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Abstract

We investigate a variety of questions in the theory of Shimura varieties

of orthogonal type. Firstly we provide a general introduction in the theory of

these spaces. Secondly, motivated by the problem of understanding the special

points on Shimura varieties of orthogonal type we give a characterization of

the maximal algebraic tori contained in orthogonal groups over an arbitrary

number field. Finally, motivated by the problem of computing dimension for-

mulas for spaces of modular forms, we compute local representation densities of

lattices focusing specifically on those arising from Hermitian forms by transfer.
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Resumé

Le but de cette thèse est l’exploration d’une variété de questions sur les

variétés de Shimura de type orthogonal. On commence par une introduction à

la théorie de ces espaces. Àpres, dans le but de caractériser les points spéciaux

sur les variétés de Shimura de type orthogonal, on décrit les tores algébriques

maximaux dans les groupes orthogonaux. Finalement, dans le but d’obtenir

des formules explicites pour la dimension des espaces de formes modulaires sur

les variétés de Shimura de type orthogonal, on trouve des formules pour les

densités locales des réseaux. On se concentre sur les réseaux qui proviennent

de la restriction de formes Hermitiennes.
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CHAPTER 1
Introduction

The primary motivation for this thesis has been to understand various

aspects of orthogonal Shimura varieties. The study of these orthogonal sym-

metric spaces and their modular forms fits into the larger picture of automor-

phic forms on Shimura varieties. This topic has connections to the study of

Galois representations and the Langlands conjectures. There are connections

to explicit class field theory via the values of modular forms at special points.

Moreover, the Gross-Zagier theorem [GZ86], which allows for the construction

of non-torsion points on elliptic curves, has natural conjectural generalizations

in this context, see for example the work of [BY06]. Understanding this phe-

nomenon remains an important open question.

Modular forms have been both a successful tool and object of study in

number theory for some time. As a result various generalizations also became

objects of interest. An axiomatic treatment of many of these generalizations

was given by Deligne in [Del71]. In his article he defines the notions of Shimura

varieties. These Shimura varieties are highly related to Hermitian symmetric

spaces, and are classified into families in much the same way. Although many

of these families have already been well studied, those we will investigate have

received less attention. The orthogonal Shimura varieties are precisely the

generalizations that come from replacing the classical upper half plane by an

orthogonal symmetric spaces associated to a quadratic form of signature (2,n).

Though these spaces have been known for some time, many aspects of them

have yet to be studied extensively and at present remain mysterious. It is

only recently that results coming out of the Fields Medal work of Borcherds,

in particular his work in [Bor95], have renewed interest in the structure of
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these spaces. Borcherds’ contribution to the theory was to define a lift of

classical modular forms on the upper half plane to modular forms on these

orthogonal spaces. This lifting allows for the construction of special divisors

together with Green functions that are objects of great interest in Arakelov

theory. The work of various people, especially Brunier, Kudla, Rapoport and

Yang (see [BKY12, Kud04, KR99]) have led to strong conjectures about the

intersection theory of divisors on these spaces.

The bulk of the original results contained in this thesis are contained in

two papers:

1. The Characterization of Special Points on Orthogonal Symmetric Spaces

and

2. Representation Densities for Hermitian Lattices.

These appear in this thesis as Chapters 3 and 4 respectively. The first paper

was published, in a format similar to what appears here, in [Fio12]. The second

has not yet been submitted, and it may be restructured into shorter papers

before being submitted.

Though the results of both of these chapters have applications outside the

realm of orthogonal Shimura varieties, they are both motivated by the study

of particular aspects of these spaces. The concrete relation of these chapters

to orthogonal Shimura varieties is discussed in more detail in Chapter 2.

The first of the two papers characterizes which number fields can be asso-

ciated to the algebraic tori in orthogonal groups. The application of this result

in the study of orthogonal Shimura varieties is that it gives a characterization

of the fields that are associated to the special points of these Shimura varieties.

The results of this paper motivate our interest in a certain class of quadratic

forms, that we call Hermitian and it is these Hermitian forms on lattices that

are the motivation for our second paper.
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Our second paper focuses on computing the arithmetic volume of the

orthogonal groups associated to Hermitian lattices. These volumes, which are

computed by way of representation densities, determine the lead term in a

Riemann-Roch formula for dimensions of spaces of modular forms, but are

also of independent interest. Though the primary motivation of the paper is

the study of Hermitian lattices over the rational numbers, along the way we

produce general formulas for computing representation densities over arbitrary

number fields, as well as proving several structure theorems for the transfer

of lattices. These latter results are of interest outside the study of Shimura

varieties.

Aside from Chapters 3 and 4 which contain these papers, Chapter 2 is

also fairly substantial. It can be viewed as either the background material

necessary to understand the relation of the aforementioned chapters to the

appropriate problem in the theory of orthogonal Shimura varieties, or a survey

of the general theory of modular forms on Hermitian symmetric domains with

an emphasis on the orthogonal case. Though most of the content of this

background chapter is not new, the details of at least some aspects of the

discussion are not known to appear in the literature.

A discussion of some further avenues of research are discussed in our

conclusion (Chapter 5).
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CHAPTER 2
Background And Motivation

The main purpose of this chapter is to explain the connection between

the later chapters of this thesis and questions concerning orthogonal Shimura

varieties. The connection for the content of Chapter 3 is made apparent in

Section 2.6.3, whereas the connection for the content of Chapter 4 is made ap-

parent in Section 2.4.4. The main purpose of the other sections in this chapter

is to provide sufficient background on orthogonal Shimura varieties to properly

explain these connections. Strictly speaking we provide more background than

is needed.

The primary object of interest in this document are Shimura varieties of

orthogonal type. In order to give a satisfactory definition of these one needs the

terminology and notation of the theory of Hermitian symmetric spaces [Hel01],

quadratic spaces and orthogonal groups [O’M00, Lam05, Ser73]. Note that

Chapter 4 contains information about lattices, while Chapter 3 gives a basic

overview of Clifford algebras. To put it in the right context one should perhaps

also have access to the basic notions of Shimura varieties [Mil05, Del71].

It is our intent in this chapter to give a survey of the basic theory of

orthogonal symmetric spaces. Other references include [Fio09, Bru08]. The

sections of this chapter are organized as follows.

(2.1) Introduces key notations and results for orthogonal groups.

(2.2) Covers the key notions of Hermitian symmetric domains.

(2.3) Provides a basic definition of modular forms.

(2.4) Surveys the problem of computing dimension formulas for spaces of mod-

ular forms via the Hirzebruch-Mumford proportionality theorem (see

[Mum77]).
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(2.5) Discusses the ramification structures between different levels introducing

two interesting classes of cycles on orthogonal Shimura varieties.

(2.6) Introduces the notions of Shimura varieties, special points and special

fields.

2.1 Basics of Orthogonal Groups

It is natural to assume that the reader has a basic understanding of

quadratic spaces. Thus, the main purpose of this section is to introduce our

notation.

Definition 2.1.1. Let R be an integral domain, and K be its field of fractions.

Given a finitely generated R-module V , a quadratic form on V is a mapping

q : V → K such that:

1. q(r~x) = r2q(~x) for all r ∈ K and ~x ∈ V , and

2. B(~x, ~y) := q(~x+ ~y)− q(~x)− q(~y) is a bilinear form.

Given such a pair (V, q), we call V a quadratic module over R. The quadratic

module V is said to be regular or non-degenerate if for all ~x ∈ V there exists

~y ∈ V such that B(~x, ~y) 6= 0.

Remark. Given an R module V and a bilinear form b : V × V → K we have

an associated quadratic form q(~x) = b(~x, ~x). Note that B(~x, ~y) = 2b(~x, ~y).

Definition 2.1.2. We define the Clifford algebra and the even Clifford

algebra to be respectively:

Cq := ⊕
k
V ⊗k/(~v ⊗ ~v − q(~v)) and C0

q := ⊕
k
V ⊗2k/(~v ⊗ ~v − q(~v)).

They are isomorphic to matrix algebras over quaternion algebras. We denote

the standard involution ~v1⊗· · ·⊗~vm 7→ ~vm⊗· · ·⊗~v1 by v 7→ v∗. To a quadratic
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form q we will associate the following algebraic groups:

Oq(R
′) = {g ∈ GL(V ⊗R R′) | q(~x) = q(g(~x)) for all x ∈ V ⊗R R′}

SOq(R
′) = {g ∈ Oq(R

′) | det(g) = 1}

GSpinq(R
′) = {g ∈ (C0

q ⊗RR′)× | gV g−1 ⊂ V }

Spinq(R
′) = {g ∈ GSpinq(R

′) | g · g∗ = 1}.

Proposition 2.1.3. Given a quadratic form q we have a short exact sequence

of algebraic groups:

0→ Z/2Z→ Spinq → SOq → 0.

Over a number field k, with Γ = Gal(k/k), this becomes the long exact se-

quence:

0→ Z/2Z→ Spinq(k)→ SOq(k)
θ→ H1(Γ,Z/2Z)→ . . . .

The map θ is called the spinor norm.

Notation 2.1.4. We have the following standard invariants of (V, q):

• Whenever V is free over R we shall denote by D(q) the discriminant

of q, that is, D(q) = det(b(~vi, ~vj)i,j) for some choice of basis {~v1, . . . , ~vn}.

• We shall denote by H(q) (or HR(q), Hp(q)) the Hasse invariant of q,

that is, if over the field of fractions K of R we may express q(~x) =
∑

i aix
2
i

then H(q) =
∏

i<j(ai, aj)K . Here (a, b)K denotes the Hilbert symbol (see

[Ser73, Ch. III] and [Ser79, Ch. XIV]).

• We shall denote by W (q) the Witt invariant of q, that is, the class in

Br(K) of Cq when dim(V ) is odd or of C0
q when dim(V ) is even.

• For a real place, ρ : R → R, we shall denote by (rρ, sρ)ρ the signature

of q at ρ. Here rρ denotes the dimension of the maximal positive-definite

subspace of V⊗ρR and sρ denotes the dimension of the maximal negative-

definite subspace of V ⊗ρ R.
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2.2 Hermitian Symmetric Spaces

In this section we briefly recall some key results about Hermitian sym-

metric spaces. A good reference on this topic is [Hel01]. Most of what we will

use can also be found in [BJ06, Sec I.5], or [AMRT10, Sec. 3.2].

Definition 2.2.1. A symmetric space is a Riemannian manifold D such

that for each x ∈ D there exists an isometric involution sx of D for which

x is locally the unique fixed point. We say that D is Hermitian if D has a

complex structure making D Hermitian.

Example. The standard example of this is the upper half plane:

H = {x+ iy ∈ C | y > 0}.

It is a consequence of the definition that we have:

Theorem 2.2.2. Fix x ∈ D, G = Isom(D)0, K = StabG(x) and let sx act on

G by conjugation then D ' G/K and (Gsx)0 ⊂ K ⊂ Gsx. Moreover, given

any real Lie group G, an inner automorphism s : G → G of order 2, and K

such that (Gs)0 ⊂ K ⊂ Gs, then the manifold D = G/K is a symmetric space.

See [Hel01, Thm. IV.3.3].

Theorem 2.2.3. A symmetric space D = G/K is Hermitian if and only if the

centre Z(K) of K has positive dimension. Moreover, if D is irreducible then

Z(K)0 = SO2(R).

See [Hel01, Thm. VIII.6.1].

There are three main types of symmetric spaces:

1. Compact Type: In general these come from compact Lie groups G.

2. Non-Compact Type: In general these arise when K0 is the maximal com-

pact connected Lie subgroup of G, or equivalently when sx is a Cartan

involution.

3. Euclidean Type: These generally arise as quotients of Euclidean space

by discrete subgroups.
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The definitions of these types can be made precise by looking at the associated

Lie algebras.

Claim. Every symmetric space decomposes into a product of the three types

listed above.

See [Hel01, Ch. V Thm. 1.1].

For D a Hermitian symmetric space of the non-compact type, one often

considers the following objects (see [Hel01] for details):

• The Lie algebra g of G.

• The Lie sub-algebra k ⊂ g of K.

• The Killing form B(X, Y ) = Tr(Ad(X) ◦ Ad(Y )) on g.

• The orthogonal complement p of k under B is identified with the tangent

space of D.

• The centre Z(K) of K and its Lie algebra u.

• A map h0 : SO2 → Z(K) ⊂ K ⊂ G such that K is the centralizer of h0.

• The element s = Ad(h0(eiπ/2)) induces the Cartan involution whereas

the element J = Ad(h0(eiπ/4)) induces the complex structure.

Through these one can construct:

• A G-invariant metric on D (via B and the identification of the tangent

space of D with p).

• The dual Lie algebra g∗ = k⊕ip. This is the Lie algebra of Ğ the compact

real form of G.

• The ideals p+, p− ⊂ pC which are the eigenspaces of u.

• The parabolic subgroups P± associated respectively to p±.

• The embeddings D = G/K ↪→ GC/KCP− ' Ğ/K ' D̆.

There exists a duality between the compact and non-compact types, that

is, if D is of the compact type, there exists a dual symmetric space D̆ such

that D ↪→ D̆.
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2.2.1 The O(2,n) Case

We now discuss the example of the Hermitian symmetric spaces in which

we are most interested. That is those associated to quadratic spaces of signa-

ture (2, n). Other references on this topic include [Fio09, Bru08, Bru02].

Let (V, q) be a quadratic space over Q. Then V (R) := V ⊗R has signature

(r, s) for some choice of r, s. The maximal compact subgroup of Oq(R) is

K ' Or(R) × Os(R) ⊂ Oq(R) and Oq(R)/K is a symmetric space. These

only have complex structures (and thus are Hermitian) if one of r or s is 2.

Since interchanging r and s does not change the orthogonal group (it amounts

to replacing q by −q) we will assume that r = 2. We wish to construct the

associated symmetric spaces along with its complex structure in this case.

Remark. For much of the following discussion only the R-structure will mat-

ter, and as such, the only invariants of significance are the values r and s.

However, when we must consider locally symmetric spaces and their com-

pactifications the Q-structure, and potentially the Z-structure, will become

relevant.

The Grassmannian

Let (V, q) be of signature (2, n). We consider the Grassmannian of 2-

dimensional subspaces of V (R) on which the quadratic form q restricts to a

positive-definite form, namely:

Gr(V ) := {v ⊂ V | dim(v) = 2, q|v > 0}.

By Witt’s extension theorem (see [Ser73, Thm. IV.3]), the group G =

Oq(R) will act transitively on Gr(V ). If we fix v0 ∈ Gr(V ) then its stabilizer

Kv0 will be a maximal compact subgroup. Indeed, since this group must pre-

serve both the plane and its orthogonal complement we have Kv0 ' O2×On.

Thus Gr(V ) = G/Kv0 realizes a symmetric space.
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Remark. Though this is a simple and useful realization of the space, it is not

clear from this construction what the complex structure should be.

The Projective Model

We consider the complexification V (C) of the space V and the projec-

tivization P (V (C)). We then consider the zero quadric:

N := {[~v] ∈ P (V (C)) | b(~v,~v) = 0}.

It is a closed algebraic subvariety of projective space. We now define:

κ := {[~v] ∈ P (V (C)) | b(~v,~v) = 0, b(~v,~v) > 0}.

This is a complex manifold of dimension n consisting of 2 connected compo-

nents.

Remark. One must check that these spaces are in fact well defined, that is,

that the conditions do not depend on a representative ~v. Indeed b(c~v, c~v) =

c2b(~v,~v) and b(c~v, c~v) = ccb(~v,~v).

Remark. The orthogonal group Oq(R) acts transitively on κ. In order to see

this we reformulate the condition that ~v = X + iY ∈ V (C) satisfies [~v] ∈ κ as

follows. We observe that:

b(X + iY,X + iY ) = b(X,X)− b(Y, Y ) + 2ib(X, Y ) and

b(X + iY,X − iY ) = b(X,X) + b(Y, Y ).

It follows from the conditions b(X+iY,X+iY ) = 0 and b(X+iY,X−iY ) > 0

that:

[~v] ∈ κ⇔ b(X,X) = b(Y, Y ) > 0 and b(X, Y ) = 0.

We thus have that Oq(R) acts on κ. To show that it acts transitively we appeal

to Witt’s extension theorem to find g ∈ Oq(R) taking X 7→ X ′ and Y 7→ Y ′.

This isometry g then maps [~v] 7→ [~v′].
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Consider the subgroup O+
q (R) of elements whose spinor norm equals the

determinant. This consists of those elements which preserve the orientation

of any, and hence all, positive-definite planes. The group O+
q (R) preserves

the 2 components of κ whereas Oq \O+
q (R) interchanges them. Pick either

component of κ and denote it κ+.

Proposition 2.2.4. The assignment [~v] 7→ v(~v) := RX + RY gives a real

analytic isomorphism κ+ → Gr(V ).

This is a straightforward check (see [Fio09, Lem. 2.3.38]).

The Tube Domain Model

Pick e1 an isotropic vector in V (R) and pick e2 such that b(e1, e2) = 1.

Define U := V ∩ e⊥2 ∩ e⊥1 . We then may express elements of V (C) as (a, b, ~y),

where a, b ∈ C and ~y ∈ U . Thus

V = Qe1 ⊕Qe2 ⊕ U

and U is a quadratic space of type (1, n− 1).

Definition 2.2.5. We define the tube domain

Hq := {~y ∈ U(C) | q(=(~y)) > 0},

where =(~y) is the imaginary part of the complex vector ~y. We also define the

open cone:

Ω = {~y ∈ U(R) | q(~y) > 0},

as well as, the map Φ from U(C) → U(R) given by Φ(~y) = =(~y) so that

Hq = Φ−1(Ω).

Proposition 2.2.6. The map ψ : Hq → κ given by ψ(~y) 7→ [−1
2
(q(~y) +

q(e2)), 1, ~y)] is biholomorphic.

This is a straight forward check (see [Fio09, Lem. 2.3.40]).

Remark. The space Hq has 2 components. To see this suppose q has the

form q(x1, ..., xn) = a1x
2
1 − a2x

2
2 − ... − anx

2
n with ai > 0. The condition
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imposed by q(=(Z)) > 0 gives us two components corresponding to z1 > 0

and z1 < 0. Under the map ψ one of these corresponds to κ+. We shall label

that component H+
q .

Via the isomorphism with κ, we see that we have a transitive action of

O+
q (R) on Hq. One advantage to viewing the symmetric space under this

interpretation is that it corresponds far more directly to some of the more

classically constructed symmetric spaces such as the upper half plane.

Conjugacy Classes of Morphisms S→ O2,n

We now give the interpretation of the space as a Shimura variety (see

Section 2.6).

We may (loosely) think of Shimura varieties as elements of a certain con-

jugacy classes of morphisms:

h : (S = ResC/R(Gm))→ GO2,n

satisfying additional axioms. In particular, we are interested in those mor-

phisms where the centralizer:

ZGO(h(S)) = Z(GO2,n) ·K ' Gm · (O2×On).

We get a bijection between such maps and our space as follows:

Given an element 〈~x, ~y〉 ∈ Gr(V ) we consider the morphism h(reiθ) defined

by specifying that it acts as
(

r2 cos(2θ) r2 sin(2θ)

−r2 sin(2θ) r2 cos(2θ)

)
on the span(~x, ~y) and trivially

on its orthogonal complement.

Conversely, given h in the conjugacy class of such a morphism we may

take [~v] ∈ κ+ to be the eigenspace of r2(cos(2θ) + i sin(2θ)).

The following claim is a straightforward check.

Claim. These two maps are inverses.

Note that the two components correspond to swapping the (non-trivial)

eigenspaces of h.
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Realization as a Bounded Domain

For this section we will assume that:

Ã =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

A


is the matrix for our quadratic form. This is not in general possible over Q if

n ≤ 4. For the purpose of most of this discussion we work over R and this fact

is not a problem. However, it must be accounted for if ever rational structures

are to be used. In order to compute the bounded domain, we must work with

the Lie algebra, and this is slightly easier if we change the basis using the

matrix: 

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

1n−2


so that the matrix for the quadratic form is:

Â =



2 0 0 0

0 2 0 0

0 0 −2 0

0 0 0 −2

A


=


2 0

0 2

A′

 .

We compute that the Lie algebra soÂ is

W Z ′

Z Y

, where W ∈ M2,2 is skew-

symmetric, Y ∈ Mn,n is in soA′ , Z ∈ M2,n, and Z ′ = −ZtA′/2. We conclude
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that the eigenspaces for the action of the centre of k on pC are p± are

0 Z ′

Z 0

,

where Z =

(
~zt ∓i~zt

)
and Z ′ = −ZtA′/2.

In order to compute the exponential of the Lie algebra we observe that

the square of this matrix is equal to

−1

2

ZtA′Z 0

0 0

 = −~z
tA′~z

2


1 ∓i

∓i −1

0

 ,

and that its cube is the zero matrix. We thus have that P± is12 − 1
4
ZtA′Z −1

2
ZtA′

Z 1n

 ,

where Z =

(
~zt ∓i~zt

)
.

After undoing the change of basis P± becomes:

1n+2 +
1

2

 0 −iz1−z2 2z1 −iz1+z2 − ~z3A′
iz1+z2 0 −iz1−x2 2−iz2 i ~z3A′

−2z1 iz1−z2 0 −iz1+z2 − ~z3A′
iz1−z2 2iz2 −iz1−z2 0 i ~z3A′

~z3
t −i ~z3t ~z3

t −i ~z3t 0

− ~ztA′~z

8

(
1 −i 1 −i
−i −1 −i −1
1 −i 1 −i
−i −1 −i −1

0

)
,

where ~z3 = (z3, z4, . . . , zn−2). The action of this matrix on κ+ takes [1 : i : 1 :

i : ~0] to:

Ψ(~z) = [(1, i, 1, i,~0) + 2(z1, z2,−z1,−z2, ~z3)− 1
2
~ztA′~z(1,−i, 1,−i,~0)] ∈ N.

One may check that this is an injective map. We thus conclude that D is the

bounded domain:

{(z1, z2, ~z3) ⊂ P+| conditions }.
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The conditions are computed by pulling them back from P (V (C)). The re-

sulting conditions can be expressed as:

4 + 4~zA′~zt +
∣∣~zA′~zt∣∣2 > 0 and

4−
∣∣~zA′~zt∣∣2 > 0.

We have the following maps between these models:

Ψ : Bounded→ Projective

Ψ−1 : Projective→ Bounded

Υ : Bounded→ Tube Domain

Υ−1 : Tube Domain→ Bounded

The definition of the map Ψ is implicit in the above computations.

Set s(~z) = 1− 2z1 − 1
2
~zA′~zt then Υ is defined by:

y1 =
i+ 2z2 + i~zA′~zt

s(~z)
,

y2 =
i− 2z2 + i~zA′~zt

s(~z)
and

yi =
2zi
s(~z)

for i > 2.

To define an inverse to Υ set:

~y′ = (1
4
(iy1 + iy2 + ~yA′′~yt), 1

4
(y1 − y2),−1

4
(iy1 + iy2 + ~yA′′~yt),−1

4
(y1 − y2), ~y3).

Now set:

r(~y) =
~yA′′~yt

(~y′)A′′(~y′)t
.

Notice that r(Υ(~z)) = 1− 2z1 − 1
2
~zA′~zt. We can therefore define Υ−1 via:

z1 = 1
4
r(~y)(~yA′~yt + i(y1 + y2)) + 1,

z2 = 1
4
r(~y)(y1 − y2) and

zi = r(~y)yi for i > 2.
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2.2.2 Boundary Components and the Minimal Compactification

Locally symmetric spaces are often non-compact. It is thus often useful

while studying them to construct compactifications. We present here some of

the most basic notions of this very rich theory. For more details see [Hel01,

BJ06, AMRT10, Nam80].

Definition 2.2.7. Consider a Hermitian symmetric domain D realized as a

bounded domain in P+. We say x, y ∈ D are in the same boundary compo-

nent if there exist maps:

ϕj : H→ D j = 1, . . . ,m

with ϕj(H)∩ϕj+1(H) 6= ∅, and there exist x′, y′ ∈ H such that ϕ1(x′) = x and

ϕm(y′) = y.

We say that two boundary components F1, F2 are adjacent if F1∩F2 6= 0.

Theorem 2.2.8. The boundary components of the Hermitian symmetric do-

main D are the maximal sub-Hermitian symmetric domains in D. Moreover,

they satisfy the following:

• The group G acts on boundary components preserving adjacency.

• The closure D can be decomposed as D = tαFα, where the Fα are bound-

ary components.

• For each boundary component Fα there exists a map:

ϕα : SL2(R)→ G

inducing a map

fα : H→ D

such that fα(i) = o (for the fixed base point o = K) and fα(i∞) ∈ Fα.

See [AMRT10, Thm. 1,2 Sec 3.3].

Theorem 2.2.9. There is a bijective correspondence between the collection

{Fα} of boundary components and the collection of real “maximal” parabolic

22



subgroups Pα of G = Aut(D). (By “maximal” we mean that for each simple

factor Gi of G the restriction to the factor is either maximal or equal to Gi).

Explicitly we have Pα = {g ∈ G | gFα = Fα}. Moreover, Fα ⊂ F β if and

only if Pα ∩ Pβ is a parabolic subgroup.

See [AMRT10, Prop. 1,2 Sec 3.3].

Definition 2.2.10. We say Fα is a rational boundary component if Pα is

defined over Q. We define the space:

D∗ = ∪
rational

Fα.

Theorem 2.2.11. Let Γ ⊂ G(Q) be an arithmetic subgroup. There exists a

topology on D∗ such that the quotient X
Sat

:= Γ\D∗ has the structure of a

normal analytic space.

We call X
Sat

the minimal Sataké compactification of Γ\D.

See [BJ06, Sec. III.3].

Remark. The topology one should assign may become more apparent once

we introduce other compactifications.

2.3 Modular Forms

We give now a simplified notion of modular forms. More general and

precise definitions can be found in any of [Bor66, Mum77, BB66].

Definition 2.3.1. Let Q be the image of D = G/K in the projective space

D̆ = GC/P
− and let Q̃ be the cone over Q. A modular form f for Γ of

weight k on D can be thought of as any of the equivalent notions:

1. A function on Q̃ homogeneous of degree −k which is invariant under the

action of Γ.

2. A section of Γ\(OD̆(−k)|D) on Γ\D.

3. A function on Q which transforms with respect to the kth power of the

factor of automorphy under Γ.
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To be a meromorphic (resp. holomorphic) modular form we require that

f extends to the boundary and that it be meromorphic (resp. holomorphic).

One may also consider forms which are holomorphic on the space but are only

meromorphic on the boundary.

Remark. The condition at the boundary depends on understanding the topol-

ogy, a concept we have not yet defined. There is an alternative definition in

terms of Fourier series. Let Uα be the centre of the unipotent radical of Pα and

set Uα = Γ∩Uα. This group is isomorphic to Zm for some m and the function

f is invariant under its action. The boundary condition can be expressed by

saying the non-trivial Fourier coefficients (which are indexed by elements of

U∗α), are contained in a certain self-adjoint cone Ωα ⊂ U∗α.

The following is what is known as the Koecher principle (see for example

[Fre90]).

Claim. If the codimension of all of the boundary components is at least 2,

then every form which is holomorphic on D extends to the boundary as a

holomorphic modular form.

This result is a consequence of results about extending functions on normal

varieties.

Theorem 2.3.2 (Baily-Borel). Let M(Γ,D) be the graded ring of modular

forms then

X
BB

:= Proj(M(Γ,D))

is the Baily-Borel compactification of X. Moreover, this is isomorphic to the

minimal Sataké compactification as an analytic space

See [BB66] and [BJ06, III.4].

2.3.1 The O(2,n) Case

Specializing the previous section to the orthogonal case we can use the

following definition for modular forms.
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Definition 2.3.3. Let κ+ = {~v ∈ V (C) | [~v] ∈ κ+} be the cone over κ+.

Let k ∈ Z, and χ be a character of Γ. A meromorphic function on κ+ is a

modular form of weight k and character χ for the group Γ if it satisfies the

following:

1. F is homogeneous of degree −k, that is, F (c~v) = c−kF (~v) for c ∈ C−{0}.

2. F is invariant under Γ, that is, F (g~v) = χ(g)F (~v) for any g ∈ Γ.

3. F is meromorphic on the boundary.

If F is holomorphic on κ+ and on the boundary then we call F a holomorphic

modular form. In this case Uα and Ωα are precisely those introduced for the

tube domain model (see Section 2.2.1).

Remark. The Koecher principle implies condition (3) is automatic if the di-

mension of maximal isotropic subspace is less than n. Noting that for type

(2, n) the Witt rank is always at most 2, we see that the Koecher principle

often applies.

Remark. One of the best sources of examples of modular forms for these

orthogonal spaces is the Borcherds lift (see [Bor95, Bru04, Bru02] for more

details). The Borcherds lift, which may be defined via a regularized theta

integral, takes nearly holomorphic vector-valued modular forms for the upper

half plane and constructs modular forms on an orthogonal space. The forms

constructed this way have well understood weights, levels, and divisors. One

can also consider other types of forms (for example Eisenstein series, Poincare

series and theta series).

2.4 Dimension Formulas for Spaces of Modular Forms

One very natural question which remains unanswered about modular

forms on orthogonal symmetric spaces is that of giving explicit formulas for

the dimensions of spaces of modular forms on these spaces. These types of

formulas have a wide variety of applications, both computational and theo-

retical. This problem has been extensively studied in lower dimensional cases
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where exceptional isomorphisms exist between the orthogonal Shimura vari-

eties and other classical varieties. In particular, the (2,1)-case corresponds

to the classical modular and Shimura curves and the (2,2)-case corresponds

to Hilbert modular surfaces. Many results are known for these cases (see for

example [DS05, Ch. 3] and [Fre90, Ch. 2]). Additionally, the split (2,3)-case

corresponds to a Siegel space where the work of Tsushima (see [Tsu80]) gives

us dimension formulas. The only work in the general case is that of [GHS08].

They are able to compute asymptotics for the dimensions as one changes the

weight for several higher dimension cases. The standard approach to this type

of problem and the one we intend to discuss is that which has been used

successfully in the above listed cases.

The first tool we shall discuss is the Riemann-Roch formula.

2.4.1 Hirzebruch-Riemann-Roch Theorem

Before discussing the theorem we shall quickly survey the objects involved

in the statement of this theorem. Most of what we say can be found in [Har77,

Appendix A]. More thorough treatments exist, both from a more topological

approach [Hir66] or algebraic approach [BS58].

What the Hirzebruch-Riemann-Roch theorem fundamentally is about is

a formula for the Euler characteristic in terms of the values of intersection

pairings between certain cycles and cocycles. We will say very little about

what this means. Two good references for this material are [Ful98, Ful84].

The Euler Characteristic

Theorem 2.4.1 (Serre). Let X be a projective scheme over a Noetherian ring

A and let OX(1) be a very ample invertible sheaf on X over Spec(A). Let E

be a coherent sheaf on X. Then the following properties hold:

1. For each i ≥ 0 the ith cohomology H i(X, E) is a finitely generated A-

module.

