tr(XY ∗).

Moreover, we see that SpinV
∼= SL2(F ) acts on V via g ◦ X = gXg−σ = gX(tg′). We observe in

particular that V is isometric to V with compatible action of SpinV . So from now on we work with
V . We next notice that we have: V (C) = M2(C) (that is the entire algebra and not a sub-algebra)
and so:

κ = {[Z] ∈ P (M2(C))| det(Z) = 0,−tr(ZZ∗) > 0}.

Take e1 = ( −1 0
0 0 ) and e2 = ( 0 0

0 1 ). Observe that we have Q(e1) = 0 and B(e1, e2) = 1 as in
the construction of H. As before we set W = V ∩ e⊥1 ∩ e⊥2 . Noting that B (( a bc d ) , e1) = d and
B (( a bc d ) , e2) = −a we conclude that W = {( 0 b

c 0 ) ∈ V }. From this we see that W (C) ∼= C2 and
H ∼= {(z1, z2) ∈ C2| im(z1z2) > 0}.

We now define the map M : H → κ. For z = (z1, z2) ∈ H we define:

M(z) :=

(
z1z2 z1

z2 1

)
.

This corresponds to the map H → κ from before. If we choose for H+ the component where
im(z1), im(z2) > 0 then it is immediately clear we have an isomorphism H2 ∼= H+ ∼= κ+. This map
commutes with the action of SL2(F ) where the action on κ+ is given as before (that is through
SpinV

∼= SL2(F )). In particular, ( a bc d ) ∈ SL2(F ) acts on M(z) ∈ κ+ as:(
a b
c d

)(
z1z2 z1

z2 1

)(
a′ c′

b′ d′

)
=

(
(az1z2 + bz2)a′ + (az1 + b)b′ (az1z2 + bz2)c′ + (az1 + b)d′

(cz1z2 + dz2)a′ + (cz1 + d)c′ (cz1z2 + dz2)c′ + (cz1 + d)d′

)
and acts on H as: (

a b
c d

)
◦ (z1, z2) =

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
.
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Applying M gives:(
az1+b
cz1+d

a′z2+b′

c′z2+d′
az1+b
cz1+d

a′z2+b′

c′z2+d′
1

)
= N(cz + d)

(
(az1 + b)(a′z2 + b′) (az1 + b)(c′z2 + d′)
(a′z2 + b′)(cz1 + d) (cz1 + d)(c′z2 + d′)

)
.

In particular this shows that γM(z) = N(cz+ d)M(γz). Moreover, we see that for parallel weight
modular forms, our definitions agree.
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CHAPTER 3
Tori and Galois Cohomology

When we looked at the Grassmannian model of the symmetric space we saw that maximal
compact subgroups came from stabilizers of points of the Grassmannian. Moreover, we saw that
the stabilizers of positive definite planes were isomorphic (over R) to O2×On. Conversely, if we
have a subgroup of the orthogonal group isomorphic to OV2 ×OVn , where Vi is some i dimensional
quadratic space, it will stabilize some plane. The plane however may not in general be positive
definite. However, we have seen the statement that OVi(R) is compact is equivalent to the statement
that the quadratic form is definite. Consequently, if we require a compact set of real points, this
will correspond to a positive definite plane in the space.

By virtue of the fact that O2×On contains maximal R-compact tori and that stabilizers of
points in Gr(V ) are R conjugates of these, we have that any point in the Grassmannian model is
stabilized by a torus whose R points are compact, and vice-versa, any torus whose R points are
compact is contained in the stabilizer of a point on the Grassmannian. What makes the points we
are interested in special is that one expects algebraicity results concerning the values of modular
forms or related functions at these points. In order to hope to get these results the criterion we
add is that the torus be defined over Q.

These above facts contribute to the reasons that the points we are interested in are those
points x which satisfy ∃ T ⊂ Stabx such that T is a maximal algebraic torus in Oq, is defined over
Q. It is a consequence of the fact that T (R) lies in the R-compact set Stabx that T (R) will be
R-compact.

In the case of the usual upper half plane viewed via the isomorphism to the (2, 1) case, one
finds that the points satisfying the above correspond to the quadratic imaginary points in the upper
half plane. To see this consider τ = x+ iy ∈ H and suppose M = ( a bc d ) ∈ SL2(Q) stabilizes τ . We
then have that:

( a bc d ) ◦ τ =
aτ + b

cτ + d
= τ.

Then, provided c 6= 0 we have τ satisfies a quadratic equation over Q. In the case c = 0 then either
( a bc d ) = ± ( 1 0

0 1 ) or τ ∈ Q which was not allowed. We now claim that any maximal rational torus
in SL2 has rational points other than ±id. Indeed, by 2.1.8 we have that one dimensional tori
correspond to Hom(Gal(Q/Q), {±1}). But picking such a homomorphism corresponds to picking
a quadratic extension L of Q, and the corresponding torus is then isomorphic to RL/Q(Gm). All
of these tori have infinitely many rational points.

Conversely, if we consider the the quadratic imaginary point τ = y
√
−D we see that it is fixed

by the torus T = {
(
a −y2Db
b a

)
| a2 + y2Db2 = 1}, the point τ = x+ y

√
−D is then fixed by the torus

( 1 x
0 1 )T ( 1 −x

0 1 ).
In the Hilbert modular case (the (2,2) case) the CM-points can be seen to correspond to

‘quadratic imaginary’ points as well. However, in this case, they will be quadratic imaginary over
the real quadratic field used to construct the Hilbert modular surface.

In both the (2,1) and (2,2) cases these points are the subject of rather spectacular phenomenon
related to the fields in which the results of evaluating modular forms at these points lie. Specifically,

36



there is a relation to class field theory in that the values are associated to the Hilbert class field of
the quadratic imaginary field.

It is our goal to study these points for general orthogonal groups of type (2,l) with the eventual
goal of evaluating modular forms at these points and of observing similar phenomenon, making
use of Shimura’s reciprocity law.

3.1 Galois Cohomology of Algebraic Groups

Most of the material in this section can be found in J.P Serre “Galois Cohomology” [Ser02]
and “Local Fields” [Ser79] as well as numerous other sources.

We intend to treat several cases simultaneously, so in the following consider Γ to be a group,
and M to be either a Z[Γ]-module or a group acted upon by Γ via homomorphisms (or a Γ-set).
The first case corresponds to abelian Galois cohomology and the second is the non-abelian case.

Let Cn(Γ,M) be the group (or pointed set) of all functions f : Γn →M .
We define the coboundary maps dn : Cn(Γ,M)→ Cn+1(Γ,M) via:

dn(φ)(x0, . . . , xn) = x0φ(x1, . . . , xn)+
n−1∑
i=0

(−1)i+1φ(x0, . . . , xi−1xi, . . . , xn)+(−1)n+1φ(x0, . . . , xn−1).

The important property of the function dn is that dn+1 ◦ dn = 0. We then define: Zn(Γ,M) :=
Ker(dn) and Bn(Γ,M) := im(dn−1) (or {0} if n = 0). Finally:

Hn(Γ,M) := Zn(Γ,M)/Bn(Γ,M).

We note that this definition doesn’t always make sense, in particular in the case of a Γ-set
only H0(Γ,M) makes sense, and in the case of M a non-abelian group things become ill-defined
for n > 1 (and for the n = 1 case the definition would better be phrased using multiplicative
notation).

In the case of a non-abelian group M , what we end up with is the following:

B0(Γ,M) = {0}
Z0(Γ,M) = {m ∈M | σm = m ∀σ ∈ Γ} = MΓ

H0(Γ,M) = {m ∈M | σm = m ∀σ ∈ Γ} = MΓ

B1(Γ,M) = {φm| φm(σ) = m−1(σm), m ∈M}
Z1(Γ,M) = {ξ| ξσ := ξ(σ), ξστ = ξσ

σξτ ∀σ, τ ∈ Γ}
H1(Γ,M) = {ξ ∈ Z1(Γ, G)}/{ξ ∼ ξ′ ⇔ ∃m ∈M such that ξσ = m−1ξ′σ

σm ∀σ ∈ Γ}

In the cases we are most interested in, Γ will be a topological group (for example a Galois
group) and M will be an algebraic group. In this case, we add the requirement that the action
of Γ be continuous (with the topology on M being the discrete topology) and that the functions
defining the cohomology also be continuous.

One of the important results of this construction is that if we have an exact sequence of objects
on which Γ acts appropriately,

0→ A→ B → C → 0,

then we get a long exact sequence:

0→ H0(Γ, A)→ H0(Γ, B)→ H0(Γ, C)
δ0→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)

δ1→ H2(Γ, A) · · ·
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which continues for as long as the terms involved are defined. In particular it stops early if H2(Γ, A)
does not exist because A is not an abelian group. (And is only an exact sequence of pointed sets.)

One constructs the connecting homomorphisms using the snake lemma, concretely it goes as
follows:

We are given [ρ : Γn → C] ∈ Hn(Γ, C), We let ρ : Γn → B be any lifting of ρ com-
ing from the surjectivity of B → C. We now set % := dn(ρ) : Γn+1 → B. We now have
[%] ∈ Hn+1(Γ, B) (one should check that [%] does not depend on choice of lifting) and moreover it
will be in Ker(Hn+1(Γ, B) → Hn+1(Γ, C)). It follows (once one proves exactness at the middle
terms) that we can lift this to an element of Hn+1(Γ, A). The added complexity of continuous
cohomology is that in order for this to make sense we need to end up with continuous cocycles,
this is equivalent to requiring that there exists a continuous section from C → B. (which for our
purposes we always have).

Classification of Forms

One common use for cohomology is to allow us to classify the various “forms” of an object.
That is to say, two objects, M,M ′ in some category C, may not be isomorphic. However, there
may exist a “Γ-extension” CΓ of the category to which M,M ′ belong in which they are isomorphic.
We might then call these objects “CΓ-Forms”. It turns out that one often has that “CΓ-forms” of
M are classified by H1(Γ,Aut(M)). One useful construction for this purpose is the concept of a
twisted object. Let Γ be a group, M a Γ-module. Now, let ξ ∈ H1(Γ,Aut(M)) we can define M
twisted by ξ to be ξM := M except we replace the usual action of Γ on M with a new one. In
particular for τ ∈ Γ if we denote the action on M (respectively ξM) by τM (respectively τ

ξM) we
have the formula:

τ
ξM(a) = ξτ (τM(a)).

To see this is a group action we observe that:

τ
ξM ◦ σξM(a) = ξτ (τM(ξσ(σM(a)))) = ξτ (

τξσ(τM(σM(a)))) = ξτσ((τσ)M(a)) = (τσ)
ξM(a).

This construction is useful for allowing H1(Γ,Aut(M)) to classify the forms of M . In general
one would want to show that whatever sort of object M is, so too is ξM . For example, if we consider
the case Γ = Gal(k/k), M = G an algebraic group, then we would like ξM to also be an algebraic
group, This requires some work in general (we actually do this for tori later). Assuming this has
been done, one then gets that ξM will be a “Form” of M . In particular, they shall be isomorphic
in the category where we allow the additional morphisms corresponding to this twisting.

With the vaguely defined terms of “form”, “extension” as above, it may seem obvious that
this construction will always give all the possible forms (as we have seemed to define “forms”
as those things you get from twisting by H1). The real work arises when one specifies first the
definition of the categories, extensions and forms and then tries to show that they correspond to
some particular Γ.

Typically, we have been (and will be) working with the category of algebraic groups defined
over k. The extensions of the category we are working with corresponds to algebraic groups over
L, a Galois extension of k. We would like to say (in terms of the vague language above) that this
is a Gal(L/k) extension of the category and thus that the L/k-forms of an algebraic group G are
classified by H1(Gal(L/k),Aut(G)).

One important tool in the proof that this makes sense is Hilbert’s Theorem 90. An important
part of the proof of which is the following lemma:
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Lemma 3.1.1 (Independence of Characters). [Hun80, V.7.5] If S ⊂ Aut(F ) is a set of distinct
automorphisms of a field F , then S is linearly independent in that if we have for any ai in any

integral domain containing F that
n∑
i=1

aiσi(u) = 0 for all u ∈ F then ai = 0 for all i.

Proof. Suppose
n∑
i=1

aiσi(u) is a minimal counterexample. Pick v ∈ F such that σ1(v) 6= σ2(v). Then

we have:
n∑
i=1

aiσi(uv) = 0

and

σ1(v)
n∑
i=1

aiσi(u) = 0.

The difference of these equations then gives a smaller counterexample.

Remark. One should note that the proof as above goes through almost completely unchanged if
we replace Aut(F ) by End(F ∗) or Hom(F ∗,C∗).

We now give Hilbert’s Theorem 90.

Theorem 3.1.2 (Hilbert’s Theorem 90). Let L/k be a Galois extension, then:

H1(Gal(L/k),GLn(L)) = 1.

Proof. We follow [Ser79].
Let [α] ∈ H1(Gal(L/k),GLn(L)) consider the map Lα : Ln → Ln given by:

Lα(f) =
∑

σ∈Gal(L/k)

α(σ)σ(f),

where we view Ln as column vectors.
Observe that τ(Lα(f)) = α(τ)−1Lα(f). We claim that the image of Lα contains a basis for

Ln. If not, then there is a non-zero linear map on λ : Ln → L such that λ(Lα(v)) = 0 ∀v ∈ Ln.
But we can then compute that for any fixed v and for all f ∈ L we have:

0 = λ(Lα(fv)) =
∑
σ

λ(α(σ)σ(f)σ(v)) =
∑
σ

σ(f)λ(α(σ)σ(v)).

Then, by linear independence of the σ(f) we find that for any fixed v and for all σ we have that
λ(α(σ)σ(v)) = 0. Using that α(σ) is invertible this then implies λ = 0 which is a contradiction.

We can thus choose a basis vi = Lα(xi) for Ln. The map which sends ei → vi corresponds to
some matrix M ∈ GLn(L). Moveover, we can by checking the behavior on the columns of M see
that:

τ(M) = τ (La(xi))j = α(τ)−1 (La(xi))j = α(τ)−1M.

From which it follows that α(τ) = Mτ(M−1) is a coboundary which completes the result.

Example. As a particular example of this classification at work, we consider the isomorphism
classes of rank n algebraic tori defined over k, split over a finite Galois extension L of k. Fix T a
k-split torus (T := Gn

m). We then expect to have that the forms of T , which become isomorphic
to it over L, are classified (up to k-isomorphism) by H1(Gal(L/k),Aut(T )). But we have from
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equivalence of categories for diagonalizable groups (Theorem 2.1.8) that:

H1(Gal(L/k),Aut(T )) ' H1(Gal(L/k),Aut(X∗(T ))).

Furthermore, from the description of the character module:

H1(Gal(L/k),Aut(X∗(T ))) ' H1(Gal(L/k),GLn(Z)).

On the other hand, since the action of Gal(L/k) is trivial:

H1(Gal(L/k),GLn(Z)) ' Hom(Gal(L/k),GLn(Z)).

But Hom(Gal(L/k),GLn(Z)) precisely classifies all the possible Galois module structures of Zn. In
particular via the equivalence of categories (Theorem 2.1.8) this does classify tori. Consequently
we see that H1(Gal(L/k),Aut(T )) classifies the tori we were interested in.

3.2 Classification of Maximal Tori over k in G

Let k be a perfect field. We have the goal of trying to classify the k-defined maximal algebraic
tori in a given algebraic group over k. We know that at least one exists and that they are all
conjugate over k. As such, we first develop some tools for dealing with conjugates of k-defined
subgroups.
Proposition 3.2.1 (Criteria for Field of Definition). Let G be an algebraic group over k, H ⊆ G
a subgroup defined over k. For g ∈ G, the subgroup gHg−1 is defined over k if and only if
g−1σ(g) ∈ NG(H),∀σ ∈ Gal(k/k).

Proof. Suppose first that both H and gHg−1 are defined over k. Then for all σ ∈ Gal(k/k) we get:

gHg−1 = σ(gHg−1) = σ(g)σ(H)σ(g−1) = σ(g)Hσ(g−1).