2. There exists an n0 such that H i(X, E(n)) = 0 for all i > 0 and n ≥ n0.
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See [Har77, III.5.2].

Definition 2.4.2. Let X be a projective scheme over k and let E be a coherent

sheaf on X we define the Euler characteristic of E to be:

χ(E) =
∑
i

(−1)i dimkH
i(X, E).

Proposition 2.4.3. Let X be a projective scheme over k, let OX(1) be a very

ample invertible sheaf on X over k, and let E be a coherent sheaf on X. There

exists P (z) ∈ Q[z] such that χ(E(n)) = P (n) for all n. We call P the Hilbert

polynomial of E relative to OX(1).

See [Har77, Thm. I.7.5 and Ex. 2.7.6].

Theorem 2.4.4 (Hirzebruch-Riemann-Roch). For a locally free sheaf E of

rank r on a non-singular projective variety X of dimension n we have the

following formula for the Euler characteristic:

χ(E) = deg(ch(E). td(TX))n.

The statement is from [Har77, A.4.1]. For the proof see [BS58].

Corollary 2.4.5. Consider a locally free sheaf E of rank r on a smooth pro-

jective variety X of dimension n. There exists a ‘universal polynomial’ Q such

that:

χ(E) = Q(c1(E), . . . , cr(E); c1(Ω1
X), . . . , cn(Ω1

X))

=
n∑
i=0

∑
|α|=i

∑
|β|=n−i

aα,βc
β(E) · cα(Ω1

X),

where α, β are partitions of i, n − i, and the aα,β are integers which depend

only on α, β, n.

Proof. This follows from the observation that the Tod and Chern characters

are universal polynomials in the Chern classes.
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2.4.2 Kodaira Vanishing

In order to effectively apply this theorem to computing dimensions of H0s,

one needs to know that, for the line bundle in question, the higher cohomology

vanishes. To this end we have the following results.

Theorem 2.4.6 (Kodaira). If X is a non-singular projective variety of di-

mension n and L is an ample line bundle on X then:

H i(X,L⊗(−m)) = 0 for all m > 0, i < n.

The statement is [Har77, Rem. III.7.15]. For the proof see [Kod53].

Corollary 2.4.7. If X is a non-singular projective variety of dimension n and

L is an ample line bundle on X then:

H i(X,L⊗(m) ⊗ Ω1
X) = 0 for all m > 0, i > 0.

This follows immediately from the previous result by Serre duality (see

[Har77, III.7 and III.7.15]).

2.4.3 Hirzebruch-Proportionality

In order to effectively apply the Riemann-Roch theorem to the situation

of locally symmetric spaces there are a number of key issues that must be

overcome. The first is that one must be working with a line bundle on a

projective variety. It is not immediately apparent that modular forms should

be sections of such a bundle and this should not be assumed lightly. The

second is how to actually compute the various intersection pairings that make

up the Riemann-Roch formula. Both of these problems have at least partial

solutions coming out of the theory of toroidal compactifications (see [AMRT10,

Mum77]).

Notation 2.4.8. Throughout this section we will be using the following no-

tation. Let D = G/K be a Hermitian symmetric domain of the non-compact

type and let D̆ = Gc/K be its compact dual. Each of these has the induced
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volume form coming from the identification of tangent spaces at a base point

with part of the Lie algebra pC ⊂ gC.

Let Γ ⊂ Aut(D) be a neat arithmetic subgroup with finite covolume and

let X = Γ\D be the corresponding locally symmetric space. We will denote by

X a choice of smooth toroidal compactification and by X
BB

the Baily-Borel

compactification.

Definition 2.4.9. We then define the Hirzebruch-Mumford volume to be:

VolHM(X) =
Vol(X)

Vol(D̆)
.

Proposition 2.4.10. Given a G-equivariant analytic vector bundle E0 on D

there exists:

• an analytic vector bundle Ĕ on D̆ which agrees with E0 on D,

• an analytic vector bundle E on X with an induced Hermitian metric,

and

• a unique extension E to X such that the induced metric is a good singular

metric on X.

See [Mum77, Thm 3.1].

Theorem 2.4.11. Using the notation of the previous proposition. For each

partition α of n = dim(X) the associated Chern numbers cα(E) and cα(Ĕ)

satisfy the following relation:

cα(Ĕ) = (−1)dim(X) VolHM(X)cα(E).

See [Mum77, Thm 3.2].

Geometric Modular Forms

We now give a definition of the spaces in which we are interested.

Definition 2.4.12. Given a representation ρ : K → GLn we define a bundle

Eρ on D via

Eρ = K\(G×ρ Cn).
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We define a ρ-form on X to be a Γ-equivariant section of Eρ such that the

induced map f̃ : G→ Cn satisfies:∣∣∣f̃(g)
∣∣∣ ≤ C ||g||nG

for some n > 1, C > 0. The norm ||g|| is defined as in [Bor66, Sec. 7] as

Tr(Ad(s(g))−1 · Ad(g)), where s is a Cartan involution.

We say a ρ-form is holomorphic if it is a holomorphic section of:

Ĕρ = KCP+\(GC ×ρ Cn)

on the inclusion of E ↪→ Ĕ.

Proposition 2.4.13. The vector space of holomorphic ρ-forms is precisely:

H0(X,Eρ),

where X is a smooth toroidal compactification of X and Eρ the unique exten-

sion of Eρ to X.

See [Mum77, Prop 3.3].

Proposition 2.4.14. Consider the case Ĕ = Ω1
D̆ so that E = Ω1

D. In this case

E = Ω1
X

(log)

is the bundle whose sections near a boundary of k intersecting hyperplanes are

of the form:
k∑
i=1

ai(z)dzi
zi

+
n∑

i=k+1

ai(z)dzi.

See [Mum77, Prop 3.4.a].

Proposition 2.4.15. Consider the case Ĕ = Ωn
D̆ so that E = Ωn

D is the

canonical bundle of D. In this case

E = f ∗(O
X
BB(1))
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is the pullback of an ample line bundle on the Baily-Borel compactification.

The sections of O
X
BB(n) are the modular forms of weight n.

See [Mum77, Prop 3.4.b].

Corollary 2.4.16. Suppose n′ = dim(X
BB−X), then for all k > n′ the cycle

[Ω1
X

(log)]k is supported on X.

Proof. This is true for the ample line bundle on X
BB

for which Ω1
X

(log)k is

the pull back. Hence the statement is true for Ω1
X

(log)k.

Corollary 2.4.17. For X = Γ\D a locally symmetric space, the modular

forms are:

Mk(Γ) = H0(X,Ωn
X

(log)k)

is the space of modular forms of weight k level Γ for G. Furthermore the cusp

forms are:

Sk(Γ) = H0(X,Ωn
X

(log)k−1 ⊗ Ωn
X

).

Computing Dimensions

We now describe how to compute dimensions for spaces of modular forms.

Proposition 2.4.18. Suppose D is a cycle on X supported entirely on X,

then

D · cα(ΩX(log)) = D · cα(ΩX).

This follows from the properties of the Chern classes.

Lemma 2.4.19. Suppose Q is the universal polynomial of Corollary 2.4.5

then:

EX(`) : = Q(`c1(Ω1
X

(log));c1(Ω1
X

(log)), . . . , cn(Ω1
X

(log)))

−Q(`c1(Ω1
X

); c1(Ω1
X

(log)), . . . , cn(Ω1
X

))

=
n′∑
i=0

`i[c1(Ω1
X

(log))i]
∑
|α|=n−i

bα(cα(Ω1
X

)− cα(Ω1
X

(log)))

for constants bα which depend only on α and not on X.
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Proof. This is a direct application of Corollary 2.4.16 and Proposition 2.4.18.

Theorem 2.4.20. Consider (Ωn
D̆)−1 the ample line bundle on D̆ and let

PD̆(`) =
∑
i

dim(H i(D̆, (Ωn
D̆)−1))

be the associated Hilbert polynomial. Suppose Γ is a neat arithmetic subgroup

and X is a smooth toroidal compactification of X = Γ\D with n′ = dim(X
BB−

X). Then for ` ≥ 2 we have:

dim(S`(Γ)) = VolHM(X)PD̆(`− 1)− EX(`).

See [Mum77, Prop 3.5].

Remark. A remark is in order on the issue of the weight of a modular form.

The weight ` in the above theorem is what is known as the geometric weight.

This differs from the arithmetic weight by a factor of dim(X).

Notation 2.4.21. Denote the boundary of X by ∆ = X − X and write

[∆] =
∑

[Di] as a decomposition into its irreducible components [Di]. Denote

by ∆k the kth elementary symmetric polynomial in the [Di]. Moreover, for α

a partition denote by ∆α =
∏

` ∆α` .

Proposition 2.4.22. Let X be an n dimensional complex manifold and sup-

pose ∆ = X \X is a reduced normal crossings divisor. Denoting by Ω1
X

(log)

the subsheaf of ΩX with log-growth near ∆. Then:

cj(Ω
1
X

) =

j∑
i=0

ci(Ω
1
X

(log))∆j−i.
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Proof. This is proven is slightly more generality in [Tsu80, Prop 1.2] for the

tangent bundle. It follows from considering the following two exact sequences:

0 // Ω1
X

(log) // Ω1
X

// ⊕ODi(Di) // 0,

0 // OX // OX(Di) // ODi(Di) // 0.

Corollary 2.4.23. For a partition α of j we find:

cα(Ω1
X

) =
∏
`

(
α∑̀
i=0

ci(Ω
1
X

(log))∆α`−i

)

=
∑
β,γ

dα,β,γc
β(Ω1

X
(log))∆γ,

where the dα,β,γ depend only on α, β, γ and not on X.

Corollary 2.4.24. We have that:

EX(`) =
n′∑
i=0

`i[c1(Ω1
X

(log))i]
∑
|α|=n−i

bα

 ∑
|β|<|α|
|γ|=|α|−|β|

dα,β,γc
β(Ω1

X
(log))∆γ

 ,

where the coefficients bα and dα,β,γ depend only on α, β, γ and n and not oth-

erwise on X.

Remark. We have the following remarks about the above:

• All of the intersections in the above formula take place in the boundary,

since |γ| > 0 for every term appearing in the formula.

• There are only finitely many connected components of boundary com-

ponents and finitely many inequivalent orbits of boundary component.

• Boundary components are of the form:

ΓF\F n (Z2m\Cm) nO(σ)

for the various boundary components F and cones σ.
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• Intersections between adjacent F ’s in X
BB

is understood by the spherical

Bruhat-Tits building of G over Q.

• The intersections of two cones in F are either another cone of F or a

cone of an adjacent boundary component F ′ contained in the closure of

F .

• The Chern classes generally ‘descend well’ to adjacent boundary compo-

nents, see [Tsu80, Lem. 5.1].

In general [Tsu80, Sections 3,4,5] provides guidelines for computing these in-

tersection numbers.

Remark. The above results combine to reduce the issue of computing dimen-

sion formulas to the following steps:

1. Computing the Hilbert polynomial PD̆. These are known in all the basic

cases.

2. Computing the volume VolHM(X). This depends on the choice of Γ, the

formulas typically involve special values of L-functions.

3. Computing the terms bα, dα,β,γ. This is a formal, though unpleasant

calculation and in high dimensions it is probably best left to computer

algebra software.

4. Computing the intersection numbers of all the terms appearing (see the

previous remark).

2.4.4 The Orthogonal Case

The following discussion follows closely that of [GHS08, Section 2].

Theorem 2.4.25. Let D be the symmetric space for an orthogonal group of

signature (2, n), then:

χ(OD̆(−n)`) = χ(OPn+1(−n`))− χ(OPn+1(−n`− 2)) = ( n+1−n`
n )− ( n−1−n`

n ) .
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Proof. We have describe D̆ as a quartic in Pn+1 with canonical bundleOD̆(−n).

The adjunction formula places it into the following exact sequence:

0→ OPn+1(−n`− 2)→ OPn+1(−n`)→ O`D̆ → 0.

This allows us to compute the Hilbert polynomial of OD̆ from that of OPn+1 .

In particular using the fact that dim(H0(OPn+1(k))) = ( n+1+k
n ) allows us to

check the result.

The non-trivial volume forms on a Hermitian symmetric domain D are

induced by the Killing form and the identification of p with TD,x, where x is

any base point. Up to scaling this form is unique.

For the group O2,n it is shown in [Hel01, p. 239] that the tangent spaces

for D and D̆ are respectively: 0 U

U t 0

 and

 0 U

−U t 0


in the Lie algebra of G. The killing form is Tr(M1M

t
2) which induces the form

2 Tr(U1U
t
2). Fix a lattice L in the underlying quadratic space. In [Sie67] Siegel

computed the volume of O(L)\D relative to Tr(U1U
t
2) as:

2α∞(L,L) |D(L)|(2+n+1)/2

(
2∏

k=1

π−k/2Γ(k/2)

)(
n∏
k=1

π−k/2Γ(k/2)

)
,

where α∞(L,L) is the real Tamagawa volume of O(L). The computations of

[Hua79] when combined with the above yield the formula:

Vol(D̆) = 2

(
n+2∏
k=1

πk/2Γ(k/2)−1

)(
n∏
k=1

π−k/2Γ(k/2)

)(
2∏

k=1

π−k/2Γ(k/2)

)
.

Combining these results we find:
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Proposition 2.4.26. The Hirzebruch-Mumford volume for an orthogonal sym-

metric space is:

VolHM(SO(L)\D) = α∞(L,L) |D(L)|(2+n+1)/2

(
n+2∏
k=1

πk/2Γ(−k/2)

)
.

In order to compute α∞(L,L) we use several facts.

Proposition 2.4.27. For an indefinite lattice of rank at least 3 the genus

equals the spinor genus.

This follows from [Kit93, Thm 6.3.2].

Proposition 2.4.28. The weight of a lattice depends only on its spinor genus.

This is discussed in [GHS08, p224]. See also [Shi99, Thm 5.10].

Now using the fact that the Tamagawa volume of SOV (Q)\ SOV (A) = 2

we may conclude:

Proposition 2.4.29. For an indefinite lattice of rank at least 3 the following

formula holds: ∏
p

αp(L,L) =
2

|spn+(L)|

or equivalently:

α∞(L,L) =
2

|spn+(L)|
∏
p

αp(L,L)−1,

where spn+(L) is the proper spinor genus of L.

Remark. It is known (see [Kit93, Cor 6.3.1]) that |spn+(L)| is a power of 2.

Moreover, by [Kit93, Cor 6.3.2] computing |spn+(L)| can be reduced to a finite

computation.

The local densities αp(L,L) can also be computed. These computations

are explained in Chapter 4. Note that αp differs from βp by a factor of

qrank(L)ν(2).

2.4.5 Non-Neat Level Subgroups

An important aspect of the above discussion was the appearance of the

term ‘non-singular’. In order to obtain a non-singular variety from a locally
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symmetric space one is forced to take blowups. This process is not (trivially)

well-behaved with respect to the existence or dimension of sections. The above

machinery only works directly, without the need for any modifications, when

the locally symmetric space is non-singular. Consequently, an important result

is that every locally symmetric space has a non-singular finite cover. This result

follows from the following:

Theorem 2.4.30. Suppose p - Φ`(1) and deg(Φ`) ≤ n for all `, then Γ(p) ⊂

GLn(Z) is neat.

See [Bor69, Prop. 17.4].

Two natural questions now arise:

Question 1. What does it mean to have a modular form on a singular space?

Question 2. How can one compute the dimension of this space from the

corresponding dimension of the cover?

Remark. The reason the first question is important is that line bundles may

not descend to a desingularization of the quotient. Notice that the desingu-

larization of (SL2(Z)\H) is P1. If the line bundle of modular forms of weight

2 descended, it would by necessity have global sections. Moreover, even if the

line bundle does descend, it is not clear that Γ-invariant sections will descend

to holomorphic sections.

Notation 2.4.31. Suppose we have a normal subgroup Γ′ ⊂ Γ with Γ′ neat.

Denote by Sk(Γ
′) the space of weight k cusp forms on X(Γ′). Define Sk(Γ) =

Sk(Γ
′)Γ to be the space of Γ-invariant cusp forms. Define S̃k(Γ) ⊂ Sk(Γ)

to be the subspace of cusp forms which extend to holomorphic forms on a

desingularization X̃(Γ) of X(Γ) = Γ\X(Γ′).

Proposition 2.4.32. With the notation as above we can compute:

dim(Sk(Γ)) =
∑
γ∈Γ/Γ′

tr(γ|Sk(Γ′)).
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The proof is a standard argument. A generalization of the Riemann-Roch

theorem by Atiyah and Singer [AS68] allows this to be computed.

We first introduce the following notation:

Notation 2.4.33. Suppose γ ∈ Γ, χ is a character of Γ and θ ∈ C×. Denote

by Xγ = {x ∈ X | x = γ(x)} and by Nγ = NXγ the normal bundle of Xγ in X.

For a vector bundle E denote by Eγ(θ) the θ-eigenspace of γ and by E(χ) the χ-

isotypic component. Suppose ct(E) =
∏

(1− xit), then set U θ(E) =
∏

( 1−θ
1−θexi )

and ch(E)(γ) =
∑

χ χ(γ) ch(E(χ)).

Theorem 2.4.34. Suppose k is sufficiently large so that H i(X,ΩN
X(log)k−1) =

0 for i > 0 then:

tr(γ|Sk(Γ)) =

{
ch(ΩN

X(log)k−1 ⊗ ΩN
X |Xγ)(γ)

∏
θ U

θ(Nγ(θ)) td(Xγ)

det(1− γ|N∗γ )

}
[Xγ].

This is a polynomial in the weight k of degree at most Xγ.

See [Tai82, Sec. 2] and [AS68, Thm. 3.9].

Remark. The contribution of the identity element of Γ in this formula gives

us the Riemann-Roch theorem for Sk(Γ). To evaluate this formula one needs

a complete understanding of the ramification locus of the quotient map.

On the issue of the relation of Sk(Γ) to S̃k(Γ) we have the following result.

Proposition 2.4.35. Let X̃(Γ) be a non-singular model of X(Γ) and let

X̃(〈γ,Γ′〉) be the non-singular model of X(〈γ,Γ′〉) which covers it. A Γ′-

invariant form extends to X̃(Γ) if and only if it extends to X̃(〈γ,Γ′〉) for all

γ ∈ Γ.

See [Tai82, Prop. 3.1].

Definition 2.4.36. Let γ act on X with a fixed point x ∈ X. Suppose the

eigenvalues for the action of γ on TX,x are e2πiαj for j = 1, . . . , n. We say the

singularity at x is γ-canonical if
∑

j αj − bαjc ≥ 1.

Proposition 2.4.37. Every invariant form extends to X̃(〈γ,Γ〉) if and only

if all the singularities are γk-canonical for all γk 6= Id.
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See [Tai82, Prop. 3.2].

Remark. Forms which have sufficiently high orders of vanishing along the

ramification divisor will still extend even if the singularities are not canonical.

Theorem 2.4.38. Let L be a lattice of signature (2, n) with n ≥ 9 and let

Γ ⊂ Γ′ be as above. There exists a toroidal compactification of X(Γ) such that

all the singularities are γ-canonical for all γ ∈ Γ′.

See [GHS07, Thm 2].

Remark. The results of [GHS07] are slightly more refined. They show that for

n ≥ 6 the only source of non-canonical singularities on the interior are reflec-

tions. For n ≥ 7 the reflections no longer give non-canonical singularities. For

the boundary, they show the 0-dimensional cusps never present non-canonical

singularities (by a choice of toroidal compactification). They also show that

the 1-dimensional cusps may only have non-canonical singularities over the

usual points i, ω ∈ H and these points present no problems if n ≥ 9. More-

over, from their proof one can compute lower bounds on ` such that Γ(`) would

only give canonical singularities.

The computations involved in obtaining these results use the structure of

singularities that we will discuss in the following section.

2.5 Ramification for Orthogonal Shimura Varieties

The purpose of this section is to describe the nature of the ramification

between different levels for the orthogonal group. The only other discussion of

this topic with which we are familiar is the work of [GHS07, Sec. 2]. Some of

the results here are motivated by their constructions.

Let L be a Z-lattice of signature (2, n). Recall that:

DL = KL = {[~z] ∈ P(L⊗Z C) | q(~z) = 0, b(~z, ~z) > 0}.

Denote by OL the orthogonal group of L. For Γ a subgroup of OL(Z) we set:

XL(Γ) := Γ\DL.
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When Γ is neat XL(Γ) can be given the structure of a smooth quasi-projective

variety. We also wish to think about XL(Γ) when Γ is not neat. It will be

a quotient of XL(Γ′) for some neat subgroup Γ′ ⊂ Γ by a finite group of

automorphisms. The quotient certainly exists as a stack (though we shall not

discuss this further). However, one often expects that one can make sense of

it as a scheme, in which case the cover πΓ : XL(Γ′)→ XL(Γ) will be a ramified

covering.

The first thing we shall do is describe the structure of some ‘explicit’ rami-

fication divisors. We will next explain why this captures all of the ramification.

2.5.1 Generalized Heegner Cycles

We now define a class of cycles on our spaces. This is essentially the same

definition as the cycles considered in [Kud04], see also [Kud97a].

Definition 2.5.1. Let S ⊂ L be a (primitive) sublattice of signature (2, n′).

Then S⊥ is a (primitive) negative-definite sublattice of L. Define:

DL,S = {[~z] ∈ DL | b(~z, ~y) = 0 for all ~y ∈ S⊥}.

This is a codimension rankS⊥ subspace of DL, defined by algebraic conditions.

Moreover, we see that:

DS ' DL,S ⊂ DL.

Let ΦS = {S ′ | S ′ = γS for some γ ∈ Γ}. Define:

HL,S = ∪
S′∈ΦS

DL,S′

to be the generalized Heegner cycle associated to this set of (primitive)

embeddings of S into L. Its image in XL(Γ) will be an analytic cycle. A more

careful analysis and a precise definition can result in obtaining an algebraic

cycle (see [Kud04]).

Remark. In the definitions above we could just as well have taken S ⊂ L#,

the dual of L, or in fact any lattice in L⊗Q. However, for our purposes, since
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(S⊥)⊥ ∩L would give a primitive lattice generating the same DL,S, there is no

real loss of generality in assuming this for our purposes.

We should remark that if S has corank 1 then HL,S = Hxi,q(xi) is just a

usual Heegner divisor (see [Bru02, p. 80]). This justifies our choice of name. It

is not our intent to imply that there is (or is not) a relation to the generalized

Heegner cycles arising from certain Kuga-Sato varieties (see [BDP10]).

2.5.2 Ramification near DL,S

We introduce the following notation (for any non-degenerate S):

ΓS = {γ ∈ Γ | γS ⊂ S},

ΓS = {γ ∈ OS | γ lifts to Γ}, and

Γ̃S = {γ ∈ ΓS | γ|S⊥ = Id}.

Remark. It would be convenient if Γ̃S ' ΓS, however, this is hard to guarantee

if L 6= S ⊕ S⊥.

We return to the setting where S ⊂ L is a sublattice of signature (2, n′),

so that S⊥ is a negative-definite lattice. It follows that ΓS⊥ , and hence Γ̃S⊥ ,

are both finite groups. We find that Γ̃S× Γ̃S⊥ ↪→ OL, while ΓS×ΓS⊥ may not.

We have the following maps:

XS(Γ̃S)

����

� � // (Γ̃S × Γ̃S⊥)\DL

����

XS(ΓS) // XL(Γ).

Remark. If we want the bottom map to be injective we would need that for

each σ ∈ OL with x, σ(x) ∈ DL,S⊥ then there exists τ ∈ OS with τ(x) = σ(x).

We wish to explain the local ramification nearDL,S. Fix e1 and e2 isotropic

vectors spanning a hyperplane in S ⊗K, where K is a totally real quadratic

extension of Q. Note that we cannot always take e1 and e2 in S. We may then

choose to express the spaces DS and DL as tube domains relative to the same
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pair e1, e2. In particular we may write:

DL = {~u ∈ UL = 〈e1, e2〉⊥ ⊂ L⊗ C | q(=(~u)) > 0}

with DL,S in DL being precisely:

DL,S = {~u ∈ US = 〈e1, e2, S
⊥〉⊥ ⊂ L⊗ C | q(=(~u)) > 0}.

Thus we see that in a neighbourhood of DL,S in DL we can express

DL = DL,S ⊕ (S⊥ ⊗ C).

Then Γ̃S⊥ acts on the complementary space S⊥ ⊗ C. We see that the cycle

DL,S is the generic ramification locus for this action. That is, DL,S is maximal

among cycles fixed by this action (with respect to inclusion among cycles).

Remark. We remark that for some points of DL,S the group ΓS⊥ = ΓS may

also cause ramification in the quotient. This ramification will not in general

be generic, and it will typically restrict to some sub-cycle of DL,S.

Indeed, a group element g fixes τ ∈ DL,S if and only if τ is an eigenspace

of g. Thus g can only fix all of DL,S if S is an eigenspace. This would imply

that τ acts as −1 on S. Such an element acts trivially on DS as this is a

projective space. The effect of the quotient by g is the same as by −g ∈ OS⊥ .

2.5.3 Generalized Special Cycles

We will now introduce another type of cycle on the spaces X = Γ\DL

which play a role in ramification. We will call these generalized special

cycles because of their relationship to special points (see Section 2.6). Some of

the constructions we shall perform will become more natural with the material

in Chapter 3.

Let F/Q be a CM-field and consider the CM-algebra:

E = F d = F (1) × · · · × F (n).
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Denote complex conjugation for both F and E by σ . View E as an F -

algebra under the diagonal embedding of F into E. Label the embeddings

Hom(F,C) as {ρ1, ρ1, . . . ρm, ρm}. Pick λ = (λ(1), . . . , λ(n)) ∈ (Eσ)× such that

ρ1(λ(1)) ∈ R+ but ρj(λ
(i)) ∈ R− for all other combinations of i, j. We now

consider the rational quadratic space (V, qE,σ,λ) given by V = E and

qE,σ,λ(x) = 1
2

TrE/Q(λxσ(x)).

Notice that the signature of the quadratic form is of the shape (2, `). We define

also the F -quadratic space (V ′, q′E,σ,λ) given by V ′ = E and

q′E,σ,λ(x) = 1
2

TrE/F (λxσ(x)).

Notice that qE,σ,λ(x) = TrF/Q(q′E,σ,λ(x)). We have the tori TE,σ and TF,σ defined

by:

TE,σ(R) = {x ∈ (E ⊗Q R)× | xσ(x) = 1},

TF,σ(R) = {x ∈ (F ⊗Q R)× | xσ(x) = 1},

as well as maps:

TF,σ
∆
↪→ TE,σ ↪→ ResF/Q(Oq′E,σ,λ

) ↪→ OqE,σ,λ ,

where the first map ∆ is the diagonal embedding. Now suppose further that:

q = qE,σ,λ ⊕ q⊥ and consider the inclusion:

OqE,σ,λ ↪→ Oq .

Definition 2.5.2. The generalized special cycle associated to the inclu-

sions TF,σ
φ

↪→ · · · ↪→ Oq as above is:

Dφ = {[~z] ∈ κ+
q | g~z = ρ0(g)~z for all g ∈ TF,σ(R)}.
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For any lattice L in the quadratic space of q this gives us a cycle in DL. Set

Φ = {γ−1φγ | γ ∈ Γ} and define:

Hφ = ∪
φ∈Φ
Dφ.

The image of Hφ in X = Γ\DL is a cycle on X of the form:

Γ′\Dφ = Γ′\ResF/Q(Oq′E,σ,λ
)(R)/KE,σ,λ,

where Γ′ = Γ∩ResF/Q(Oq′E,σ,λ
)(Z) and KE,σ,λ is a maximal compact subgroup

of ResF/Q(Oq′E,σ,λ
)(R). Note that:

ResF/Q(Oq′E,σ,λ
)(R) ' O2,m−2(R)×Om(R)d−1.

Remark. If d = 1 then the special cycle will be a special point.

2.5.4 Ramification Near Dφ

Notation 2.5.3. Denote the group of N th roots of unity by µN and a choice

of generator by ζN .

The group µN has a unique irreducible rational representation ψN . The

representation ψN is precisely the ϕ(N)-dimensional representation of µN act-

ing on the rational vector space Q(ζN) by multiplication.

For each a ∈ (Z/NZ)× the generator ζN acts on:

xa =
∑

b∈Z/NZ

ζ−bN ⊗ ζ
a−1b
N ∈ Q(ζN)⊗ ψN

by multiplication by ζaN . We shall denote this (a)-isotypic eigenspace by

ψN(a) ⊂ Q(ζN)⊗ ψN .

Conversely, we recover the rational subspace QζbN as being spanned by:

∑
γ

γ(ζbN)γ(xa),

where the sum is over γ ∈ Gal(Q(ζN)/Q). The vectors ζaN for a ∈ (Z/NZ)×

form a rational basis for ψN .
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Now consider the special case of the previous section where F = Q(ζN)

and E = Q(ζN)n. Assume that q = qE,σ,λ. Moreover, assume that the integral

structure on E = F d is of the form L = ⊕Li, where the Li are fractional ideals

of F (i). This requirement is equivalent to saying the integral structure is such

that via µN ⊂ TF ⊂ Oq we find µN ⊂ Oq(Z).

Proposition 2.5.4. The cycle Dφ is the ramification divisor for µN under this

action. Moreover, locally near Dφ we have that:

DL = Dφ ×
∏

a∈(Z/NZ)×\{1}

Cr(a− 1),

where the action of µN on Cr(a) is via χa.

Proof. We identify the tangent space near τ ∈ Dφ with:

TDL,τ = τ⊥/τ = ⊕a(L⊗ C)(a)/τ.

Without loss of generality (or rather by choice of ζN) we may suppose τ is in

the ζN -eigenspace. The above then becomes:

τ⊥/τ = TDφ/τ ⊕
a6=1

((L⊗ C)(a)/τ).

We see that the action of µN on (L⊗C)(a)/τ is by ζa−1
N , where the −1 comes

from the action on τ . We thus see that in a neighbourhood of τ around Dφ

the group µN acts non-trivially, whereas it clearly acts trivially on Dφ.

Remark. As with the previous case, points τ ∈ Dφ may have other sources

of ramification.

2.5.5 Ramification at τ

We will now explain why the situations described above are in fact the

only source of ramification. Fix τ ∈ DL. We define a lattice S ⊂ L by setting:

S = ({<(τ),=(τ)}⊥)⊥.
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Note that the lattice S⊥ is a potentially 0-dimensional negative-definite lattice.

We observe that τ ∈ C ⊗ S. We wish to consider the stabilizer of τ ∈ DL.

This is precisely:

Γτ = {γ ∈ Γ | there exists λγ ∈ C× with γ(τ) = λγτ}.

We immediately obtain a homomorphism χτ : Γτ → C× given by χτ (γ) = λγ.