Rearranging then yields H = g−1σ(g)Hσ(g−1)g and so then we get: g−1σ(g) ∈ NG(H).
For the converse we have that: ∀σ ∈ Gal(k/k), g−1σ(g) ∈ NG(H), thusH = g−1σ(g)Hσ(g−1)g.

Rearranging and applying H = σ(H) gives that for all σ ∈ Gal(k/k) we get:

gHg−1 = σ(g)Hσ(g−1) = σ(gHg−1).

And so by Theorem 2.1.4 we have that gHg−1 is defined over k.

Before proceeding with the next few results we would like to introduce and explain some
notation. for H ⊆ G and g ∈ G we make the following notation:

Hg := gHg−1

gσ := [σ 7→ g−1σ(g)] ∈ H1(Gal(k/k), H) where g−1σ(g) ∈ H ⊆ G for each σ (though H need
not contain g). That gσ actually gives a cocycle follows from the following computation:

gτσ = g−1(τσ(g)) = g−1τ(gg−1σ(g)) = g−1τ(g)τ(g−1σ(g)) = gτ
τgσ.

Through abuse of notation we may view gσ as being in H1(Gal(k/k), H) for more than one H; we
shall always make it clear in which cohomology any expression involving a cocycle takes place.

More generally, for [ξ] ∈ H1(Gal(k/k),M) we shall often drop the [ ]. Moreover, we shall
denote ξσ = ξ(σ) ∈ M . By Hilbert’s Theorem 90 for GLn, we know that for any H ′ ⊆ GLn(k)
and any [ξ] ∈ H1(Gal(k/k), H ′) we can write [ξσ] = [g−1σ(g)] for some g ∈ GLn(k). Consequently,
[ξσ] = gσ and so by taking ξ = g we remove the ambiguity in the notation.
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We shall generally use Latin characters gσ, fσ, · · · when it is clear that f, g come from some
G. We shall generally use Greek characters ξσ, · · · when the cocycles are not from some algebraic
group.
Corollary 3.2.2 (Classification of Forms). Let H ⊆ G be as before, then we get a map:

{Hg|g ∈ G(k), Hg defined over k } φ−→ H1(Gal(k/k), NG(H))

φ : Hg 7−→ gσ.

Proof of Corollary. The only thing to check is that this map is well defined, We already know that
gσ is a cocycle in the appropriate group, so it remains only to check that: Hg = Hf ⇒ gσ = fσ in
H1(Gal(k/k), NG(H)). Indeed, the following proves slightly more.

Lemma 3.2.3. Let H,G be as above and let f, g ∈ G then ∃r ∈ G(k) such that Hg = Hrf if and
only if gσ = fσ in H1(Gal(k/k), NG(H)).

Proof of Lemma.

gσ = fσ ⇔ ∃s ∈ NG(H) such that gσ = s−1fσ
σs, ∀σ ∈ Gal(k/k)

⇒ sg−1σ(g) = f−1σ(f)σ(s), ∀σ ∈ Gal(k/k)

⇒ σ(gs−1f−1) = gs−1f−1, ∀σ ∈ Gal(k/k)

⇒ gs−1f−1 ∈ G(k).

Then taking r = gs−1f−1 we get:

gHg−1 = (gs−1f−1)fHf−1(gs−1f−1)−1 = rfHf−1r−1

⇒ ∃r ∈ G(k) such that Hg = Hrf .

Conversely, if Hg = Hrf we will have f−1r−1g ∈ NG(H) so that:

(f−1r−1g)−1fσ
σ(f−1r−1g) = g−1rff−1σ(f)σ(f−1)r−1σ(g) = gσ.

Which implies gσ = fσ.

Taking r as the identity we thus have a well defined map.

Claim. With the map as above,

Hg
φ7−→ gσ,

we have Kerφ = {Hr|r ∈ G(k)} and imφ = Ker
[
H1(Gal(k/k), NG(H))→ H1(Gal(k/k), G)

]
.

Proof. The statement about the kernel follows from the lemma in corollary. The statement about
the image follows from the fact that φ by definition maps to coboundaries in G. That φ sur-
jects onto this kernel is obvious, since if ξσ ∈ H1(Gal(k/k), NG(G)) becomes a coboundary in
H1(Gal(k/k), G) then ξσ = g−1σ(g) for some g ∈ G and thus ξσ is the image of gHg−1 in
H1(Gal(k/k), NG(H)).

In the case we are most interested in, that is maximal tori, the fact that they are all conjugate
in G(k) means that this construction gives us a complete classification of the k-defined maximal
tori in G up to G(k)-conjugation.
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Corollary 3.2.4. Let H ⊂ G be a subgroup with both H,G defined over k. Consider the set R(H)
of G(k) conjugates of H that are defined over k, modulo conjugation by G(k). R(H) is a pointed
set with base point H and there is a bijective map of pointed sets:

φ : R(H)→ Ker
[
H1(Gal(k/k), NG(H))→ H1(Gal(k/k), G)

]
.

Proof. This is simply a restatement of the previous claim.

Remark. We have proven the above using direct computations, however one can understand this
result conceptually by looking at the meaning of objects in the exact sequence of cohomology
corresponding to the exact sequence:

1→ NG(H)→ G→ G/NG(H)→ 1

where G/NG(H) is viewed as a pointed set with Galois action. In particular one has that as pointed
sets:

(G/NG(H))(k)/G(k) ' Ker[H1(Gal(k/k), NG(H))→ H1(Gal(k/k), G)]

where (G/NG(H))(k) is a pointed set with a G(k) action so the quotient makes sense.

Since we have that all maximal tori in G are conjugate, we find:
Corollary 3.2.5 (Classification of Maximal Tori). Let G/k be an algebraic group, fix a maximal
torus T0 ⊆ G defined over k. Then we have a bijection:

{T ⊂ G| T maximal k-defined torus}/G(k)↔ Ker
[
H1(Gal(k/k), NG(T0)) 7→ H1(Gal(k/k), G)

]
,

Moreover, gTg−1 ' gσT , where gσT is the torus T with twisted Galois action (see page 38).

Proof. The only new statement here is the one about twisting. If we consider the group isomor-
phism (that it is an isomorphism is essentially by definition):

ψ : gσT −→ gTg−1, t 7−→ gtg−1.

Then the only thing to check is that it preserves the k-structure. To do this it suffices to check
that it is equivariant with respect to Gal(k/k). Indeed, on gσT the group Gal(k/k) acts as:

σ(t) = gσ ∗ σt = gσ
σtg−1

σ

where ∗ denotes the action of an automorphism; in this case the automorphism corresponding to
gσ is the inner automorphism of conjugation by gσ. We get:

ψ(σ(t)) = ψ(gσ ∗ σt)
= g · gσσ(t)g−1

σ · g−1

= g · g−1σ(g)σ(t)σ(g−1)g · g−1

= σ(gtg−1)

= σ(ψ(t)),

which is the desired result.

Remark. The next few results involve certain seemingly difficult to describe groups. The groups
themselves turn out to have simple descriptions over an algebraically closed field. In particular we
shall eventually prove (Lemma 4.1.1) that we have NGLn(O) = Gm · O. From this it shall follow

42



that NNGLn (O)(T ) = NGLn(O) ∩ NGLn(T ) = Gm · NO(T ). One should remark that these are not
direct products, in particular −Id is in both groups.

One should also remark that in general for a maximal torus T ⊂ G where G is a semi-simple
group we have NG(T )/T is what is called the Weyl Group and this object has a strong connection
to the classification of semi-simple algebraic groups. Moreover, for the case of a maximal torus T
in GLn we have that over k we find NGLn(T ) ' T o Sn where Sn acts as the permutation group
on the characters. One should note well that the rational structure of this group is non-trivial if
T is not chosen to be the split torus.

For an orthogonal group, though it is not semi-simple, the structure of NOn(T ) can still be
worked out (either via ideas in Theorem 4.4.2 or by working first with SOn). When one does this
one finds that for n even we have that over k we get NOn(T ) ' T o (Z/2Z)n/2 o Sn/2. Here Sn/2
acts by permuting in a compatible fashion the characters along with their inverses and the Z/2Z
act by interchanging a character and its inverse (a similar formula exists for n odd with an extra
Z/2Z term which acts as a reflection along the line fixed by T ). Again one should note that the
rational structure of these groups will not in general be trivial to describe. It is for this reason we
continue to use NOn(T ) rather than T o (Z/2Z)n/2 o Sn/2 as the latter seems to imply a trivial
Galois actions on the (Z/2Z)n/2 o Sn/2 factor.

Similarly to the result above about tori, arising from the fact that we can diagonalize any
form over an algebraically closed field, we have that all orthogonal groups are conjugate in GLn(k)
and thus we have the following:
Corollary 3.2.6. Let O0 ⊂ GLn be any k-defined orthogonal group of dimension n. Consider the
set:

R(O) = {O ⊂ GLn| O a k-defined orthogonal group}/GLn(k).

Then we have a bijection:
R(O)↔ H1(Gal(k/k), NGLn(O0)).

Proof. That all orthogonal groups are conjugate allows us to apply the theorem. Hilbert’s Theorem
90 tells us that H1(Gal(k/k),GLn) is trivial, as such we do not need to take the kernel of the map
to H1(Gal(k/k),GLn) as this would be all of H1(Gal(k/k), NGLn(O0)) anyways.

As a further consequence of the fact that any two orthogonal groups are conjugate and the
fact that any two tori in them are conjugate we have the following:
Corollary 3.2.7. Let T0 ⊂ O0 be a maximal k-defined torus contained in the k-defined orthogonal
group O0. Consider the set:

R(T ) = {T ⊂ GLn| T ⊂ O maximal k-defined torus in O an orthogonal group}/GLn(k)

Then we have a bijection:
R(T )↔ H1(Gal(k/k), NGLn(T0)).

Proof. We remark first that the orthogonal groups in which the various T are contained are not
necessarily defined over k. The proof follows from the observation that any conjugate of T0 is
automatically contained in the conjugate ofO0 and that any two maximal tori in any two orthogonal
groups of the same dimension are conjugate.

We now combine the above two results:
Corollary 3.2.8. Let T0 ⊂ O0 be a maximal k-defined torus contained in the k-defined orthogonal
group O0. Consider the set:

R(O, T ) = {(O, T )| T ⊂ O ⊂ GLn, with T,O both defined over k}/ ∼ .
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The equivalence condition is to consider orthogonal groups up to GLn(k) conjugacy and the tori that
each orthogonal group O contains up to NGLn(O)(k) conjugacy (we shall see later that NGLn(O) is
only larger than O through the inclusion of scalar matrices). We then have a bijection:

R(O, T )↔ H1(Gal(k/k), NNGLn (O0)(T0)).

Proof. We first make a few observations about why we would expect such a result before proceeding
to give the full proof of it. that since every k-rational orthogonal group contains a k-rational
maximal torus, every k-rational orthogonal group contains a k-rational conjugate of T0.

Now, the inclusion NNGLn (O0)(T0) ⊂ NGLn(T0) Gives us the map of cohomology:

H1(Gal(k/k), NNGLn (O0)(T0))→ H1(Gal(k/k), NGLn(T0)).

This allows us to get a map:

φT : H1(Gal(k/k), NNGLn (O0)(T0))→ R(T ).

Likewise the inclusion NNGLn (O0)(T0) ⊂ NGLn(O0) gives us a map:

φO : H1(Gal(k/k), NNGLn (O0)(T0))→ R(O).

However, the method of associating to a cohomological element gσ ∈ H1(Gal(k/k), NNGLn (O0)(T0))
an element of R(T ) was to took at gT0g

−1, and to get an element of R(O) we have gO0g
−1. It

follows then that the image of φ′OT := φT × φO lands in R(O, T )′ (where R(O, T )′ is the natural
image of R(O, T ) in R(O)×R(T )). Moreover, the map:

φ′OT : H1(Gal(k/k), NNGLn (O0)(T0))→ R(O, T )′

will be surjective. For any k-defined maximal torus T in a k-defined orthogonal group O we can
consider first the element h1 ∈ GLn which conjugates O0 to O then the element h2 ∈ O which
conjugates h1T0h

−1
1 to T . The element g = h2h1 ∈ GLn then conjugates both O0 to O and T0 to

T . Consequently gσ ∈ H1(Gal(k/k), NNGLn (O0)(T0)) and moreover φT (gσ) = T and φO(gσ) = O.
All that would then remain is to check that the map φ′OT factors through R(O, T ), that is,

that the equivalence conditions we put on R(O, T ) are in fact correct.
Now, by our previous theorems and the fact that the conjugates of T0 in NGLn(O0) are all in

fact inside O0 we have that R(O, T ) can be decomposed as follows:

R(O, T ) =
⊔
gσ

Ker
[
H1(Gal(k/k), NNGLn (gO0g−1)(gT0g

−1))
α→ H1(Gal(k/k), NGLn(gO0g

−1))
]

where the disjoint union runs over one representative [gσ] ∈ H1(Gal(k/k), NGLn(O0)) conjugacy
class of orthogonal group k-rational orthogonal group (we remark we can choose g so that gT0g

−1

is k-rational). However we also know that via the cohomological map:

H1(Gal(k/k), NNGLn (O0)(T0))→ H1(Gal(k/k), NGLn(O0))

that every element of H1(Gal(k/k), NNGLn (O0)(T0)) must be in the kernel of the map:

H1(Gal(k/k), NNGLn (O0)(T0))
β→ H1(Gal(k/k), NGLn(gO0g

−1))
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for precisely one choice of base-point gO0g
−1. In particular we can decompose the cohomology

H1(Gal(k/k), NNGLn (O0)(T0)) as:⊔
gσ

Ker
[
H1(Gal(k/k), NNGLn (O0)(T0))

β→ H1(Gal(k/k), NGLn(gO0g
−1))

]
.

With this we note that the map:

H1(Gal(k/k), NNGLn (O0)(T0))→ H1(Gal(k/k), NNGLn (gO0g−1)(gT0g
−1))

via twisting by gσ makes it so that the combined diagram with α and β will be commutative. We
then see that we have the desired result.

Corollary 3.2.9. Fix an n-dimensional orthogonal group Oq and a maximal torus T and both of
which are defined over k with T ⊂ Oq ⊂ GLn. Consider the natural maps:

φ1 : H1(Gal(k/k), NNGLn (Oq)(T ))→ H1(Gal(k/k),Aut(T ))

φ2 : H1(Gal(k/k), NNGLn (Oq)(T ))→ H1(Gal(k/k), NGLn(T ))

φ3 : H1(Gal(k/k), NNGLn (Oq)(T ))→ H1(Gal(k/k), NGLn(Oq))

Then we have correspondences:

Ker(φ1)↔ { k-rational orthogonal groups containing a k-rationally isomorphic copy of T }/ ∼
Ker(φ2)↔ { k-rational orthogonal groups containing a k-conjugate of T }/ ∼
Ker(φ3)↔ { k-rational conjugates of T contained in Oq}/ ∼

where the objects on the right are considered up to conjugation in GLn(k) (potentially with a
multiplicity).

Proof. By the previous theorem H1(Gal(k/k), NNGLn (Oq)(T )) classifies up to some equivalence pairs
T ⊂ O ⊂ GLn such that T,O are both defined over k. By taking kernels of these various maps
we pick out specific subsets of these. Consequently the first assertions amounts to understanding
what the trivial elements on the right hand sides of the maps corresponds to. In the first case
we get pairs (O′, T ′) where T ′ is rationally isomorphic to T . In the second T ′ must be rationally
conjugate to T . In the third case we require that O′ be rationally conjugate to O.

On the issue of equivalence conditions and multiplicities, these follow by comparing our stated
equivalence condition with those of the previous theorem and observing that the map may not
be one to one. For the first correspondence, we have one copy of each O′ for each class of non-
NNGLn (O)(T )(k)-equivalent representation of T into O. For the second correspondence you will
have one copy of each O′ for each class of non-NNGLn (O)(T )(k)-conjugate embedding of T into O
that is GLn(k) conjugate to T in O.