We have the following key results from [GHS07, Sec. 2.1].

Proposition 2.5.5. With the above notation we see the following:

• There is an inclusion Γτ ⊂ ΓS.

• The kernel ker(χτ ) equals Γ̃S⊥.

• The image of Γτ/Γ̃S⊥ is a cyclic subgroup of ΓS.

Proof. The first point follows immediately from the definition of S and ΓS.

To see the second point, notice that the inclusion Γ̃S⊥ ⊂ ker(χτ ) is ap-

parent from the discussion of Section 2.5.2. Now for the reverse inclusion, if

g ∈ ker(χτ ) and x ∈ S we see:

(τ, x) = (gτ, gx) = (τ, gx).

This implies that:

(τ, x− gx) = (τ , x− gx) = 0,

and thus, x− gx ∈ S⊥. However, S⊥ is negative-definite and thus:

S ∩ S⊥ = (S⊥)⊥ ∩ S⊥ = 0.

For the final point notice that:

Γτ/Γ̃S⊥ ' χτ (Γτ ) = µrτ ⊂ C∗.

Thus the natural map:

ΓS → ΓS
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takes Γτ/Γ̃S⊥ to a cyclic subgroup of ΓS.

It follows from the proposition that the group Γτ/Γ̃S⊥ gives an action of

µrτ on S.

Proposition 2.5.6. There are no trivial eigenvectors for the action of µrτ on

S.

Proof. Suppose ~x is a nontrivial eigenvector and that g ∈ µrτ is a nontrival

element. Then we write:

(τ, x) = (gτ, gx) = χτ (g)(τ, x).

Likewise since τ is also an eigenvector we find:

(τ , x) = (gτ , gx) = χτ (g)(τ , x).

Therefore, x ∈ S⊥ ∩ S = {0}.

It follows from this proposition that S = φdrτ as a representation of µrτ .

Proposition 2.5.7. We can decompose S = φdrτ in such a way that q is non-

degenerate on each factor and this is an orthogonal decomposition with respect

to q.

Proof. First we observe that we can proceed by induction provided there exists

at least one non-degenerate factor. Indeed, if q|φrτ is non-degenerate it follows

that µN stabilizes (φrτ )
⊥. We may thus proceed inductively on d.

Next we observe that the restriction of q is non-degenerate if and only if

it is non-trivial. This follows from two key facts:

1. Gal(Q(ζrτ )/Q) acts transitively on eigenspaces, and

2. b(xa, xb) = 0 if a 6= b−1.

It follows that if ϕ(rτ ) > 2, then q|φrτ is non-degenerate since there are no

isotropic spaces of size larger than 2.
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For the case of ϕ(rτ ) = 2 it is not possible to have d = 1. It follows that

there exists a pair of φrτ such that the restriction of q to φ
(1)
rτ ⊕φ

(2)
rτ is nontrivial.

If q restricts trivially to each factor, set y
(1)
i = x

(1)
i +x

(2)
i and y

(2)
i = x

(1)
i −x

(2)
i .

The restriction of q is then nontrivial on span(y
(j)
i ) ' φrτ . This completes the

argument.

Proposition 2.5.8. If χτ (Γτ ) 6⊂ {±1} then τ is on a special cycle Dφ of DS,

where F = Q(χ(Γτ )). Hence, τ is on a generalized special cycle of DL.

Proof. Because the Q-span of φrτ (µrτ ) ⊂ End(φrτ ) is equal to Q(ζrτ ) we may

extend the action of µrτ to one of TF on each factor. This implies by way of

the results of Chapter 3 that we are in the setting of the previous section. In

particular, there exists a unique factor which is not negative-definite, and for

it there exists a unique R-factor which is positive-definite.

Claim. If χτ (Γτ ) = {±1} then the image of Γτ acting on DL,S acts trivially

on all of DL,S.

Proof. This follows since the entire space is the (−1)-eigenspace.

Remark. From Propositions 2.5.5 and 2.5.8 it follows immediately that the

ramification of DL consists entirely of the ramification along DL,S coming from

Γ̃S⊥ , and the ramification along Dφ ⊂ DL,S coming from the action of µN on

Dφ.

Note though that if Γ̃S⊥ 6= ΓS then the quotient action by µN does not

act trivially on the S⊥ ⊗ C component of the tangent space to DL,S. This

phenomenon can only arise if L 6= S ⊕ S⊥.

2.6 Explicit Class Field theory (and Canonical Models)

2.6.1 Shimura Varieties and Hermitian Symmetric Spaces

There is an important relation between Shimura varieties (or at least their

points over C) and Hermitian symmetric spaces. More details of this relation
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are found in the notes of Milne [Mil05] or the work of Deligne [Del71]. The

following section illustrates this connection.

Notation 2.6.1. We shall denote by S = ResC/R(Gm) and S1 ⊂ S the subtorus

consisting of the norm 1 elements. Concretely this means:

S(R) ' {
(
a b
−b a

)
| a, b ∈ R} and S1(R) ' {

(
a b
−b a

)
| a, b ∈ R, a2 + b2 = 1}.

For a reductive group G denote its centre by Z(G) and let Gad = G/Z(G)

be the associated semi-simple group.

Definition 2.6.2. A connected Shimura datum is (G,X), a semi-simple

algebraic group G defined over Q and a Gad(R)+ conjugacy class of maps

ρ : S1
R → Gad

R satisfying the following axioms:

1. The only eigenvalues that appear in the representation of S1 on Lie(Gad)C

induced by ρ are a+ bi, a− bi and 1.

2. Conjugation by ρ
(( −1 0

0 −1

))
is a Cartan involution of Gad.

3. Gad has no Q-simple factors Gi such that Gi(R) is compact.

A Shimura datum is (G,X), a reductive algebraic group G defined over Q

and a G(R) conjugacy class of maps ρ : SR → GR satisfying the same axioms.

As per the introduction on Hermitian symmetric spaces (Section 2.2) such

a conjugacy class is equivalent to a Hermitian symmetric space. One must be

careful about the normalizations of h versus ρ to obtain the above conditions.

Definition 2.6.3. We shall denote the finite adéles of Q by Af .

Let (G,X) be a connected Shimura datum and K be the maximal com-

pact subgroup associated to the Cartan involution coming from ρ ∈ X. The

connected Shimura variety associated to (G,X) is the inverse system:

MC(G, ρ)(C) = lim
←
Γ

Γ\Gad(R)/K = lim
←
Kf

Gad(Q)\Gad(A)/K ×Kf ,

where the Γ run over all ‘congruence’ subgroups of G(Q) and the Kf run over

compact open subgroups of G(Af ).
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For (G,X) a Shimura datum the Shimura variety associated to (G,X)

is:

MC(G, ρ)(C) = lim
←
Kf

G(Q)\X ×G(Af )/K
f ,

where Kf run over compact open subgroups of G(Af ).

Given (G1, X1) and (G2, X2) together with a map f : G1 → G2 such that

f(X1) ⊂ X2, one obtains a morphism of Shimura varieties.

Remark. What we have just defined is the ‘complex points’ of the Shimura

variety. The Shimura variety should be viewed as the associated complex

scheme, or inverse system of complex schemes associated to this system. Such

schemes exist by the theorem of Baily-Borel (see [BB66]).

The adèlic description makes it clear that there exists an action of the

finite adéles on a Shimura variety.

2.6.2 Shimura Reciprocity

In order to explain the context of our results concerning special fields we

must first introduce the notions of special points and Shimura reciprocity. We

give here a very terse description of the ideas at work. We will follow fairly

closely the format of [Del71] where you may find a more thorough exposition.

Definition 2.6.4. Let τ : E → C be a number field with a complex embedding

and let MC(G, ρ) the complex model of the Shimura variety associated to G.

A model over E of MC(G, ρ) consists of:

1. a scheme ME(G, ρ) over E, endowed with a continuous action of G(Af ),

and

2. an isomorphism ME(G, ρ)⊗E,τC 'MC(G, ρ) compatible with the action

of G(Af ).

To give a scheme M over E together with a continuous action of G(Af )

amounts to giving:

1. a scheme KM over E for every open compact subgroup K of G(Af ), and
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2. a homomorphism JL,K(x) : KM → LM for every pair K and L of com-

pact open subgroups of G(Af ) and for each x ∈ G(Af ) with xKx−1 ⊂ L.

These homomorphisms must satisfy:

(a) JM,L(y)JL,K(x) = JM,K(yx).

(b) JK,K(x) = Id if x ∈ K.

(c) For K a normal subgroup of L, the map JK,K defines an action of

L/K on KM , and moreover, JL,K(e) defines (L/K)\KM → LM .

Let F be a finite extension of E, together with a complex embedding

extending that of E. If ME(G, ρ) is a model of MC(G, ρ) over E, we denote

by MF (G, ρ) = ME(G, ρ)⊗E F the model of MC(G, ρ) over F .

Given a model ME(G, ρ) there is an action of Gal(E/E) on ME(G, ρ),

and thus on the profinite system:

π0(ME(G, ρ)) = lim
←
π0(KME(G, ρ))

∼→ π0(MC(G, ρ)).

Likewise the group G(Af ) acts on π0(ME(G, ρ)). The action factors through:

π(G) := π0(G(A)/G(Q))

and again through its quotient π(G)/π0(K∞). This makes π0(ME(G, ρ)) into

a principal homogeneous space under the commutative group π(G)/π0(K∞)

(see [Del71, 3.4]). As these two actions commute this induces a map:

λM : Gal(E/E)→ π(G)/π0(K∞).

For a number field E, class field theory identifies the largest abelian quotient of

E/E with the group π0(TE(A)/TE(Q)) and the above map can be interpreted

as:

λM : Gal(E/E)ab = π0(TE(A)/TE(Q))→ π(G)/π0(K∞).

We shall call this morphism the reciprocity map.

51



Remark. It would be a very desirable property of models that morphisms

should descend to them.

Given a pair of Shimura data (G1, ρ1) and (G2, ρ2) together with models

ME1(G1, ρ1) and ME2(G2, ρ2) over E1 and E2, respectively. Suppose there is a

morphism f : (G1, ρ1)→ (G2, ρ2) that descends to the models:

fE1 : ME1(G1, ρ1)→ME2(G2, ρ2).

The immediate implication is that E2 ⊂ E1. It also follows immediately that

the Galois action on ME2(G2, ρ2) must induce reciprocity on ME1(G1, ρ1).

Example. The simplest example of a Shimura datum comes from taking the

group G = T a rational torus such that T (R) is compact. In this case the

varieties KMC(G, ρ) are finite sets. Thus to give a model over any field E

which splits T is equivalent to giving a Galois action on this set.

Definition 2.6.5. The canonical model for the Shimura variety of a ratio-

nal torus TE is the unique model for which the reciprocity morphism is the

reciprocity morphism of class field theory. There exists a minimal field E(T, ρ)

over which this model can be defined. It is often called the reflex field or

special field of the point. We shall say that a field E is a special field for

a Shimura variety if it is the special field for a special point on that variety.

Definition 2.6.6. A point h ∈ MC(G, ρ) is called a special point if h is in

the image of some ME(T, ρ′).

Definition 2.6.7. For a Shimura variety MC(G, ρ) a model ME(G, ρ) over E

is said to be weakly canonical if for every special point h that is associated

to MC(T, ρ′) the inclusion from the canonical model ME(T,ρ′)(T, ρ
′) is defined

over the composite field E(T, ρ′)E.

The model is said to be canonical if the field E is the field of definition

of an associated Hodge filtration (see [Del71, 3.13]).
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Theorem 2.6.8. Given any Shimura variety a canonical model exists and is

unique.

For many types of Shimura varieties this theorem follows from an explicit

construction for a canonical model for the Siegel spaces (see [Del79, Sec. 2.3]).

More generally see [Mil83].

2.6.3 Special Fields for the Orthogonal Group

From the concrete descriptions of the structure of the Hermitian symmet-

ric spaces associated to orthogonal groups (see Section 2.2) and the structure

of tori in orthogonal groups we shall describe later (see Chapter 3), we easily

obtain the following characterization:

Proposition 2.6.9. A CM-field L with totally real subfield K is a special

field for the Shimura variety associated to Oq if there exists a CM-algebra E

containing L as a direct factor, ie. E = E ′ ⊕ L, for which the associated

algebraic torus TE,σ embeds into Oq in such a way that the trivial eigenspace

of TL,σ ⊂ TE,σ is negative-definite.

Remark. It is not immediately clear to what extent the condition “the trivial

eigenspace of TL,σ is negative-definite”, which does not appear in the general

conditions for embedding tori, places any new restrictions. This condition

might appear to present an obstruction to the local-global principle for the

embedding of algebras. As such a remark is in order on the obstruction to the

local-global principal (for a more detailed discussion see [PR10] and [BF13]).

The source of the local-global conditions is precisely the requirement (see proof

of Corollary 3.5.4):

We can divide the Hasse-Witt conditions between the factors in such a way

that each factor can control the ones it is given and each factor is given an

even number.

This is not an obstruction if:

For each pair i, j there exists a non-split quaternion algebra A which is split

53



by Eφi
i and E

φj
j for all CM-types φi of Ei and φj of Ej.

or equivalently:

For each pair i, j there exists p a prime of Q and pi, pj|p primes of Ei, Ej such

that both pi, pj do not split respectively over Eσ
i , E

σ
j .

For each factor Ei of E the Chebotarov density theorem tells us that the

density of primes of Q that have a factor in Eσ
i that is inert in Ei should be at

least 1/[Ei : Q]. If Ei were Galois, this ratio can be more explicitly computed

as: ∣∣{γ ∈ Gal(Ei/Q) | σ = α−1γrα for some α, r}
∣∣ / |Gal(Ei/Q)| .

The formula is looking for elements where a power of Frobenius is a conjugate

of σ. If Cσ is the largest cyclic 2-group in Gal(Ei/Q) containing σ and Γ2 is

a Sylow 2-subgroup, then this ratio is at least |Cσ |−1
|Γ2| . It follows that if the Ei

are chosen at random then we expect infinitely many primes to prevent any

local-global obstructions. Moreover, given an extension E1 the conditions one

needs to impose on E2 to make E1 ⊕ E2 not satisfy the local-global principle

places many restrictions on E2. It is not at all apparent that such an E2 can

even exist. Nonetheless, examples do exist where the local-global conditions

will fail when E1 is degree 4 and E2 is degree 2 (see [PR10, Ex. 7.5]).

Claim. Let E = E1E2 be the normal closure of the composite field. If there

exists σE ∈ Gal(E/k) such that σE|Ei = σ for i = 1, 2 then E1 ⊕ E2 satisfies

the local-global principle.

For a more precise statement about CM-algebras see [BF13, Cor 4.1.1].

The key point here is that when Frobp = σE it must also restrict to both σE|Ei ,

and consequently, the associated primes over p in each factor are inert.

Theorem 2.6.10. Suppose (V, q) is a quadratic space over Q of signature (2, `)

with ` even. Suppose that (E, σ) is a CM-field with complex conjugation σ and

that [E : Q] = 2 + `. Then TE,σ ↪→ Oq if and only if:

1. Eφ splits the even Clifford algebra C0
q for all CM-types φ of E, and
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2. D(q) = (−1)(2+`)/2δE/Q.

If this occurs then E is a special field.

See Theorem 3.1.2.

Theorem 2.6.11. Suppose (V, q) is a quadratic space over Q of signature (2, `)

with ` odd. Suppose that (E, σ) is a CM-field with complex conjugation σ and

that [E : Q] = 1 + `. Then TE,σ ↪→ Oq if and only if:

1. Eφ splits the even Clifford algebra C0
q for all CM-types φ of E.

If this occurs then E is a special field.

See Theorem 3.1.2.

Theorem 2.6.12. Suppose (V, q) is a quadratic space over Q of signature (2, `)

with ` even. Suppose that (E, σ) is a CM-field with complex conjugation σ and

that [E : Q] = `. Set d = (−1)`/2D(q)δE/Q. Then TE,σ ↪→ Oq if and only if:

1. Eφ splits Q(
√
d)⊗Q C0

q for all CM-types φ of E.

The field E can always be made a special field.

Proof. It is apparent that the condition to have E embed into Oq is that

TE⊕Q(
√
d),σ ↪→ Oq. From this the only conditions that remain then are the

splitting conditions and the local-global conditions.

The local-global conditions here are automatic because complex conju-

gation on each factor is induced by an element of the Galois group of the

composite field. Note that E is not always a special field but it is for certain

embeddings TE,σ ↪→ Oq.

Theorem 2.6.13. Suppose (V, q) is a quadratic space over Q of signature

(2, `). Suppose that (E, σ) is a CM-field with complex conjugation σ and that

[E : Q] < `. Then TE,σ ↪→ Oq in such a way that E is the special field for the

corresponding special point.
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Proof. Picking λ ∈ Eσ with precisely 1 positive embedding we claim that we

may write:

q ' qE,σ,λ ⊕ q′.

Indeed, such a space q′ would have dimension at least 3. Quadratic forms of

dimension 3 are universal for discriminants, Hasse invariants and signatures.

That is the form:

Dqx2
1 +Hx2

2 +−qHx2
3

has discriminant −D, and Hasse invariant (D,−1)(q,DH). We can thus easily

satisfy any imposed discriminant, Hasse invariant and signature conditions by

picking H, q,D appropriately and noting that the sign of D must be compatible

with the signature conditions that we are imposing.

Example. The special fields for Shimura curves attached to quaternion alge-

bras over Q are precisely the quadratic CM-fields which split the quaternion

algebra. In this case the quadratic form is the one coming from the reduced

norm restricted to the trace 0 elements.

The special fields for Hilbert modular surfaces are either degree 2 or 4. The

degree 4 CM-fields are precisely those which satisfy the discriminant condition.

In this case we use the quadratic form:

x2
1 − x2

2 + x2
3 −Dx2

4.

The even Clifford algebra is trivial, and hence there is no splitting condition.

To investigate degree 2 extensions notice that the form is isomorphic to:

x2
1 +D1x

2
2 −D1x

2
3 −Dx2

4.

Hench, any quadratic extension Q(
√
D1) can be made a special field.
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CHAPTER 3
Characterization of Special Points of Orthogonal Symmetric Spaces

The main content of this chapter has been published in [Fio12].

It is available at http://dx.doi.org/10.1016/j.jalgebra.2012.08.030.

The version here contains some minor corrections and changes.

3.1 Introduction

Given an algebraic group G defined over Q and its associated symmetric

space G(R)/K, where K is a maximal compact subgroup, one is interested in

the special points (see [Del71, 3.15]). They correspond to those algebraic tori

T ⊂ G which are maximal, defined over Q and for which T (R) is compact.

To such a torus T one can associate a field F which is the special field for the

corresponding point. This special field appears as part of an étale algebra E

which is naturally associated to the torus. We wish to answer the following:

Question. Given a quadratic form q with its corresponding orthogonal group

Oq, what are the conditions on an étale algebra E such that E is associated

to a maximal torus T of Oq?

This problem is taken up, to some extent, by Shimura in [Shi80]. Some

work on the problem also appears in my masters thesis [Fio09] as well as sev-

eral other papers. This work is in fact complementary to my masters thesis

where an abstract classification in terms of group cohomology is given. The

relationship between those results and these will be the subject of future work

(see Chapter 5 for further details). The most useful description for our cur-

rent purposes is the work of Brusamarello, Chuard-Koulmann and Morales

[BCKM03], from which one can extract various necessary and sufficient con-

ditions on the algebra E. In this paper we rephrase the conditions which can

be derived from [BCKM03].
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The primary goal of this work is thus to prove the following:

Theorem 3.1.1. Let (V, q) be a quadratic space over a number field k of

dimension 2n or 2n+ 1 and discriminant D(q), and let (E, σ) be a degree 2n

field extension E of k of discriminant δE/k together with an involution σ. Then

Oq contains a torus of type (E, σ) if and only if the following three conditions

are satisfied:

1. Eφ splits the even Clifford algebra C0
q for all σ-types φ of E.

2. If dim(V ) is even then δE/k = (−1)nD(q).

3. Let ν be a real infinite place of k and let s be the number of homomor-

phisms from E to C over ν for which σ corresponds to complex con-

jugation. The signature of q is of the form (n − s
2

+ 2i, n + s
2
− 2i)ν

if the dimension is even and either (n − s
2

+ 2i + 1, n + s
2
− 2i)ν or

(n− s
2

+ 2i, n+ s
2
− 2i+ 1)ν if ν((−1)nD(q)δE/k) is respectively positive

or negative when the dimension is odd, where 0 ≤ i ≤ s
2
.

Moreover, for any E satisfying condition (2) we have that
√
D(q) ∈ Eφ for

every σ-type φ of E.

The notion of a σ-type will be introduced in Definition 3.2.2.

We remark that the conditions in the theorem above are independent of

the choice of similarity class representative for the quadratic form that defines

Oq. We also note that one can replace the first condition of Theorem 3.1.1

by the condition that for all primes p of k where the even Clifford algebra is

not split, there exists a prime p|p of Eσ such that p does not split in E. The

equivalence of these conditions is the content of Lemma 3.5.9 and comes up in

the proof of the main theorem.

We would also like to point out that the theorem above, which holds

for fields with involutions, does not extend to arbitrary étale algebras with

involution. It follows from our proof that the conditions in the theorem are

sufficient to ensure that there exist local embeddings for all of the places of k.
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Thus, the only obstacle to generalizing to étale algebras is the existence of a

local-global principle. We would like to thank Prof. Eva Bayer, for pointing

out the recent work of Prasad and Rapinchuk [PR10] on this problem. In

their paper they provide both a counterexample to the local-global principle

for étale algebras as well as giving a sufficient condition for when a local-global

principle still holds. We also refer the reader to the forthcoming work of Eva

Bayer [BF13] which gives a complete description of the obstructions to the

local-global principle.

The original motivation for this work came from the problem of deter-

mining which CM-fields could be associated to the special points of a given a

orthogonal group. The following corollary answers this question.

Corollary 3.1.2. Suppose in the theorem that k = Q, the signature of q is

(2, `) and (E, σ) is a CM-field with complex conjugation σ. Then Oq contains

a torus of type (E, σ) if and only if:

1. For each prime p of Q with local Witt invariant W (q)p = −1 there exists

a prime p|p of Eσ that does not split in E.

2. If ` is even, then D(q) = (−1)(2+`)/2δE/Q. (No further conditions if ` is

odd.)

Corollary 3.1.3. Suppose that k = Q and the signature of q is (2, `). Let F

be a totally real field. Then there exists a CM-field E with Eσ = F , such that

the orthogonal group Oq contains a torus of type (E, σ) if and only if:

1. No condition if ` odd.

2. If ` is even, then (up to squares) D(q) = NF/k(δ) for an element δ ∈ F

which satisfies the condition that for all primes p of k with W (q)p = −1

there is at least one prime p|p of F such that δ is not a square in Fp.

As a final application, we have the following which recovers classical re-

sults concerning the classification of CM-points, and answers the more recently
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raised question of classifying almost totally real cycles on the Hilbert modular

surfaces associated to real quadratic fields (see [DL03]).

Corollary 3.1.4. Let d ∈ Q be a squarefree positive integer. Consider the

quadratic form:

qd = x2
1 − x2

2 + x3
3 − dx2

4.

This implies Spinqd(R) ' SL2(R)2 is associated to the Hilbert modular surface

for Q(
√
d). Let (E, σ) be an algebra of dimension 4 with involution σ. Then

Oq has a torus of type (E, σ) if and only if the σ-reflex fields of E all contain

Q(
√
d). In particular, the algebras associated to tori in Spinqd all contain

Q(
√
d).

3.2 Preliminaries

We begin by recalling a few of the basic notions relevant to the statement

of the theorem.

For this section let k be a field of characteristic 0, fix an algebraic closure

k and let Γ = Gal(k/k) be the absolute Galois group.

3.2.1 Étale Algebras

By an étale algebra E over k of dimension n we mean a product of finite

(separable) field extensions Ei/k where the dimension of E as a k-module is

n. The discriminant δ(E/k) or δE/k is the product of the field discriminants

δEi/k. We have that E⊗k k ' ×ρkeρ, where the eρ are orthogonal idempotents

indexed by ρ ∈ Homk−alg(E, k). The isomorphism is given by the map x⊗α 7→∑
ρ αρ(x)eρ. The Galois group Γ acts on the collection {eρ} by τeρ = eτ◦ρ.

This action, together with the natural action on coefficients, corresponds to

having Γ act on E ⊗k k via the second factor so that
(
E ⊗k k

)Γ ' E. Thus,

the descent data needed to fully specify the k-isomorphism class of an n-

dimensional étale algebra is the Galois action on the collection {eρ}. For a

more detailed discussion of the theory of Galois descent, in particular how it

applies to this setting see [KMRT98, Ch. 18]. The key result is:
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Proposition 3.2.1. There exists a bijective correspondence between isomor-

phism classes of étale algebras over k of dimension n and isomorphism classes

of Γ-sets of size n. The correspondences being E 7→ Homk−alg(E, k) and

Ω 7→
(
×ρ∈Ωkeρ

)Γ
.

We will often use this result to construct étale algebras by specifying a

Γ-set.

By an étale algebra with involution (E, σ) over k we shall mean an

étale algebra E over k together with σ ∈ Autk−alg(E) of exact order 2. We will

denote by Eσ = {x ∈ E|σ(x) = x} the fixed étale subalgebra of σ. The action

of σ on E induces an action on idempotents given by σ : eρ 7→ eρ◦σ. We see

immediately that this action commutes with the Galois action. Now, consider

the disjoint collection of sets Homk−alg(E, k) = t{ρ, ρ ◦ σ}. Since the actions

of σ and Γ on Homk−alg(E, k) commute we find that Γ acts on the collection

of sets {ρ, ρ ◦ σ}. We can thus consider the étale algebra whose idempotents

come with this action. It is the subalgebra Eσ of E under the inclusion map

e{ρ,ρ◦σ} 7→ eρ + eρ◦σ.

Convention. For the remainder of this paper we restrict our attention to the

case where dimk(E
σ) =

⌈
dimk(E)

2

⌉
. For the most part we shall also assume that

dimk(E) is even. Unless it is otherwise specified, all algebras with involution

satisfy these additional properties.

We will now introduce the notions of σ-types and σ-reflex algebras. These

generalize the notion of CM-types and CM-reflex algebras which are important

in the theory of complex multiplication and have been extensively studied. We

shall only mention the notions which will be of use to us. For a more detailed

exposition of CM-types and CM-reflex fields see either [Lan83, 1.2 and 1.5] or

[Mil06, 1.1, pp.12-19].

Definition 3.2.2. Let (E, σ) be an algebra with involution. A subset φ ⊂

Homk−alg(E, k) is said to be a σ-type of E if φtφσ = Homk−alg(E, k). Denote
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the set of σ-types:

Φ = {φ ⊂ Homk−alg(E, k)|φ t φσ = Homk−alg(E, k)}.

Then both Γ and σ act on Φ and these actions commute. For a σ-type φ ∈ Φ

denote its orbit in Φ under Γ by Γφ ⊂ Φ and denote the stabilizer by Γφ =

{γ ∈ Γ|γφ = φ}.

We define the σ-reflex algebra of φ to be (Eφ, σ), where Eφ is the étale

algebra whose idempotents are indexed by Γφ ∪ Γφσ with the induced action

of Γ and σ.

We define the complete σ-reflex algebra to be (EΦ, σ), which is the

étale algebra whose idempotents are indexed by Φ with the natural action of

Γ and σ.

Proposition 3.2.3 (Alternate definition of reflex field). Let φ be a σ-type

of E and define Ẽφ = k
Γφ

. If Γφ = Γφσ then Eφ is a field and Eφ ' Ẽφ.

Otherwise, if Γφ 6= Γφσ then Eφ = Ẽφ × Ẽφ.

Proof. We claim that Ẽφ naturally has idempotents corresponding to Γφ. In-

deed, the idempotents of Ẽφ = k
Γφ

correspond to Homk(k
Γφ
, k), which is

naturally identified with Γ/Γφ as Γ-sets. The map sends γΓφ to γ ◦ Id where

Id : k
Γφ → k is the identity inclusion. Likewise we can identify Γ/Γφ and

Γφ as Γ-sets via the map γΓφ 7→ γφ. By the correspondence between Γ-sets

and étale algebras we conclude Ẽφ is isomorphic to the étale algebra whose

idempotents are Γφ. If Γφ = Γφσ this gives us the result. Otherwise, Eφ has

idempotents Γφ t Γφσ. As the action of Γ is from the left on Γφσ it follows

that as Γ-sets Γφσ is isomorphic to Γφ. Thus we conclude Eφ = Ẽφ× Ẽφ.

Definition 3.2.4. Let (E, σ) be an étale algebra with involution over k and

let φ be a σ-type of E. There is a natural map Nφ : E → Eφ which is defined
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by:

Nφ

(∑
ρ

aρeρ

)
=

∑
φi∈(Γφ∪Γφσ)

(∏
ρ∈φi

aρ

)
eφi .

This map is called the σ-reflex norm of the σ-type φ.

We want to show that this map, which a priori maps E ⊗k k to Eφ ⊗k k,

actually maps E to Eφ = (Eφ ⊗k k)Γ. Since E = (E ⊗k k)Γ we have that for

γ ∈ Γ and
∑

ρ aρeρ ∈ E the formula:

∑
ρ

aρeρ = γ

(∑
ρ

aρeρ

)
=
∑
ρ

γ(aρ)eγ◦ρ

implies that γ(aρ) = aγ◦ρ. Using this we check that:

γ

(∏
ρ∈φi

aρ

)
=
∏
ρ∈φi

γ(aρ) =
∏
ρ∈φi

aγ◦ρ =
∏

ρ∈γ(φi)

aρ.

Finally we may check that:

γ

(
Nφ

(∑
ρ

aρeρ

))
=

∑
φi∈(Γφ∪Γφσ)

γ

(∏
ρ∈φi

aρ

)
eγφi

=
∑

φi∈(Γφ∪Γφσ)

 ∏
ρ∈γ(φi)

aρ

 eγφi

= Nφ

(∑
ρ

aρeρ

)
.

Hence we conclude that Nφ

(∑
ρ aρeρ

)
∈ (Eφ ⊗k k)Γ = Eφ.

Proposition 3.2.5 (Computing σ-reflex algebras). We summarize some re-

sults which allow for the computation of σ-reflex algebras.

1. Let E be a field with σ an involution of E and let φ be a σ-type of E.

Then Eφ = Ẽφ as above.

2. Let F be an étale algebra and let (E, σ) = (F × F, σ), where σ inter-

changes the factors F . Then there are a number of different σ-types of

E:

63



(a) Let φ = Hom(F, k) ⊂ Hom(F×F, k) correspond to maps on the first

factor. Then Eφ = k × k where σ acts by interchanging factors.

(b) Fix one element ρ ∈ Hom(F, k) and set φ = (Hom(F, k)\{ρ})∪{ρ◦

σ}. Then Eφ = ρ(F )× ρ(F ) where σ acts by interchanging factors.