Remark. The distinction between understanding into which orthogonal groups a given torus can
embed and understanding which contain a rational conjugate of some fixed embedding into GLn
comes down to a question about the rational representations of tori.

One might ask that if T1, T2 ⊂ GLn are conjugate over k and are k-isomorphic (via some map
that is not necessarily conjugation) then are they conjugate in GLn over k? The answer to this
question is known to be true for the special case of split tori. However, in general we know that
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not all representations of a torus need to be linearly equivalent over k (let alone over k), but what
we are asking is if under some conditions the images of these representation are.

A related question to ask is, suppose T1, T2 ⊂ G ⊂ GLn are defined over k are conjugate by
g ∈ G(k) and g′ ∈ GLn(k) does this imply that they are conjugate over k in G? The answer to

this second question is in general no, consider for example conjugation by
(√

2 0

0 1/
√

2

)
and ( 2 0

0 1 ) on

tori in SL2.
One might then ask even if it fails for general G, are there groups for which it is true, and in

particular is it true for Oq or NGLn(Oq)? In particular if these statements where true, then this
would imply the multiplicities mentioned in the previous theorem are 1.

3.2.1 Twisting and Characters of Tori

Now that we have a classification of the maximal tori in terms of cohomology, we are interested
in which properties of a torus can be extracted just from information about the base tori and the
corresponding cohomology class of the torus. We start by trying to understand the character group
of the torus. Let T be a k-defined torus.

If we define the action of M ∈ Aut(T ) on χ ∈ X∗(T ) to be:

M ◦ χ(t) := χ(M−1(t))

then we can twist the character module X∗(T ) via the elements of H1(Gal(k/k),Aut(T )) and thus
also by H1(Gal(k/k), NG(T )). Namely, for a cocycle ξ we have ξX

∗(T ) is the Galois module with
underlying group X∗(T ) but with twisted Galois action. For σ ∈ Gal(k/k) and χ ∈ ξX

∗(T ) denote
the action of σ on χ as σξ and define it as:

σξ(χ)(a) = ξσ(σ(χ))(a) = σ(χ(σ−1(ξ−1
σ (a)))).

Doing this we get the following result:

Theorem 3.2.10. Let T ⊆ G be a torus defined over k, let ξσ ∈ H1(Gal(k/k), NG(T )) then we
have that X∗(ξσT ) ' ξσX

∗(T ) as Galois Modules. Moreover, this isomorphism is realized via the
map: ψ : χ 7→ χ, that is essentially the identity map.

Proof. Since ξσT and T are isomorphic as groups, ψ is certainly an isomorphism of the character
modules viewed only as Z-modules. So the only thing to check is that ψ is Galois equivariant.
Indeed, for each σ ∈ Gal(k/k) we get (in χ(ξσT )):

(σχ)(t) = σ ◦ χ(σ
−1

t)

= σ ◦ χ(ξσ−1(σ−1(t))).

If we now apply ψ to this we get that:

(ψ(σχ))(t) = σ ◦ χ(ξσ−1(σ−1(t)))

= σ ◦ χ(ξσ−1(σ
−1

t)).
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If we were currently working in X∗(T ) this would give σ(χ ◦ ξσ−1)(t). However, we are in ξσX
∗(T )

so we have a twisted action and get: (σX∗)(t). This is because we have:

(σξχ) = ξσ · (σχ) so that:

(σξχ)(t) = ξσ · (σχ)(t)

= σ(χ(σ−1(ξ−1
σ (t))))

= σ(χ(σ−1(σ(ξ−1)ξtξ−1σ(ξ))))

= σ(χ(ξ−1σ−1(ξ)σ−1(t)σ−1(ξ−1)ξ))

= σ ◦ χ(ξσ−1(σ
−1

t)),

which completes the result.

Once we know how to compute the character groups for the torus corresponding to our co-
homological elements we can then use this information to determine other properties that depend
only on the character group. In particular we know that the splitting field of the torus is the
field of definition for the character module. And thus by understanding the character module
we know the splitting field. For a more direct method of determining this we note that if the
original torus T were split, then a torus corresponding to ξσ will be split over the fixed field of
Ker(ξ : Gal(k/k) → Aut(T )). If T where not split, then ξσT will split over the composite field
of that field and the splitting field of T , but that will in general not be minimal. We do however
know that there is a conjugate of T that is split somewhere in GLn, and in some situations we
can arrange that it will be contained in a conjugate of G that is defined over k (every orthogo-
nal group is conjugate to an orthogonal group containing a split maximal torus). In particular
we want, ∃s ∈ GLn(k) such that sTs−1 is k-split, and sGs−1 is defined over k. We then have
that s−1σ(s) =: sσ ∈ H1(Gal(k/k), NNGLn(k)(G)(T )). We then wish to study the image of ξσ in

H1(Gal(k/k), NNGLn(k)(sσG)(sσT )). The map coming via:

H1(Gal(k/k), NG(T )) −→ H1(Gal(k/k), NNGLn (G)(T )) −→ H1(Gal(k/k), NNGLn (sσG)(sσT ))
ξσ 7−→ ξσ 7−→ sξσσ(s−1)

Claim. With notation as above, a splitting field of the torus corresponding to ξσ is the fixed field
in k of Ker(sξσσ(s−1)) where we fix a representative of the cocycle and view sξσσ(s−1) as a map
of pointed sets Gal(k/k)→ NNGLn (sσG)(sσT )).

Proof. By construction the torus corresponding to ξσ ∈ H1(Gal(k/k), NG(T )) is the same as the
one corresponding to sξσσ(s−1) ∈ H1(Gal(k/k), NNGLn (sσG)(sσT )). By Hilbert’s Theorem 90 we
may write sξσσ(s−1) = g−1σ(g). We observe that g is then an element of GLn which splits the
torus, and that the kernel we describe is precisely the field generated by the entries of g.

3.3 Tori with Compact R-points

We have the requirement that the tori we are interested in should have that their set of points
over R be compact. Our current goal is to understand which tori these are.

3.3.1 Classification of Tori over R

A first step towards understanding which tori over Q have compact sets of real points is to
classify all tori over R and then inspect which are compact. Once we have done this we will be
able to develop a criterion for which tori defined over Q will have a compact set of real points.
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Example. We have the following examples of tori over R.
1. Gm is the most trivial case, its character module is generated by χ : t 7→ t. We have

Gm(R) = R∗.
2. RC/R(Gm) =

{(
a b
−b a

)
| a2 + b2 6= 0

}
, over C this becomes isomorphic to Gm × Gm and has

characters χ1, χ2 given by χ1

(
a b
−b a

)
7→ a + bi and χ2

(
a b
−b a

)
7→ a − bi. These generate the

character module and complex conjugation in Gal(C/R) acts by interchanging them.

3. R
(1)
C/R(Gm) =

{(
a b
−b a

)
|a2 + b2 = 1

}
=
{

1
2

(
x+ 1

x
−i(x− 1

x
)

i(x− 1
x

) x+ 1
x

)}
. This torus is a sub-torus of

the one above, one notices that its R-points form a compact set, the character module is a
quotient of the one in case (2) by the relation χ1 = χ−1

2 . Either of the characters χ1 = x
or χ2 = 1

x
will generate the character module. Complex conjugation in Gal(C/R) acts by

sending characters to their inverse. We remark that this is isomorphic to SO(2).
The following result is essentially stated in Platinov & Rapinchuk “Algebraic Groups and

Number Theory” [PR94].

Theorem 3.3.1 (Classification of Tori over R). Every torus over R is some finite product of tori
in the form of the above examples. That is of the form:

Gi
m ×RC/R(Gm)j ×R(1)

C/R(Gm)k.

Proof. Tori over R are all forms of the torus T = (Gm)n for some n and are thus classified by:

H1(Gal(C/R),Aut(T ))

But we have chosen T to be split over R so that the action of Gal(C/R) on Aut(T ) is trivial and thus
understanding the cohomology is equivalent to classifying n dimensional integral representations
of Gal(C/R), i.e.

H1(Gal(C/R),GLn(Z)) = Hom(Gal(C/R),GLn(Z)).

By observing that each such homomorphism φ turns Zn into a Z-torsion free finitely generated
Z[Gal(C/R)]-module the problem reduces to classifying these modules, which (as we shall prove
shortly) it turns out are all of the form:

Zi ⊕ Z[Gal(C/R)]j ⊕ Ik,

where I is the kernel of the augmentation map Z[Gal(C/R)] → Z. Once we have this, we know
that via a different choice of basis for Zn our homomorphism φ can be written in the form:

σ 7→ diag

1, · · · , 1︸ ︷︷ ︸
i

, ( 0 1
1 0 ) , · · · , ( 0 1

1 0 )︸ ︷︷ ︸
j

,−1, · · · ,−1︸ ︷︷ ︸
k


where σ represents complex conjugation. Since, complex conjugation acts this way on the character
modules of Gm, RC/R(Gm), R

(1)
C/R(Gm), we can conclude by Theorem 2.1.8 that these are all the tori.

It remains only to prove the following lemma:

Lemma 3.3.2. Every Z-torsion free finitely generated Z[Gal(C/R)]-module is of the form

Zi ⊕ Z[Gal(C/R)]j ⊕ Ik.

Proof. Let M be a finitely generated Z-torsion free Z[Gal(C/R)]-module. Then M can be viewed
as being a free finitely generated Z module with an involution τ . In particular then, M ' Zn and
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τ ∈ GLn(Z) satisfies τ 2 = idn. To get the desired result we need to show that any such τ is similar
over Z to one of the form:

diag

1, · · · , 1︸ ︷︷ ︸
i

, ( 0 1
1 0 ) , · · · , ( 0 1

1 0 )︸ ︷︷ ︸
j

,−1, · · · ,−1︸ ︷︷ ︸
k

 .

It is worth noting that if Z were a field, this result would follow immediately from the theory of
rational canonical forms, moreover if Z[Gal(C/R)] were either a principle ideal domain or if it were
split, general theory would yield the results. Unfortunately, Z[Gal(C/R)] is not a principle ideal
domain as it has zero divisors, and does not split, though Z[1

2
][Gal(C/R)] does.

Claim (1). Let M be a free Z-module, then {x1, · · · , xn} ⊂ M extends to a basis for M if and
only if {x1, · · · , xn} is linearly independent and for all z ∈ M such that there exists 0 6= n ∈ Z
with nz ∈ 〈x1, · · · , xn〉Z we have z ∈ 〈x1, · · · , xn〉Z.

Proof. The forward direction is proven by considering some extension to a basis and showing that
if nz ∈ 〈x1, · · · , xn〉Z but z is not then we will have a linear dependence in our extended basis.

The reverse direction is proven by considering any basis for M and showing inductively that we
can perform a change of basis to include the xi. This requires showing that the subsets {x1, . . . , xm}
satisfy the same conditions, which is to say that if az ∈ 〈x1, · · · , xm〉Z then az ∈ 〈x1, · · · , xn〉Z so
z ∈ 〈x1, · · · , xn〉Z we then get two expressions for az in terms of the {x1, · · · , xn} linear indepen-
dence will then imply z ∈ 〈x1, · · · , xm〉Z.
Now inductively suppose we have included the first m elements into a basis {x1, · · · , xm, y1, · · · yl},
write xm+1 in terms of this basis xm+1 = a1x1 + · · · + amxm + b1y1 + · · · + blyl. the divisibility
condition on the xi implies that gcd(bi) = 1 we can thus perform a change of basis within the yj
to arrange so that at least one bj = 1, replacing the corresponding yj with xm+1 is then a valid
integral change of basis and allows us to complete the result.

Claim (2). Let M be a free Z-module and suppose the set {x1, · · · , xn} ⊂M extends to a basis for
M . Let y ∈M \ 〈x1, · · · , xm〉Z, then there exists z ∈M, 0 6= a ∈ Z such that az ∈ 〈x1, · · · , xm, y〉Z
and {x1, · · · , xn, z} extends to a basis for M . Moreover, we have that:

{x ∈M | ∃0 6= a ∈ Z such that ax ∈ 〈x1, · · · , xm, y〉Z} = 〈x1, · · · , xn, z〉Z.

Proof. Consider the Z-module M ′ = {x ∈ M | ∃0 6= a ∈ Z such that ax ∈ 〈x1, · · · , xm, y〉Z}.
Since {x1, · · · , xn} extends to a basis of M , by the conditions of claim 1 it extends to one for
M ′. Let z be any element in this extension to a basis for M ′, then again by claim 1 we have
{x1, · · · , xn, z} extends to a basis for M . The assertion M ′ = 〈x1, · · · , xn, z〉Z is checked that if
z′ ∈ M ′ \ 〈x1, · · · , xn, z〉Z then for some 0 6= a, b ∈ Z we would have 〈x1, · · · , xn, az, bz′〉Z a rank
n+ 2 submodule of M ′.

Claim (3). τ is upper triangularizable over Z.

Proof. We proceed inductively to produce a set {x1, · · · , xm} that extends to a basis for M and
〈x1, · · · , xn〉Z is τ stable and τ acts upper triangularly. So, suppose we have completed this
process up to step m and suppose y ∈ M \ 〈x1, · · · , xm〉Z. We consider first the case that
{x1, · · · , xm, y, τ(y)} is linearly independent. In this case replace y by y + τ(y) (note that the
“new y” is still in M \ 〈x1, · · · , xn〉Z).

We may now suppose we are in the case where {x1, · · · , xm, y, τ(y)} is linearly dependant.
We now apply claim (2) to {x1, · · · , xm, y} and find there exists z ∈ M such that {x1, · · · , xm, z}
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extends to a basis of M and

〈x1, · · · , xm, z〉Z = {x ∈M | ∃0 6= a ∈ Z such that ax ∈ 〈x1, · · · , xm, y〉Z}.

Notice that because of the linear dependance we assumed we find τ(y) ∈ 〈x1, · · · , xm, z〉Z. More-
over, notice then that since 〈x1, · · · , xm, y, τ(y)〉Z was τ stable so too is 〈x1, · · · , xm, z〉Z. It follows
then that τ will act upper triangularly with the basis {x1, . . . , xm, z}. The result follows by induc-
tion.

Since τ is upper triangularizable we can write:

τ =

±1 ∗ ∗
0

. . . ∗
0 0 ±1

 .

Claim (4). We can sort the diagonal of τ via a change of basis so that all the +1 appear before
the −1 while maintaining upper triangularity.

Proof. It suffices to prove that the blocks ( 1 a
0 −1 ) and ( −1 a

0 1 ) are all similar since we could then
interchange the 1’s and −1’s one at a time preserving upper triangularity. The computation:

( 1 1
0 1 ) ( 1 a

0 −1 ) ( 1 −1
0 1 ) =

(
1 a−2
0 −1

)
allows us to reduce a (mod 2), the case of a = 0 is seen via the identity:

( 0 1
1 0 ) ( 1 0

0 −1 ) ( 0 1
1 0 ) = ( −1 0

0 1 )

and the computations:
( 1 0

1 1 ) ( 1 1
0 −1 ) ( 1 0

−1 1 ) = ( 0 1
1 0 )

( 1 0
−1 1 ) ( −1 1

0 1 ) ( 1 0
1 1 ) = ( 0 1

1 0 )

give us the result in the a = 1 case.

We now conclude that we have τ in the form:

τ =



1 ∗ · · · ∗
. . .

1
...

−1
. . . ∗
−1


.

the condition τ 2 = idn can be used to iteratively show that the entries above the 1’s on the diagonal
and those to the right of the −1’s are all 0. This is done by computing the ai+j,i entry of τ 2 starting
at j = 1, i = 1 then j = 1, i = 2 and so on. Consequently we may assume we have:

τ =

(
idn A
0m,n −idm

)
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where A is some potentially non-square matrix. It is then an easy check that:(
P 0m,n

0n,m Q

)(
idn A
0m,n −idm

)(
P−1 0m,n
0n,m Q−1

)
=

(
idn PAQ−1

0m,n −idm

)
so that by the theory of Smith normal form, that is that invertible row and column operations
allow diagonalizing any matrix, we may assume that A is a diagonal matrix. It immediately follows
that τ can be broken into blocks of the form ( 1 a

0 −1 ). The computations in claim (4) then allow us
to conclude the desired result.

This concludes the proof of the theorem.

As a natural consequence of the above classification, we get the following characterizations of
when the real points of a torus are compact.
Corollary 3.3.3. Let T be an algebraic torus defined over k ⊂ R then the following are equivalent:

1. T (R) is compact.

2. T is isomorphic over R to R
(1)
C/R(Gm)a for some a.

3. T is anisotropic over R, that is X∗(T )R = {0}.
4. Complex conjugation acts as inversion on X∗(T ).

Proof. (1) ⇔ (2) in the theorem this is the only case where T (R) is compact.
(2) ⇔ (3) in the theorem this is the only case where T is anisotropic over R.
(3) ⇔ (4) follows from fact that for any character τ we know that the character ττ will have

be in X∗(T )R. Consequently, X∗(T )R = {0} implies τ−1 = τ . Conversely, for τ ∈ X∗(T )R we have
τ = τ and so τ = τ−1 implies τ = id (as the character module is Z-torsion free.

Remark. The previous theorem suggests, that if we understand which of the above types of tori
have compact sets of real points (in particular only the last type) and construct the map:

φ : H1(Gal(Q/Q), NG(T0))→ H1(Gal(C/R),Aut(T0)),

by first associating to an element of NG(T ) the automorphism it induces through conjugation, and
then via fixing an embedding Q→ C view Gal(C/R) ⊂ Gal(Q/Q) and restricting the map to this
set. We could use the map to understand which tori over Q will have T (R) compact.
Claim. Fix T0 any Q-defined maximal torus in G such that T0(R) is compact. Let T be any other
Q-defined maximal torus in G with associated cocycle gσ ∈ H1(Gal(Q/Q), NG(T )) then T (R) is
compact if and only if gσ ∈ Ker(φ).

Proof. The map φ associates to the torus T first its isomorphism class as a torus over Q. Then via
restricting to Gal(C/R) we consider only its isomorphism class over R. Since all tori with T (R)
compact of the same rank are R-isomorphic the result then follows.

3.3.2 Structure of Tori with Compact R-points

Now that we have some criterion for detecting compactness, we wish to describe more explicitly
the possible structure of these tori.

Definition 3.3.4. An algebraic torus T/k is said to be quasi-split if it is k-isomorphic to
n∏
i=1

RLi/k(Gm) for Li/k finite extensions.

Remark that a split torus is quasi-split in the sense that one can take the fields Li to be k.
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The following general result can be found in Platinov and Rapinchuk “Algebraic Groups and
Number Theory” [PR94].

Theorem 3.3.5. Every algebraic torus T/k can be embedded into a quasi-split torus. Moreover,
if T splits over L we can arrange so that T embeds into RL/k(Gm)l for some l.

Proof. Let L be a finite Galois extension of k over which T splits. Then X∗(T ) is a Z[Gal(L/k)]-
module. Writing X∗(T ) as a quotient of a free Z[Gal(L/k)]-module we get the exact sequence:

0→ ∆→ Z[Gal(L/k)]l → X∗(T )→ 0

Applying the contravariant functor from Galois modules to tori we get the exact sequence:

1→ T → RL/k(Gm)l → S → 1

which proves the result.

We now focus more specifically on our setting.
Proposition 3.3.6. Let k be a totally real field and T ⊂ RL/k(Gm)l have a compact set of real
points then T splits over a CM-field.

Proof. The criterion for T (R) to be compact was that the action of the element induced by complex
conjugation in Gal(k/k) acts as inversion on X∗(T ). However, which element of Gal(k/k) complex
conjugation corresponds to depends on the embedding of k in C whereas compactness depends
only on the embedding of k into R. Consequently, we conclude any potential representative of
complex conjugation acts by inversion on X∗(T ).

Next, we know that a torus T ⊂ GLn is a form of SOl
2. By the classification of forms, there

exists some cocycle ξσ ∈ H1(Gal(k/k),Aut(SOl
2)) that corresponds to the isomorphism class of T

and that the isomorphism T → SOl
2 is defined over the fixed field in k of Ker(ξσ). We moreover

know that in general the character module of T is the same as that of SOl
2 except with a twisted

action of the Galois group.
Now, for any potential representative of complex conjugation τ ∈ Gal(k/k) we have that the

action of τ on X∗(T ) agrees with that of τ on X∗(SOl
2), In particular it acts as inversion on both

modules. Consequently, by computing the twisted action we have that χ(t) = χ(ξτ (t)) for all
χ ∈ X∗(T ) and t ∈ T . From this we conclude for τ , any representative of complex conjugation,
ξτ is the identity map. This implies that τ ∈ Ker(ξσ). From this we conclude that the field
L′ over which T is isomorphic to SOl

2, that is the fixed field of Ker(ξσ) in k, is fixed by every
representative of complex conjugation. Consequently this field is totally real. Since SOl

2 splits over
k(i) we conclude that T splits over a L′(i) which is a CM-field.

Combining Proposition 3.3.6 and Theorem 3.3.5, we conclude that every torus over Q with
T (R) compact embeds in RL/Q(Gm)l where L/Q is CM.

Theorem 3.3.7. Every torus T defined over Q with T (R) compact embeds in RK/Q(R
(1)
L/K(Gm))l

where L/Q is a CM-field, and K is the maximal totally real subfield of L.

Proof. By the above we know that T embeds in RK/Q(RL/K(Gm))l for some l where L is a Galois
CM splitting field of T . Let σ represent complex conjugation in Gal(L/Q), then since we know σ
acts as −1 on X∗(T ) we have that X∗(T ) is a module over the ring Z[Gal(L/Q)]/(σ + 1). Then
as in previous theorem writing:

0→ ∆→ (Z[Gal(L/Q)]/(σ + 1))l → X∗(T )→ 0
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we get the sequence of tori:

1→ T → RK/Q(R
(1)
L/K(Gm))l → S → 1

Which completes the result.

Remark. We comment that the above result is a long way from saying that all such tori are
isomorphic to tori of this form. If it were true that all sub-tori of RK/Q(R

(1)
L/K(Gm)) where of

a similar form but for a smaller CM-field we could perhaps conclude this. But such a claim is
dubious since the similar claim is certainly not true for a general quasi-split torus.

We do however note that the embedding T ↪→ RK/Q(R
(1)
L/K(Gm)) gives us a representation

Gal(L/Q)→ GL(X∗(T )). If this representation is not faithful, it must factor through a quotient,

and thus corresponds to a smaller subfield of L′ ⊂ L and then T ↪→ RK′/Q(R
(1)
L′/K′(Gm)). In this

way, since we can bound the size of finite subgroups of GLn, we may bound the size of extensions
we consider when looking at these tori.
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CHAPTER 4
Special Points on Hermitian Symmetric Spaces of Orthogonal Type

Recall from the beginning of Chapter 3 that our goal is to understand the special points that
appear on the symmetric spaces attached to orthogonal groups. To each special point we have an
associated torus of compact type and it was the appearance of these tori in our groups that we have
been looking at. The question we now pose is, given an algebraic torus T , for which orthogonal
groups Oq can we have T ⊂ Oq? We are most interested in tori with a compact set of real points.

4.1 Criterion for embedding Oq in Oq′

We are interested in the problem of determining which tori can inject into a given orthogonal
group. We would like to restrict this to the easier problem of studying this problem for specific
types of tori, in particular those that come from a single field and not from a product of fields.
However, in doing so, we seem to go from the problem of embedding tori maximally, to embedding
them non-maximally. To resolve this we would like to say that, whenever T ⊂ Oq then ∃q′ such
that T ⊂ Oq′ ⊂ Oq and T is maximal in Oq′ . This is however in general not true. We do however
have the following results:
Claim. Let T be a rank n torus defined over a field k suppose T ↪→ Oq where q is a non-degenerate
quadratic form on V a k-vector space then:
• T acts on V ⊗ k via some subset S of its characters. This set S spans the character module.

Proof. Diagonalizability implies T acts via characters, that it injects into Oq, and thus into
GLn implies the action is faithful and thus T acts by a spanning set of characters (but not
necessarily a basis).

• If W ⊂ V ⊗ k is a 1-dimensional subspace and T acts on W via t ◦ w 7→ χ(t)w then either
χ = 1 or q|W = 0.

Proof. This is because the action of T preserves the form and q(t ◦ v) = χ(t)2q(v).

• For each character χ ∈ S \ {1} there is a 2-dimensional subspace Wχ ∈ V ⊗ k with a basis
w1, w2 such that t◦w1 = χ(t)w1 and t◦w2 = χ(t)−1w2. Moreover q|W (x1w1 +x2w2) = ax1x2.

Proof. By diagonalizing T over GLn(k) we may suppose that each character acts linearly.
We may thus fix w1 ∈ V ⊗ k on which T acts linearly via χ. By non-degeneracy there exists
an element w2 ∈ V ⊗ k on which T acts linearly via another character χ′ and such that q is
not trivial on Wχ := span(w1, w2). By the previous claim however q(w1) = 0. If q(w2) 6= 0
then χ′ = 1 and so B(t ◦w1, t ◦w2) = χ(t)B(w1, w2). Thus we conclude also that q(w2) = 0.
Consequently q|Wχ(x1w1 +x2w2) = ax1x2. It follows then that since a 6= 0 that χ′ = χ−1.

• For σ ∈ Gal(k/k) we can take Wσχ = σ(Wχ) in particular, if χ ∈ S then σχ ∈ S.

Proof. For w a χ eigenvector of T have:

t ◦ σ(w) = σ((σ−1(t) ◦ w) = σ(χ(σ−1(t))w) = σχ(σ(w)).

This gives us the desired action.
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• Fixing a Galois stable linearly independent subset S ′ ⊂ S and considering V ′ := ⊕
χ∈S′

Wχ

yields a k-rational, subspace of V . If we consider the torus T ′ whose Galois module is Z〈S ′〉
then it acts k-rationally on this space.

Proof. V ′ is rational over k since it is Galois stable. T ′ is rational over k since it is the image
of T acting on GL(V ′) under a k-rational morphism.

• If we can arrange so that S ′ spans X∗(T ) then moreover T ′ and T will be isogenous.

Proof. This follows from the fact that X∗(T ′) would be a maximal rank Z-submodule of
X∗(T ).

Remark. The reason we don’t get the desired result from the above is that it is possible that no
subset of S forms a Z-basis for the character module. Consider for example the torus:

T ′ =

{(
t2 0 0 0
0 t−2 0 0
0 0 t3 0
0 0 0 t−3

)}
It will inject into an orthogonal group for a 4 dimensional space, is rational, but it doesn’t act by
a basis of characters. However, in this case the only maximal torus that can contain it inside any
orthogonal group is of the form:

T =

{(
t 0 0 0
0 t−1 0 0
0 0 s 0
0 0 0 s−1

)}
.

And this torus could be broken up in such a way that it preserves sub-orthogonal groups.
Our general hope was that if we have T = T1 × T2 × · · · × Ts, where each Ti cannot be

further decomposed as products of k-defined subtori, that whenever T ↪→ Oq we can decompose
Oq ⊃

∏
Oqi where Ti ↪→ Oqi . The above example shows that not all decompositions of T may

work, that is T ' T ′×Gm fails to decompose the space but T ' SO2× SO2 does. It is hoped that
there always exists one that does.

The problem that this uncertainty gives us, is that one may not be able to fully understand the
embedding problem for non-maximal tori in terms of the problem for maximal tori together with
the embedding problem of orthogonal groups. This restricts what we can say about the embedding
problem for tori coming from CM-algebras (rather than just CM-fields). The embeddings of these
that we can understand in this way require us to assume that the action is “almost-regular” in
the sense that it decomposes into something sufficiently like the regular representation for each
constituent field.

If we wish to perform the program as indicated above, one of the first questions that comes
up is when can we embed one orthogonal group into another. This problem will turn out to
be of interest for another reason in the special case where the orthogonal groups have the same
rank. The reason for this is that we shall eventually be able to give some explicit descriptions of
quadratic forms that certain tori shall naturally preserve. By doing this, we obtain an embedding
of the torus into the orthogonal group associated to the form. A question that then arises is ‘how
general is this construction?’. If two orthogonal groups are isomorphic, constructing a torus in one
group would give us a torus in the other even if we did not a priori see a natural embedding of
it. As such, we will be interested in the question of to what extent are the isomorphism classes of
orthogonal groups controlled by the quadratic forms defining them? That is we will have maps:

{quadratic forms over Q up to scaling}� {orthogonal groups over Q up to isomorphism}
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{orthogonal groups in GLn over Q} ↪→ {forms of On over Q up to isomorphism}

What we would like somehow to know is that the first of these maps is in fact also injective and
though not totally relevant to our objectives it is interesting to ask if the second map is surjective.

We first prove a lemma which allows us to understand the structure of NGLn(On).
Lemma 4.1.1. For On a orthogonal group (for an n-dimensional space) we get:

NGLn(On) = {αM |α ∈ C,M ∈ On}.

Proof. It suffices to consider the case of the usual orthogonal group coming from tgg = In.
The containment {αM |α ∈ C,M ∈ On} ⊂ NGLn(On) is obvious. Conversely, to say that

M ∈ NGLn(On) is to say that MgM−1In
t(MgM−1) = In in GLn for all g ∈ On. That is equivalent

to saying tg(tMM)g = tMM for all g ∈ On.
We first consider the case n = 2. Take tMM = ( a bc d ) and the element ( 0 1

1 0 ) ∈ O2. The
identity:

( 0 1
1 0 ) ( a bc d ) ( 0 1

1 0 ) = ( c da b ) ( 0 1
1 0 ) = ( d cb a )

tells us that a = d and b = c and then using the element ( 0 1
−1 0 ) ∈ O2 we get:

( 0 1
−1 0 ) ( a bb a ) ( 0 −1

1 0 ) =
(

b a
−a −b

)
( 0 −1

1 0 ) =
(
a −b
−b a

)
which then tells us that b = c = 0.

We can reduce the general case to the n = 2 case by observing that we can embed O2 ↪→ On

in sufficiently many ways to get the result that tMM = αId. That is the map which takes
(
x y
−y x ) ∈ O2 to the matrix X ∈ On which is equal to the identity except that Xii = Xjj = x and
Xij = −Xji = y allows us to use the identical argument to show that (tMM)ij = (tMM)ji = 0
and (tMM)ii = (tMM)jj. We can thus conclude that ( 1

α(1/2n) )M ∈ On.

The next thing we need to understand is the structure of Aut(Oq). We know that for a
connected reductive group the automorphism group is precisely the semi-direct product of the
inner automorphisms and the automorphism group of the associated Dynkin diagram [Spr98]. Oq

is not connected, however we do have the following:
Claim. If the dimension n for the quadratic space of q is odd then Aut(Oq) ' Aut(SOq) and if it is
even we have that Aut(Oq) ' Aut(SOq)×{±1} and in particular the automorphism corresponding
to id×−1 is the map φ : g 7→ det(g)g.

Proof. There is a natural map Aut(Oq) → Aut(SOq) coming via restriction using the fact that
maps must take the connected component of the identity, in this case SOq, to itself. It suffices to
show that the kernel of this map is precisely φ when n is even and trivial when n is odd.

Pick any element x ∈ V where V is the underlying space of q. Let τx be the reflection at
x. Then τx interchanges the connected components of Oq and thus we have Oq = SOq

⊔
τx SOq.