(c) More generally one any choice of S ⊂ Hom(F, k) one can take

φ =
(
Hom(F, k) \ S

)
∪ Sσ. Then Eφ = L × L where σ acts by

interchanging factors and where L = Ẽφ ⊆ ∪
ρ∈S

im(ρ).

3. Let (E1, σ1) and (E2, σ2) be algebras with involutions. A σ-type for

(E, σ) = (E1 × E2, σ1 × σ2) is of the form φ = φ1 t φ2, where the φi

are σi-types for Ei. Then Ẽφ ' Ẽφ1
1 Ẽφ2

2 and so the factors of Eφ are the

composite of those of the Eφi
i .

Proof. In each case the proof amounts to a direct application of Proposition

3.2.3 together with a computation of Γφ. For case (1), where E is a field,

Proposition 3.2.3 is the complete result. For case (2) where E = F×F and the

factors are interchanged by σ, we note that the orbits of Γ on Homk−alg(E, k)

can be decomposed into those factoring through the first F factor and those

factoring through the second. Thus Γφ is just {γ ∈ Γ | γS = S} where

S ⊂ Hom(F, k) is the set describing φ as in each of the subcases of (2). It is

then clear that Γφ contains ∩ρ∈S Gal(k/ im(ρ)). From this one concludes the

result in the special cases of S = ∅ or S = {ρ}. In case (3) where E = E1×E2,

it is clear that Γφ = Γφ1 ∩ Γφ2 which implies the result.

Corollary 3.2.6. Write (E, σ) = ×i(Ei, σi) as a direct product where each

Eσi
i is a field. Then EΦ is a product of even degree field extensions if and only

if Ei is a field for at least one i.

Proof. If every factor Ei is of the form Eσ
i ×Eσ

i with σi interchanging factors

then E = F × F for F ' ×iEσ
i with σ interchanging factors. Then by the
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proposition above there exists φ with Eφ = k × k and thus one of the direct

factors of EΦ is k.

Conversely, by the computations above every factor of Eφ is formed as a

composite extension of Ẽφi
i . If there exists a factor Ei which is a field then for

all φi the field Ẽφi
i is even degree. It follows that every factor of EΦ contains

an even degree subextension of the form Ẽφi
i and so EΦ is a product of even

degree field extensions.

Proposition 3.2.7 (Localization of Reflex Algebras). Suppose k is a number

field, p be a prime of k (finite or infinite) and let kp be the completion of

k at p. By the localization of (E, σ) and (Eφ, σ) at p we mean the algebras

(Ep = E ⊗k kp, σp) and ((Eφ)p = Eφ ⊗k kp, σp). Let G = Gal(kp/kp)\Γ/Γφ,

then:

(Eφ)p = ×
g∈G

(Ep)
(gφ)p ,

where g is any representative of the coset g. In particular, (EΦ)p = (Ep)
Φp.

Proof. The idempotents of Ep and (Eφ)p are in natural bijection with those of

E and Eφ, respectively. That is, by fixing a single map k ↪→ kp we obtain a

Galois equivariant bijection Homk−alg(E, k) ' Homkp−alg(Ep, kp) with respect

to the associated inclusion Γp = Gal(kp/kp) ↪→ Gal(k/k). This naturally

induces a bijection between the set of σ-types for (E, σ) and σp-types for

(Ep, σp). However, because Γp is only a subgroup of Γ, the Galois orbit of φp

in Φp under Γp may be strictly smaller than the Galois orbit of φ in Φ under

Γ. Hence, it may happen that (Ep)
φp 6= (Eφ)p. In order to capture all of the

orbits recall G = Γp\Γ/Γφ so that:

Γφ = t
g∈G

Γp(gφ),

where g is any representative of the coset g. It follows that:

(Eφ)p = ×
g∈G

(Ep)
(gφ)p .
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3.2.2 Algebraic Tori

We now recall some basic properties of algebraic tori in linear algebraic

groups.

Definition 3.2.8. A k-algebraic group is an algebraic torus T if it satisfies

any of the following equivalent properties (see [Bor91, 8.4 and 8.5] for a proof

of the equivalence):

1. T is connected and diagonalizable over k.

2. T is connected, abelian and all its elements are semisimple.

3. k[T ] is spanned by X∗(T ) = Homk(T,Gm).

4. Tk ' Gn
m for some n.

Given any k-rational representation of T into GLm there exists a collection

Ω ⊂ X∗(T ) of characters that appear once the representation is diagonalized

over k. We may consider the map:

Tk →
∏
χ∈Ω

Gm t 7→ (χ(t))χ∈Ω

where the natural Galois action of Γ on T is by permuting the χ as per the

action of Γ on X∗(T ). The descent data needed to recover the isomorphism

class of a k-torus of rank n from its k-isomorphism with Gn
m is the specification

of the Galois action on X∗(T ) ' Zn. See [PR94, 2.2.4] for a discussion of Galois

descent as it relates to the classification of tori. The key result is:

Proposition 3.2.9. There exists a contravariant equivalence of categories

between k-isomorphism classes of algebraic tori of rank n and Z[Γ]-modules

which as Z-modules are torsion free and of rank n. The equivalence takes

T 7→ X∗(T ).

Specifying a Galois action on X∗(T ) is equivalent to specifying the Ga-

lois action on any Galois stable spanning set Ω ⊂ X∗(T ), in particular those
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spanning sets arising from faithful representations. Moreover, for a fixed re-

ductive group G of rank n and for any two k-conjugate tori T1, T2 ⊂ G, the

sets ΩT1 ,ΩT2 can be identified (non-canonically). In particular, to classify the

k-isomorphism classes of maximal tori contained in G, it suffices to consider a

single such spanning set Ω ⊂ Zn. Then any k-torus in G gives a Galois action

on Ω which in turn gives rise to a representation Γ→ GLn(Z). One may then

study the tori knowing only that they arise from a Γ-set Ω which spans Zn.

One should note that the condition T ⊂ G may impose further conditions on

which Γ-actions on Ω are possible.

Proposition 3.2.10. Let Ω be a finite Γ-invariant set of generators of X∗(T ).

Let E = EΩ be the étale algebra whose idempotents are the Γ-set Ω. Consider

the torus TE := ResE/k(Gm), that is, the torus such that for any k-algebra R

we have TE(R) = (E ⊗R)∗. Then T ↪→ TE.

Proof. First we note that X∗(TE) = ZΩ. We thus obtain a natural Z-linear

map from X∗(TE) → X∗(T ) by taking Ω, the basis of X∗(TE), to Ω as a

spanning set of X∗(T ). This map is surjective and Γ-equivariant thus inducing

a surjective map k[TE] → k[T ] which corresponds to an injective map T ↪→

TE.

Definition 3.2.11. If E is an étale algebra over k we say a k-torus S is of

type E if S ↪→ TE and E contains no proper subalgebras with this property.

Note that any embedding of S ↪→ TE (where S is of type E) arises as

above. To see this consider the representation of S arising from the regular

representation of TE on E. Note also that the Galois closure of the composition

of fields which comprise E is a minimal splitting field for the torus S.

Example. Let L ⊂ E be étale algebras over k and consider χ ∈ Homk(TE, TL)

corresponding to χ = NE/L, then Ker(χ)0 ⊂ TE is a torus of type E.
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Definition 3.2.12. Let (E, σ) be an étale algebra with involution over k and

put χ = NE/Eσ . Then we define:

TE,σ = Ker(χ)0 = {t ∈ TE|tσ(t) = 1}.

We remark that under the natural action of TE on E as a k-vector space, TE,σ

preserves the bilinear forms defined by:

BE,σ,λ(x, y) = TrE/k(λxσ(y)),

where λ ∈ Eσ. Moreover, TE,σ is a maximal torus in the orthogonal group

attached to this bilinear form.

In the case where E is of dimension 2n+1 but Eσ has dimension n, we find

that E = E ′×k, where σ acts trivially on the k summand. The only difference

with the even case is that one must then take the connected component of the

identity to ensure the resulting group is connected.

Proposition 3.2.13. Let q be a quadratic form over k and let Oq be the associ-

ated orthogonal group. Let T ⊂ Oq be a maximal k-torus. Then there exists an

étale algebra with involution (E, σ) over k such that T = TE,σ. Moreover, sup-

pose TE,σ ⊂ Oq is a maximal torus. Then q(x) = qE,λ(x) = 1
2

TrE/k(λxσ(x))

for some choice of λ ∈ (Eσ)∗.

Proof. We shall give a sketch of the construction that all tori are of this form,

for details see [BCKM03, Prop. 3.3]. As in the discussion relating descent data

of tori to étale algebras we observe that for any T ⊂ Oq the set of characters

ΩT which appear in the representation is of the form:

ΩT = {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n }

(including also the trivial character with multiplicity one if dim(q) is odd) with

the χi forming a basis of X∗(T ). One checks easily that on the étale algebra

E which has idempotents indexed by ΩT one can construct an involution σ
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by interchanging χi and χ−1
i for each i. It is straightforward to check that

T ∼= TE,σ, and σ restricts to the adjoint involution with respect to q.

The statement concerning the structure of quadratic forms preserved by

such tori is the content of any of [Shi80, Prop. 5.4],[BCKM03, Prop. 3.9] and

[Fio09, Thm. 4.4.1]. We present the argument of [BCKM03]. By interpreting

the quadratic space as a rank one E-module, we may consider the adjoint maps

for the two quadratic forms (that is, q and qE,1), both of which are preserved

by T , as being isomorphisms from E to its linear dual. Hence, composing

one with the inverse of the other, α = ad(qE,1)−1 ◦ ad(q) : E → E gives an

E-automorphism of E which must correspond to multiplication by a unit λ.

We may then conclude that q = qE,λ.

3.2.3 Clifford Algebras

Definition 3.2.14. Let (V, q) be a quadratic space over k. We define the

associated Clifford algebra to be:

Cq = ⊕
i≥0
V ⊗i/〈x⊗ x− q(x)〉.

The involution v 7→ −v on V induces an involution of Cq. We define the

even and odd parts of the Clifford algebra to be respectively the +1 and −1

eigenspaces for this involution and denote them C0
q and C1

q.

The structure of the Clifford algebra as a graded algebra is well known;

in particular we have:

Theorem 3.2.15. If m = dim(V ) is odd then:

1. Z(Cq) ' k(
√
d), where d = (−1)(m−1)/2D(q) and D(q) is the discrimi-

nant of q,

2. C0
q is a central simple algebra over k and Cq ' C0

q ⊗̂Z(Cq) (where ⊗̂ is

the graded tensor product), and

3. Cq is a central simple algebra over Z(Cq) (if the centre is not a field we

mean Cq ' C0
q ×C0

q).
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If m = dim(V ) is even then:

1. Cq is a central simple algebra over k,

2. Z(C0
q) = k(

√
d), where d = (−1)m/2D(q) and D(q) is the discriminant

of q, and

3. if Cq ' Mt(A) (where A is a division algebra) then C0
q ' Mt/2(A⊗Z(C0

q)).

Proof. The above theorem is essentially the content of [Lam05, V.2.4-5]. The

final statement in the even case is not explicitly stated in [Lam05] but follows

from the proof of [Lam05, IV.3.8].

Definition 3.2.16. Let (V, q) be a non-degenerate quadratic space over k of

dimension m with an orthogonal basis {ei}, where we write q(ei) = ai. We

then define the following invariants:

• The discriminant D(q) =
∏

i ai viewed as an element of k∗/(k∗)2.

• The Hasse invariant H(q) =
∏
i<j

(ai, aj), where (ai, aj) is the Hilbert

symbol (see [Ser73, Ch. III] and [Ser79, Ch. XIV]), viewed as an element

of Br(k) = H2(Γ,±1).

• The Witt invariant W (q) =


[C0

q], m = 1 mod 2,

[Cq], m = 0 mod 2

, where [B] de-

notes the Brauer class of B, viewed as an element of Br(k) = H2(Γ,±1).

• The signature (rρ, sρ)ρ at each real infinite place ρ of k.

• The orthogonal discriminant Dorth(q) = δ(Z(C0
q)/k) viewed as an

element of k∗/(k∗)2.

• The orthogonal Witt invariant W orth(q) = [C0
q] viewed as an element

of Br(Z(C0
q)).

Remark. The first four invariants are properly invariants of q, indeed when

k is a number field they entirely determine q. The latter three are invariants

of the orthogonal group associated to q. That is, Oq determines q only up to

similarity (rescaling by k∗). Likewise, the signature, orthogonal discriminant

and orthogonal Witt invariant determine q up to similarity.
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The last two invariants are not standard.

Proposition 3.2.17. Let m = dim(V ). We have the following relations

among the above invariants:

1. D(q) =


(−1)(m−1)/2δ(Z(Cq)), m = 1 mod 2,

(−1)m/2 δ(Z(C0
q)), m = 0 mod 2,

2. H(q) = W (q) · (−1, D(q))(m−1)(m−2)/2 · (−1,−1)(m+1)m(m−1)(m−2)/8, where

the product is in the Brauer group,

3. W orth(q) = [W (q)⊗ Z(C0
q)].

These properties are the content of [Lam05, V.2.5, V.3.20 and V.2.4-5],

respectively.

Theorem 3.2.18. Let (E, σ) be an étale algebra with involution over k such

that TE,σ ↪→ Oq as a maximal subtorus. Then EΦ embeds into C0
q as a max-

imal étale algebra stable under the canonical involution of Cq. Moreover, the

canonical involution restricts to σ on EΦ.

Proof. We claim that it is sufficient to consider the case of dim(V ) even. In-

deed, if dim(V ) is odd then we can decompose V = V ′ ⊕ spank(~v) where TE,σ

acts trivially on ~v. With q′ = q|V ′ and TE,σ ↪→ Oq′ and using that Cq′ ↪→ Cq

we obtain the result.

We may identify the space V with E. Thus V ⊗k k is identified with

E ⊗k k. Suppose under the isomorphism of V with E we have that q(x) =

1
2

TrE/k(λxσ(x)). We use {eρ}ρ∈Homk−alg(E,k) as the generators for the Clifford

algebra after base change to k. We note that we recover both C0
q and V as the

Galois invariants of C0
q ⊗kk and V ⊗kk, respectively. Moreover, as the inclusion

V ↪→ Cq is k-rational, the Galois actions on the {eρ} viewed as elements of

V ⊗k k or as elements of Cq⊗kk is the same.

For each ρ ∈ Homk−alg(E, k) set δρ = 1
ρ(λ)

eρ ⊗ eρ◦σ ∈ C0
q. These elements

satisfy the following properties:

1. The action of σ on δρ agrees with the canonical involution of Cq,
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2. δ2
ρ = δρ,

3. δρσ(δρ) = 0 and δρ + σ(δρ) = 1,

4. the δρ all commute, and

5. the Galois action on {δρ} is the same as that on {eρ}.

Now for each σ-type φ ∈ Φ of E set δφ =
∏

ρ∈φ δρ. These elements then satisfy

the following properties:

1. δ2
φ = δφ,

2. δφ1δφ2 = 0 for φ1 6= φ2,

3.
∑

φ δφ =
∏

ρ(δρ + δρ◦σ) = 1, and

4. the Galois action on {δφ}φ∈Φ is the same as that on {φ}φ∈Φ.

Thus the δφ are Galois stable orthogonal idempotents and hence by taking

Galois invariants give an étale subalgebra of C0
q. As the Galois action on

idempotents matches that of EΦ, this gives an embedding of EΦ into C0
q.

Moreover, this algebra is preserved by the canonical involution of Cq, and the

involution restricts to σ on it.

The algebra is maximal as an étale subalgebra for dimension reasons.

Remark. We have the map ϕ : E → C0
q given by:

ϕ

(∑
ρ

xρeρ

)
=
∑
φ∈Φ

(∏
ρ∈φ

xρ

)
δφ =

∏
ρ∈φ′

(xρδρ + xρ◦σδρ◦σ)

where φ′ is any σ-reflex type of E. It is a multiplicative map (it is the reflex

norm followed by the inclusion). Moreover, the image of TE,σ lies in the spin

group, with ϕ being a section of the natural covering map θ : Spinq → Oq.

Indeed, we have θ(ϕ(
∑

ρ xρeρ))(1E) =
∑

ρ xρx
−1
ρ◦σeρ. Note that TE,σ consists of

those elements where xρ = x−1
ρ◦σ, and hence θ ◦ φ = x2 on TE,σ.

3.3 Computing Invariants

In this section we will compute the invariants of the forms TrE/k(λxσ(x)).
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Recall that for L/F a finite extension of fields and O an order of L, the

discriminant δO/OF of O is that of the F -quadratic form Q(x) = TrL/F (x2) on

O.

Lemma 3.3.1. Let F be a number field or a p-adic field and let L = F (z) be

an algebraic extension of degree m with fz(X) ∈ OF [X] the minimal (monic)

polynomial of z. Let δL/F (z) be the discriminant of the order OF [z] ⊂ L. Let

λ ∈ L∗ and consider the quadratic form Q(x) = TrL/F (λx2). Then:

D(Q) = NL/F (λ)δOF [z]/OF (z)

= NL/F (λ)

(∏
i<j

(ρi(z)− ρj(z))

)2

= NL/F (λ)(−1)m(m−1)/2NL/F (f ′z(z)),

where ρi are the m embeddings L ↪→ F .

Proof. These are well-known equalities. To compute det
(
TrL/F (λz`zj)

)
`j

fac-

tor the matrix as:

(
TrL/F (λz`zj)

)
`j

=
(
ρi(λz

`)
)
`i
·
(
ρi(z

j)
)
ij

= diag(ρi(λ)) ·
(
ρi(z)`

)
`i
·
(
ρi(z)j

)
ij
.

By applying the Vandermonde determinant formula and a comparing the result

to NL/F (f ′z(z)) yields the result.

Lemma 3.3.2. Let L/F be an extension of either number fields or local fields.

The corestriction (or transfer map) CorL/F : Br(L)[2]→ Br(F )[2] satisfies:

CorL/F ((a, b)L) = (a,NL/F (b))F

for all a ∈ F ∗, b ∈ L∗.

This is [Ser79, Ex. XIV.3.4].

The second part of the following result is the main theorem of the paper of

Brusamarello–Chuard-Koulmann–Morales and will be important in the sequel.
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Theorem 3.3.3. Let (E, σ) be an étale algebra with involution over k of di-

mension 2n and let λ ∈ Eσ∗. Then the invariants of qE,λ(x) = 1
2

TrE/k(λxσ(x))

are:

1. D(qE,λ) = (−1)nδE/k,

2. H(qE,λ) = H(qE,1) · CorEσ/k(λ, δE/Eσ),

3. W (qE,λ) = W (qE,1) · CorEσ/k(λ, δE/Eσ).

Proof. The first statement is well known, though we include a proof for the

convenience of the reader. By writing E = Eσ(
√
d) := Eσ[y]/(y2 − d) we may

write x ∈ E as x = s + t
√
d. Then we observe that qE,λ(x) = TrEσ/k(λs

2) +

TrEσ/k(−λdt2). Set Qλ(s) = TrEσ/k(λs
2) and Q−λd(t) = TrEσ/k(−λdt2) so that

qE,λ ' Qλ ⊕Q−dλ. We thus have D(qE,λ) = D(Qλ)D(Q−λd). By Lemma 3.3.1

this gives:

D(qE,λ) = NEσ/k(λ) · δEσ/k ·NEσ/k(−λd) · δEσ/k

= NEσ/k(−d) = (−1)nNEσ/k(d) (mod (k∗)2).

By observing that δE/k = NEσ/k(δE/Eσ)δ2
Eσ/k (see [Ser79, Prop. III.4.8]) and

that δEσ(
√
d)/Eσ = d (mod (k∗)2) we conclude the result.

The second statement is the content of [BCKM03, Thm. 4.3]. The final

statement follows from the first two statements by using Proposition 3.2.17.

The proposition states that the Hasse and Witt invariants differ by a constant

depending only on the discriminant. As D(qE,λ) = D(qE,1) the second and

third statement are thus equivalent.

The above theorem, together with some easy special cases, is largely suf-

ficient for the proof of our main result (see the proof of Lemma 3.5.5 for how

it comes into play). However, we would like to give more precise formulas for

the Hasse and Witt invariants that can be directly computed from the data

describing the fields. This has the advantage of giving the information we need
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in the special cases, as well as being of interest in its own right. The first step

is a lemma which is useful for explicitly calculating traces.

Lemma 3.3.4 (Euler). Let L = F (z) be a finite separable extension of F of

degree m with fz(x) ∈ OF [x] the minimal (monic) polynomial of z. We then

have:

TrL/F

(
z`

f ′z(z)

)
=


1, ` = m− 1

0, 0 ≤ ` < m− 1.

This is [Ser79, III.6, Lem. 2].

The next step is to show that the fields in which we are interested are

always primitively generated in a simple way.

Proposition 3.3.5. Let F/k be any finite separable extension of infinite fields

of characteristic not 2, and let E/F be a quadratic extension. Then there exists

α ∈ E such that E = k(α) and F = k(α2).

Proof. Suppose E = F (
√
β) with β ∈ F and F = k(γ). We claim it suffices

to show that there exists an ` ∈ k such that F = k((` + γ)2β). Indeed, if

F = k((` + γ)2β) then F ⊂ k((` + γ)
√
β) and so γ ∈ k((` + γ)

√
β). Hence

√
β ∈ k((` + γ)

√
β) and thus F (

√
β) = k((` + γ)

√
β). Consequently, taking

α = (`+ γ)
√
β gives the result.

Now let `1, `2, `3 ∈ k be distinct values such that k((`i + γ)2β) are all the

same field, say L. Since all these values are in the same field, so are their linear

combinations. We compute that:

(`1 + γ)2β

(`2 − `1)(`3 − `1)
+

(`2 + γ)2β

(`1 − `2)(`3 − `2)
+

(`3 + γ)2β

(`1 − `3)(`2 − `3)
= β.

This shows that β ∈ L. We then observe that:

1

(`2 − `1)

(
(`2 + γ)2 − (`1 + γ)2

)
− `2 − `1 = 2γ.

This proves that γ ∈ L, and hence L = F = k((`1 + γ)2β).
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The following lemma combines the above two results to show that for a

particular choice of λ ∈ Eσ the invariants of qE,λ can be computed explicitly.

Lemma 3.3.6. Let F/k be an extension of number fields of degree m. Suppose

F = k(z). Let E = F (
√
z) = k(

√
z) and σ be the non-trivial element of

Gal(E/F ). Let fz be the minimal (monic) polynomial for z over k. View E

as a 2m-dimensional k-vector space equipped with the quadratic form Q(x +

y
√
z) = qE,−f ′z(z)−1(x+

√
zy). Then:

1. H(Q) = (−1,−1)
m(m−1)/2
k · (NF/k(z),−1)m−1

k , and

2. W (Q) = 1.

Proof. Let Ẽ = F (
√
−z) = k(

√
−z) and notice that f√−z(X) = f(−X2) is the

minimal polynomials of
√
−z. Hence f ′√−z(X) = −2Xf ′z(−X2), in particular

f ′√−z(
√
−z) = −2

√
−zf ′z(z). Therefore under the identification of F×F , using

its natural basis, with Ẽ under the basis 1,
√
−z and writing w = x + y

√
−z

we compute:

qE,−f ′z(z)−1(x+
√
zy) = TrF/k

(
−1

f ′z(z)
(x2 − zy2)

)
= TrẼ/k

(
−1

2f ′z(z)
w2

)
= TrẼ/k

( √
−z

f ′√−z(
√
−z)

w2

)
.

Now, by Lemma 3.3.4, for any extension k(α)/k of degree n, the matrix

for the quadratic form

Q̃(x) = Trk(α)/k

(
α

f ′α(α)
x2

)
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in the basis {1, α, . . . , αn−1} has the shape:

0 · · · 1 a1

1 a1 a2

... . . .

1 . . .
...

1 a1

a1 a2 · · · an


,

for some values ai ∈ k. Note that the form is non-degenerate on the span

of {1, α, . . . , αn−2} and let β be a generator for the orthogonal complement.

Then {1, α, . . . , αn−2, β} is a basis and the matrix for Q̃ with respect to it is:

A =



0 · · · 1 0

1 a1 0

... . . .

1 . . .
...

1 a1

0 0 · · · Y


,

for some Y ∈ k.

Lemma 3.3.7. The matrices:

0 · · · 1

1 a1

... . . .

1
...

1 a1 · · · an


and



0 · · · 1

1 0

... . . .

1
...

1 0 · · · 0


represent the same quadratic form. In particular, denoting by 〈y1, . . . , yn〉 the

diagonal form with diagonals yi, the quadratic form associated to either matrix
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is isomorphic to one of:

〈1,−1〉
n−1
2 ⊕ 〈1〉 or 〈1,−1〉

n
2

depending on the parity of n.

Proof. This is a simple inductive argument using the similarity-transform de-

fined by: 

1 0 · · · 0

−a1 1

−a2 0
. . .

...

...

−an−1

−1
2
an 0 · · · 1


.

It follows from the lemma that Q̃ is isomorphic to one of:

〈1,−1〉
n−2
2 ⊕ 〈1, Y 〉 or 〈1,−1〉

n−1
2 ⊕ 〈Y 〉.

Next, by Lemma 3.3.1 we know that the discriminant of Q̃ is:

Nk(α)/k(α)Nk(α)/k(f
′
α(α)−1)δk(α)/k = Nk(α)/k(α)(−1)n(n−1)/2.

We conclude that Y = Nk(α)/k(α)(−1)n−1 up to squares. In particular, in

the case α =
√
−z, we can immediately see that the Hasse invariant of the

quadratic form is:

H(Q) = (−1,−1)
m(m−1)/2
k · (Nk(

√
−z)/k(

√
−z),−1)m−1

k

= (−1,−1)
m(m−1)/2
k · (Nk(z)/k(z),−1)m−1

k .
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Moreover, since the quadratic form has discriminant (−1)mNk(z)/k(z) we com-

pute using Proposition 3.2.17 that the Witt invariant is:

W (Q) = ((−1)mNk(z)/k(z),−1)m−1
k · (−1,−1)

m(m−1)/2
k ·

(−1,−1)
m(m−1)/2
k · (Nk(z)/k(z),−1)m−1

k

= 1.

Combining the above two results, we may now give a general formula for

the Hasse and Witt invariants for the forms qE,λ.

Theorem 3.3.8. Let F = k(z) be an extension of degree m, let E = k(
√
z),

and let λ ∈ F . Consider the quadratic form qE,λ(x) = 1
2

TrE/k(λNE/F (x)).

Then:

1. H(qE,λ) = CorF/k((−λf ′z(z), z)F ) · (Nk(z)/k(z),−1)m−1
k · (−1,−1)

m(m−1)/2
k ,

and

2. W (qE,λ) = CorF/k((−λf ′z(z), z)F ).

Proof. From Theorem 3.3.3 we have the following two equations:

H(qE,λ) = H(qE,1) · CorF/k((λ, z)F ), and

H(qE,−f ′z(z)−1) = H(qE,1) · CorF/k((−f ′z(z), z)F ).

Solving for H(qE,1) and substituting the results of Lemma 3.3.6 yields:

H(qE,λ) = H(qE,−f ′z(z)−1) · CorF/k(λf
′
z(z))

= (−1,−1)
m(m−1)/2
k · (NF/k(z),−1)m−1

k · CorF/k((−λf ′z(z), z)F ).

The Witt invariant computation follows similarly.

3.4 Local Invariant Computations for Tr(λx2)

The above gives us a global cohomological description of the invariants of

the quadratic forms in which we are interested. However, the quadratic forms
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Tr(λx2), which were studied extensively by Serre (see [Ser84]) and others, are

not in general covered by the previous section. Moreover, we have further

interest in a detailed local description of these forms as this has applications

to computing local densities and discriminant groups. Similar calculations can

be found in the work of Epkenhans (see [Epk89, Lem. 1]). The current section

gives a description of these quadratic forms in terms of basic combinatorial

data regarding the ramification structure of the field extensions involved.

Lemma 3.4.1. Let F/k be an unramified extension of non-Archimedean local

fields of degree f , with residue characteristic different from 2. Let πk be a

uniformizer of k. Let QF be any quadratic form on a vector space V over F of

dimension n. View V as a k-vector space via restriction of scalars. The form

Qk(x) = TrF/k(QF (x)) on V has invariants:

D(Qk) = NF/k(D(QF ))δnF/k, and

H(Qk) = H(QF )
[
(πk, NF/k(D(QF )))k(πk, δF/k)k(πk,−1)

f(f−1)/2
k

]νπF (D(QF ))

.

(By abuse of notation we identify the 2-torsion in the Brauer groups of F and

k via the natural isomorphism.)

Proof. It suffices to check the formula for a member of each isomorphism class

of quadratic space over V . If n ≥ 3 by checking the Hasse invariants and dis-

criminants one finds that every isomorphism class of non-degenerate quadratic

space over V is represented by one of:

〈1〉n−3 ⊕ 〈b, πk, abπk〉 or 〈1〉n−2 ⊕ 〈b, abπk〉,

for some a, b ∈ O∗F . We refer to these as the first and second cases. In either

case by decomposing the form into the diagonal pieces with trivial and non-

trivial valuations we may write:

TrF/k(QF ) ∼= M1 ⊕ πkM2.
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In the first case, M1 has discriminant δn−2
F/kNF/k(b) and dimension f · (n − 2),

whereas M2 has discriminant NF/k(ab) and dimension 2f . One then computes

in the first case that:

H(Qk) = (πk,−1)fk · (N(ab), πk)k

= (πk,−1)F · (ab, πk)F

= H(QF ).

In the second case, M1 has discriminant δn−1
F/kNF/k(b) and M2 has discriminant

δF/kNF/k(ab). Thus we have:

H(Qk) = (πk, NF/k(b))k · (πk, NF/k(a))f−1
k · (πk, δF/k)fn−1

k · (πk,−1)
f(f−1)/2
k

= (πk, NF/k(a))f−1
k · (πk, δF/k)k · (πk,−1)

f(f−1)/2
k

= H(QF )
[
(πk, NF/k(D(QF )))k · (πk, δF/k)k · (πk,−1)

f(f−1)/2
k

]
.

Here we have used the fact that δfF/k is a square in k for an unramified exten-

sion.

For the cases n = 1, 2 we must check that similar formulas hold for:

〈bπk, abπk〉, 〈1, a〉, 〈a〉, 〈aπk〉. We omit these calculations.

The results on the structure of trace forms for ramified extensions will

rely on the following lemma.

Lemma 3.4.2. Let L/F be a totally ramified extension of local fields. Let

z = πL be a uniformizer of OL and fz(x) be the minimal (monic) polynomial

of z. Then fz is an Eisenstein polynomial and the collection 1, z, z2, . . . , zm−1

is an OF -basis of OL and NL/F (z) is a uniformizer of F .

See [Ser79, Prop. I.6.18] for a proof.