Consequently, any map on Oq trivial on SOq is determined entirely by its action on τx.
Consider a map σ ∈ Ker(Aut(Oq)→ Aut(SOq)). For all h ∈ SOq we have τxhτx = σ(τx)hσ(τx)

and so we have that τxσ(τ−1
x ) is in the center of SOq. Since for n > 2 the center is precisely In when

n is odd or ±In otherwise we conclude σ(τx) = ±τx. In the n = 2 we can use that σ(τx)
2 = I2 to

get the same result. It is easy to see that σ(τx) = τx corresponds to the identity and σ(τx) = −τx
corresponds to φ. This completes the result.

Proposition 4.1.2. For the dimension n 6= 8 we have that the map:

H1(Gal(Q/Q), NGLn(Oq))→ H1(Gal(Q/Q),Aut(Oq))
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which takes a rational conjugacy class to its rational isomorphism class is injective.

Proof. Since NGLn(Oq) → Aut(Oq) factors through Inn(Oq) this is simply a basic property of
sequence of cohomology attached to the exact sequence:

0→ Inn(Oq)→ Aut(Oq)→ Aut(Oq)/ Inn(Oq)→ 0

which tells us that the kernel of the map H1(Gal(Q/Q), Inn(Oq)) → H1(Gal(Q/Q),Aut(Oq)) is
precisely given by H0(Gal(Q/Q),Aut(Oq)/ Inn(Oq))/ im

[
H0(Gal(Q/Q),Aut(Oq))

]
. In all cases

other than n = 8 the group Aut(SOq)/ Inn(Oq) is trivial as the outer automorphism of SOq is
conjugation by Oq. We thus need only consider the morphism φ from the previous claim. The
map φ is Galois equivariant and thus gives an element of H0(Gal(Q/Q),Aut(Oq)). It follows from
this that:

H0(Gal(Q/Q),Aut(Oq)/ Inn(Oq))/ im
[
H0(Gal(Q/Q),Aut(Oq))

]
is trivial.

We next consider the exact sequence:

0→ Q∗ → NGLn(Oq)→ Inn(Oq)→ 0

Hilbert’s Theorem 90 tells us that H1(Gal(Q/Q), NGLn(Oq)) ↪→ H1(Gal(Q/Q), Inn(Oq)). This
completes the result.

Corollary 4.1.3. For the dimension n 6= 8 we have that H1(Gal(Q/Q), NGLn(Oq)) classifies the
rational isomorphism classes of forms of the orthogonal group which are defined by quadratic forms.

Proof. We know that any two forms of orthogonal groups for dimension n which are defined
by a quadratic form in the usual way are conjugate over Q. Thus if we consider the map
H1(Gal(Q/Q), NGLn(Oq))→ H1(Gal(Q/Q),Aut(Oq)) viewingH1(Gal(Q/Q),Aut(Oq)) as the clas-
sifying space for rational forms of orthogonal groups we have the image will contain all those iso-
morphism classes coming from quadratic forms. That this map is also injective gives the result.

Remark. If one wanted to handle the cases of n = 8 as above one would need to look first at the
outer automorphism group Aut(SOq)/ Inn(SOq) and determine if

H0(Gal(Q/Q),Aut(SOq)/ Inn(SOq))/H
0(Gal(Q/Q),Aut(SOq))

is trivial. To do this one must understand the spin representations as it is exceptional isomorphisms
of these that give rise to the extra automorphisms. For example in the n = 4 case it was the spin
representation that gave us the isomorphism to SL2× SL2. One can see that an outer automorphism
arises by interchanging the two factors. If one looks at the case n = 8, one would find that in
general the set may seem not be trivial for the cases n = 8 depending on the choice of quadratic
form. One then needs to investigate if these automorphisms descend to SOq.

If they do descend, one might then try to argue that:

H1(Gal(Q/Q), NGLn(Oq)) ↪→ H1(Gal(Q/Q), Inn(SOq))

is not surjective in precisely the cases where we had a kernel in the map with which it would be
composed.

Because we have not proved the result for the cases n = 4, 6, 8 we shall assume for the
remainder of this section that the dimensions of quadratic spaces are not one of these.
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Remark. A few final remarks are in order just to give a summary of which cohomology classifies
what. We have that H1(Gal(Q/Q), SOq) classifies quadratic forms with the same dimension and
discriminant as q. We know that H1(Gal(Q/Q),Oq) classifies quadratic forms of the same dimen-
sion as q. The connection between these two facts is that H1(Gal(Q/Q), µ2) classifies quadratic
extensions of Q which is essentially to say it classifies square free integers which are the possible
discriminants. We know that H1(Gal(Q/Q), NGLn(Oq) = GOq) classifies both quadratic forms of
the same dimension as q up to rescaling as well as rational conjugacy classes of Oq in GLn. And
we have also just proved that this classifies (for n 6= 4, 6, 8) the rational isomorphism classes of the
conjugates of Oq in GLn.

The next thing we would like to describe are the invariants of orthogonal groups that control
embeddings. The invariants we are looking at come not directly from the orthogonal groups, but
rather from the associated quadratic forms. In order to see to what extent the invariants of an
orthogonal group can be tied to those of a defining quadratic form we have the following:
Proposition 4.1.4. Let Oq1 ,Oq2 ⊂ GLn(C) be orthogonal groups defined over Q with q1, q2 any
quadratic forms defining them (over Q), then Oq1 ' Oq2 over Q ⇔ ∃λ ∈ Q such that q1 ∼ λq2

(over Q).

Proof. We have that H1(Gal(Q/Q), NGLn(Oq)) classifies orthogonal groups in dimension n. More-
over we know that NGLn(Oq)(C) = COq.

Now, we know that Oq = Aut(V, q) are the automorphisms of V preserving q, additionally we
have COq = Aut(V, P (q)) are the automorphisms of V that preserve q up to rescaling. In particular
then H1(Gal(Q/Q),Aut(V, P (q))) = H1(Gal(Q/Q), NGLn(Oq)) classifies quadratic spaces up to
rescaling of the quadratic form. This gives us the desired correspondence between the forms of
orthogonal groups and quadratic forms up to rescaling.

We would like to consider the conditions on having an orthogonal group be contained in
another, however we are only really interested in cases where the embedded orthogonal group is
acting as an orthogonal group. As such we make the following non-standard definition:
Definition 4.1.5. Let Oq,Oq′ be the orthogonal groups for the spaces (V, q) and (V ′, q′) respec-
tively. Then Oq′ ⊂ Oq is a sub-orthogonal group if there exists an Oq′ stable subspace U ⊂ V
such that Oq′ acts faithfully on U , (U, q|U) is non-degenerate and dim(U) = dim(V ′).

From the above result, we conclude the following general result about the embedding of
orthogonal groups:
Proposition 4.1.6. Let Oq1 ,Oq2 be orthogonal groups defined over Q with q1, q2 any quadratic
forms defining them (over Q). Then Oq2 is a sub-orthogonal group of Oq1 if and only if ∃λ ∈ Q, q3

such that q1 ' (λq2) ⊕ q3 (what we mean is an isomorphism of Q vector spaces with quadratic
forms where the right hand side is the direct sum of spaces).

Proof. The injection Oq2 ↪→ Oq1 allows us to decompose the vector space on which Oq1 is acting
into subspace which Oq2 acts trivially (V3) and its orthogonal complement (V2). Restricting q1

when restricted to V2 and V3 must give quadratic forms q′2 and q3, by the above result q′2 is a
multiple of q2. This completes the result. (One must of course also make a dimension argument
about V2, V3).

Proposition 4.1.7. Let Oq1 ,Oq2 be orthogonal groups over Q with q1, q2 any rational quadratic
forms defining them. Let the quadratic forms qi have invariants di, eνpi, (ri, si), ni. Then Oq1 ' Oq2

over Q if and only if (r1, s1) = (r2, s2) or (s1, r1) = (r2, s2) (in latter case replace q1 by −q1 to be
in former case for the remainder) and
• if n ≡ 0(mod2) then d1 = d2 and ∃λ ∈ Q such that eνp1eνp2 = (λ, (−1)n/2d)νp.
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• if n ≡ 1(mod4) then eνp1 = eνp2.
• if n ≡ 3(mod4) then eνp1(d1, d1)νp = eνp2(d2, d2)νp.

Proof. By applying our criterion for the isomorphism of Orthogonal groups and the proposition
above we immediately get the following conditions:

1. (r1, s1) = (r2, s2) or (s1, r1) = (r2, s2)
in the latter case replace q1 by −q1 to be in former.

2. ∃λ ∈ Q such that d1 = λnd2 and eνp1 = eνp2(λ, λ)
n(n−1)/2
νp (λ, dn−1)νp .

By using the properties of the Hilbert Symbol and the discriminant we arrive at these cases:
• if n ≡ 0(mod4) then d1 = d2 and ∃λ ∈ Q such that eνp1eνp2 = (λ, d)νp
• if n ≡ 1(mod4) then eνp1 = eνp2

• if n ≡ 2(mod4) then d1 = d2 and ∃λ ∈ Q such that eνp1eνp2 = (λ,−d)νp
• if n ≡ 3(mod4) then eνp1eνp2 = (d1d2, d1d2)νp

The extra conditions in the first and third case are in fact automatic in many cases by appealing
to the existence of rational numbers with given Hilbert symbol. The failure for the existence of a
global λ, such that (λ, d)νp = −1 is an entirely local problem at p and says that (λ, d)νp = 1 for all
λ ∈ Qp. In particular it would imply d is a square in Qp.

Proposition 4.1.8. Let Oq1 ,Oq2 be orthogonal groups over Q with q1, q2 any rational quadratic
forms defining them. Let the quadratic forms qi have invariants di, eνpi, (ri, si), ni. Then we can
embed Oq2 ↪→ Oq1 as a sub-orthogonal group if and only if (r2, s2) < (r1, s1) or (s2, r2) < (r1, s1)
(in the latter case, replace q2 with −q2) and further conditions detailed in the proof of the theorem.

Proof. The literal requirement is ∃λ ∈ Q, q3 such that q1 ' (λq2) ⊕ q3. In particular this can be
checked on the level of invariants. The condition (r2, s2) < (r1, s1) or (s2, r2) < (r1, s1) correspond
to the signature condition.

The discriminant of (λq2)⊕ q3 would be: λn2d2d3 thus we must have that:

d3λ
n2 = d1d2(mod squares).

The condition on Hilbert symbols in general is:

eνp1 = eνp2eνp3(λ, λ)n2(n2−1)/2
νp (λn2d2, d3)νp(λ, d

n2−1
2 )νp

Supposing now that the signature condition is met we can simplify this in the following cases:
1. n1 − n2 ≥ 3 then take λ = 1 condition is d3 = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp .

Condition for the existence of quadratic form is automatic in this case.
2. n1 − n2 = 2

(a) n1
∼= 0 (mod4): Then d3 = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(λ,−1)νp(d2, λ)νp

Requirement is ∀p with d1d2 = −1 in Qp/Q2
p then ∃λp ∈ Qp with

(λp,−d2)νp = eνp1eνp2(d2,−d1)νp

Or equivalently d1d2 = −1 in Qp/Q2
p implies d2 6= −1 in Qp/Q2

p

(b) n1
∼= 1 (mod4) Then d3λ = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(λ,−1)νp(d2, λ)νp

Then take λ = d1d2 and condition the condition is then automatic.
(c) n1

∼= 2 (mod4) Then d3 = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(d2, λ)νp
Requirement is ∀p with d1d2 = −1 in Qp/Q2

p then ∃λp ∈ Qp with

(λp, d2)νp = eνp1eνp2(d2,−d1)νp
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Or equivalently d1d2 = −1 in Qp/Q2
p implies d2 6= 1 in Qp/Q2

p

(d) n1
∼= 3 (mod4) Then d3λ = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(d2, λ)νp

Then take λ = d1d2 and condition the condition is then automatic.
3. n1 − n2 = 1

(a) n1
∼= 0 (mod4): Then d3λ = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(λ,−1)νp(d2, λ)νp

Requirement is ∀p∃λp with (λp,−d2)νp = eνp1eνp2(d2,−d1)νp
(b) n1

∼= 1 (mod4): Then d3 = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(d2, λ)νp
Requirement is ∀p∃λp with (λp, d2)νp = eνp1eνp2(d2,−d1)νp

(c) n1
∼= 2 (mod4): Then d3λ = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(d2, λ)νp

Requirement is ∀p∃λp with (λp, d2)νp = eνp1eνp2(d2,−d1)νp
(d) n1

∼= 3 (mod4): Then d3 = d1d2, eνp3 = eνp1eνp2(d2,−d1)νp(λ,−1)νp(d2, λ)νp
Requirement is ∀p∃λp with (λp,−d2)νp = eνp1eνp2(d2,−d1)νp

4. n1 = n2 then as in the previous theorem.

The cases in the above that we are most interested in are those where n2 is even. This is
because it is more natural to first embed tori into even dimension orthogonal groups. The case
where we have n1 = n2 +1 really describes the extra sort of freedom we have when trying to embed
tori into orthogonal groups of odd dimension. In comparison to the n1 = n2 case we have essentially
removed the condition that the discriminants be equal and are left only with a lesser condition
on Witt invariants. One can in a sense view this as replacing a condition about having the same
ramification and splitting behavior at all primes with one about the quadratic forms having the
same splitting behavior whenever a prime splits over either

√
d2 or

√
−d2 as appropriate. In the

n1 = n2 + 2 case we have even milder conditions. The n1 − n2 ≥ 3 case tells us that any ‘small’
CM-algebra will always be embeddable into a sufficiently large orthogonal group. Though there
are still conditions on what one can pair such a CM-algebra with so that it becomes a maximal
torus.

4.2 Quadratic forms for the Tori RK/Q(R
(1)
E/K(Gm))

We will now look at a particular set of examples of tori and the orthogonal groups into which
they embed.

Consider a CM-field E/Q (of degree 2n), with maximal totally real subfield K (so E = K(
√
δ)

where δ is a totally negative). Fix an element λ ∈ K then viewing E as a Q-vector space we get
the quadratic form qλ on E attached to the bilinear form Bλ(x, y) := TrE/Q(λxy).

Now we can fix two basis for K/Q. Let a1, . . . , an be such that Bλ(ai, aj) = 0 for i 6= j and

a′1, . . . , a
′
n be such that B−λδ(a

′
i, a
′
j) = 0. Then a1, . . . , an, a

′
1

√
δ, . . . , a′n

√
δ is a basis for E/Q with

respect to which the matrix for qλ will be of the form diag(2TrK/Q(λa2
i )i=1..n, 2TrK/Q(−λδa′2i )i=1..n).

In particular, if we define a quadratic Q form on K via the bilinear formQα(x, y) := TrK/Q(αxy)

then qλ decomposes as qλ = 2Qλ ⊕ 2Q−λδ via the natural decomposition E = K ⊕ K
√
δ. So

to study the invariants of qλ it shall suffice to look at the invariants of Qα and combine them
appropriately.

One thing to observe about qλ (which explains our interest in it) is that the algebraic tori

RK/Q(R
(1)
E/K(Gm)) embeds naturally into Oqλ for any choice of λ ∈ K. So that this construction

then gives us a method of embedding these tori into not just one, but instead a family of orthogonal
groups.

We now go about describing the invariants of the form Qα. We recall that the important
invariants of a quadratic form Q are its discriminant D(Q) ∈ Q/Q2 ∼= H1(Gal(Q/Q)),Z/2Z), it’s
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Hasse-Witt invariants, which can either be viewed as the collection eν ∈ {±1} for each valuation
ν of Q or as W (Q) ∈ H2(Gal(Q/Q),Z/2Z), and finally its signature (r, s) ∈ N⊗ N. We shall use
the following result of Serre “Invariant de Witt de la forme Tr(x2)” [Ser84].

Theorem 4.2.1. [Ser84]
The quadratic form Qα has the following invariants:

D(Qα) = NK/Q(α)
W (Qα) = e∗α(s′n) + (2)(dK)
The signature is (#of positive embeddings of α, #of negative embeddings of α).