Before proceeding with the next two lemmas we will introduce some no-

tation. Let L/F be a totally ramified extension of local fields of degree m.

Let πL be a uniformizer of L and set πF = NL/F (πL) to be a uniformizer of

81



F . Let f = fπL be the minimal monic polynomial of πL over F . Suppose

u ∈ O∗L, v ∈ O∗F , 0 ≤ ` ≤ m, k ∈ Z and set λ =
πkF

uv2π`Lf
′(πL)

. We remark

that if the residue characteristic is not 2, then for any given λ ∈ L∗ there

exists corresponding u, v, `, k. Now denote by Q(x) the F -quadratic form on L

given by Q(x) = TrL/F (λx2) and consider M1 = span{uvz`, . . . , uvzm−1} and

M2 = span{v, . . . , vz`−1} as quadratic subspaces of L.

Lemma 3.4.3. With the notation as above, we have the following properties

of Q,M1,M2:

1. The discriminant of Q is D(Q) = (−1)m(m−1)/2u−mπmk−`F .

2. The decomposition L = M1 ⊕M2 is orthogonal with respect to Q.

3. The discriminants of 1
πkF
Q|M1 and 1

πk−1
F

Q|M2 are respectively:

D(
1

πkF
Q|M1) = (−1)(m−`)(m−`−1)/2um−` and

D(
1

πk−1
F

Q|M2) = (−1)`(`+1)/2−m`u−`.

Hence these forms are unimodular.

4. The Hasse invariant is:

H(Q) = (πF , u)(m−`)` · (πF ,−1)k(m2(m−1)/2+`2(1−m))−`(m−`)(m−`−1)/2.

Proof. The formula for the discriminant of Q is Lemma 3.3.1. The orthogonal

decomposition is an elementary calculation which follows from Lemma 3.3.4

and Lemma 3.4.2.

Next, noticing that u ∈ F we can use Lemma 3.3.4 to compute that

the matrix representations of 1
πkF
Q|M1 and 1

πk−1
F

Q|M2 . We see that they are
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respectively:

u



0 · · · 0 1

0 1 ∗
... . . . ∗

0 . . .
...

0 1 ∗

1 ∗ · · · ∗


and

1

u



∗ · · · ∗ a

a 0

... . . .

. . .
...

∗ a 0

a 0 · · · 0


,

where a = πF
f(0)

= (−1)m. One can explicitly calculate the ∗ terms from the

coefficients of f , but what is of particular importance is that in both cases one

finds that aij = alk whenever i + j = l + k. As a consequence of this using

Lemma 3.3.7 we can explicitly find a change of basis matrix so that the result

is of form:

u



0 · · · 0 1

0 1 0

... . . . 0

0 . . .
...

0 1 0

1 0 · · · 0


and

1

u



X 0 · · · 0

0 0 1

... . . . 1 0

. . .
...

0 1

0 1 0 · · · 0


.

The determinants of the matrices are then:

(−1)(m−`)(m−`−1)/2um−` and (−1)(`−1)(`−2)/2u−`X,

respectively. Thus knowing D(Q) we have that up to squares X is:

X = (−1)(`−1)(`−2)/2+`(`+1)/2−m`u−`−m−`+m = (−1)m`+1.

The computation of the discriminants of the Mi and then the Hasse invariant

of Q are direct calculations.
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Remark. If the residue characteristic is not 2 the above gives us a method to

calculate the invariants of forms TrL/F (λx2) for an arbitrary λ.

We now restrict ourselves to the case that the residue characteristic is

not 2. In addition to the above notation, suppose that E/L is a quadratic

extension with involution σ. Fix w a non-square element of O∗F . Writing

x = x1 + x2

√
δE/Eσ consider the quadratic form on E

qE/F,λ(x) = 1
2

TrE/F (λxσ(x)) ' TrEσ/F (λx2
1)− TrEσ/F (λδE/Eσx

2
2).

Then set λ′ = λδE/Eσ , k′ = k and choose u′, v′, `′ so that λ′ =
πkF

u′v′2π`
′
L f
′(πL)

. Let

Q′,M ′
i be defined similarly to Q,Mi using λ′ instead of λ so that qE/F,λ(x) =

Q(x1)−Q′(x2). Now define Ni = Mi⊕−M ′
i and Ñ1 = 1

πkF
N1 and Ñ2 = 1

πk−1
F

N2

their unimodular rescalings.

Lemma 3.4.4. With the notation as above we have the following:

1. If δE/Eσ = w then `′ = ` and u′ = wu. Then:

D(Ñ1) = (−1)`−mw`−m and D(Ñ2) = (−1)−`w−`.

It follows that:

D(qE/F,λ(x)) = (−1)mwmπ
2(mk−`)
F , and

H(qE/F,λ(x)) = (πF , w)km−`.

2. If δE/Eσ = πEσ then `′ = `− 1 and u′ = u. Then:

D(Ñ1) = (−1)u and D(Ñ2) = (−1)m+1u.

It follows that:

D(qE/F,λ(x)) = (−1)mπ
2(mk−`)+1
F , and

H(qE/F,λ(x)) = (πF , u) · (πF ,−1)k(`−m−1)+m+`(`+1)/2.

3. If δE/Eσ = wπEσ then `′ = `− 1 and u′ = wu. Then:

D(Ñ1) = (−1)uw`−m+1 and D(Ñ2) = (−1)m−1uw1−`.
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It follows that:

D(qE/F,λ(x)) = (−1)mwmπ
2(mk−`)+1
F , and

H(qE/F,λ(x)) = (πF , u) · (πF , w)(m`−m−`2−1) · (πF ,−1)k(`−m−1)+m+`(`+1)/2.

4. If Eσ/F is still an extension of fields but E = Eσ ×Eσ, δE/Eσ = 1, then

`′ = ` and u′ = u. Then:

D(Ñ1) = (−1)`−m and D(Ñ2) = (−1)−`.

It follows that:

D(qE/F,λ(x)) = (−1)mπ
2(mk−`)
F , and

H(qE/F,λ(x)) = 1.

Proof. The proof is a direct, although tedious, calculation based on Lemma

3.4.3.

Remark. By combining the results above for totally ramified extensions with

those of Lemma 3.4.1 one obtains results for arbitrary extensions.

In the formulas above the parameter m is determined by the ramification

degree of Eσ. The parameters k and ` are controlled together by both the

higher ramification degrees of Eσ and the valuation of λ. Finally the square

class of u is controlled by the square class of λ.

The following two lemmas are direct computations.

Lemma 3.4.5. Let F/k be an extension of local fields of residue characteristic

2. Then when viewed as a quadratic form on F × F the Witt invariant of

TrF/k(x
2 − y2) is 1.

Lemma 3.4.6. Let F = R or F = C, then as a quadratic form on F × F

the Witt invariants of TrF/R(x2 + y2) and TrF/R(x2 − y2) are 1, and the Witt

invariant of TrF/R(−x2 − y2) is −1.
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3.5 The Main Results

We recall the main result:

Theorem 3.5.1. Let Oq be an orthogonal group over a number field k defined

by a quadratic form q of dimension 2n or 2n + 1, and let (E, σ) be a field

extension of k with an involution and of dimension 2n. Then Oq contains a

torus of type (E, σ) if and only if the following three conditions are satisfied:

1. Eφ splits the even Clifford algebra W orth(q) for all σ-types φ of E.

2. If dim(q) is even then δE/k = (−1)nD(q).

3. Let ν be a real infinite place of k and let s be the number of homomor-

phisms from E to C over ν for which σ corresponds to complex con-

jugation. The signature of q is of the form (n − s
2

+ 2i, n + s
2
− 2i)ν

if the dimension is even and either (n − s
2

+ 2i + 1, n + s
2
− 2i)ν or

(n− s
2

+ 2i, n+ s
2
− 2i+ 1)ν if ν((−1)nD(q)δE/k) is respectively positive

or negative when the dimension is odd, where 0 ≤ i ≤ s
2
.

Moreover, for any E satisfying condition (2) we have that
√
D(q) ∈ Eφ for

every σ-type φ of E.

By Proposition 3.2.13 the entire theorem is reduced to showing that the

conditions are equivalent to the existence of λ ∈ (Eσ)∗ such that the quadratic

form qE,λ = 1
2

TrE/k(λxσ(x)) has the same invariants as q. We now proceed

with a series of lemmas which will conclude with the result.

Lemma 3.5.2. Let (E, σ) be an étale algebra over k with involution and let λ ∈

Eσ. For a real infinite place ν of k the quadratic form qE,λ = 1
2

TrE/k(λxσ(x))

has signature (n + r
2
− s

2
, n − r

2
+ s

2
)ν where s (respectively r) is the number

of real embeddings ρ ∈ Homk−alg(E
σ,R) of Eσ which are ramified in E with

ρ(λ) > 0 (respectively ρ(λ) < 0).

Proof. This is an immediate check.
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Lemma 3.5.3. Let F be a number field, let eν = ±1 be a collection of numbers

indexed by the places of F , and let δ ∈ F . Then there exist λ ∈ F with

(λ, δ)ν = eν if and only if the following three conditions are satisfied:

1. All but finitely many eν are 1.

2. An even number of the eν are −1.

3. For each ν there exists λν ∈ Fν with (λν , δ)Fν = eν.

Proof. This is well known. For the result over Q see [Ser73, Thm. 2.2.4], for

the result over an algebraic number field see [O’M00, 71:19a].

Corollary 3.5.4. Let (E, σ) be an extension of a number field k of degree 2n

together with an involution. For each place ν of k let eν ∈ {±1}, and for each

infinite place let (sν , rν)ν be such that sν , rν ∈ N and sν + rν = 2n. Then there

exists λ ∈ Eσ with qE,λ having signatures (sν , rν)ν and Hasse invariants eν if

and only if the following three conditions are satisfied:

1. All but finitely many eν are 1.

2. An even number of the eν are −1.

3. For each ν there exists λν ∈ Eσ
ν such that H(qEν ,λν ) = eν and moreover,

the signature of qEν ,λν is (sν , rν)ν if ν is an infinite place of k.

Proof. Supposing there exists a λ, then conditions (1), (2) and (3) are imme-

diate.

Let us prove the converse. For µ ∈ (Eσ)∗ denote by QE/Eσ ,µ(x) =

1
2

TrE/Eσ(µxσ(x)) the Eσ-quadratic form on E. First we recall Theorem 3.3.3

tells us that:

H(qE,µ)ν = H(qE,1)ν
∏
u|ν

H(QE/Eσ ,µ)u,

where the u run over places of Eσ over ν. Now for each place u of Eσ define

fu ∈ {±1} as follows:

• If u|ν is an infinite place, set fu = H(QE/Eσ ,λν )u.
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• If u|ν is a finite place and H(qE,1)νeν = 1, set fu = 1.

• If u|ν is a finite place and H(qE,1)νeν = −1, set fu = H(QE/Eσ ,λν )u.

We now notice that for each place ν of k we have:

∏
u|ν

fµ =
∏
u|ν

H(QEν/Eσν ,λν )u = H(qE,1)νH(qEν ,λν ) = H(qE,1)νeν

and moreover, that only finitely many fu 6= 1. It follows that
∏

u fu =∏
ν H(qE,1)νeν = 1. Finally we have that if fu 6= 1 then fu = H(QE/Eσ ,λν )µ =

(λν , δE/Eσ)u. The values fu thus satisfy the conditions of Lemma 3.5.3 and we

conclude that there exists λ ∈ Eσ with (λ, δE/Eσ)u = fu. By the choices of the

fu we find:

H(qE,λ)ν = H(qE,1)ν
∏
u|ν

H(QEν/Eσν ,λ)u = H(qE,1)ν
∏
u|ν

fu = eν .

Finally, by Lemma 3.5.2 the signature of qE,λ at a real infinite place ν is given

by: 1
2

∑
u|ν

mu(H(QEν/Eσν ,λ)u + 1), 1
2

∑
u|ν

mu(H(QEν/Eσν ,−λ)u + 1)

 ,

where mu = 1 if Eu = R × R and mu = 2 if Eu = C. Since H(QEν/Eσν ,λ)u =

H(QEν/Eσν ,λν )u for all u it follows that the signature of qE,λ at ν is the same as

that of qEν ,λν , which is to say it is precisely (sν , rν)ν .

Lemma 3.5.5. Let (E, σ) be an étale algebra with involution. Let Ep = ×iEpi

be a decomposition into a product of fields. Then there exists values λ+, λ− ∈

Eσ such that the p-adic part of the Hasse invariant for 1
2

TrE/k(λ±xσ(x)) is

respectively +1,−1 if and only if the involution σ restricts to an automorphism

of Epi for one of the constituent fields Epi of the étale algebra Ep. Moreover,

if W (qE,λ)p is independent of λ then W (qE,λ)p = 1 for all λ.
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Proof. From Theorem 3.3.3 recall that we have:

W (qE,λ) = CE · CorEσ/k((λ, δE/Eσ)Eσ),

for some constant CE which does not depend on λ. Thus, both λ± exist if

and only if CorEσp /kp((λ, δEp/Eσp )Eσp ) is not constant as a function of λ. Writing

Eσ
p = ×jEσ

pj let ρj be the projection of Eσ
p onto the jth factor. Using the fact

that the cohomology and the corestriction maps factor as products we have:

CorEσp /kp((λ, δEp/Eσp )Eσp ) =
∏
j

CorEσpj/kp((ρj(λ), ρj(δEp/Eσp ))Eσpj).

We thus conclude that both λ± exist if and only if for at least one j the

function CorEσpj/kp((ρj(λ), ρj(δEp/Eσp ))Eσpj) is not constant with respect to λ.

The corestriction map being injective for local fields, this is equivalent to

(λj, ρj(δEp/Eσp ))Eσpj being non-constant. This last assertion is the same as saying

that ρj(δEp/Eσp ) is a non-square or that σ acts as the non-trivial field automor-

phism on the factor Epi of Ep that is over Eσ
pj.

For the second part, we need to show that whenever W (qE,λ)p is indepen-

dent of λ then W (qE,λ)p = 1. Indeed if W (qE,λ)p does not depend on λ, then

by the first part of the lemma Ep/E
σ
p has no factors which are field extensions.

Thus the element z appearing in the formula in Theorem 3.3.8 is a square and

this implies W (qE,λ)p = CorEσp /kp((−λf ′z(z), z)Eσp ) = 1.

Corollary 3.5.6. Let E/k be an extension of number fields. Let q be a

quadratic form of dimension 2n. Then Oq has a torus of type (E, σ) if and

only if the following three conditions are satisfied:

1. For all primes p of k where none of the factors of Ep are proper field

extensions of factors of Eσ
p , we have W (q)p = 1.

2. We have (−1)nδE/k = D(q) (equivalently (−1)nδEp/kp = D(qp) for all p).

3. The signature conditions of Theorem 3.5.1.
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Proof. By Proposition 3.2.13 we have that Oq has a torus of type (E, σ)

if and only if there exists λ ∈ (Eσ)∗ such that the quadratic form qE,λ =

1
2

TrE/k(λxσ(x)) has the same invariants as q. Thus we must show that the

existence of such a λ is equivalent to the conditions of the corollary.

For each place ν of k set eν = H(q)ν and for each infinite places set

(sν , rν)ν to be the signature of q. Then the eν , (sν , rν)ν satisfy (1) and (2)

of Corollary 3.5.4 as they arise from the quadratic form q. We thus have by

Corollary 3.5.4 that the question of existence is local.

We now check that conditions (1), (2) and (3) are equivalent to the local

conditions on the existence of λν for all places ν of k. For a finite place ν of k a

λν exists with qEν ,λν ' q if and only if a λν exists with both D(qEν ,λν ) = D(q)

and H(qEν ,λν ) = H(q)ν . Theorem 3.3.3 tells us that (2) (at ν) is equivalent

to the discriminant condition and Lemma 3.5.5 tells us that (1) (at ν) is

equivalent to the Hasse invariant condition. For an infinite place ν we have by

Lemma 3.5.2 that the existence of a λν is equivalent to (3) at ν. Note that for

infinite places (3) implies (1) and (2). We have thus shown that the existence

of a global λ is equivalent to (1), (2) and (3) for all ν, which completes the

result.

Corollary 3.5.7. Let E/k be an extension of number fields. Let q be a

quadratic form of dimension 2n + 1. Then Oq has a torus of type (E, σ) if

and only if the following two conditions are satisfied:

1. For all primes p of k where none of the factors of Ep are proper field

extensions of factors of Eσ
p , we have W (q)p = 1.

2. The signature conditions of Theorem 3.5.1.

Proof. We proceed as in the previous corollary, except we now have the added

flexibility of choosing what the orthogonal complement of the sub-quadratic

space qE,λ looks like. In particular, Oq has a torus of type (E, σ) if and only if

q ' qE,λ ⊕ 〈a〉 for some λ ∈ (Eσ)∗. In order for q and qE,λ ⊕ 〈a〉 to have equal
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discriminants it is necessary that a = (−1)nD(q)/δE/k. As this can always

be done there is no discriminant condition in this case. Again as above, by

Corollary 3.5.4 the question of the existence of λ is local.

We must find the local condition on Witt invariants. Knowing the dis-

criminants of qE,λ and 〈a〉 we see that H(qE,λ ⊕ 〈a〉)p depends on λ if and

only if H(qE,λ)p does. Hence this also holds for the Witt invariants. Fur-

thermore, the obstructions to changing Witt invariants arise at the same

places as in Corollary 3.5.6. Now, we compute that W (q)p = W (−aqE,λ)p =

W ((−1)n+1D(q)δE/kqE,λ)p (see [Lam05, V.2.9]). Next, by Theorem 3.3.8 we

know that if the Witt invariant of qE,λ is independent of λ then W (qE,λ)p = 1

independently of λ, and consequently independently of rescaling. In particu-

lar it follows that W (q)p = W ((−1)n+1D(q)δE/kqE,λ)p = 1. This gives us the

condition on Witt invariants (1).

Finally, the signature conditions (2) are precisely those of Lemma 3.5.2

together with the sign contribution that is dictated by the 〈a〉 piece at each

ν.

Remark. The condition “Ep contains no field extensions of factors of Eσ
p ,”

can be rephrased as “for all constituent fields Ei of E and all the primes pi

above p in Eσ
i , there exists at least one pi which does not split in Ei.”

This condition thus says that for some computable collection of primes

which divide the discriminant of the quaternion algebra, none are totally split

between Eσ and E. We point out that there is no condition on the behaviour

of these primes between k and Eσ. We also point out that primes which

divide the discriminant of E to odd degree ramify for at least one place, and

so automatically satisfy this condition.

Lemma 3.5.8. Let (E, σ) be an étale algebra with involution. Then every

reflex algebra of (E, σ) contains an element y such that y2 = δE/k.
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Proof. Suppose E = Eσ(
√
x) with x chosen so that δE/Eσ = x. Then we have

δE/k = (−1)nN(x). Let φ be a σ-type of E. Then let:

y =
∏
ρ∈φ

ρ(
√
x) ∈ Eφ,

and moreover, we see that σ(y) = (−1)ny and yσ(y) = N(x) = (−1)nδE/k.

The result follows.

Lemma 3.5.9. Let (E, σ) be an étale algebra over k with involution, and let

A be a quaternion algebra over k. Then Eφ splits A for all σ-types φ of E if

and only if we have [Ap] = 1 for every place p where Ep contains no factors

which are quadratic extensions of factors of Eσ
p .

Proof. We first state some facts concerning the splitting of quaternion algebras.

A quaternion algebra is split by an étale algebra E if it is split by each factor.

A quaternion algebra is split by a field L if it is split locally everywhere, that

is, for each prime pL in L. A local field L splits a nonsplit quaternion algebra

if and only if L contains a quadratic subextension.

Thus, every reflex algebra Eφ splits a quaternion algebra A if and only

if EΦ does. This happens if and only if EΦ
p splits A for every prime p of k.

Consequently EΦ splits a quaternion algebra A if and only if for each p we

have that Ap nonsplit implies (Ep)
φ has even degree for all φ.

It follows from Corollary 3.2.6 that (Ep)
φ has even degree for all φ if

and only if at least one factor of Ep/E
σ
p is a field extension. Thus, the only

condition for EΦ to split A is that if Ap is not already split, then Ep/E
σ
p must

contain a field extension.

Proof of Theorem 3.5.1. What remains to show is that the conditions of Corol-

laries 3.5.6 and 3.5.7 in the even and odd cases, respectively, are equivalent to

those of Theorem 3.5.1. We see immediately that the conditions on signatures

92



and discriminants are the same and that the additional data about discrimi-

nants in the even case is provided by Lemma 3.5.8. What remains to show is

that the Witt invariant conditions agree.

Lemma 3.5.9 tells us precisely that the condition of the corollaries (for all

primes p of k where none of the factors of Ep are proper field extensions of

factors of Eσ
p , we have W (q)p = 1) is equivalent to the statement that all the

σ-reflex fields of E split W (q). Thus we want to show that we can replace W (q)

by W orth(q) in the condition of the previous sentence. In the odd dimensional

case there is nothing to show as these are equal. For the even case, since

W orth(q) = W (q)⊗k Z(C0
q) and Z(C0

q) ⊂ Eφ it follows that:

W orth(q)⊗k Eφ = W (q)⊗k Z(C0
q)⊗k Eφ = (W (q)⊗k Eφ)⊕ (W (q)⊗k Eφ).

It follows that Eφ splits W (q) if and only if it splits W orth(q). This gives us the

equivalence of the final condition of the theorem with those of the corollaries

and thus completes the proof.

3.6 Applications

One of the primary motivations for this work is to understand the possible

special fields associated to the special points on Shimura varieties of orthogonal

type (see [Del71]). We now give some applications in this direction.

Corollary 3.6.1. Suppose in Theorem 3.5.1 that k = Q, the signature of q is

(2, `) and (E, σ) is a CM-field with complex conjugation σ. Then Oq contains

a torus of type (E, σ) if and only if:

1. For each prime p of Q with local Witt invariant W (q)p = −1 there exists

a prime p|p of Eσ that does not split in E.

2. If ` is even, then D(q) = (−1)(2+`)/2δE/Q. (No further conditions if ` is

odd.)
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Proof. We have put ourselves in a situation in which the signature condition is

automatic. We thus must check only the remaining conditions. The discrimi-

nant condition remains the same, and the Witt invariant condition is precisely

that of Corollary 3.5.6.

Corollary 3.6.2. Suppose that k = Q and the signature of q is (2, `). Let F

be a totally real field. Then there exists a CM-field E with Eσ = F , and the

orthogonal group Oq containing a torus of type (E, σ) if and only if:

1. No condition if ` odd.

2. If ` is even, then (up to squares) D(q) = NF/k(δ) for an element δ ∈ F

which satisfies the condition that for all primes p of k with W (q)p = −1

there is at least one prime p|p of F such that δ is not a square in Fp.

Proof. In this case we are now looking for any CM-field extension.

The norm condition in the even dimension is precisely the condition re-

quired so that we have a quadratic extension of the desired discriminant and

the desired primes are not totally split. To eliminate entirely the Witt invari-

ant conditions in the odd case we note that we can simply force these to be

ramified in the quadratic extension.

Remark. In order to satisfy the condition that the primes where W (q)p = −1

will not split in the quadratic extension for δ one is looking to modify δ by

an element of square norm which is not a square modulo some prime p over

p. Elements of square norm tend to be contained in quadratic subextensions.

Let L ⊂ F be a degree 2 subextension. We claim that L contains an element

which is not a square in OFp. Indeed, if p is ramified or inert over L one may

take any representative of a nonsquare in OL/(p ∩ OL). If p is split take any

representative of a uniformizer of OL(p∩OL).
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Corollary 3.6.3. Let d ∈ Q be a squarefree positive integer. Consider the

quadratic form:

qd = x2
1 − x2

2 + x3
3 − dx2

4.

This implies Spinqd(R) ' SL2(R)2 is associated to the Hilbert modular space

for Q(
√
d). Let (E, σ) be a field of dimension 4 with involution σ. Then Oq

has a torus of type (E, σ) if and only if the σ-reflex fields of E all contain

Q(
√
d).

Proof. Firstly, a computation using Proposition 3.2.17 together with the fact

that H(qd) = (−1,−d) shows W (qd) = 1. Thus all the σ-reflex fields Eφ

automatically split the even Clifford algebra. Since Theorem 3.5.1 already

states that if Oq has a torus of type (E, σ) then
√
d ∈ Eφ for all φ. It thus

remains only to show, that under the present conditions,
√
d ∈ Eφ for all φ

implies both the discriminant and signature conditions of Theorem 3.5.1 hold.

To this end, we introduce some further notation.

Let m ∈ Q be such that Eσ = Q(
√
m), let τ be the non-trivial automor-

phism of Eσ and let δ = a+ b
√
m ∈ Eσ be such that E = Eσ(

√
δ). Let N be

the normal closure of E over Q, then one checks that N = Q(
√
m,
√
δτ(δ),

√
δ)

has degree 4 or 8 over Q. Set M = Q(
√
δτ(δ),

√
δ+
√
τ(δ)) ⊆ N . Notice that

σ extends to N and that on its restriction to M we have Mσ = Q(
√
δτ(δ)).

We now must divide the argument into two cases depending on Gal(N/Q).

In the first case suppose Gal(N/Q) = (Z/2Z)2. Then we may assume δ ∈ Q

and so the two σ-reflex fields of E are M = Q(
√
δ) and Q(

√
mδ) with their

intersection being Q. It follows that
√
d ∈ Eφ for all φ implies d is a square.

Moreover, as E is biquadratic, δE/Q is a square and E is either CM or totally

real. Thus
√
d ∈ Eφ for all φ is equivalent to d = δE/Q mod squares. (Notice

that the case of d a square is technically excluded from the statement of the

corollary.)
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Now in the second case suppose Gal(N/Q) 6= (Z/2Z)2. Then Gal(N/Q) is

either Z/4Z or D8. In either case a check shows that M is (up to isomorphism)

the unique σ-reflex field for E and Mσ is the only quadratic subextension of

M . Moreover, the discriminant of E is δE/Q = δτ(δ) and Mσ = Q(
√
δτ(δ))

hence
√
d ∈ Eφ for all φ is equivalent to d = δτ(δ) = δE/Q mod squares.

Finally, since b2m = (a2 − δτ(δ)) it follows that δ = a +
√
a2 − δτ(δ). Thus

using that δτ(δ) = r2d > 0 we find that E is either totally complex or totally

real.

We have thus shown that in all cases,
√
d ∈ Eφ for all φ implies that

d = δE/Q and that E is either totally complex or totally real. One now observes

that E being totally complex or totally real implies the signature condition

and this concludes the proof.

Remark. It follows that the tori in Spinq are all associated to algebras which

are two dimensional over Q(
√
d). This is well known for the tori associated

to CM-points, but we have shown the analogous fact also holds for those

associated to so-called almost totally real cycles (for the definition see the

discussion following [DL03, Prop. 2.4]). It is worth noting that these E can

never be ATR extensions, that is extensions with only one complex place. It

is the reflex fields of these E which may be ATR extensions.
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CHAPTER 4
Representation Densities for Hermitian Lattices

4.1 Introduction

The issue of computing local densities goes back decades to when they

were first introduced by Siegel [Sie35]. These types of computations have

many applications beyond those originally envisioned (see for example [GK93,

Kud97b, SP04, GHS08, GV12] among others) and formulas for them have been

worked out to cover many cases (see for example [Pal65, Wat76, Kit93, Shi99,

Kat99, SH00, Yan04] ).

The primary application we have in mind in the present work is for

computing the arithmetic volumes of the orthogonal groups that arise from

Hermitian lattices. These lattices arise in the study of special points on or-

thogonal Shimura varieties and these arithmetic volumes relate, by way of

the Hirzebruch-proportionality principle and the Riemann-Roch theorem (see

[Mum77, GHS08]), to the dimensions of spaces of modular forms on the asso-

ciated Shimura varieties.

Another important application is their use, by way of the Siegel mass

formula, as part of a stopping condition when enumerating the genus of a

lattice. This has important applications in the theory of algebraic automorphic

forms on orthogonal groups (see [Gro99] and [GV12]). The sections of this

paper are organized as follows:

(4.2) We introduce the general theory of lattices so far as it is needed in the

sequel.

(4.3) We discuss specifically lattices over p-adic rings.

(4.4) We introduce representation densities and develop formulas for comput-

ing them.
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(4.5) We obtain results about the structure of lattices under transfer.

(4.6) We develop formulas for the representation densities of Hermitian lattices

in terms of the invariants of the fields involved.

(4.7) We discuss the concrete example of Q(µp).

Almost none of the introductory content (Sections 2 and 3) is new, how-

ever we present it in the format we intend to use in the sequel. Many results

on representation densities are known:

• The work of Pall, Watson and the book of Kitaoka, [Pal65, Wat76, Kit93],

give formulas for βp(L,L) over Zp for arbitrary L and p.

• Katsuraga [Kat99] computes βp(L,M) over Z2.

• Shimura [Shi99] computes formulas for βp(L,L) when L is maximal, over

Op any finite extension of Zp.

• Hironaka-Sato [SH00] computes βp(L,M) over Zp when p 6= 2.

However, formulas for all cases do not yet exist. Our results (Section 4) cover

the case of computing βp(L,L) where L is unimodular over any finite extension

of Zp (including especially p = 2). This is the content of Theorems 4.4.11 and

4.4.18. We also give clean reduction formulas to compute βp(L,L) for arbitrary

L in terms of the collection of all of its Jordan decompositions. This is the

content of Theorem 4.4.28.

By a Hermitian form we mean a quadratic form of the shape:

qE,λ(x) = TrE/k(λxσ(x)),

where E is an étale k-algebra with involution σ and λ is a unit of Eσ, the sub-

algebra of elements fixed by σ. By a Hermitian lattice we mean a fractional

ideal Λ of OE in E. In order to study the representation density problem

specifically for Hermitian lattices we must first obtain structure theorems for

lattices that arise from transfer. That is, we compute properties of the Jordan

decomposition for lattices whose quadratic forms arise as TrR2/R1(qR2). This is
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the content of Section 5. Having done this, we can convert the usual formulas

for representation densities, which are expressed in terms of combinatorial data

about Jordan decompositions, to formulas that express the density in terms of

properties of the fields involved. This is done in Section 6.

4.2 General Notions of Lattices

In this section we introduce the general theory of lattices. Many good

references exist which treat this topic in a varying degree of generality. See for

example [Kit93] and [O’M00]. We shall initially work quite generally, adding

more structure as it is required. We shall eventually be most interested in the

theory of lattices over Ok, the maximal order in a number field k. Note that

these are not always PIDs, however, their localizations always are.

Definition 4.2.1. Let R be an integral domain and K be its field of fractions.

By a lattice Λ over R we mean a projective R-module of finite rank, together

with a symmetric R-bilinear pairing:

bΛ : Λ× Λ→ K,

which induces a duality HomR(Λ, K) = Λ ⊗R K. We shall sometimes denote

bΛ(x, y) = (x, y) when the pairing bΛ is understood. A lattice is said to be

integral if (x, y) ∈ R, even if (x, x) ∈ 2R and unimodular if the pairing

induces an isomorphism HomR(Λ, R) = Λ, or more generally a-modular if

the pairing induces an isomorphism HomR(Λ, R) = a−1Λ (for a a projective

R-module of rank 1, that is, an invertible fractional ideal of R). Notice that

a-modular is equivalent to having HomR(Λ, a) = Λ by noting that:

HomR(Λ, a) = a⊗R HomR(Λ, R) = a⊗ a−1Λ = Λ.

We will refer to a lattice as modular if there exists some a for which it is

a-modular. Note that not all lattices are modular.
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We shall sometimes denote the bilinear form as bΛ(·, ·) when we need to

specify the underlying lattice.

Remark. We are explicitly requiring that all lattices be non-degenerate with

respect to the bilinear form bΛ. If the pairing on the ‘lattice’ might not induce

an isomorphism the ‘lattice’ shall be referred to as a module or submodule.

We will at times consider symmetric bilinear forms on an R-module M

valued in another R-module M ′, that is,

(·, ·) : M ×M →M ′.

We may even consider such pairings when R is not an integral domain. These

do not fit into our definition of lattices though many notions remain valid.

The most common examples of this would be either taking M ′ = R/I, for any

ideal I of R, or reducing all of R,M,M ′ by I.

We will also need the following notion in order to deal with certain com-

plexities in characteristic 2.

Definition 4.2.2. Let R be a ring and let M ′ be an R-module. We define a

quadratic module M over R (or more precisely an M ′-valued quadratic

module) to be a module M over R together with a function q : M → M ′

satisfying q(λx) = λ2q(x) for all x ∈M and λ ∈ R and such that

BM(x, y) := q(x+ y)− q(x)− q(y)

is a bilinear pairing. For a quadratic module M we define:

M⊥ := {x ∈M | BM(x, y) = 0 for all y ∈M} and

Rad(M) := {x ∈M⊥ | q(x) = 0}.

A quadratic module is said to be regular or non-degenerate if M⊥ = ∅.

Remark. In the above, one typically takes M ′ = R or M ′ = K, the total ring

of fractions or M ′ = R/I.
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Notation 4.2.3. Given a lattice Λ, by qΛ or simply q we shall always mean:

qΛ(x) = bΛ (x, x) .

To a lattice we may also associate another bilinear pairing:

BΛ(x, y) := qΛ(x+ y)− qΛ(x)− qΛ(y).

Note well that BΛ(x, y) = 2bΛ(x, y) and that qΛ(x) = bΛ(x, x) as these con-

ventions vary by author. Notice also that in characteristic 2 one may not

recover bΛ from qΛ as this would involve dividing by 2 whereas if 2 ∈ K× then

non-degenerate quadratic modules and lattices are equivalent.

Remark. For both lattices and quadratic modules L⊕M shall always mean

an orthogonal direct sum.

This level of generality is too much for many of our purposes. Having the

following additional constraints gives major simplifications to the theory:

1. If Λ is free we may express (·, ·) by a matrix.

2. If R is a principal ideal domain, the theory of modules simplifies. In par-

ticular, every lattice is free. We may often replace R by its (completed)

localizations to attain this.

3. The theory is simpler if the characteristic of R is not 2.

Note that some of the results which follow are true without some (or all) of

the above constraints, however, for simplicity of presentation we may some-

times assume them. Note that these assumptions hold when we work over

Z,Q,Zp for all p,Fp where p 6= 2, or the many finite ring extensions of these.

These assumptions may fail for Dedekind domains; however as our study of

these is done almost entirely with their localizations this will not be an is-

sue. We will occasionally still need to work in characteristic 2 and it will be

apparent when this is happening.
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Definition 4.2.4. Assume that Λ is free and let X = {x1, . . . , xn} be a basis

for Λ. We write:

A = AX = ((xi, xj))i,j

for the matrix corresponding to this lattice and choice of basis.

Definition 4.2.5. Given a lattice Λ we define the dual lattice to be:

Λ# = {x ∈ Λ⊗K | (x, y) ∈ R for all y ∈ Λ}

together with the induced pairing.

Definition 4.2.6. A submodule L ⊂ Λ is said to be primitive if KL∩Λ = L.

A collection of elements {x1, . . . , xm} is said to be primitive in Λ if the

collection can be extended to a basis for Λ.

Proposition 4.2.7. Suppose R is a PID, then a collection {x1, . . . , xm} is

primitive if and only if 〈x1, . . . , xm〉R ⊂ Λ is primitive.

Proof. The forward direction is clear. For the converse we set:

L = 〈x1, . . . , xm〉R

and consider the exact sequence:

1→ L→ Λ→ Λ/L→ 1.

Since L is primitive, Λ/L is torsion free, hence free. We may thus split the

sequence and write:

Λ = L⊕ (Λ/L).

A choice of basis for Λ/L gives us the desired extension of the basis for L.

Definition 4.2.8. A submodule L ⊂ Λ is said to be isotropic if (·, ·) |L = 0.

It is said to be anisotropic if it has no isotropic submodules. A projective

submodule is said to be pseudo-hyperbolic if it has an isotropic submodule
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of half its rank. A projective submodule is said to be hyperbolic if it is

generated by two isotropic submodules.

Definition 4.2.9. Lattices Λ have the following invariants:

• For Λ projective, the rank rΛ of Λ as an R module.

• For Λ integral, the discriminant group DΛ = Λ#/Λ together with the

induced pairing mapping into K/R.

• For Λ free, the discriminant δΛ = det(AX) ∈ K/(R×)2 for a choice of

basis X.

If Λ is not free we have at our disposal the discriminant D(q) of Λ⊗K

which is an element of K/(K×)2, and the discriminant ideal which

is the R ideal generated by det(AX) running over all maximal linearly

independent subsets X of Λ. Alternatively, for a projective module over a

Dedekind domain, one may take the discriminant ideal to be the product

of the local discriminant ideals.

• For Λ integral, the level or stuffe of Λ is NΛ, the annihilator ideal of

DΛ. More precisely:

NΛ = {λ ∈ R | λx ∈ Λ for all x ∈ Λ#}.

Over a PID this is the ‘minimal’ N such that NA−1
X is integral.

• Supposing Λ⊗K is isomorphic to the diagonal form (ai)i and denoting

the Hilbert symbol by (·, ·)K , the Hasse invariant is

H(Λ) = H(q) =
∏
i<j

(ai, aj)K ∈ H2(K, {±1}).

(see [Ser73, Ch. III] and [Ser79, Ch. XIV]).

• The Witt invariant, W (Λ) = W (q) is the class in H2(K, {±1}) of

either the Clifford algebra or the even Clifford algebra of Λ when the

parity of rΛ is, respectively, even or odd.
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• For each embedding R ↪→ R we have an associated signature (the di-

mension of any maximal isotropic R-submodule of Λ⊗R R.)

• The norm ideal NΛ is the R-ideal generated by {(x, x) | x ∈ Λ}.

• The scale ideal SΛ is the R-ideal generated by {(x, y) | x, y ∈ Λ}.

Note that NΛ ⊂ SΛ and 2SΛ ⊂ NΛ.

• The norm group nΛ is the group: {(x, x) | x ∈ Λ} + 2SΛ, it is an

additive subgroup of K.

• If R is Noetherian consider mΛ ⊂ nΛ the largest R-ideal contained in

nΛ. Then for π an ideal of R, define the π-weight ideal to be the ideal

wΛ,π = πmΛ + 2SΛ. When we are working over a local ring we shall

denote this by wΛ as π is understood to be the unique maximal ideal.

Remark. It is clear that the above are all invariants as they are defined

naturally. The extent to which these determine a lattice depends largely on

the setting. They are typically insufficient to characterize a lattice in the

context in which we are working.

Proposition 4.2.10. If X = {x1, . . . , xn} is a basis for Λ then X# = A−1
X X =

{x#
1 , . . . , x

#
n } is a basis for Λ# with bΛ(xi, x

#
j ) = δij and AX# = A−1

X .

This is a straight forward check.

Proposition 4.2.11. If L ⊂ Λ is isotropic then L′ = K · L ∩ Λ is isotropic

and primitive.

This is clear.

Proposition 4.2.12. Suppose R is a PID. If L ⊂ Λ is pseudo-hyperbolic, then

(−1)rank(L)/2δL is a square.

If L ⊂ Λ is isotropic, then there exists L ⊂ L′ ⊂ Λ with L′ pseudo-

hyperbolic and primitive (L′ need not be an orthogonal direct factor of Λ).

Moreover, δL′|δΛ.

Proof. Suppose L ⊂ Λ is isotropic and without loss of generality primitive.

We wish to find a basis for Λ with respect to which the matrix for the bilinear
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form is of the shape: (
0 A 0
At X Y
0 Y t Z

)
.

To do this, first select an arbitrary basis {ỹ1, . . . , ỹ`} for L and an extension

{ỹ1, . . . , ỹ`, z̃1, . . . z̃m} to a basis for Λ. Next, perform an invariant factor de-

composition (see [Jac85, Thm. 3.8]) of the matrix:

(bλ (ỹi, z̃j))ij .

This corresponds to an elementary change of basis of both the span of

{ỹ1, . . . , ỹ`} and the span of {z̃1, . . . , z̃m}. The new bases {y1, . . . , y`} and

{z1, . . . , zm} combine to provide one in which the bilinear form has the desired

shape.

We now take L′ as the span of {y1, . . . , y`, z1, . . . , z`}. The assertion about

discriminants is now a consequence of elementary fact that the determinant of

the block matrix
(

0 A 0
At X Y
0 Y t Z

)
is (−1)n det(A)2 det(Z), where A is n by n.

Remark. The above proof gives us slightly more information about what

assumptions can be made about the shape of the matrix for the bilinear form.

In some circumstances one may be able to obtain even more refined struc-

ture theorems. We have for example the following claim:

Proposition 4.2.13. Over Z there exist two isomorphism classes of integral

pseudo-hyperbolic lattices of dimension 2n with square free discriminants. Let-

ting H be the hyperbolic quadratic module whose matrix is given by ( 0 1
1 0 ) and

H ′ be the pseudo-hyperbolic quadratic module whose matrix is given by ( 0 1
1 1 ),

then the isomorphism classes are precisely Hn and Hn−1 ⊕H ′.

This is a straight forward check.

Proposition 4.2.14. Every unimodular sublattice L ⊂ Λ of an integral lattice

is an orthogonal direct summand. More generally, if SΛ = a then every a-

modular sublattice L ⊂ Λ is an orthogonal direct summand.
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Proof. We first give a concrete proof assuming R is a PID. In this case the

second statement reduces to the first by rescaling the form. We remark that

L is primitive.

Let X = {x1, . . . , xl} be a basis of L, and Y = {x1, . . . , xl, y1, . . . , yk} be

an extension of X to a basis for Λ. Write AY =

AX V

V t U

. Since A−1
X V is a

matrix with entries in R we may use the change of basis matrix:Id` −A−1
X V

0 Idk

 .

This corresponds to a basis {x1, . . . , xl, ỹ1, . . . , ỹk} and we find Λ = L ⊥

〈ỹ1, . . . , ỹk〉.

Working more generally, that is without assuming the lattice is free, given

any z ∈ Λ the assumption that SΛ = a implies bΛ(z, ·) ∈ HomR(Λ, a). It then

follows that bΛ(z, ·)|L ∈ HomR(L, a). Now, by the a-modularity of L we have

HomR(L, a) ' L and thus bΛ(z, ·)|L ∈ HomR(L, a) ' L. We may therefore

conclude that there exists x ∈ L with bΛ(z − x, ·)|L = 0. It follows that

z−x ∈ L⊥ and hence z = x+ (z−x) is a decomposition of Λ into L⊕L⊥.

4.3 Lattices over p-adic Rings

Here we enter into the improved setting of having R a (complete) local

ring whose maximal ideal is principal, generated by π. More specifically we

intend to work with a p-adic ring, by which we mean the maximal order of

a p-adic field (a finite extension of Qp). We shall denote by ν = νπ the π-adic

valuation.

In this context we have the following important result to recall:

Theorem 4.3.1. A quadratic module over a p-adic field K is entirely deter-

mined by its rank, its discriminant and its Hasse invariant.

See [O’M00, Thm 63:20].
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Notation 4.3.2. For a, b ∈ R, with ab 6= 1, we shall denote by La,b the binary

lattice whose bilinear form has matrix ( a 1
1 b ).

For 0 6= c ∈ R we shall denote by Uc the unary lattice whose bilinear form

has matrix (c).

For a lattice L and an element r ∈ R we shall denote by rL the lattice

whose underlying module is L but whose bilinear form is r times that of L,

that is, brL = rbL.

Lemma 4.3.3.

1. La,b = Uc1 ⊕ Uc2 if and only if one of a, b or 2 is in R×.

2. The discriminant of La,b is −(1− ab).

3. The Hasse invariant of La,b is (a, 1− ab)p = (b, 1− ab)p.

4. Let M be any integral lattice, suppose β = bM(x, x) for some x ∈M and

u ∈ R×, if La+u−1β,b is unimodular then:

uLa,b ⊕M = uLa+u−1β,b ⊕M ′

for some lattice M ′. In the case b = 0 then uLa+u−1β,b is unimodular and

moreover M ′ 'M .

Proof. For the first point, in the forward direction use the fact that every

unimodular sublattice is a direct summand, together with the determinant of

the matrix. For the other direction, use the fact that if none of a,b or 2 is a

unit, then NLa,b 6= R and is unimodular whereas if Uc1 ⊕ Uc2 is unimodular

then NUc1⊕Uc2 = R.

The second point is a direct calculation. For the third, notice that over

K we have the change of basis: 1 0

−a−1 1


a 1

1 b


1 −a−1

0 1

 =

a 0

0 b− a−1

 .

Thus the Hasse invariant is (a, b−a−1)p = (a, 1−ab)p (using that (a,−a)p = 1).
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The argument for the forth point is [O’M00, 93:12]. If x, y is the basis for

uLa,b and z ∈M satisfies bM(z, z) = β, then the lattice spanned by x+ z, y is

isomorphic to uLa+u−1β,b, and as it is unimodular we have by Proposition 4.2.14

that it is a direct factor of uLa,b ⊕M . For the special case of b = 0, consider

φ : M → uLa+u−1β,b ⊕M ′ given by φ(u) = u− (u, z)y. One checks easily that

this is an isometry, and that the image of M is in M ′. The existence of an

inverse map φ′(u) = u + (u, z)y mapping M ′ to M implies φ is an isometry

between M and M ′.

Lemma 4.3.4. Every lattice Λ over a p-adic ring R can be expressed as:

Λ = L⊕ Λ′,

where L has rank 1 or 2. Moreover, L can be taken to be a-modular for some a.

Note that neither L nor Λ′ are unique.

Proof. Pick either x ∈ Λ such that qΛ(x)R = SΛ or x, y in Λ such that

(x, y)R = SΛ. This is possible since as we are working over a discrete valuation

ring, and SΛ has generators {bΛ(xi, yi)}, the principle of domination tells us

that there exists a single pair (xi, yi) with bΛ(xi, yi)R = SΛ. If for such a pair

qΛ(xi)R = SΛ work only with xi, otherwise, work with the pair (xi, yi).

In the first case, the lattice spanned by x is an SΛ-modular direct factor.

In the second case, the lattice spanned by x, y is an SΛ-modular direct factor.

Here we are using that in the respective cases the matrix is of the form:

(πr) or

aπr+1 πr

πr bπr

 ,

where SΛ = πrR and a, b ∈ R and that these matrices give πr-modular lattices.

The sublattice then splits as a direct factor by Proposition 4.2.14.
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Theorem 4.3.5 (Existence of Jordan Decompositions). Every lattice Λ over

a p-adic ring R can be expressed as:

Λ ' ⊕iLi,

where the Li are ai-modular, with the ai distinct. Such a decomposition is

called a Jordan Decomposition. Note that such decompositions are not in

general unique, but see Theorem 4.3.14.

Proof. This follows immediately by induction from the lemma above, and by

grouping the factors which have the same modularity.

Example. As an example, the above results and some straight forward com-

putations allow one to check that every lattice over Z2 is a direct sum of

lattices of the form 2kUc and 2kLa,b for k ∈ Z, c ∈ Z×2 and a, b ∈ {2, 4, 6, 8}.

See Theorem 4.3.12 for a more thorough classification.

It should be remarked that in spite of the following “Witt type theorem,”

a decomposition Λ = L1⊕K1 = L2⊕K2 with L1 ' L2 does not imply K1 ' K2.

Theorem 4.3.6 (Knesser). Let R be a local ring with unique maximal ideal

p. Let L1, L2 ⊂ Λ be submodules of Λ and F ⊂ Λ be a subset satisfying:

1. 1
2
qΛ(F ) and bΛ (F,Λ) are both subsets of R,

2. Hom(L1, R),Hom(L2, R) ⊂ {bΛ(x, ·) | x ∈ F}, where bΛ(x, ·) is viewed

as a map from Λ to R, and

3. σ : L1 → L2 an isometry such that σ(x)− x ∈ F for all x ∈ L1.

Then σ can be extended to an isometry of Λ which acts trivially on F⊥. More-

over, if F contains an element z such that:

1. qΛ(z) ∈ 2R× and,

2. if the residue field is F2, then also (F, z) ⊂ p,

then σ is induced by products of reflections in elements of F .

Proof. See [Kit93, Thm 1.2.2].

109



We may reduce to the case where we have the ‘moreover’ assumption as

follows: adjoin a hyperplane H, spanned by x, y, to Λ and R(x + y) ⊂ H to

F , Rx to both L1 and L2 and extend σ by setting σ(x) = x. As (x + y)⊥

would include x − y, the isometry which the theorem guarantees exists must

be trivial on both x and x − y and hence y and thus on H. Hence σ has a

restriction to the original Λ , though no longer coming from reflections in F .

Now we suppose we satisfy the ‘moreover’ assumptions. First we claim

that for all ` ∈ L1 there exists f ∈ F such that 1
2
q(f), (f, `), (f, σ(`)) ∈ R×.

Indeed, let z1 be the element from the moreover statement, z2 be such that

(`, z2) ∈ R× and z3 be such that (σ(`), z3) ∈ R×, and if |R/π| 6= 2 suppose

a2 6= 1 (mod π) then one of:

(σ(`)−`), z1, z2, z3, z1+z2, z1+z3, z2+z3, z1+z2+z3, az1+z2, az1+z3, az1+z2+z3

satisfies the condition. One uses the fact that if a does not exist we have

(x, F ) ⊂ π.

For an element y ∈ Λ with 1
2
q(y) ∈ R× define the reflection in y as

τy(`) = `− 2(y, `)q(y)−1r.

We proceed by induction on the rank of L1. Suppose the rank of L1 is 1

and that it is generated by `. There are two cases. If we may take f = σ(`)−`

to be the element above, then we find:

τf (`) = σ(`).

Otherwise, let f be the element from above and set g = σ(`)−τf (`). One then

computes that 1
2
q(g) ∈ R× and

τg(τf (`)) = σ(`).

This completes the rank 1 case.
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Suppose L has rank r. Let ` ∈ L1 be a primitive element, and suppose f

is the element guaranteed to exist as above. Set L′1 = {y ∈ L1 | (y, f) = 0}.

Since (f, `) ∈ R× then L′1 is primitive of rank r− 1. By induction there exists

τ generated by reflections in F such that τ |L′1 = σ|L′1 . Now, taking instead

τ−1σ for σ, F ∩ L′1
⊥ for F and L1 = R`, we find that we again satisfy the

conditions of the theorem. Hence there exists τ ′ with τ ′(`) = τ−1σ(`). Since

L′ ⊂ F⊥ we have τ ′|L′1 = Id. It follows that τ ◦ τ ′|L1 = σ.

Corollary 4.3.7. Suppose R is a p-adic ring. Let M1,M2 be integral R lattices

and N1 = N2 unimodular lattices with NN1 ⊂ (2). Then N1 ⊕M1 ' N2 ⊕M2

implies that M1 'M2.

Proof. Identify Λ := N1 ⊕ M1 with N2 ⊕ M2 via any isomorphism. In the

notation of the above theorem, take L1 = N1, L2 = N2, and F = Λ. The map

which identifies N1 and N2 thus extends to an isometry of Λ which necessarily

maps M1 = N⊥1 to N⊥2 = M2.

Lemma 4.3.8. For p 6= 2 every unimodular lattice Λ over a p-adic ring R

with rank at least 3 has a hyperbolic sublattice.

Proof. Using Hensel’s lemma and the existence of an isotropic vector mod

π we conclude there exists an isotropic vector in Λ. By Propositions 4.2.12

and 4.2.14 and the unimodularity of Λ we conclude that Λ has a pseudo-

hyperbolic direct factor. An easy calculation shows that since 2 is invertible

all unimodular pseudo-hyperbolic lattices are hyperbolic.

Corollary 4.3.9. For p 6= 2 and a p-adic ring R, the isomorphism classes of

unimodular lattices Λ over R are classified by their rank and discriminant.

Proof. By induction, we may show Λ = Hn ⊕ L, where L is unimodular and

has rank 0,1 or 2. It then suffices to observe that the discriminant classifies

binary and unary unimodular forms when p 6= 2.
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Lemma 4.3.10. Suppose p = 2, then the isomorphism classes of unimodular

lattices Λ over R are determined by their rank, discriminant, Hasse invariant

and norm groups.

Proof. See [O’M00, 93:16].

We assume that L and K have the same rank, discriminant, Hasse invari-

ant and norm groups. By Corollary 4.3.7 we may replace L and K by L⊕H and

K ⊕H, respectively, so that we may also assume that qL(L) = qK(K) = nL.

We will show that:

L⊕HrankL = L⊕−L⊕ L = K ⊕−L⊕ L = K ⊕HrankL

and hence hyperbolic cancellation (Corollary 4.3.7) on HrankL will allow us

to conclude K = L. Indeed, both K ⊕ −L (respectively, L ⊕ −L) is pseudo-

hyperbolic. Now using that q(K⊕−L) ⊂ q(L) (respectively, q(L⊕−L) ⊂ q(L)

and q(L⊕−L) ⊂ q(K)) we may change the bases for K ⊕−L⊕L, by Lemma

4.3.3 (4), so that K⊕−L⊕L = HrankL⊕L . In the respective cases the same

argument shows L⊕−L⊕ L = HrankL ⊕ L and K ⊕−L⊕ L = HrankL ⊕K.

This concludes the result.

Lemma 4.3.11. For a lattice L over a 2-adic ring letting aπt be an element

of minimal valuation in nL we find: nL = aπtR2 + wL.

Proof. See [O’M00, 93:3].

Certainly we have aπtR2 ⊂ nL, and by definition wL ⊂ nL, hence:

aπtR2 + wL ⊂ nL.

Conversely, any element z ∈ nL of valuation at least t has an expression

of the form:

z = aπtx2 + aπt+1y2 (mod 2πt).

Since aπtx2, 2πt ∈ nL we have aπt+1y2 ∈ nL.
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We claim πt+1y2z ∈ nL for all z ∈ R. Indeed, write πt+1y2z = aπtu2 +

aπt+1y2v2 (mod 2πt) with u, v ∈ R. By the subgroup structure of nL we find

πt+1y2z ∈ nL.

We now claim aπty2z ∈ nL for all z. By solving the equation:

aπty2z = aπtv2 (mod πt+1)

we see that as aπtv2 ∈ nL by the subgroup structure of nL we find πty2z ∈ nL.

It follows that πty2 ⊂ mL . Therefore πt+1y2z ∈ wL. This concludes the

result.

Theorem 4.3.12. Let L be a unimodular lattice over a 2-adic ring R with

uniformizer π. Fix α ∈ R× such that δL = −(1+απr) modulo (R×)2, such that

furthermore either r is odd or r = ν(4). Fix also a ∈ R× such that aπt ∈ qL(L)

is an element of minimal valuation represented by L. Then wL = (πs), where

r−t ≥ s ≥ t and s+t is odd or s = ν(2). Let ρ ∈ R/πR be such that x2 +x+ρ

is irreducible mod π.

Then L is isomorphic to precisely one of:

1. Hn ⊕

πs 1

1 0

⊕
aπt 1

1 −a−1απr−t

,

2. Hn ⊕

πs 1

1 4ρπ−s

⊕
aπt 1

1 −a−1(α− 4ρ)πr−t

,

3. Hn ⊕

πs 1

1 0

⊕ (−δL),

4. Hn ⊕

πs 1

1 4ρπ−s

⊕ (−(1− 4ρ)δL),

5.

aπt 1

1 −a−1απr−t

 or

6. (−(1− απr)).
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Proof. This is a consequence of Lemma 4.3.10. One only needs to observe that

these examples cover all possible combinations of ranks, discriminants, Hasse

invariants and norm groups. Lemma 4.3.11 allows one to check we have all of

the possible norm groups. The observation that (1 + 4ρ, π)p = −1 allows one

to check we have all possible Hasse invariants.

Corollary 4.3.13. Every unimodular lattice Λ over a 2-adic ring R with rank

at least 5 has a hyperbolic sublattice.

It should be emphasized before stating the following result that Jordan

decompositions over 2-adic rings are not typically unique.

Theorem 4.3.14 (Uniqueness of Jordan Decompositions). Let Λ =
r1
⊕
i=1
Li =

r2
⊕
j=1
Kj be two Jordan decomposition of a lattice over a p-adic ring with Li being

ai-modular and Kj being bj-modular, ai1|ai2 for i1 < i2, and bj1 |bj2 for j1 < j2.

Then:

1. r1 = r2,

2. ai = bi,

3. rankLi = rankKi,

4. NLi = ai if and only if NKi = ai, and

5. if p 6= 2 then Li ' Ki.

Proof. See [O’M00, 91:9].

Let a ∈ R. Consider Λ(a) = {x ∈ Λ | (x,Λ) ⊂ (a)} = aΛ# ∩ Λ. Observe

that forming (a) commutes with orthogonal direct sums, and that for a modular

lattice L(a) = L if and only if L is a-modular. Otherwise L(a) ⊂ πL.

It follows that the sublattices Li and Kj which are the (πr)-modular in

the Jordan decomposition are characterized modulo πr+1 by the reduction

modulo π of 1
πr

(L(πr)). In particular, the rank, discriminant, and whether or

not the diagonal contains a unit modulo π are determined. This completes the

proof.
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4.4 Local Densities

We now move from general theory to a more particular problem, that is,

we now focus our attention on what are called interchangeably representation

densities, local densities or arithmetic volumes. Throughout this section we

shall continue to assume that R is a p-adic ring, with maximal ideal p. We

shall denote by π a uniformizer and q = |R/pR| the size of the residue field,

which is finite by assumption. We shall fix an additive Haar measure on R,

normalized so that the volume of R is 1. In this context we continue to have

that all lattices are free.

4.4.1 Notion of Local Densities

Fundamentally the notion of representation density has to do with assign-

ing a volume to sets of the form:

Isom(Λ1,Λ2) = {φ ∈ HomR(Λ1,Λ2) | bΛ2(φ(x), φ(y)) = bΛ1(x, y)},

the isometric embeddings from Λ1 to Λ2. Such sets are typically infinite, so

simply counting elements is insufficient.

This problem can be approached both locally and globally and there are

a number of different ways to formulate the notion. The various definitions

are typically, up to constants, equivalent. We take the following definition of

local density; for some the α definition is more natural.

Definition 4.4.1. Let L and M be lattices over a p-adic ring R, with bilinear

forms bL, bM . Consider the map FbL : HomR(M,L)→ Sym2(M∨) which takes

the maps from M to L to the space of symmetric bilinear forms on M given

by (FbL(φ))(x, y) = bL(φ(x), φ(y)). Some references define the local density

at R to be:

αR(bM , bL) = αR(M,L) = 1
2

lim
U→bM

∫
F−1
bL

(U)
dX∫

U
dT

.

Here dX =
∏

ij dxij and dT =
∏

i≤j dtij are the standard measures when

viewing the spaces as matrix spaces with respect to some chosen basis. The
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limit is being taken over the directed family of open subset U of Sym2(M∨)

containing bM . By [Han05, Lemma 2.2] this does not depend on the choice of

integral basis.

We define the local density to be:

βR(M,L) = (q− rank(M)vπ(2))αR(M,L).

When R = Op one often denotes the local densities by βp rather than βR.

The above definition may seem quite unwieldy and difficult to compute.

The following proposition gives a more concrete interpretation of these values.

Proposition 4.4.2. Let R be a p-adic ring with residue field Fq and uni-

formizer π. Let M and N be two quadratic modules over R of ranks m and

n, respectively. Fix h ∈ Z sufficiently large so that πh−1qM(M#) ∈ (2) and

πh−1qN(N) ∈ (2), and let r, r′ ∈ Z be such that r, r′ − ν(2) ≥ h. Denote

ξr = (qr)m(m+1)/2−mn then define BR(M,N, r) to be:

ξr · |{φ ∈ HomR(M,N/πrN) | bN(φ(x), φ(x)) = bM(x, x) (mod 2πr)}|

and define AR(M,N, r′) to be:

ξr′ ·
∣∣∣{φ ∈ HomR(M,N/πr

′
N) | bN(φ(x), φ(y)) = bM(x, y) (mod πr

′
)}
∣∣∣ .

These values are independent respectively of r and r′. Moreover,

βR(M,N) = BR(M,N, r) and αR(M,N) = AR(M,N, r′).

Proof. These results are a combination of [Han05, Lemma 3.2] and [Kit93,

Lemmas 5.6.1 and 5.6.5].

We first claim that our choice h is such that the isomorphism class of

M is determined by the reduction modulo r′ of the bilinear form. To this

end, it suffices to show that this holds for any expression of M = ⊕Li, where

the Li are binary and unary modular lattices. Notice that if there exists a
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unary factor (aπt) (with ν(a) = 0) then by definition r′ ≥ 2ν(2) + t + 1.

Hence, for unary lattices we can determine a modulo 4π, and hence we can

determine the isomorphism class. Next, notice that if there exists a binary

factor πt ( aπ
s 1

1 bπu ) (with ν(a), ν(b) = 0, and s, u ≥ 1) then now by definition

r′ ≥ 2ν(2)−min(s, u) + t+ 1 and hence we can determine the discriminant of

( aπ
s 1

1 bπu ) modulo 4π, the Hasse invariant and the norm group, and hence the

isomorphism class.

We now show that AR(M,N, r′) is independent of r′. Let bM,i be a set of

bilinear forms on M whose reductions modulo πr
′+1 forms a complete set of

representatives of bilinear forms modulo πr
′+1 (up to equality) whose reduction

modulo πr
′

equals bM . There are precisely qm(m+1)/2 such bM,i. Let Mi denote

the lattice M with quadratic form bM,i.