Remark. We now define the various terms that appear in the statement of the theorem:
dK is the discriminant of the field K/Q.
(x) is the element of H1(Gal(Q/Q),Z/2Z) corresponding to x ∈ Q∗/Q∗2.
(x)(y) means the cup product as an element of H2(Gal(Q/Q),Z/2Z).
Now if σ1, . . . , σn are the embeddings of K in C, and ±βi the square roots of σi(α). Then we

may map Gal(Q/Q)→ S(n, 2) (where S(n, 2) are the Schur multipliers [DM74]) via the action of
Gal(Q/Q) on ±βi. e∗ : H2(S(n, 2),Z/2Z)→ H2(Gal(Q/Q),Z/2Z) is then the map induced from
e : Gal(Q/Q)→ S(n, 2).

The element s′n ∈ H2(S(n, 2),Z/2Z) corresponds to a specific central extension of S(n, 2).
The complete description of the cohomology H2(S(n, 2),Z/2Z) can be found in [DM74], we shall
only describe the element s′n which we need.

The group S(n, 2) can be described as (Z/2Z)n o Sn where this is a semi-direct product with
Sn acting as permutations on the (Z/2Z)n. This can be described in terms of generators and
relations as:

ri, i = 1..(n − 1) corresponds to (i, i + 1) ∈ Sn and wi, i = 1..n corresponds to 1 in the ith

copy of Z/2Z. r2
i = 1, rir

3
i+1 = (rirj)

2 = 1 for j 6= i, i + 1, w2
i = 1, wjwi = wiwj, riwi = wi+1ri,

riwj = wjri for j 6= i, i+ 1.
The central extension we would like to consider we shall denote A and is the one whose

generators are the same as before except with the inclusion of (−1) which shall commute with all
other generators. We modify the other relations as follows:

r2
i = 1, rir

3
i+1 = 1, (rirj)

2 = −1 for j 6= i, i+1, wjwi = (−1)wiwj for j 6= i, i+1, riwi = wi+1ri,
riwj = (−1)wjri for j 6= i, i+ 1.

The actual proof of Serre’s result involves reducing to the case α = 1 by replacing K by
E = K[X]/(X2 − α) and observing that:

QE,1 ' 2QK,1 ⊕ 2QK,α

and proceeding to relate the invariants of the participating quadratic forms.
The proof for the case α = 1 in the general case is fairly technical.

We now proceed to compute the invariants for the form we were originally interested in qλ(x, y).
Using that qλ = 2Qλ ⊕ 2Q−λδ and the properties of combining invariants for direct sums we find
the following:
Claim. With notation as above, the invariants of the quadratic form qλ = TrE/Q(λxx) are:

D(qλ) = 22nNK/Q(λ)NK/Q(−λδ) = NK/Q(−δ)
W (qλ) = e∗λ(s

′
n) + (2)(dK) + e∗−λδ(s

′
n) + (2)(dK) + (D(2Qλ))(D(2Q−λδ))

= e∗λ(s
′
n) + e∗−λδ(s

′
n) + (2nNK/Q(λ))(2nNK/Q(−λδ))

= e∗λ(s
′
n) + e∗−λδ(s

′
n) + (2nNK/Q(λ))(−NK/Q(−δ))
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The signature is (2× #of negative embeddings of λ,2× #of positive embeddings of λ).
What the above result tells us, is that given some quadratic form q in order to verify that

the associated orthogonal group is equivalent to the one coming from a quadratic form of the
shape TrE/Q(λxx) then one needs to find a totally real field K of degree n which contains a totally
negative δ such that NK/Q(−δ) = dq. In addition, the field must contain an element λ that provides
for the correct Witt invariants. It is entirely unclear that any such field or elements δ, λ will always
exist.
Example. We present briefly the example of how to use the formula in the case of dimension 4.
That is where we have a real quadratic extension K = Q(

√
D) a totally negative element δ and

an arbitrary element λ in K.
One of the first things we might try to do is to evaluate a cocycle representative of e∗λ(s

′
n)(σ, τ),

to do this we must fix a section φ : S(2, 2)→ A (this shall not be a homomorphism). We then
have that for a representative of the cohomology class we can compute:

e∗λ(s
′
n)(σ, τ) = φ(e(σ))φ(e(τ))φ(e(στ)−1) = ±1.

What we see is that this element essentially detects the extent to which σ, τ commute less in A
than in S(2, 2). We observe that in the case of n = 2 the only new failure to commute is in
w1, w2 so when describing our section it is enough to specify a canonical ordering of w1, w2 for
describing words in S(2, 2) we choose the natural lexical order. We can then check for example
that: e∗λ(s

′
n)(w1, w2) = −1, e∗λ(s

′
n)(w2, w1) = 1, e∗λ(s

′
n)(w1w2, w1) = −1, . . . .

We next wish to know when such a cocycle is in a non-trivial class of H2(Gal(Q/Q),Z/2Z).
By inspecting the coboundary condition we make the observation that because e∗λ(s

′
n)(w1, w2) 6=

e∗λ(s
′
n)(w2, w1) so that provided w1, w2 ∈ im(e) we will have that the cocycle is non-trivial. We

remark that such a condition implies λ ∈ K \ Q and λ ∈ K \K2. By checking all the cases one
can establish that this is in fact a necessary and sufficient condition for e∗λ(s

′
n) to be non-trivial.

The above tells us a bit about the global perspective on how to view the formula. What we
would like to do next is to give the local interpretation, that is to describe how to extract the
local Hasse-Witt invariants eνp . The most naive thing to try is to simply apply the above directly

with λ ∈ Qp(
√
D). This of course does not really make sense, what you really want to do is study

the situation in the localization of K = Q(
√
D) at the prime ideal p. It turns out that Serre’s

Theorem above is true as stated for étale extensions of algebras over fields of characteristic not 2.
So provided that Q(

√
D)p is étale over Qp, all the analysis above tells us precisely how to interpret

all the terms in the formula and thus compute eνp . The only difficulty that remains is the cases

where Q(
√
D)p is not étale, that is the cases where p|D so that the extension is ramified.

To see the explicit computations of the Hasse-Witt invariants for this case see 4.3 (page 67).

4.3 The Hilbert Modular Case and O(2, 2)

In this section we will do some explicit computations to relate the classical results of the
Hilbert Modular Case with that of the case O(2, 2).

Notation

For the remainder of this section, we fix the following notation:
Let D ∈ Z+ be a square free positive integer.
Let K = Q(

√
D).

Let δ = δ1 + δ2

√
D ∈ K be a totally positive element of K (δ′ = δ1 − δ2

√
D and δ, δ′ > 0).

Let λ ∈ K.
Let F = K(

√
−δ).
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Let N be the normal closure of F .
Fix once and for all, an embedding N ↪→ C so that we may think of the elements of Gal(N/Q)

as both automorphisms of N but also as the various embeddings of N into C.
Remark. N will be a CM-field of degree 4 or 8, this will be shown and the cases analyzed a bit
later

The Torus F (1)

We consider the algebraic torus F (1) := RK/Q(R
(1)
F/K(Gm)) of complex norm 1 elements of F .

We shall first look at the restriction of scalars down to K.

R
(1)
F/K(Gm)(K) = {a+ b

√
−δ|a, b ∈ K, (a+ b

√
−δ)(a−

√
−δ) = a2 + δb2d = 1}.

The general construction of restriction of scalars gives us:

R
(1)
F/K(Gm) '

{
M =

(
a −δb
b a

)
|Det(M) = 1

}
=

{
1

2

(
t+ 1

t

√
−δ(t− 1

t
)

1√
−δ (t− 1

t
) t+ 1

t

)}
.

Remark. The field in which a, b, t lie in the above depend on the ring in which you are trying to
take points. For the K points, a, b would be in K but t would be in F .
The map between the two interpretations has t = a + b

√
−δ, t in particular then generates the

character module of R
(1)
F/K(Gm).

We will now explicitly diagonalize this torus over F . The above representation comes from
the action of F on F as a K vector space with basis {1,

√
−δ}. To diagonalize we need to find the

eigenvectors of the action on F ⊗K F . Indeed we get that Mt ∈ R(1)
F/K(Gm) acts as t on the vector

(
√
−δ, 1) and as 1

t
on (−

√
−δ, 1). So then, if we take {(

√
−δ, 1), (−

√
−δ, 1)} for a basis of F ⊗K F

we get:

R
(1)
F/K(Gm)

F
'
{

1

2

(
t 0
0 1
t

)}
.

We now wish to perform the further restriction down to Q. If we then take a basis of K/Q {1,
√
D},

then perform the restriction of scalars we have:

t =
r

2

(
s+ 1

s

√
D(s− 1

s )
1√
D

(s− 1
s ) s+ 1

s

)

1

t
=

1

2r

(
s+ 1

s

√
D(1

s − s)
−1√
D

(s− 1
s ) s+ 1

s

)
√
−δ =

( √
−δ +

√
−δ′

√
D(
√
−δ −

√
−δ′)

1√
D

(
√
−δ −

√
−δ′)

√
−δ +

√
−δ′

)
.

We then get that if we had taken as a basis for F/Q the elements {1,
√
D,
√
−δ,
√
−δD} we would

have F (1) is:

1
4



rs+ r
s
+ s
r
+ 1
sr

√
D(rs− r

s
− s
r
+ 1
sr

)
√
−δ(rs− 1

sr
)+
√
−δ′( r

s
− s
r
)
√
−δD(rs− 1

sr
)+
√
−δ′D(− r

s
+ s
r
)

1√
D

(rs− r
s
− s
r
+ 1
sr

) rs+ r
s
+ s
r
+ 1
sr

√
−δ√
D

(rs− 1
sr

)+

√
−δ′√
D

(− r
s
+ s
r
)
√
−δ(rs− 1

sr
)+
√
−δ′( r

s
− s
r
)

1√
−δ

(rs− 1
sr

)+ 1√
−δ′

( r
s
− s
r
)

√
D√
−δ

(rs− 1
sr

)+

√
D√
−δ′

(− r
s
+ s
r
) rs+ r

s
+ s
r
+ 1
sr

√
D(rs− r

s
− s
r
+ 1
sr

)

1√
−δD

(rs− 1
sr

)+ 1√
−δ′D

(− r
s
+ s
r
) 1√
−δ

(rs− 1
sr

)+ 1√
−δ′

(+ r
s
− s
r
) 1√

D
(rs− r

s
− s
r
+ 1
sr

) rs+ r
s
+ s
r
+ 1
sr

.

Alternatively, we might prefer to perform the restriction straight from F down to Q. Consider
the element w = w1 + w2

√
D + w3

√
−δ + w4

√
−δD ∈ F with ww = 1. Then w gives us an element
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tw ∈ F (1). Firstly in R
(1)
F/K(Gm) we get:

tw =

(
w1 + w2

√
D −δ(w3 + w4

√
D)

w3 + w4

√
D w1 + w2

√
D

)
=

1

2

(
w + 1

w

√
−δ(w − 1

w )
1√
−δ (w − 1

w ) w + 1
w

)

To perform the restriction down to Q is to do it componentwise, this then gives:

tw =


w1 Dw2 −δ1w3 −Dδ2w4 −D(δ1w4 + δ2w3)
w2 w1 −δ1w4 − δ2w3 −δ1w3 −Dδ2w4

w3 Dw4 w1 Dw2

w4 w3 w2 w1

 .

To compare this to the previous version, set:

r2
w = ”NK/Q(w)” = (w1 + w3

√
−δ + w2

√
D + w4

√
−δD)(w1 + w3

√
−δ′ − w2

√
D − w4

√
−δ′D)

= (w1 + w3

√
−δ)2 −D(+w2 + w4

√
−δ)2

sw = w/rw,

w′ = (w1 + w3

√
−δ′ − w2

√
D − w4

√
−δ′D)

then we will have 1/w′ = w′. We see that:

rwsw +
rw
sw

+
sw
rw

+
1

swrw
=
rww

rw
+
r2
w

w
+
w

r2
w

+
rw
rww

= w + ww′/w + w/ww′ + 1/w

= w + w′ + 1/w′ + 1/w

= 2w1 + 2w2

√
D + w′ + w′

= 4w1.

One can check that the other components also agree. In particular this tells you how to interpret
the characters r, s of our torus.

We now wish to diagonalize this torus, to do this, we need to work over N since it is over this
field that the torus splits. If we choose instead the basis of K ⊗Q K of {(

√
D, 1), (−

√
D, 1)} The

t’s would become:

t = r

(
s 0
0 1

s

)
,
1

t
=

1

r

(
1
s

0
0 s

)
.

So, if we choose as a basis of F ⊗Q N the elements:

{v1 = (
√
−δD,

√
−δ,
√
D, 1), v2 = (

√
−δ′D,−

√
−δ′,
√
D,−1),

v3 = (
√
−δD,

√
−δ,−

√
D,−1), v4 = (

√
−δ′D,−

√
−δ′,−

√
D, 1)}.

Then we have:

F (1)
N '



rs 0 0 0
0 r

s 0 0
0 0 1

rs 0
0 0 0 s

r


 =



w 0 0 0
0 w′ 0 0
0 0 w 0

0 0 0 w′


 .
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We are now in a position to say something about which orthogonal groups such a torus can
lie in. In particular, if F

(1)
N ⊂ Oq, then having extended scalars to N and performed the change of

basis as above we get we must have:

q(x1v1 + x2v2 + x3v3 + x4v4) = ax1x3 + bx2x4.

For example the map TrF/Q ◦ NF/K gives a quadratic form on F (as a Q-vector space) which is
preserved by F (1) under the regular representation. We now compute what this quadratic form
looks like in terms of this other basis. (the “” in the formulas indicate that the operator has been
linearly extended and is not literally the trace or norm map).

”TrF/Q ◦NF/K”(x1v1 + x2v2 + x3v3 + x4v4)

=2(
√
−δD(x1 + x3) +

√
−δ′D(x2 + x4))2 +D(

√
−δ(x1 + x3)−

√
−δ′(x2 + x4))2

+ δ1((
√
D(x1 + x2 − x3 − x4))2 +D(x1 − x2 − x3 + x4)2)

+ δ2(2D
√
D(x1 + x2 − x3 − x4)(x1 − x2 − x3 + x4))

=2D(−δ(x1 + x3)2 + 2
√
δδ′(x1 + x3)(x2 + x4)− δ′(x2 + x4)2

− δ(x1 + x3)2 − 2
√
δδ′(x1 + x3)(x2 + x4)− δ′(x2 + x4)2)

+ δ1(D(x1 + x2 − x3 − x4)2 +D(x1 − x2 − x3 + x4)2)

+ 2δ2D
√
D(x1 + x2 − x3 − x4)(x1 − x2 − x3 + x4)

=− 4δ1D((x1 + x3)2 + (x2 + x4)2)− 4δ2D
√
D((x1 + x3)2 − (x2 + x4)2)

+ 2δ1D((x1 + x2 − x3 − x4)2 + (x1 − x2 − x3 + x4)2)

+ 4δ2D
√
D(x1 + x2 − x3 − x4)(x1 − x2 − x3 + x4)

=2δ1D(−8x1x3 − 8x2x4) + 4δ2D
√
D(−4x1x3 − 4x2x4)

=− 16Dδ(x1x3 + x2x4).