We claim AR(Mi, N, r
′ + 1) is independent of i. It suffices to show that

GL(M/πr
′+1M) acts transitively on the bM,i, or equivalently that Mi and M

are isomorphic as lattices. This follows since the isomorphism class of M

is determined by its reduction modulo πr
′
. The value AR(Mi, N, r

′ + 1) is

therefore independent of i. It follows from the fact that the map:

ti{φ ∈ HomR(Mi, N/π
r′+1N) | bN(φ(x), φ(y)) = bMi

(x, y) (mod πr
′+1)}

↓

{φ ∈ HomR(M,N/πr
′
N) | bN(φ(x), φ(y)) = bM(x, y) (mod πr

′
)}

is qmn to 1 we may now conclude that AR(M,N, r′) = AR(M,N, r′+ 1) and is

thus independent of r′.

A similar argument covers the case of BR(M,N, r).

Next, we cover the claim that αR(M,N) = AR(M,N, r′). For the integral

definition one may take for U those sets of the form bM+πr
′
Sym2(M∨) as these

form a fundamental neighbourhood system. For such U the collection F−1
bL

(U)

becomes precisely the maps which reduce modulo πr
′

to those contributing in
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the definition of AR(M,N, r′). The volume of U is then qr
′mn whereas the

volume of F−1
bL

(U) is precisely AR(M,N, r′)qr
′m(m+1)/2. From this we conclude

the result.

The difference between the definition of AR(M,N, r′) and BR(M,N, r′)

is entirely captured in a slight change in flexibility on the diagonal. This

leads to a difference of a factor of q− rank(M)vπ(2) between the two terms. This

allows us to conclude that βR(M,N) = BR(M,N, r). Notice in particular that

an element of the set defining BR(M,N, r) determines an element of the set

defining AR(M,N, r − ν(2)) and that this mapping is qrank(M)vπ(2) to 1.

Remark. It can be useful to think of the local density as counting the number

of elements of Isom(M,N), or of it as being the probability that a linear map

is in Isom(M,N) (even though it is not literally either of those things, it is a

rescaling of these numbers when one thinks of L/πr for large r).

Proposition 4.4.3. Suppose that L = L1⊕L2 and the following hypothesis is

satisfied:

L1 ⊕ L2 'M1 ⊕M2 and L1 'M1 implies L2 'M2.

Then for any lattice L3 we have the following formula:

βR(L1 ⊕ L3, L) = βR(L1, L)βR(L3, L2).

Proof. This follows immediately from the description in terms of counting

isometries and book-keeping the rescaling constants.

Remark. This type of ‘cancellation law’ does not hold in general, nonetheless,

one can use cases where it does hold (see for example Corollary 4.3.7) as a way

to inductively prove formulas for representation densities.

4.4.2 Computing Local Densities

Computing local densities is in general considered to be highly technical.

The resulting formulas become quite complicated in the general case. In spite
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of this, in this section we will compute the local densities βp(L,L) for an arbi-

trary lattice over an arbitrary p-adic ring. The combinatorics behind actually

carrying out the computation in any given case will require detailed under-

standing of the isomorphism class of the given lattice. In particular one needs

to be able to compute the set of all possible Jordan decompositions. We will

thus not present complete formulas for this in the most general cases. Instead,

we give a reduction formula in terms of these combinatorics and formulas for

all the terms that can appear.

The general structure of this section is as follows:

1. Reduce the problem for (πt)-modular lattices to unimodular lattices. See

in particular Proposition 4.4.4.

2. Reduce the problem for unimodular lattices to the special case of certain

lattices of rank at most 4, see Theorem 4.4.11.

3. Compute the representation density for these special cases. This is done

in a series of lemmas culminating in Theorem 4.4.18.

4. Reduce the general problem for an arbitrary lattice to the combinatorial

problem of understanding all the Jordan decompositions together with

the problem for modular lattices. See Theorem 4.4.28.

� Rescaling

Our first step is an elementary lemma which allows us to compute the

local density of rescaled lattices.

Proposition 4.4.4. Let R be a p-adic ring with field of fractions K. Let M

and L be lattices over R and c ∈ K×. The following formula holds:

βR(M,L) = |c|m(m+1)/2
π βR(cM, cL),

where m = rank(M).

Proof. This is an elementary computation, see [Han05, Lemma 3.1].
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As a consequence of the above proposition, it is possible to compute

βR(L,L) in the case of a-modular lattices simply by treating the case of uni-

modular lattices.

Remark. There is no reasonable formula for βR(cM,L) or βR(M, cL) in terms

of βR(M,L) unless we make further assumptions. In particular some of these

could be 0 while the others are not.

� Unimodular Lattices

We now discuss the problem of computing the local density βR(L,L) for

a unimodular lattice.

Lemma 4.4.5. Suppose L is any unimodular lattice and L(e) is any even

unimodular lattice. The following formula holds:

βR(L(e)⊕ L,L(e)⊕ L) = βR(L(e), L(e)⊕ L) · βR(L,L).

Proof. This follows immediately from Corollary 4.3.7 and Proposition 4.4.3.

Lemma 4.4.6. Suppose L is a unimodular lattice and L(e) is any even uni-

modular lattice of rank 2n. Set Λ = L⊕ L(e) then define:

L(2) := {x ∈ L | (x, x) ∈ 2R} and Λ(2) := {x ∈ Λ | (x, x) ∈ 2R}.

Then L(2) and Λ(2) are lattices, Λ(2) = L(e)⊕ L(2), and:

βR(L(e),Λ) = [L : L(2)]−2nβR(L(e),Λ(2)).

Proof. Denote by ξr = (qr)n−2n2−2n`. Now pick r sufficiently large so that

πrL ⊂ L(2). It follows that βR(L(e),Λ) is given by:

ξr · |{φ ∈ HomR(L(e),Λ/πrΛ) | q(x) = q(φ(x)) (mod 2πr)}| ,
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and βR(L(e),Λ(2)) is given by:

ξr ·
∣∣{φ ∈ HomR(L(e),Λ(2)/πr(Λ(2))) | q(x) = q(φ(x)) (mod 2πr)}

∣∣ .
Then because L(e) is even, it is clear that βR(L(e),Λ) can be computed as:

ξr ·
∣∣{φ ∈ HomR(L(e),Λ(2)/πrΛ) | q(x) = q(φ(x)) (mod 2πr)}

∣∣ .
For each element φ ∈ HomR(L(e),Λ(2)/πrΛ), there are precisely [L : L(2)]2n

many extensions of φ to a map in HomR(L(e),Λ(2)/πrΛ(2)), all of which au-

tomatically satisfy q(x) = q(φ(x)) (mod 2πr) as that condition was already

well-defined. Comparing formulas completes the proof.

Lemma 4.4.7. Suppose L is a unimodular lattice of rank ` and L(e) is any

even unimodular lattice of rank 2n. Define Λ, L(2) and Λ(2) as above. Consider

the vector spaces V1 = L(e)/πL(e) and V2 = Λ(2)/πΛ(2) together with the

quadratic form Q̃i(x) = 1
2
(x, x) (mod π) for their respective pairings valued in

R/πR. Then the local density βR(L(e),Λ(2)) is:

qn−2n2−2n`
∣∣∣{σ : V1 → V2 | Q̃1(x) = Q̃2(σ(x)) for all x}

∣∣∣ .
Proof. Firstly we observe by Proposition 4.4.2 that βR(L(e),Λ(2)) is:

qn−2n2−2n`
∣∣{σ : L(e)→ Λ(2)/πΛ(2) | q(x) = q(σ(x)) (mod 2π)}

∣∣ .
Secondly, we observe that:

∣∣{σ : L(e)→ Λ(2)/πΛ(2) | q(x) = q(σ(x)) (mod 2π)}
∣∣ =∣∣∣{σ : V1 → V2 | Q̃1(x) = Q̃2(σ(x))}

∣∣∣ .
The result then follows immediately.

Remark. The space V2 may not be a regular quadratic module.
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Definition 4.4.8. For a regular quadratic module V of dimension 2n we de-

fine:

χ(V ) =


1 V ' Hn and n > 0

−1 otherwise.

Lemma 4.4.9. Every quadratic module W over a field of characteristic 2

decomposes as:

W0 ⊕W ′ ⊕ Rad(W )

with W0 a maximal regular sublattice and W⊥ = W ′⊕Rad(W ). Note that the

isomorphism class of W0 is unique if and only if W⊥ = Rad(W ).

See [Kit93, Thm 1.2.1 and Ex. 1.2.2].

Lemma 4.4.10. Suppose V is a (non-trivial) regular quadratic module rep-

resented by W , that is, for which there exists at least one isometry from V

into W . Write W = W0 ⊕W⊥ as in Lemma 4.4.9 and set v = dim(V ) and

w = dim(W0). The number of isometries from V into W is:

qv dim(W )−v(v+1)/2

 w/2−1∏
e=(w−v)/2+1

(1− q−2e)

 (1− χ(W0)q−w/2)ξ,

where ξ is given by:

ξ =


1 + χ(V ⊕−W0)q(v−w)/2 W⊥ = Rad(W )

1 + χ(W0)q−w/2 W⊥ 6= Rad(W ).

See [Kit93, Prop 1.3.3].

Remark. Notice that the above formula, which appears to depend on a choice

of W0 in W , does so only when W⊥ = Rad(W ).

Theorem 4.4.11. Consider a unimodular lattice Λ. Then Λ has a decom-

position Λ = L(e) ⊕ L, where L(e) is a maximal even dimensional even uni-

modular sublattice of Λ and L has rank at most 4. Let ` = rank(L) and
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2n = rank(L(e)). Then:

βR(Λ,Λ) = [L : L(2)]−2nξβR(L,L)
n∏
e=1

(1− q−2e),

where:

ξ =


2(1 + χ(L(e))q−n)−1 L(e) non-trivial and independent of choices

1 otherwise.

Proof. Such a decomposition exists by Theorem 4.3.12. Lemma 4.4.5 gives us

the formula:

βR(L(e)⊕ L,L(e)⊕ L) = βR(L(e), L(e)⊕ L) · βR(L,L).

Lemma 4.4.6 allows us to evaluate:

βR(L(e), L(e)⊕ L) = [L : L(2)]−2nβR(L(e), L(e)⊕ L(2)).

Lemma 4.4.7 then reduces the computation of βR(L(e), L(e)⊕L(2)) to a com-

putation over the residue field. Finally, Lemma 4.4.10 gives the precise formula

for this computation. Combining the results allows us to conclude the theo-

rem.

Remark. If L(e) is as above, then one has χ(L(e)) = (π, (−1)n/2D(L(e)))p.

Corollary 4.4.12. Suppose p 6= 2 and maintain the notation of Theorem

4.4.11, then:

βR(Λ,Λ) = 2
n∏
e=1

(1− q−2e)


(1 + χ(L(e))q−n)−1 ` = 0

1 ` = 1.

Proof. When p 6= 2 all lattices are even and hence we have that L is either 0 or

1-dimensional. The result now follows immediately from the theorem and the

observation that for a 1-dimensional lattice the representation density is 2.
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� Unimodular Lattices of Rank at Most 4

We are now left only to consider the case where the residue characteristic

is 2. Theorem 4.4.11 reduces this case to that of computing βR(L,L) and

of understanding L(2), in the case of L unimodular of rank at most 4 with

no even unimodular factors. Such low rank unimodular lattices with no even

unimodular factors are precisely those appearing as L in Theorem 4.4.11. We

first discuss the problems of understanding L(2).

Proposition 4.4.13. Consider L a unimodular lattice of rank at most 4 over

a 2-adic ring with no nontrivial even unimodular factors. Denote by W =

L(2)/πL(2) with the induced form Q̃(x) = 1
2
(x, x) (mod π). Then we have the

following cases:

• Case n = 4. Write L =
(
aπt 1
1 cπr−t

)
⊕
(
πs 1
1 4bπ−s

)
with t < s < r − t, t+ s

is odd, and either r odd or r = ν(4). Then Rad(W ) 6= W⊥. Moreover,

logq([L : L(2)]) = ν(2)− (s+ t− 1)/2.

• Case n = 3. Write L =
(
πs 1
1 bπν(4)−s

)
⊕ (d) with ν(2) > s > 0 and s odd.

Then Rad(W ) 6= W⊥. Moreover,

logq([L : L(2)]) = ν(2)− (s− 1)/2.

• Case n = 2, Write L with matrix
(
aπt 1
1 cπr−t

)
with either r > t odd or

r = ν(4). Then Rad(W ) = W⊥ unless r − t ≤ ν(2) or ν(2)− t is even.

Moreover,

logq([L : L(2)]) =


⌈
ν(2)−t

2

⌉
r − t ≥ ν(2),

ν(2)− (r − 1)/2 otherwise.

• Case n = 1 Then Rad(W ) = W⊥ unless ν(2) is even. Moreover,

logq([L : L(2)]) =
⌈
ν(2)

2

⌉
.
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Proof. In each case we will denote the basis with respect to which the matrix

is given by {~x1, . . . , ~xn}.

The argument shall use the following observation. If x, y ∈ L are such

that νπ(q(x)) is odd and νπ(q(y)) is even, then since:

q(ηx+ θy) = η2q(x) + θ2q(y) (mod 2),

the only way to have νπ(q(ηx+θy)) ≥ νπ(2) is to have both 2νπ(η)+νπ(q(x)) ≥

νπ(2) and 2νπ(θ) + νπ(q(y)) ≥ νπ(2).

The observation allows us to easily compute bases for the following three

cases. In the case of n = 1 it is clear that a basis for L(2) is:

{πdνπ(2)/2e~x1}.

In the case of n = 2 a basis for L(2) is:

{πd(νπ(2)−t)/2e~x1, π
max(0,d(νπ(2)−(r−t))/2e)~x2}.

In the case of n = 3 a basis for L(2) is:

{πd(νπ(2)−s)/2e~x1, ~x2, π
dνπ(2)/2e~x3}.

For the case of n = 4, we can eliminate some of the conditions by using

that t, s ≤ r − t. We do this by fixing η and θ so that:

η2aπt + θ2πs = cπr−t (mod 2).

Now a basis for L(2) is:

{πd(νπ(2)−t)/2e~x1, η~x1 + ~x2 + θ~x3, π
d(νπ(2)−s)/2e~x3, ~x4}.

It is now an easy calculation to determine [L : L(2)]. Moreover, it is

apparent that W⊥ = W and thus Rad(W ) = W⊥ if and only if Q̃ is trivial.

This is easily checked on the bases we have given.
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We now discuss the problem of computing βR(L,L) for unimodular lattices

L of rank at most 4 with no even unimodular factors. The general strategy is

as follows:

1. Describe a constructive process for enumerating and counting all choices

of basis that give a bilinear form that ‘looks like’ the original.

2. Show that the number of ways of obtaining each possible form that ‘looks

like’ the original is the same.

3. Count the number of possible forms that ‘look like’ the original.

4. Obtain the result.

The above is made more precise in the following proofs.

Lemma 4.4.14. Suppose L is a unimodular lattice of rank 1. Then:

βR(L,L) = 2.

This case is a simple check.

Lemma 4.4.15. Suppose L is the unimodular lattice of rank 2 over a 2-adic

ring represented by

aπt 1

1 cπr−t

 with a, c ∈ R×, 2t < r and either r < ν(4)

odd or r = ν(4). Then:

βR(L,L) =


4q(r−1)/2−ν(2) r − t ≤ ν(2)

2q−d(ν(2)−t)/2e ν(2) < r − t.

Proof. By Proposition 4.4.2 we need to count the elements in the set:

Φ = {φ : L→ L/πν(2)−t+1L | qL(φ(x)) = qL(x) (mod πν(4)−t+1)}.
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Consider the following sets:

X = {~x ∈ L/πν(2)−t+1L | qL(~x) = aπt (mod πν(4)−t+1)},

Y~x = {~y ∈ L/πν(2)−t+1L | (~x, ~y) = 1 (mod πν(2)−t+1), ν(q(~y)) = r − t}, and

Ỹ = {qL(~y) (mod πν(4)−t+1) | ~y ∈ Y~x|, ~x ∈ X}.

We claim that |Y~x| is independent of the choice of ~x ∈ X. Indeed, letting

~x0 and ~y0 be the original basis it is clear that:

Y~x = {(~x, (~x, ~y′)−1~y′) | ~y′ = (xπd(r−2t)/2e~x0 + ~y0)},

where x runs over elements of R/πν(2)−t+1−d(r−2t)/2eR. If follows that:

|Y~x| = qν(2)+1−dr/2e.

We next compute
∣∣∣Ỹ ∣∣∣. The values of qL(~y) that can appear are precisely

those such that:

1− aqL(~y)πt = 1− acπr (mod (R×)2)

as these are the values that give isomorphic quadratic forms. This is precisely

the same as the number of elements modulo πν(4)+1 that are squares, and

congruent to 1 modulo πr. We thus have:∣∣∣Ỹ ∣∣∣ = 1
2
qν(2)+1−dr/2e.

We now compute |X|. We are counting solutions for x, y (mod πν(2)−t+1)

of:

aπtx2 + 2xy + cπr−ty2 = aπt (mod πν(4)−t+1).

We make the substitution x = 1 + x and this becomes:

aπtx2 + 2aπtx+ 2y + 2xy + cπr−ty2 = 0 (mod πν(4)−t+1).
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By inspecting the valuations of monomials that result from such a switch (of

x = x + 1), in particular the parity of their valuations, it is apparent that we

have:

x = 0 (mod πmax(ν(2)−(r−1)/2,d(ν(2)−t)/2e)) and

y = 0 (mod πmax(ν(2)+t−r,ν(2)+t)),

where the first terms are maximal if and only if ν(2) ≥ r − t. If we perform

the substitutions:

x = πmax(ν(2)−(r−1)/2,d(ν(2)−t)/2e)x′ and y = πmax(ν(2)+t−r,0)y′

the equation becomes:

aπν(2)+δx2 + 2y + 2πP (x, y) = 0 r − t > ν(2), or

2y + 2cy2 + 2πP (x, y) = 0 r − t ≤ ν(2)

for some polynomial P and δ ∈ {0, 1}. (Notice the only way we could have

had both an x2 and y2 term was if r− t = t = ν(2) but we have excluded that

case from consideration). We observe that by dividing by 2 we may solve for

y in terms of x. As the equation is non-singular, we may use Hensel’s lemma

to find solutions and the total number of solutions is equal to the number of

solutions modulo π. There are precisely 2 solutions modulo π if ν(2) ≥ r − t

and 1 solution otherwise. We thus find:

|X| =


2q(r−t−t−1)/2+1 ν(2) ≥ r − t

qb(ν(2)−t)/2c+1 otherwise.

The set Φ corresponds precisely to the fibre of

{(~x, ~y) | ~x ∈ X, ~y ∈ Y~x}
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over cπr−t ∈ Ỹ . The automorphism group of L/πν(2)−t+1L acts simply tran-

sitively on this fibre. However, noting that the original choice of cπr−t is

arbitrary, the automorphism group acts simply transitively on each fibre of:

{(~x, ~y) | ~x ∈ X, ~y ∈ Y~x}

over Ỹ .

It thus follows that:

|Φ| = |X| |Y~x|∣∣∣Ỹ ∣∣∣ .

Thus we find:

|Φ| =


4q(r−t−t−1)/2+1 r − t ≤ ν(2)

2qb(ν(2)−t)/2c+1 ν(2) < r − t.

Combining terms completes the result.

Lemma 4.4.16. Suppose L = Lπt,bπν(4)−t⊕U−d is a unimodular lattice of rank

3 over a 2-adic ring with t < ν(2) odd and b, d ∈ R×, then:

βR(L,L) = 4q(1−t)/2.

Proof. By Proposition 4.4.2 we need to count elements in the set:

Φ = {φ : L→ L/πν(2)+1L | qL(φ(x)) = qL(x) (mod πν(4)+1)}.

As in the previous lemma consider the following sets:

X = {~x ∈ L/πν(4)+1L | qL(~x) = πt (mod πν(4)+1)},

Y~x = {~y ∈ L/πν(2)+1L | (~x, ~y) = 1 (mod πν(2)+1), ν(qL(~y)) = ν(4)},

Ỹ = {qL(~y) (mod πν(4)+1) | ~y ∈ Y~x, ~x ∈ X},

Z~x,~y = {~z ∈ 〈~x, ~y〉⊥/πν(2)+1 | qL(~z) = −d (mod πν(4)+1)}.
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We claim that |Y~x| is independent of ~x ∈ X. Indeed, letting ~x0, ~y0, ~z0 be

the original basis it is clear for parity reasons that:

Y~x = {(~x, (~x, ~y′)~y′) | ~y′ = xπν(2)−t~x0 + ~y0 + zπν(2)−(t−1)/2~z0},

where x ∈ R/πt+1R and z ∈ R/π(t−1)/2+1R. We thus find:

|Y~x| = qt+(t−1)/2+2.

Next we compute
∣∣∣Ỹ ∣∣∣ = 1

2
q. The argument is identical to the previous

lemma, except we note that the discriminant of this block is well-defined mod-

ulo squares because it controls the Hasse invariant of the form.

Now |Z~x,~y| = 2 independently of ~x, ~y. This follows as the orthogonal com-

plement is isomorphic to U−d by necessity, (again because the Hasse invariant

controls the discriminant).

We now compute |X|. We are counting solutions for x, y, z (mod πν(2)+1)

of:

πtx2 + 2xy + πν(4)−ty2 + cz2 = πt (mod πν(4)+1).

It is clear that we may replace z by πdν(2)/2ez and get:

x2 + πν(2)−txy + bπν(4)−2ty2 + cπν(2)+2dν(2)/2e−tz2 = 1 (mod πν(4)−t+1).

We now replace x by 1 + πd(ν(2)−t)/2ex and the expression modulo πν(4)−t+1

becomes:

2πd(ν(2)−t)/2ex+ π2d(ν(2)−t)/2ex2 + πν(2)−ty+

πd3(ν(2)−t)/2exy + bπν(4)−2ty2 + cπ2dν(2)/2e−tz2 = 0.

This reduces to:

2πδx+ πδx2 + y + πδ+ν(2)−txy + bπν(2)−ty2 + cπ1−δz2 = 0 (mod πν(2)+1),
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where δ =


0 ν(2) odd

1 otherwise.

As in the previous case, this equation is non-singular in y, hence, for all values

of z, x we may find a unique solution for y. It follows that:

|X| = qbν(2)/2c+b(ν(2)−t)/2c−t+2 = qν(2)−(t+1)/2−t+2.

As in the previous lemma it follows that:

|Φ| = 2qt+(t−1)/2+1 |X| |Y~x| |Z~x,~y|
∣∣∣Ỹ ∣∣∣−1

.

We may thus conclude that |Φ| = 4q3ν(2)−3t−(t−1)/2+3. Combining terms

completes the result.

Lemma 4.4.17. Suppose L = Lπs,bπν(4)−s ⊕ Laπt,cπr−t is a unimodular lattice

of dimension 4 over a 2-adic ring with t < s < ν(2), a, b, c ∈ R×, s − t odd,

and r < ν(4) odd or r = ν(4). In this situation:

βR(L,L) = 4q−3ν(2)+2t−2−(r−t−s)/2


q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

Proof. We make the following definitions:

Φ = {g ∈ GL(L/πν(4)−t+1L) | gtAg =
(
πs 1
1 bπν(4)−s

)
⊕
(
aπt 1
1 cπr−t

)
},

X = {~x ∈ L/πν(2)−t+1L | qL(x) = πs (mod ν(4)− t+ 1)},

Y~x = {~y ∈ L/πν(2)−t+1L | (~x, ~y) = 1 (mod πν(2)−t+1), ν(qL(~y)) ≥ ν(4)− s},

Ỹ = {qL(~y) ∈ R/πν(4)−t+1R | ~y ∈ Y~x, ~x ∈ X},

Z~x,~y = {(~z, ~w) ∈ 〈~x, ~y〉⊥/πν(2)−t+1 | (~z, ~w) = 1 (mod πν(2)−t+1), ν(qL(~z)) = t},

Z̃~x,~y = {(qL(~z), qL(~w)) ∈ (R/πν(4)−t+1R)2 | (~z, ~w) ∈ Z~x,~y}

Ẑỹ = {Λ a lattice modulo πν(4)−t+1 up to isomorphism | Lπs,ỹ ⊕ Λ ' L}.

In the above we are taking ỹ ∈ Ỹ .
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Our first claim is that |Y~x| = qν(2)−3t+3+s+(s+t−1))/2 and that this is inde-

pendent of ~x ∈ X. Indeed, we can compute its value as follows:

Y~x = {(~x, ~y′)−1~y′ | ν(qL(~y′)) = ν(4)− s}.

Thus its size is the number of solutions to:

πsx2 + 2x+ aπtz2 + 2zw + cπr−tw2 = 0 (mod πν(4)−s),

where x, z, w are taken in R/πν(2)−t+1R. In the event that r − t > ν(4) − s

then for parity reasons we must have:

x = 0 (mod πν(2)−s) and z = 0 (mod πν(2)−(s+t−1)/2).

One finds then that there are no further conditions and thus counting solutions

we find:

|Y~x| = qν(2)−3t+3+s+(s+t−1)/2.

Otherwise we suppose r − t ≤ ν(4)− s. Next we may choose η, ε such that:

η2c+ ε2aπ = 1.

For parity reasons we again find:

x = 0 (mod π(r−t−s)/2) and z = 0 (mod π(r+1)/2−t).

We may thus substitute:

x = π(r−t−s)/2x′ and w = ηx′ + w′ and z = π(r+1)/2−t(εx′ + z).

The whole expression modulo πν(4)−s then becomes:

2π(r−t−s)/2x+ πr−t+1z2 + πr−tw2 + πν(2)+(r−t−s)/2+1P (x,w, z) = 0
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for some polynomial P . It is now apparent that:

z = 0 (mod πd(ν(2)−(3r−3t−s)/2−1)/2e) and w = 0 (mod πd(ν(2)−(3r−3t−s)/2)/2e)

and that x is determined modulo πν(2)−s−(r−t−s)/2 by the other parameters. One

finds then that there are no further conditions and thus counting solutions we

find:

|Y~x| = qν(2)−3t+3+s+(s+t−1))/2.

Next we compute
∣∣∣Ỹ ∣∣∣. Indeed, so long as there exist values α, γ ∈ R×

such that:

L ' Lπs,βπν(4)−s ⊕ Lαπt,γπr−t

then β ∈ Ỹ . The two conditions:

nL = αR2 + πs, and

H(L) = (α, δL)(πt, δL)(πs+t, 1− βπν(4))

can be solved for all β if r − t ≤ ν(4) − s. If however, r − t > ν(4) − s then,

since (α, δL) cannot depend on α, only half of the potential values for β will

work. The other condition:

δL = (1− αγπr)(1− βπν(4)) (mod R2)

can always be solved by γ. It follows that:

∣∣∣Ỹ ∣∣∣ = qs−t+1


1
2

r − t > ν(4)− s

1 otherwise.

We now claim that
∣∣∣Z̃~x,~y∣∣∣ is independent of ~x ∈ X and ~y ∈ Y~x. Indeed

there are three conditions for (α, γ) ∈ Z̃~x,~y. The first condition is:

H(L) = (α, δL)(πt, δL)(πs+t, 1− qL(~y)πν(4)).
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This condition cannot be unsatisfiable. Hence, it is either imposing a condition

(independently of ~y), or is not imposing a condition (independently of ~y). The

second condition is:

nL = αR2 + πs.

This condition is independent of ~y. The final condition is:

δL = (1− αγπr)(1− qL(~y)πν(4)) (mod R2).

For each α satisfying the first two conditions we are imposing a condition on the

variable γ. The number of values for γ satisfying the condition is independent

of ~y.

Now, we claim that |Z~x,~y| is independent of ~x ∈ X and ~y ∈ Y~x. Indeed, the

value of |Z~x,~y| is precisely
∣∣Aut(〈~x, ~y〉⊥/πν(4)−t+1)

∣∣ ∣∣∣Z̃~x,~y∣∣∣. Our computations in

Lemma 4.4.15 show this depends only on t and r. Explicitly, the value is:

∣∣Aut(〈~x, ~y〉⊥/πν(4)−t+1)
∣∣ =


4q(r−t−t−1)/2+1 r − t ≤ ν(2)

2qb(ν(2)−t)/2c+1 ν(2) < r − t.

Next, we claim that
∣∣∣Ẑỹ∣∣∣ is independent of ỹ ∈ Ỹ . Equivalence classes

of lattices Λ ∈ Ẑỹ have representatives of the form Lα,γ where (α, γ) ∈ Z̃~x,~y

for some ~x ∈ X, ~y ∈ Y~x. We may thus represent Λ by (α, γ). Now, as the

Hasse invariant and discriminant of Λ ∈ Ẑỹ are determined by ỹ and L, the

only freedom to modify Λ is picking its norm generator. In terms of (α, γ)

this amount to fixing the square class of α module πr−2t. The first constraint

on the square class of α is that it must give the norm generator of L module

πs. This determines the square class of α modulo πs−t. This leaves us with

precisely:

q(r−t−s)/2
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many options for such square classes. The only other constraint on α is that it

must give the correct Hasse invariant. As above, the Hasse invariant depends

on α through (α, δL). Thus, it follows that:

∣∣∣Ẑỹ∣∣∣ = q(r−t−s)/2


1
2

r − t ≤ ν(4)− s

1 otherwise.

We now compute |X|. We are solving for x, y, z, w ∈ R/πν(2)−t+1R in the

following equation modulo πν(4)−t+1:

πsx2 + 2xy + bπν(4)−sy2 + aπtz2 + 2zw + cπr−tw2 = πs.

Pick η, ε such that η2 +πaε2 = c (mod πν(2)). We may then make the following

substitutions:

x = 1 + ηπd(r−t−s)/2ew + x and z = επd(r+1)/2e−tw + z.

The equation then becomes:

πsx2 + 2y + aπtz2 + 2zw + πν(2)+1P (x, y, z, w) = 0

for some polynomial P . For parity reasons we now see that:

x = 0 (mod πd(ν(2)−s)/2e) and z = 0 (mod πd(ν(2)−t)/2e).

This equation is now solvable in y, and determines y modulo πν(2)−t+1. Count-

ing solutions, we find that there are:

|X| = qν(4)−3t+3+(s+t−1)/2).

We now observe that:

|Φ| = |X| |Y~x| |Z~x,~y|
∣∣∣Ỹ ∣∣∣−1 ∣∣∣Z̃~x,~y∣∣∣−1 ∣∣∣Ẑỹ∣∣∣−1

.
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To see this, consider the map:

{(~x, ~y, ~z, ~w) | ~x ∈ X, ~y ∈ Y~x, (~z, ~w) ∈ Z~x,~y} → (R/πv(4)−t+1R)3

given by (~x, ~y, ~z, ~w) 7→ (qL(~y), qL(~z), qL(~w)) and observe that |Φ| is precisely

the size of each fibre. We thus must show that the size of the image is:∣∣∣Ỹ ∣∣∣ ∣∣∣Z̃~x,~y∣∣∣ ∣∣∣Ẑỹ∣∣∣ .
The image of this map is precisely:

{(ỹ, z̃, w̃) | ỹ ∈ Ỹ , (z̃, w̃) ∈ Ẑỹ.}

This set is naturally fibred over:

{(ỹ, (α, γ)) | ỹ ∈ Ỹ , (α, γ) ∈ Ẑỹ}.