Which we note, is of the allowable form.
We will now try to “undo” the above computation and express the candidate quadratic form:

q(x1v1 + x2v2 + x3v3 + x4v4) = ax1x3 + bx2x4

from above in terms of the usual rational basis e1 = (1, 0, 0, 0), . . . , e4 = (0, 0, 0, 1). We have that:

e1 =
1

4

(
1√
−δD

(v1 + v3) +
1√
−δ′D

(v2 + v4)

)
e2 =

1

4

(
1√
−δ

(v1 + v3)− 1√
−δ′

(v2 + v4)

)
e3 =

1

4
√
D

(v1 − v3 + v2 − v4) e4 =
1

4
(v1 − v3 − v2 + v4)
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and so we can compute that:

q(e1) =

(
−1

16D

)(
a

δ
+
b

δ′

)
q(e2) =

(
−1

16

)(
a

δ
+
b

δ′

)
q(e3) =

(
−1

16D

)
(a+ b) q(e4) =

(
−1

16

)
(a+ b)

q(e1 + e3) =

(
−1

16D

)(
1 + δ

δ
a+

1 + δ′

δ′
b

)
q(e1 + e2) =

(
−1

16D

)(
(1 +

√
D)2

δ
a+

(1−
√
D)2

δ′
b

)

q(e1 + e4) =

(
−1

16D

)(
1 + δD

δ
a+

1 + δ′D

δ′
b

)
q(e2 + e3) =

(
−1

16D

)(
D + δ

δ
a+

D + δ′

δ′
b

)
q(e2 + e4) =

(
−1

16

)(
1 + δ

δ
a+

1 + δ′

δ′
b

)
q(e3 + e4) =

(
−1

16D

)(
(1 +

√
D)2a+ (1−

√
D)2b

)
And then evaluating the bilinear pairing yields:

(e1, e2) =

(
−1

16D

)((
(1 +

√
D)2

δ
a+

(1−
√
D)2

δ′
b

)
−
(
a

δ
+
b

δ′

)
−D(

a

δ
+
b

δ′
)

)
=
−1

8
√
D

(
a

δ
− b

δ′

)
(e1, e3) =

(
−1

16D

)((
1 + δ

δ
a+

1 + δ′

δ′
b

)
−
(
a

δ
+
b

δ′

)
− (a+ b)

)
= 0

(e1, e4) =

(
−1

16D

)((
1 + δD

δ
a+

1 + δ′D

δ′
b

)
−
(
a

δ
+
b

δ′

)
−D(a+ b)

)
= 0

(e2, e3) =

(
−1

16D

)((
D + δ

δ
a+

D + δ′

δ′
b

)
−D

(
a

δ
+
b

δ′

)
− (a+ b)

)
= 0

(e2, e4) =

(
−1

16

)((
1 + δ

δ
a+

1 + δ′

δ′
b

)
−
(
a

δ
+
b

δ′

)
− (a+ b)

)
= 0

(e3, e4) =

(
−1

16D

)((
(1 +

√
D)2a+ (1−

√
D)2b

)
− (a+ b)−D(a+ b)

)
=
−1

8
√
D

(a− b).

In particular we then have:

q(y1e1 + · · ·+ y4e4) =
−1

16D

[(a
δ

+
b

δ′

)
y2

1 +D

(
a

δ
+
b

δ′

)
y2

2 + (a+ b)y3
3 +D(a+ b)y2

4

+ 2

(
a

δ
− b

δ′

)√
Dy1y2 + 2

√
D(a− b)y3y4

]
.

Rescaling a, b allows us to write:

q(y1e1 + · · ·+ y4e4) = (a+ b)y2
1 + 2

√
D(a− b)y1y2 +D(a+ b)y2

2

+ (aδ + bδ′)y3
3 + 2

√
D(aδ − bδ′)y3y4 +D(aδ + bδ′)y2

4.

But we are interested in forms with rational coefficients and the requirement for this is that
(a+ b),

√
D(a− b) ∈ Q. But then this implies that we get a = b+ r

√
D and thus 2b+ r

√
D ∈ Q.

We conclude that b = s − r
2

√
D and a = s + r

2

√
D for s, r ∈ Q. In particular we have b = a′ and

so we can rewrite this as:

q(y1e1 + · · ·+ y4e4) = (a+ a′)y2
1 + 2

√
D(a− a′)y1y2 +D(a+ a′)y2

2

+ (aδ + a′δ′)y3
3 + 2

√
D(aδ − a′δ′)y3y4 +D(aδ + a′δ′)y2

4.
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The requirement that (aδ + a′δ′),
√
D(aδ − a′δ′) ∈ Q is then automatic.

We notice that this is up to a multiple of 2 the form TrF/Q(axx). In particular, we have shown
that, for F (1) acting via the regular representation, these trace forms are the only quadratic forms
that F (1) can preserve.

The Forms TrF/Q(λNF/K(x))

We have previously worked out the invariants of these forms for the more general case, We
will do it here more explicitly for the specific case we are looking at.

Choosing basis F/Q of the form a1, a2, a3

√
−δ, a4

√
−δ with ai ∈ K decomposes the form as:

TrF/Q(λNF/K(x) ∼ 2TrK/Q(λx2)⊕ 2TrK/Q(−λδy2).

Provided TrK/Q(α) 6= 0 we can use the basis 1, α′
√
D to express the form TrK/Q(αy2) as:

TrK/Q(α(y1 + y2α
′
√
D)2) = TrK/Q(α)y2

1 +NK/Q(α)DTrK/Q(α)y2
2.

If TrK/Q(α) = 0 then the basis 1 +
√
D, 1−

√
D gives us:

TrK/Q(α(y1(1 +
√
D) + y2(1−

√
D))2) = 2TrK/Q(α

√
D)y2

1 − 2TrK/Q(α
√
D)y2

2.

We consider first the cases where TrK/Q(α) = 0, in particular in the case λ = 1√
D

we get:

TrK/Q(λx2) = 2x2
1 − 2x2

2.

And thus we have:

TrK/Q(−λδy2) = TrK/Q(
−δ√
D

)y2
1 +NK/Q(

−δ√
D

)DTrK/Q(
−δ√
D

)y2
2

= (−2δ2)y2
1 − (δ2

1 −Dδ2
2)(−2δ2)y2

2.

And so we get:

TrF/Q(λNF/K(x)) ∼ 4x2
1 − 4x2

2 + 2(−2δ2)y2
1 − 2(δ2

1 −Dδ2
2)(−2δ2)y2

2

∼ x2
1 − x2

2 − δ2y
2
1 +NK/Q(δ)δ2y

2
2

This quadratic form has discriminant NK/Q(δ), Witt invariants (−1,−1)p(δ2, N(δ))p and signature
(2,2). If we had taken λ = δ2√

D
we would have had Witt invariants (−1,−1)p.

If we instead consider the case λ =
√
Dδ′ we get the same thing essentially. Up to scaling by

Q this covers all cases where one of the TrK/Q(α) = 0.
For all other choices for λ we have TrK/Q(α) 6= 0 for both α = λ,−λδ. Up to rescaling over

Q we may assume TrK/Q(λ) = 1 and thus we get:

TrK/Q(λNF/K(x)) ∼ TrK/Q(λ)x2
1 +NK/Q(λ)DTrK/Q(λ)x2

2 + TrK/Q(−λδ)y2
1

+NK/Q(−λδ)DTrK/Q(−λδ)y2
2.

This quadratic form has discriminant NK/Q(δ) and Witt invariants:

(D,D)(D,NK/Q(δ))(NK/Q(δ), NK/Q(λ))(NK/Q(λ), NK/Q(λ))(−TrK/Q(λδ),−NK/Q(λδ)D),

the signature is twice the number of positive/negative embeddings of λ.
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The Hilbert Modular Surface

Consider a totally real quadratic field H/Q, we have seen that the Hilbert modular space for H
comes from the quadratic form qH(a, b, h) = ab− hh′. With the choice of basis (1, 1, 0), (1,−1, 0),
(0, 0, 1), (0, 0,

√
d) this quadratic form is equivalent to qH = [1,−1,−1, d], has discriminant d, Witt

invariants (−1,−1)p for each prime p and has signature (2,2).
So what we have now, is that we have algebraic tori F (1) which will be contained in the

orthogonal group associated to the Hilbert modular space HQ(
√
NK/Q(δ))

. Through the association

of points of the space and abelian varieties we will then have that F (1) will stabilize some point
on HQ(

√
N(δ))

and thus will map to the endomorphism group of the associated abelian variety.

However, the general theory tells us that the abelian varieties associated to HQ(
√
N(δ))

should if

anything have CM through fields over Q(
√
NK/Q(δ)) and not over K.

We are thus driven to the questions:
• When can NK/Q(δ) = d?

The answer is if and only if (d,D)p = 1 for all primes. This is a local class field theory
question.
• How does an abelian variety seem to end up with CM by two seemingly unassociated fields?

The answer (in part) is in the next sections and amounts to showing how the fields are
associated, and which field the abelian variety will actually have CM by.

Field towers

We make the following definitions (which are compatible with previous notation)
K = Q(

√
D)

F = Q(
√
D,
√
−δ) F ′ = Q(

√
D,
√
−δ′)

L = Q(
√
δδ′)

G = Q(
√
δδ′,
√
−δ +

√
−δ′) G′ = Q(

√
δδ′,
√
−δ −

√
−δ′)

N = FF ′ = GG′ = Q(
√
D,
√
−δ,
√
−δ′)

We then have the following diagram:

N

F F ′ KL G G′

K L

Q

Which is possibly incomplete and may have some redundancy.

Note that we have:
√
−δ +

√
−δ′ =

√
−2(δ1 −

√
δδ′),

√
−δ −

√
−δ′ =

√
−2(δ1 +

√
δδ′) and

(−2(δ1 −
√
δδ′))(−2(δ1 +

√
δδ′)) = 4(δ2

1 − (δ2
1 −Dδ2

2)) = 4Dδ2
2. Consequently we have that G,G′

are quadratic imaginary (over L) when δ is not in Q.

We have 3 cases to consider:

F cyclic Galois

We immediately have N = F = F ′. Since KL is totally real this implies KL ⊂ K which
implies L ⊂ K. We note that in the case of cyclic Galois L * Q since if it were, then at least
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one of G,G′ would be an imaginary quadratic extension of Q contained in F , but F being cyclic
Galois CM, means this does not happen.

Therefor we have in this case that: N = F = F ′ = G = G′ and K = KL = L in particular
D = δδ′ mod squares.

Conversely, one has that if D = δδ′ mod squares so that K = KL = L, one gets then that:
N = F = F ′ = G = G′ and so F is at least Galois. (F = G = G′ follows from δ not being in Q
and from the remarks above).

Now we know there is an element of Gal(K/Q) which takes δ 7→ δ′. It must have two extensions
to an element of Gal(F/Q) and each extension must act on

√
−δ,
√
−δ′ in one of the following

ways:
•
√
−δ 7→

√
−δ would imply δ 7→ δ so not allowed as an extension

•
√
−δ 7→ −

√
−δ would imply δ 7→ δ so not allowed as an extension

•
√
−δ 7→

√
−δ′ here we have the subcases:

– :
√
−δ′ 7→ ±

√
−δ′ would imply δ′ 7→ δ′ so not allowed as an extension

– :
√
−δ′ 7→

√
−δ For such an automorphism G is in its fixed field, but G = F .

– :
√
−δ′ 7→ −

√
−δ such an element has order 4 so the Galois group is C4.

•
√
−δ 7→ −

√
−δ′ here we have the subcases:

– :
√
−δ′ 7→ ±

√
−δ′ would imply δ′ 7→ δ′ so not allowed as an extension

– :
√
−δ′ 7→

√
−δ such an element has order 4 so the Galois group is C4.

– :
√
−δ′ 7→ −

√
−δ For such an automorphism G′ is in its fixed field, but G′ = F

In particular we see that for all valid cases, F is a cyclic Galois extension.

F is bi-quadratic

We again have N = F = F ′ but by the above work in the cyclic case we know that L 6= K,
but L ⊂ G ⊂ N = F is totally real, so we conclude L = Q. We then have that at least one of
G,G′ is quadratic imaginary over Q, without loss of generality suppose it is G (this amounts to
fixing an embedding of everything in C and supposing that

√
−δ,
√
−δ′ where both taken to be

the square roots in the upper half plane, we might as well have made this assumption earlier). We
then arrive at the following diagram of fields:

F = Q(
√
D,
√
−δ)

K = Q(
√
D) G = Q(

√
−δ +

√
−δ′) Q(

√
D(
√
−δ +

√
−δ′))

Q

Note that when δ is not in Q then Q(
√
D(
√
−δ +

√
−δ′)) = G′.

F is not Galois

Then nothing in the original diagram collapses, we should note that we do in fact have: F ' F ′

and G ' G′ coming from Galois automorphisms of N , moreover the map taking G′ → G can be
taken to be the Galois element σ whose fixed field is F . We have that for an element f ∈ F ,
NN/G(F ) = ff ′, NN/G′(F ) = ff ′ = σ(ff ′).

Moreover we should generally expect to have the maps of complex norm 1 elements:
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±1 // F (1) × F ′(1) (f1,f2)7→f1f2
// N (1)

±1 // N (1)
NN/F×NN/F ′

// F (1) × F ′(1)

±1 // F (1)
NN/G×NN/G′

// G(1) ×G′(1)

However in the last map, the images are of the form (ff ′, σ(ff ′)) and so we lose no information
by further projecting to G(1). In particular we have maps:

±1 // F (1) α:f 7→ff ′
// G(1)

±1 // G(1) β:g 7→gσ(g)
// F (1)

Moreover, the composition β ◦ α : f 7→ f 2 and α ◦ β : g 7→ g2. And so what we see is that
F (1) ∼ G(1) that is they are isogenous.

How G(1) acts on H×H

We usually interpret the action of SL2(L) on the Hilbert modular space for G as M ◦(h1, h2) =
(M ◦ h1,M

′ ◦ h2). Viewing the Hilbert modular surface as the space associated to the orthogonal
group. That is:

V :=
{(

a v′
v b

)
|a, b ∈ Q, v ∈ F

}
together with the quadratic form given by − det

((
a v′
v b

))
the action is given by:

M ◦
(
a v′

v b

)
= M

(
a v′

v b

)
tM ′.

Now, the usual way to embed G(1) ↪→ SL2(L) is via the restriction of scalars map:

G(1) =

{(
x −2(δ1 −

√
δδ′)y

y x

)}
.

With the notation v = v1 + v2

√
δδ′ , ∆ = 2(δ1 −

√
δδ′), ∆′ = 2(δ1 +

√
δδ′) (note that ′ refers

to the conjugate in the appropriate field, which is not always the same field). We then have that
an element g ↔ x+ y(

√
−δ +

√
−δ′) = x+ y

√
−∆ acts on the quadratic space V as

g ◦
(
a v′

v b

)
=

(
x −2(δ1 −

√
δδ′)y

y x

)(
a v′

v b

)(
x′ y′

−2(δ1 +
√
δδ′)y′ x′

)
=

(
xa−∆yv xv′ −∆yb
ya+ xv yv′ + xb

)(
x′ y′

−∆′y′ x′

)
=

(
xx′a−∆x′yv −∆′xy′v′ + ∆∆′yy′b xy′a−∆yy′v −∆x′yb+ xx′v′

xx′v + x′ya− yy′∆′v′ − xy′b∆′ yy′a+ xy′v + x′yv′ + xx′b

)
.
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Reinterpreting this into column vectors we get that g acts as:
xx′ ∆∆′yy′ −(∆x′y + ∆′xy′) −(∆x′y −∆′xy′)

√
δδ′

yy′ xx′ xy′ + x′y (xy′ − x′y)
√
δδ′

1
2
(xy′ + x′y) −1

2
(∆x′y + ∆′xy′) (xx′ + 1

2
yy′(∆ + ∆′)) 1

2
yy′(∆−∆′)

√
δδ′

1

2
√
δδ′

(x′y − xy′) 1

2
√
δδ′

(∆x′y −∆′xy′) 1

2
√
δδ′
yy′(∆−∆′) (xx′ + 1

2
yy′(∆ + ∆′))



a
b
v1

v2


We had embedded F (1) ↪→ OV via its regular representation. Decomposing the Q vector space
F ' K1 +K2

√
−δ the mapping F → V took the form K1 → Q⊕Q, K2 → L. Taking as a basis for

F the elements { 1
4δ2
,
√
D
2
,
√
−δ

2δ2
, (δ1−δ2

√
D)
√
−δ

2δ2
} Then the quadratic form q δ2√

D

= TrF/Q((δ2/
√
D)xx)

takes the form:
q(v1, v2, v3, v4) = v1v2 + v2

3 −NK/Q(δ)v2
4

An element in F (1) (tf ↔ f1 + f2

√
D + f3

√
−δ + f4

√
−δD) then acts on this as:

tf ◦


x1

x2

x3

x4

 =


f1 2Dδ2f2 −2(δ1f3 +Dδ2f4) −2δδ′f3
1

2δ2
f2 f1 −f3 − δ1

δ2
f4 − δδ′

δ2
f4

1
2(f3 + δ1f4) δ1f3 +Dδ2f4 f1 + δ1

δ2
f3

δ21
δ2
−Dδ2

−1
2f4 −f3

−1
δ2
f3 f1 − δ1

δ2
f3



x1

x2

x3

x4



Consider the norm map G(1)
NN/F−→ F (1), it takes

x+ y
√
−∆ 7→ (x+ y(

√
−δ +

√
−δ′))(x′ + y′(

√
−δ −

√
−δ′))

This is:

= xx′ + xy′(
√
−δ −

√
−δ′) + x′y(

√
−δ +

√
−δ′) + 2yy′δ2

√
D

= xx′ + (xy′ + x′y)
√
−δ + (x′y − xy′)∆−∆′

4δ

√
−δ + 2yy′δ2

√
D

= xx′ + (2yy′δ2)
√
D + (xy′(1− δ1

∆−∆′

4δδ′
) + x′y(1 + δ1

∆−∆′

4δδ′
))
√
−δ

+ (x′y − xy′)∆−∆′

4δδ′
δ2

√
−δD

In particular, one can now check that under the given choices of basis that the actions agree,
that is we have g ◦ (a, b, v1, v2) ' NN/F (g) ◦ (x1, x2, x3, x4).

What the above means?

It means essentially that all is as we expected. We can embed the torus F (1) into the orthogonal
group and the torus G(1) into the spin group for the quadratic space associated to the Hilbert
modular variety. The map from the spin group to the orthogonal group ends up taking G(1) → F (1)

and moreover does so via the isogeny we knew existed already. It turns out that in the natural
way to attach abelian varieties to points of the Hilbert modular space (see for example [Gor02]) it
will be the tori in the spin group that end up acting on them.

What it says about abelian varieties with CM is the following: In the cyclic Galois case we
have in fact no surprises, we end up with CM by a field that is in fact an extension of a field that
should be associated to the Hilbert modular space. In the bi-quadratic case, the Hilbert modular
space we thought we had turned out not to really be one (the totally real field was Q). Though
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of course one can in fact carry out some constructions here and see that what you would have is
F acting on a product of 2 elliptic curves via the 2 complex subfields. In the non-Galois case we
saw that our torus is isogenous to one coming from a CM field of a field associated to the Hilbert
modular surface, we saw moreover how the actions are related.

4.4 The General Case - Concretely

The above constructions illustrated some of things we might try to do in a more general setting
with the algebraic torus coming from the complex norm 1 elements of a higher degree CM-field,
and moreover give us some hints at things we would like to be true.

In particular we can prove the following theorem:

Theorem 4.4.1. Let F be a CM-field and let F (1) be the algebraic torus of norm 1 elements of
F . If F (1) acts via the regular representation, (that is on F as a Q vector space via multiplication)
then the only quadratic forms F (1) can preserve are the forms TrF/Q(λxx) where λ ∈ F ∩ R.

Proof. Fix a normal closure N of F .
Fix a Q basis {γ1, . . . , γn} of F such that TrF/Q(γiγj) = 0 for i 6= j. This is possible over any

field and amounts to diagonalizing the trace form on F . Note that these conditions imply also
that TrF/Q(γ2

i ) 6= 0.
Let σ1, . . . , σn be the distinct embeddings of F into N .
Consider the basis of N ⊗Q F given by {vl :=

∑
i

σl(γi)

TrF/Q(γ2i )
⊗ γi}l=1..n.

Using that TrF/Q(γiγj) = 0 we get: γjγi =
∑
k

TrF/Q(γjγiγk)

TrF/Q(γ2k)
γk.

Observe that:

γj ◦
∑
i

σl(γi)

TrF/Q(γ2
i )
⊗ γi =

∑
i

σk(γi)

TrF/Q(γ2
i )
⊗ γjγi

=
∑
i

σl(γi)

TrF/Q(γ2
i )
⊗
∑
k

TrF/Q(γjγiγk)

TrF/Q(γ2
k)

γk

=
∑
k

∑
i

TrF/Q(γjγiγk)

TrF/Q(γ2
k)

σl(γi)

TrF/Q(γ2
i )
⊗ γk

=
∑
k

σl(
∑
i

T rF/Q(γjγiγk)

TrF/Q(γ2i )
γi)

TrF/Q(γ2
k)

⊗ γk

=
∑
k

σl(γjγk)

TrF/Q(γ2
k)
⊗ γk

=σl(γj) ∗
∑
k

σl(γk)

TrF/Q(γ2
k)
⊗ γk.

That is to say that, f ∈ F acts on the lth basis vector via multiplication in N by σl(f).
Since the embeddings are distinct, this shows us (a-posteriori) that our purported basis actu-

ally is one, since they give us a basis for n distinct eigenspaces. Moreover we have thus diagonalized
the action of F (1).

Supposing that σl = σl+n/2 for l < n/2 we then conclude that any quadratic form preserved

by this action of F (1) must take the form Q(
n∑
i=1

xivi) =
n/2∑
i=1

aixixi+n/2.
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We now wish to undo the diagonalization of the form and express the form back into the basis:
el = 1⊗ γl. We have that:

n∑
j=1

σj(γl)vj =
n∑
j=1

σj(γl)
n∑
i=1

σj(γi)

TrF/Q(γ2
i )
⊗ γi

=
n∑
i=1

n∑
j=1

σj(γlγi)

TrF/Q(γ2
i )
⊗ γi

=1⊗ γl
=el.

We note that Q will be a rational quadratic form, if and only if Q(el), Q(ei+ej)−Q(ei)−Q(ej) ∈ Q
for all i, j, l. We compute that:

Q(el) =
1

2

n∑
k=1

akσk(γlγl)

and

Q(ei + ej)−Q(ei)−Q(ej) =
1

2

n∑
k=1

akσk(γiγj + γjγi) =
n∑
k=1

akσk(γiγj).

Where we have taken ak+n/2 = ak. By taking linear combinations of these conditions, we can
conclude we have the requirement that:

Γ(f) =
n∑
k=1

akσk(f) ∈ Q ∀f ∈ F

We thus have that Γ ∈ HomQ(F,Q) but the trace pairing on F is perfect and thus induces an

isomorphism from F to the vector space dual of F . Thus we have that Γ(f) =
n∑
k=1

σk(A)σk(f) for

some A in F .

We therefore have
n∑
k=1

(ak − σk(A))σk(f) = 0 for all f ∈ F . But then by linear independence

of the embeddings of F we conclude ak = σk(A). (ak+n/2 = ak implies then A is in the totally real
subfield of F ).

But then the quadratic form Q is just up to integer multiples the form TrF/Q(Axx).

We also have the following results:

Theorem 4.4.2. Let F (1) be the torus of complex norm 1 elements for the CM-field F/Q. Let
ρ : F (1) → Oq be any faithful rational representation of F (1) into the orthogonal group for a space
(V, q). Then there exists a faithful rational representation ρ′ : T = RF/Q(Gm)→ GL(V ) such that
ρ = ρ′|F (1).

Proof. When we diagonalize F (1) over F the condition for faithfulness implies that F (1) will act by
a spanning set of characters for its character module. The orthogonality condition implies that it
must also act via the complex conjugates (that is the inverses in X(F (1)) of these characters). The
natural map X(T )→ X(F (1)) is a 2− 1 map however fixing a CM-type we can choose a mapping
from the characters that act on V onto a spanning set of characters for X(T ) by simply having
the 2 conjugate characters that appear map to the different embeddings.
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That is to say X(F (1)) is generated by the set of embeddings F ↪→ F with relation χ = χ−1.
X(T ′) is generated by all embeddings F ↪→ F . By taking the inverses that appear to the conjugate
of where we send the character, we get our mapping.

Doing this then gives us a faithful (not necessarily rational) representation ρ′T ′ → GL(V ⊗F ).

However, we know that in diagonalizing F (1) to F (1)′ that it is a form of the split torus F (1)′ via
a co-cycle ξσ ∈ H1(Gal(F/Q), NGLn(F (1)′)) (this follows by rationality). In order to see that ρ′

maps T onto a rational torus we need that the same co-cycle ξσ is in H1(Gal(F/Q), NGLn(T ′)).

Indeed F (1)′ looks like blocks of the form (a) :
(
χ(t) 0

0 χ(t)−1

)
and T ′ looks like blocks of the

form (b) :
(
χ(t) 0

0 χ(t)

)
. By additive linear independence of multiplicative characters we know that(

n∑
i=1

aiχi

)(
m∑
i=1

biχ
′
i

)
6= id unless n = m = 1 and χ′1 = χ−1

1 . Moreover
n∑
i=1

aiχi 6= 0 unless ai = 0.

From this it follows that the only sorts of conjugation that can preserve these block matrices
are those that permute blocks or preserve them blockwise. Consequently, since the question of
rationality comes down to a question about the normalizers of these tori, we need to only to show
that normalizing all matrices of type (a) implies you normalize all matrices of type (b). This is an
easy check.

Theorem 4.4.3. Let F be a CM-field and let F (1) be the algebraic torus of norm 1 elements
of F . Suppose F (1) is contained in some rational orthogonal group O and acts via the regular
representation. Let [Z] ∈ κ be a fixed point of F (1). Then the point [Z] as an element of the
complex space κ (under the given realization) is defined over F ′ some Galois conjugate of F .

Proof. The idea of the argument is to diagonalize slightly less than we did previously, so that we
can work with the positive definite conditions that define κ.

Suppose that F = K(
√
−δ) where K is the totally real subfield of F and δ ∈ K is totally

positive. As we have done before fix a normal closure N of F and an embedding of N into C. Fix
a Q basis {γ1, . . . , γn} of F such that TrF/Q(γiγj) = 0 for i 6= j. Let σ1, . . . , σn be the distinct
embeddings of F into N , supposing moreover that σi = σi+n/2 for i > n/2.

We have the basis of N⊗QF given by {vl :=
∑
i

σl(γi)

TrF/Q(γ2i )
⊗γi}l=1..n. For notational convenience

arrange so that vl = vl+n/2 for l < n/2.
Consider now the new basis for N⊗QF given by {xl = 1

2
(vl+vl), x

′
l = σl(

1
2
√
−δ )(vl−vl)}l=1..n/2.

Note that xl, x
′
l are both fixed by complex conjugation and are hence in R. Since we understand

the action of F on vl we can understand the action of F on the vector subspaces generated by
xl, x

′
l for each l. In particular these are fixed and we can compute that for f ∈ F :

f ◦ xl =
1

2
(σl(f) + σl(f))xl +

√
−δ
2

(σl(f)− σl(f))x′l

f ◦ x′l =
1

2
√
−δ

(σl(f)− σl(f))xl +
1

2
(σl(f) + σl(f))x′l.

So then the action of F (1) on (N ∩ R)⊗Q F decomposes into blocks of the form:

1

2

(
σl(f) + σl(f)

√
−δ(σl(f)− σl(f))

1√
−δ (σl(f)− σl(f)) σl(f) + σl(f)

)
=

(
a σl(−δ)b
b a

)
| a2 + δb2 = 1.
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In particular we can see that any quadratic form this block can preserve must look like:

Q(ylxl + y′lx
′
l) = al(y

2
l + δy′2l ).

In particular, each plane spanned by a pair xl, x
′
l is definite. Since the signature of our original

form was (2, n−2) and we have diagonalized over a subfield of R and hence not changed signature
precisely one of the al > 0 and it corresponds to the choice of embeddings σl, σl where the λ that
defined the form was positive.

From the above computation we see that, in the Grassmannian model Gr(V ) the positive
definite plane stabilized by F (1) is precisely the plane generated by xl, x

′
l, Since F is quadratic over

the field generated by the coordinates of these vectors we conclude that the field of definition for
this point in Gr(V ) is the totally real subfield K of F .

We now wish to compute the image of this point in κ. To do this we need to change the basis
for the plane such that Q(xl) = Q(x′l), to do this we must work in the field (N ∩ R)(

√
σl(δ)) and

replace x′l by 1√
σl(δ)

x′l. We then have that the point Z ∈ κ ∈ P (V (C)) corresponding to the plane

is given by the point:

[Z] = xl + ix′l =
1

2
(vl + vl)−

1

2σl(δ)
(vl − vl).

Writing this in projective coordinates in terms of the basis γi for V we get:

[Z] = [. . . ,
1

2
(σl((δ − 1)γi) + σl((δ + 1)γi)) , . . .] = [. . . , σl((δ − 1)γi + (δ + 1)γi), . . .].

The coordinates of this point all clearly lie in σl(F ) and hence the point can be defined over this
field.

Remark. It should be noted the field of definition of points in κ viewed as a complex space
under the realization we have does not necessarily relate directly to the field of definition in some
algebraic model for the quotients of κ. The above result is analogous (and in fact in the special case
amounts) to saying that the special points in the usual upper half plane are quadratic imaginary
points. This however does not tell us much about the field of definition for the algebraic objects
these might classify. In particular in the usual case of the upper half plane the objects (in this case
elliptic curves) associated to the CM-points are defined over the Hilbert class field of the quadratic
imaginary field.
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CHAPTER 5
Summary and Further Questions

What We Have Seen

We have in the proceeding determined a general classification of both which tori might embed
into a given orthogonal group as well as into which orthogonal groups a given torus might embed.
In particular the former can be classified by:

Ker
[
H1(Gal(Q/Q), NGLn(T ) ∩NGLn(O))→ H1(Gal(Q/Q), NGLn(O))

]
and the latter by:

Ker
[
(H1(Gal(Q/Q), NGLn(T ) ∩NGLn(O))→ H1(Gal(Q/Q),Aut(T ))

]
.

Through more concrete study of the case of tori coming from regular representations of CM-fields we
have shown that we can describe the required correspondence between invariants of an orthogonal
groups and the field. This suggests that we might wish to consider rather than which isomorphism
classes of tori can embed but rather which isomorphism classes together with a representation into
GLn might embed. We have shown that this classification amounts to looking at:

Ker
[
H1(Gal(Q/Q), NGLn(T ) ∩NGLn(O))→ H1(Gal(Q/Q), NGLn(T ))

]
.

The problem of determining which of these correspond to special points, that is which ones have
compact sets of real points, was determined entirely by the isomorphism class and allowed us to
associate a minimal CM-algebra into which its Q-rational points would embed.

What We Still Do Not Know

There remain of course a number of unanswered questions. We still have not given a com-
plete classification for tori with compact sets of real points, though we know they are subtori of
RK/Q(R

(1)
F/K(Gm))l we do not know if they all are precisely of this form (though we should not

really expect this).

We do not know that all rational faithful algebraic representations of RK/Q(R
(1)
F/K(Gm)) are

sufficiently like the regular representation so that we understand the quadratic forms they may
preserve. For example if we knew that for any such representation ρ that im(ρ) ⊂ GLn was ratio-
nally conjugate to the image of the regular representation this would be enough. (This statement
is true for any such ρ that I have been able to construct). We know that the images of any (max-
imal) representations into orthogonal groups are conjugate over GLn(k). One could conjecture
that if T1, T2 are conjugate and rationally isomorphic then they are rationally conjugate. This
statement is true for split tori, it is unclear that it would be true in general. We moreover do
not know the analogous result about the rational faithful algebraic representations for tori coming
from CM-algebras and as such our understanding in this case is also limited.

We also don’t have a method that, given some quadratic form q actually finds a totally real
field K with elements δ, λ such that q = qK(

√
−δ),λ. Moreover, we don’t actually know that such a

K is even guaranteed to exist. Consequently, we don’t know that a given orthogonal symmetric
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space is guaranteed to have any special points which are associated to CM-fields. (They will always
have CM-points associated to CM-algebras).

It is hoped that further work in these areas could complete the presented results.
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