Moreover, the size of the fibre over (ỹ, (α, γ)) is precisely
∣∣∣Z̃~x,~y∣∣∣ where ~x ∈ X

and ~y ∈ Y~x are any vectors such that (α, γ) ∈ Z̃~x,~y. From this the claim about

|Φ| follows immediately.

We, therefore, have that:

∣∣Aut(L/πν(4)−t+1L)
∣∣ = 4q3ν(2)−4t+4−(r−t−s)/2


q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

Combining terms gives the desired result.

The above lemmas cover the final few cases we needed to completely solve

the problem of computing local densities for unimodular lattices over 2-adic

rings. By combining the results we get the following theorem:

Theorem 4.4.18. Consider a unimodular lattice L of rank at most 4 over a

2-adic ring R with no even unimodular factors. Let π be a uniformizer of R

and q = |R/πR|. Recall that L(2) = {x ∈ L | (x, x) ∈ 2R}. Denote by W the
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quadratic module L(2)/πL(2) with the induced form Q̃(x) = 1
2
(x, x) (mod π).

Then:

• Case n = 4. Write L =
(
aπt 1
1 cπr−t

)
⊕
(
πs 1
1 4bπ−s

)
with t < s < r − t, t+ s

is odd, and either r odd or r = ν(4).

Then Rad(W ) 6= W⊥. Moreover, [L : L(2)] = qν(2)−(s+t−1)/2 and the local

density is:

βR(L,L) = 4q−3ν(2)+2t−2−(r−t−s)/2


q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

• Case n = 3. Write L =
(
πs 1
1 bπν(4)−s

)
⊕ (d) with ν(2) > s > 0 and s odd.

Then Rad(W ) 6= W⊥. Moreover, [L : L(2)] = qν(2)−(s−1)/2 and the local

density is:

βR(L,L) = 4q(1−t)/2.

• Case n = 2. Write L with matrix
(
aπt 1
1 cπr−t

)
with either r > t odd or

r = ν(4).

Then Rad(W ) = W⊥ unless r − t ≤ ν(2) or ν(2)− t is even.

Moreover, [L : L(2)] =


q

⌈
ν(2)−t

2

⌉
r − t ≥ ν(2)

qν(2)−(r−1)/2 otherwise

and the local density

is:

βR(L,L) =


4q(r−1)/2−ν(2) r − t ≤ ν(2)

2q−d(ν(2)−t)/2e ν(2) < r − t.

• Case n = 1. Then Rad(W ) = W⊥ unless ν(2) is even.

Moreover, [L : L(2)] = q

⌈
ν(2)

2

⌉
and the local density is:

βR(L,L) = 2.
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� The Case of Zp

Of course things are much simpler over Zp, or any p-adic ring except

for 2-adic rings which are ramified over Z2. In such cases there are in fact

only a small number of possibilities for unimodular lattices L with no even

unimodular factors. In this context one can recover the results in Kitaoka’s

book which give formulas for the local densities of unimodular lattices over Zp.

Theorem 4.4.19. Let L be a unimodular Zp-lattice. Let L(e) be any max-

imal unimodular (even dimensional) even sublattice of L. We then have a

decomposition L = L(e) ⊕ L(o). Let n = rank(L) and n(e) = rank(L(e)) and

set:

t =


0 L is even

n− 2 L is odd,

E =


(1 + χ(L(e))p−n(e)/2) χ(L(e)) is independent of choice of L(e),

1 otherwise;

and

P =

⌊
ni(e)

2

⌋∏
j=1

(1− p−2j).

Note that for p = 2 the isomorphism class of lattice L(e), and hence χ(L(e)),

depends on a choice if and only if rank(L(o)) = 2 and the discriminant satisfies

δL(o) = 1 (mod 4), whereas for p 6= 2 one has L(e) depends on a choice if and

only if the rank of L is odd.

Then the local density is:

βp(L,L) = 2p−tPE−1.

Proof. This is the effect of carrying out the computations of [Kit93, Thm 5.6.3]

for a single unimodular Jordan block. Notice that we have renormalized E and

that this is accounted for by t.
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We now compare to our results. For the case p 6= 2 we are comparing to

Corollary 4.4.12 and it suffices to observe the equivalence between the condition

χ(L(e)) is independent of choice of L(e) and the statement that the rank of L

is odd. Indeed, any quadratic form in 3 variables over Zp with p 6= 2 represents

both a hyperplane, and a two dimensional unimodular lattice which is not a

hyperplane. Hence when the rank of L is odd, when picking L(e) we may make

either of these choices so that L(e) depends on choice. When the rank L is

even L = L(e) and there is no choice.

For the case p = 2 we must apply Theorem 4.4.11 and Theorem 4.4.18.

Theorem 4.4.11 gives us the formula:

βp(L,L) = [L : L(2)]−n(e)ξβR(L(o), L(o))
n∏
e=1

(1− q−2e),

where:

ξ =


2(1 + χ(L(e))q−n)−1 L(e) non-trivial and independent of choices

1 otherwise.

The first thing to observe is that over Z2 the classification of unimodular

lattices (Theorem 4.3.12) implies that L(o) has rank 0, 1 or 2. In the case of

rank 0 the result is immediate as L = L(2) and there are no choices. In the

case of rank 1 Theorem 4.4.18 gives us that [L : L(2)] = 2, βR(L(o), L(o)) = 2

and χ(L(e)) is always independent of choices. The factors then combine to

give the desired formula.

Finally , in the case of rank 2, we first observe that in Theorem 4.4.18 the

constant r is 1 if δq = 1 (mod 4) and 2 otherwise whereas the constant t must

be 0. Consequently the theorem gives us that [L : L(2)] = 2,

βR(L(o), L(o)) =


2 δq = 1 (mod 4)

1 δq = 3 (mod 4).
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and finally χ(L(e)) is independent of choices unless δq = 1 (mod 4). It is now

an easy check to compare the resulting formulas.

Corollary 4.4.20. The local density of a unimodular lattice for a non-dyadic

p-adic ring is determined entirely by its rank and discriminant mod π.

The local density of a unimodular lattice for a dyadic p-adic ring is de-

termined entirely by its rank, discriminant mod 4, Hasse invariant and norm

group.

Proof. Over Zp this is apparent from the formulas above, though the result

holds more generally. Indeed, for the non-dyadic case this information de-

termines the lattice. In the dyadic case, this follows by inspection of the

computation we performed.

Concretely over Z2 one can compute that χ = 0 when n − n(e) =

2 and D = (−1)n(e)/2 (mod 4) otherwise χ is given by:

χ =


(−1,−1)n(e)(n(e)−2)/8H n = n(e)

((−1)n(e)/2, (−1)n(e)/2D)(−1,−1)n(e)(n(e)−2)/8H otherwise.

This is based on the observation that in the first case the isomorphism class is

not well defined, and in the latter two cases the Hasse invariant of the odd part

is trivial, hence we can easily compute the Hasse invariant of L(e). Noting that

( 0 1
1 0 ) and ( 2 1

1 2 ) have different Hasse invariants allows us to distinguish them

in this way.

� General Lattices - Jordan Decompositions

Computing local densities is equivalent to computing |Aut(L/πrL)| which

can be done indirectly by computing the probability that a randomly chosen

element of GL(L/πrL) preserves the quadratic form on L. Once one is working

in the realm of probabilities, it is natural to use conditional probabilities that
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are easier to compute to arrive at a solution. This is the approach we shall

take.

We shall use the following notation.

Notation 4.4.21. Let R be a p-adic ring, with uniformizer π and |R/π| = q.

Suppose L is a lattice over R.

By a Jordan decomposition I of L we mean a decomposition:

L = ⊕LIi ,

where the LIi are unimodular and ordered by valuations of their scale ideals.

Two Jordan decompositions, I and J , are considered isomorphic if LIi ' LJi

for all i. We will denote by JDL the set of all Jordan decompositions of L up

to isomorphism.

We fix r sufficiently large so that the isomorphism classes of all of the LJi

are determined by their reductions modulo πr.

We shall say a matrix A which represents the quadratic form on L is in

the Jordan form I ∈ JDL (modulo πr) if A has a block diagonal decomposi-

tion ⊕Ai, where the Ai represent modular lattices in ascending order and Ai

represents LIi for some choice of basis for each i.

Lemma 4.4.22. Let A be any matrix representation for L. Then the proba-

bility that for g ∈ GL(L/πrL) the matrix gtAg is in Jordan form (modulo πr)

is:

PJD,r = |GL(L/πrL)|−1

(∏
i

∣∣GL(LIi /π
rLIi )

∣∣) qw,
where w =

∑
i

(2r − i)ni
∑
j>i

nj.

Proof. The proof is an inductive exercise in book keeping. We first count the

number of ways of finding a minimal modular block. In order to pick a set

of vectors which will span a minimally modular block one needs to select a

GL(LIi /π
rLIi ) combination of the vectors that were in the original minimally
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modular block. One can then give an arbitrary contribution from the vectors

which were complementary to the minimal modular block. This arbitrary

choice contributes a factor of qrni
∑
j>i nj .

We then must proceed inductively on the space which is orthogonally com-

plementary. The degree of freedom in picking an orthogonally complementary

space (modulo πr) is precisely q(r−i)ni
∑
j>i nj .

Taking products of number of choices at each inductive steps gives us the

result.

Definition 4.4.23. Let I ∈ JDL. Suppose that g ∈ GL(L/πrL) is chosen at

random. Suppose gtAg is in Jordan form (modulo πr). Denote the conditional

probability probability that the Jordan form J of gtAg is equal to I as Jordan

decompositions (modulo πr) as given that gtAg is in Jordan form (modulo πr)

as:

PI=J,r.

Lemma 4.4.24. Let A be any matrix representation for L. Let I ∈ JDL.

Fix a matrix AI representing the Jordan form I. Suppose that for a random

g ∈ GL(L/πrL) the matrix gtAg is in Jordan form J ∈ JDL (modulo πr).

Moreover, suppose I = J as Jordan decompositions. Then the conditional

probability that gtAg = AI mod πr is:

Peq,I,r =
∏
i

∣∣Aut(LIi /π
rLIi )

∣∣
|GL(LIi /π

rLIi )|
.

Proof. The set of possible values of gtAg is acted upon by
∏

i GL(LIi /π
rLIi )

with the size of the stabilizer being
∣∣∏

i Aut(LIi /L
I
iπ

r)
∣∣. In particular, then

the probability that we get any given representative is
∏

i

|Aut(LIi /L
I
i π
r)|

|GL(LIi /π
rLIi )| .

Lemma 4.4.25. Let A be any matrix representation for L. Let I ∈ JDL. Fix

a matrix AI representing the Jordan form I. The absolute probability that an
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element g ∈ GL(L/πrL) gives gtAg = AI mod πr is:

PAut,L,r = PJD,rPI=J,rPeq,I,r.

Proof. This is a trivial statement in conditional probabilities.

Remark. Notice that PAut,L,r and PJD,r are independent of the choice of I

while PI=J,r and Peq,I,r depend on the choice.

Lemma 4.4.26. With all the notation as above, we have the formula:

PAut,L,r = PJD,r

( ∑
I∈JDL

P−1
eq,I,r

)−1

.

Proof. By observing that Peq,I,r 6= 0 for all I we may write:

PAut,L,rP
−1
eq,I,r = PJD,rPI=J,r.

By summing over I ∈ JD we obtain:

PAut,L,r

∑
I∈JD

P−1
eq,I,r = PJD,r

∑
I∈JD

PI=J,r.

Since
∑
I∈JD

PI=J,r = 1 we obtain the result.

Lemma 4.4.27. Suppose L is a lattice of rank ` then:

βR(L,L) = q`vπ(2)+r`(1−`)/2 |GL(L/πrL)|PAut,L,r.

Proof. This is immediate from Proposition 4.4.2 and the definition of the prob-

ability.

Combining the above lemmas we arrive at the following very general the-

orem.

Theorem 4.4.28. With the notation as above we have:

βR(L,L) = qw

(∑
I∈JD

∏
i

βR(LIi , L
I
i )
−1

)−1

= qw̃

(∑
I∈JD

∏
i

βR(L̃Ii , L̃
I
i )
−1

)−1

,
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where L̃Ii is the unimodular rescaling of LIi and w, w̃ are given by:

w =
∑
i

ini(
∑
j>i

nj) and

w̃ = w +
∑
i

(ni(ni + 1)/2).

Proof. This is a direct calculation. The only tricky part is the book-keeping

on the exponents of q.

Remark. In order to use this theorem to derive specific formulas for a given

lattice one must understand the set JDL. For a non-dyadic ring there is a

unique Jordan decomposition. The problem is thus fully solved in this case.

For the dyadic case it is worth remembering that most of the factors

involved in the formula of local density for a unimodular lattice do not depend

on the isomorphism class. Hence there are many terms which can be factored

out of the sum. Moreover, whenever there is dependence on the isomorphism

class through χ(Li(e)) it is typically symmetric and cancels out. Both of these

phenomenon can be seen in the structure of the formulas over Z2 in the next

theorem.

We now state the formulas from Kitaoka’s book for Zp explicitly as they

will be of use.

Theorem 4.4.29 (Kitaoka). Let L be a Zp-lattice. Let L = ⊕iLi, where

the Li are non-trivial pai-modular lattices with distinct ai. Let Li(e) be any

maximal even dimensional unimodular even sublattice such that we may write
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Li = Li(e)⊕ Li(o). Define the following values:

ni = rank(Li),

ni(e) = rank(Li(e)),

s = |{i | ni 6= 0}| ,

w =
∑
i

aini

(ni + 1)/2 +
∑
aj>ai

nj

 ,

and set

χ(i) =



0 ni = 0

0 p 6= 2 and ni odd

0 p = 2 and one of ai − 1, ai + 1 blocks is odd

0 p = 2, Li odd , ni even and D(Li) 6= (−1)ni/2 (mod 4)

χ(Li(e)) otherwise.

For p 6= 2 set t = 0 and u = 0, if p = 2 set:

t =
∑
i



0 Li = 0 and ai − 1, ai + 1 blocks are even

−1 Li = 0, one of ai − 1, ai + 1 blocks is odd

0 Li 6= 0 is even

0 Li is odd ai + 1 block is even

1 Li is odd ai + 1 block is odd,

and

u =
∑
i


ni Li is odd

0 otherwise.

Finally set:

Ei = 1 + χ(i)p−ni(e)/2 and P (m) =
m∏
j=1

(1− p−2j).
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Then we have the following formula for the local density:

βp(L,L) = 2s−tpw−u
∏
i

P
(⌊

ni(e)
2

⌋)
E−1
i .

Proof. This is only a slight modification of [Kit93, Thm 5.6.3], we have ad-

justed the definition of E, introduced the value u and modified t accord-

ingly.

Remark. The proof of Kitaoka is not in the spirit of the probabilistic argument

we gave above. We will not fully derive this result from our previous result;

we will, however, explain why the formula is in the shape one should expect.

The first thing to notice is that the only way to have multiple Jordan

decompositions is to have Jordan blocks which are odd. This explains why

conditions on the presence of odd Jordan blocks appear in the theorem.

The next thing to notice is that having a different isomorphism class

for one Jordan block does not change which formulas can appear for other

Jordan blocks, even though it may change which precise isomorphism classes

can occur. The effect of this is that the sum over Jordan decompositions can

be factored as a product of sums over the formulas that appear for each Jordan

block. The observation that (1+q−e)+(1−q−e) = 2 then accounts for some of

the factors of 2 which appear in the formulas. The conditions in the definition

of t account mostly for these extra powers of 2, as well as the number of Jordan

decompositions. The parameter u accounts mostly for [Li : L
(2)
i ]−ni .

The following corollaries are useful for computing explicitly local densities

in special cases. They eliminate the need to explicitly find all the invariants

of the Jordan blocks.

Corollary 4.4.30. Suppose p 6= 2 and Lp is a Zp-lattice with exactly 2 Jordan

blocks which are pj, pj+1 modular and of dimension nj, nj+1, respectively. Then

the Local density of Lp is determined entirely by the ranks of the blocks, and

the discriminant D and Hasse invariant H of Lp.
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In particular the local density is:

4qj(nj+nj+1)(nj+nj+1+1)/2+nj+1(nj+1+1)/2

bnj/2c∏
i=1

(1− q−2i)

bnj+1/2c∏
i=1

(1− q−2i)ξ,

where:

ξ =



(1 + χ(j)qnj/2)−1(1 + χ(j + 1)qnj+1/2)−1 nj, nj+1 even

(1 + χ(j)qnj/2)−1 nj even and nj+1 odd

(1 + χ(j + 1)qnj+1/2)−1 nj odd and nj+1 even

1 otherwise.

One can compute χ(i) as:

χ(i) =


0 ni odd

(p,−1)
(i+1)(nj+nj+1)/2
p (p,D)i+1

p H both blocks even

(p,−1)
(i+1)(nj+nj+1−1)/2
p H otherwise.

Proof. One only needs to check that the computations for χ(i) are accurate,

otherwise this is simply evaluating the Theorem 4.4.29 in this case. Checking

χ is simply a matter of computing the Hasse invariant for a diagonal form and

its rescaling by p. Then by observing the dependence on the discriminant of

each block in the various cases we may conclude the result.

Corollary 4.4.31. Suppose p = 2 and Lp is a Zp-lattice with exactly 2 Jordan

blocks which are pj, pj+1 modular and of dimension nj, nj+1, respectively. Then

the Local density of Lp is determined entirely by the ranks and parities of the

blocks and the discriminant and Hasse invariants of Lp. Note that a method

for computing the local densities is made explicit in the proof.

Proof. We shall denote by D and H the discriminant and Hasse invariant of

Lp and by Di and Hi the discriminant and Hasse invariants of the ith modular

block. We shall, as necessary, compute these in order to make implicit use of
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Corollary 4.4.20. Set:

w = j(nj + nj+1)(nj + nj + 1)/2 + nj+1(nj+1 + 1)/2.

There are 4 cases to consider depending on the parities of the blocks.

1. Both the pj and pj+1 blocks are odd.

There are at least 4 and potentially more Jordan decompositions. Im-

portantly, each ‘formula’ appears equally often so that the sums resolve

cleanly and are independent of the isomorphism classes of blocks.

One can check that Kitaoka’s formula (Theorem 4.4.29) is independent

of the isomorphism class of the blocks and depends only on dimension.

In particular the local density is:

2w+n+5

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

2. The pj block is odd and the pj+1 block is even.

In this case there are 2 Jordan decompositions. The formula for exactly

one of the two blocks changes, cancelling its contribution. We only need

to know the contribution of the other block.

Without loss of generality the pj+1 block is hyperbolic. Thus the pj+1

block has determinant (−1)nj+1/2 and Hasse invariant (−1,−1)`(`+2)/8.

We can thus determine both the determinant and Hasse invariant of the

pj block. The determinant is (−1)nj+1/2D and the Hasse invariant is:

(−1,−1)nj+1(nj+1+2)/8+nj+1/2(−1, D)nj+1/2.

Consequently, Corollary 4.4.20 tells us that χ(j) = 0 if nj − nj(e) = 2

and D = (−1)(nj(e)+nj+1)/2 (mod 4), and that otherwise χ(j) is give by:

(2, D)
j(nj+nj+1−1)
2 (−1,−1)(nj+1+nj(e))(nj+1+nj(e)+2)/8(D,−1)

(nj+1+nj(e))/2
2 H.
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Therefore, the local density can be explicitly computed as:

2w+nj+3(1 + χ(j)pnj(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

3. The pj block is even and the pj+1 block is odd.

In this case there are 2 Jordan decompositions. The formula for exactly

one of the two blocks changes cancelling its contribution. We only need

to know the contribution of the other block.

Without loss of generality the pj block is hyperbolic. Thus this block has

determinant (−1)` and Hasse invariant (−1)`/2. We can thus determine

both the determinant and Hasse invariant of the pj+1 block. Conse-

quently, Corollary 4.4.20 tells us that χ(j + 1) = 0 if nj+1 − nj+1(e) = 2

and D = (−1)(nj+1(e)+nj)/2 (mod 4), otherwise χ(j + 1) is:

(2, D)(j+1)(nj+nj+1−1)(−1,−1)(nj+nj+1(e))(nj+nj+1(e)+2)/8(D,−1)
(nj+nj+1(e))/2
2 H.

Therefore, the local density can be explicitly computed as:

2w+nj+1+3(1 + χ(j + 1)pnj+1(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

4. Both the pj and pj+1 blocks are even.

In this case there is a unique Jordan decomposition and the discriminants

of the unimodular blocks are (−1)nj/2 mod 4. As χ(i) = (2, Di)2, the

goal is to solve for (2, Di)2. We have that:

1 = (Dj, Dj+1), and Hi = (2, Di)(−1,−1)ni(ni+2)/8.

It follows that:

H = HjHj+1(Dj, Dj+1)2(2, Dj)
j+1
2 (2, Dj+1)j2

= (−1,−1)
n(n+2)/8
2 (2, Dj)

j+1
2 (2, Dj+1)j2.
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Thus we may solve:

χ(i) = (−1,−1)
n(n+2)/8
2 (2, D)i2H.

Therefore the local density can be explicitly computed as:

2w+2(1+χ(j)pnj(e)/2)−1(1+χ(j+1)pnj+1(e)/2)−1

nj(e)/2∏
i=1

(1−p−2i)

nj+1(e)/2∏
i=1

(1−p−2i).

4.5 Transfer of Lattices

Let R1 ⊂ R2 be a finite extension of rings. Given a quadratic module

(LR2 , qR2) over R2, one can construct a quadratic module (LR1 , qR1) over R1

by viewing LR2 as a module over R1 and taking qR1(x) = TrR2/R1(qR2(x)). We

shall refer to this as transfer.

The purpose of this section is to study properties of this process over p-

adic rings. We are particularly interested in the transfer of Hermitian lattices,

that is, quadratic forms of the form:

qR2(x) = 1
2

TrR3/R2(λxσ(x)) = λxσ(x),

where x ∈ R3 a quadratic extension of R2, σ the nontrivial automorphism of

R3/R2, and λ is a unit in the fraction field of R2. The subsection of this section

are organized as follows:

(4.5.1) We give some basic results about trace forms for local fields.

(4.5.2) We compute invariants for the forms qR1 .

(4.5.3) We describe Jordan decompositions when p 6= 2 for both unary and

binary forms.

(4.5.4) We describe Jordan decompositions when p = 2 for both unary and

binary forms.

In the following section we shall use these results to compute local densities

for Hermitian lattices over Q.
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4.5.1 Trace Forms for Local Fields

The next few lemmas are important for various computations.

Lemma 4.5.1 (Euler). Let L = F (z) be a finite separable extension of F of

degree m with fz(x) ∈ OF [x] the minimal (monic) polynomial of z. We then

have:

TrL/F

(
z`

f ′z(z)

)
=


1 ` = m− 1

0 0 ≤ ` < m− 1.

See [Ser79, III.6 Lemma 2].

Lemma 4.5.2. Let L/F be a totally ramified extension of local fields of degree

m. Let z = πL be a uniformizer of OL and fz(x) be the minimal (monic)

polynomial of z. Then fz is an Eisenstein polynomial and the collection

1, z, z2, . . . , zm−1 is an OF -basis of OL and NL/F (z) is a uniformizer of F .

See [Ser79, Prop I.6.18].

Lemma 4.5.3. Let L/F be a totally ramified extension of local fields of degree

m. Let z = πL be a uniformizer of OL and fz(x) be the minimal (monic)

polynomial of z. Then for 0 ≤ ` ≤ m− 1 and k any integer, we have:

νF

(
TrL/F

(
zkm+`

f ′z(z)

))
≥ k.

Moreover, this is an equality if ` = m− 1.

Proof. As πF = NL/F (z) is a uniformizer of F we write zm = uπF . We see

that:

TrL/F

(
zkm+`

f ′z(z)

)
= πkF TrL/F

(
ukz`

f ′z(z)

)
.

As ukz` ∈ OL write:

ukz` =
m−1∑
i=0

aiz
i,

with ai ∈ OF . Then:

TrL/F

(
ukz`

f ′z(z)

)
= am−1 ∈ OF .
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The result follows immediately.

To show we have an equality if ` = m− 1 write:

uk =
m−1∑
i=0

aiz
i.

Then we compute that:

TrL/F

(
ukz`

f ′z(z)

)
=

m−1∑
i=0

ai TrL/F

(
zm−1+i

f ′z(z)

)
= a0 (mod πF ).

As vL(u) = 0 it follows that vF (a0) = 0, which concludes the result.

Example. We have the following special cases of the above. Write the minimal

monic polynomial fz of z as fz(X) =
∑

i aiX
i. Then:

TrL/F

(
z`

f ′z(z)

)
=



−am−1 ` = m

a2
m−1 − am−2 ` = m+ 1

1/a0 ` = −1

a1/a
2
0 ` = −2.

The results for other powers can also be computed directly from the coeffi-

cients.

4.5.2 Invariants of qR1

The most basic of questions is to understand the standard invariants of

the quadratic modules which result from transfer.

The following Lemma is immediate.

Lemma 4.5.4. Transfer commutes with orthogonal direct sums.

� Discriminants and Hasse Invariants

Proposition 4.5.5 (Discriminants). Let R2/R1 be an extension of p-adic rings

or orders in number fields. Suppose L is an R2-lattice (and hence also an R1-

lattice) which is free over R2 with quadratic form qR2. Suppose that R2 is free

over R1. Consider the form qR1(y) = TrR2/R1(qR2(y)) as a quadratic form on
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L viewed as an R1-lattice. Then:

δqR1
= NR2/R1(δqR2

)δnR2/R1
,

where δR2/R1 is the usual discriminant relative to the trace form.

Proof. If qR1 is diagonalizable then by multiplicitivity of determinants and

norms we may reduce the problem to studying the unary case. In this setting

we have the usual argument (see Lemma 3.3.1). The argument works integrally.

Note that in the argument cited one can use {z`}, any basis for the ring of

integers, and this basis need not be a power basis {z`}.

More generally we need to work with lattices which may not be diago-

nalizable. Consider L′ ⊂ L a free diagonalizable lattice in the same quadratic

module. There exists a basis for L and a matrix M = diag(a1, . . . , an)U , where

ai ∈ R×2 and U is an upper triangular unipotent matrix with respect to which

L′ = ML. The discriminant of L′ differs from that of L by
∏n

i a
2
i .

Fix a basis for R2 over R1. For x ∈ R2 let (x) denote the matrix for x

acting on R2 as an R1-module in this basis.

Passing to R1 the matrix which realizes L′ as a submodule can be taken

to have a block decomposition M ′ = diag((a1), . . . , (an))U ′, where U ′ is the

matrix whose blocks are (Uij). The determinant of (ai) = NR2/R1(ai), and

hence the determinant of this change of basis becomes the norm of the original

change of basis. We thus relate δL,qR1
, δL,qR2

, δL′,qR2
and δL′,qR1

by

δL,qR1
= NR2/R1

(∏
i

ai

)
δL′,qR1

= NR2/R1

(∏
i

ai

)
NR2/R1

(
DδL′,qR2

)
= NR2/R1

(
DδL,qR2

)
.

The formula thus holds for L.
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Theorem 4.5.6 (Hasse Invariants). Let R2/R1 be an extension of p-adic

rings. Let L be an R2-lattice of rank n with quadratic form qR2. Denote

by QR2/R1,λ(x) = TrR2/R1(λx
2) and by d = NR2/R1(D(qR2)). We will consider

the form qR1 = TrR2/R1(qR2). Continue to denote (·, ·)R1 the Hilbert symbol.

We have the following results:

1. The form qR1 has Hasse invariant:

HR1(qR1) = HR1(QR2/R1,1)n+1HR1(QR2/R1,D(qR2
))(δR2/R1 , d)n+1

R1
HR2(qR2).

We view these all as being in the same cohomology group H2(K1,±1) by

identifying the different groups with {±1} or equivalently via corestric-

tion, which is injective for local fields.

2. If p 6= 2 and the extension R2/R1 is unramified, then:

HR1(qR1) = HR2(qR2)(πR1 , (−1)n(n−1)/2δR2/R1d)
vR2

(D(qR2
))

R1
.

3. Consider the case p 6= 2, u ∈ R×1 and R2/R1 is totally ramified. Let

λ =
πkR2

uf ′(πR2
)π`R2

, where f is the minimal polynomial of πR2. The form

QR2/R1,λ has Hasse invariant:

HR1(QR2/R1,λ) = (πR1 , u)
n(n−`)
R1

(πR1 ,−1)
k(n2(n−1)/2+`2(1−n))−`(n−`)(n−`−1)/2
R1

.

4. Suppose p = 2 and the extension is Galois. The form Q(x) = TrR2/R1(x
2)

has Hasse invariant:

HR1(Q) =



(−1,−1)(n2−1)/8 n = 1 (mod 2)

(δR2/R1
, (−1)(n+2)/4)R1 n = 2 (mod 4)

1 n = 0 (mod 4) and − 1 ∈ R2
2

(−1,−1)R1(2, δR2/R1
)R1 n = 4 (mod 8),−1 ∈ NR2/R1

(R2)

−(−1,−1)R1(2, δR2/R1
)R1 n = 4 (mod 8),−1 /∈ NR2/R1

(R2)

(2, δR2/R1
)R1 otherwise.
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The first and fourth statements are [Epk89, Lemma 1 and Theorem 1],

respectively; the second and third are Lemmas 3.4.1 and 3.4.3 , respectively.

Remark. The above theorem fails to provide a complete description of how to

compute Hasse invariants for certain dyadic fields. This is remedied for binary

forms of the following special type.

Theorem 4.5.7. Suppose R3 is a p-adic ring with an involution σ. Let

z ∈ R2 = Rσ
3 be such that

√
z generates R3[1

p
] as a R1[1

p
]-algebra (note that

by Proposition 3.3.5 such a z exists). View R3 as a binary R2-lattice with

quadratic form:

qR2(x+ y
√
z) = λ((x+ y

√
z)σ(x+ y

√
z)) = λx2 − zλy2

so that D(qR2) = −z and H(qR2) = (λ, z). Let f be the minimal monic

polynomial for z over R1 and m = [R2 : R1]. Then:

H(qR1) = CorR2/R1((z,−λf ′z(z))R2) · (NR2/R1(z),−1)m−1
R1
· (−1,−1)

m(m−1)/2
R1

.

See Theorem 3.3.8.

� Modularity

Proposition 4.5.8. Suppose that R2/R1 is an unramified extension of p-adic

rings and that L is a πr-modular lattice with quadratic form qR2. Then L is

also πr-modular as an R1-lattice. Moreover, the valuation of the norm ideal

NL and scale ideal SL are unchanged. In particular, Jordan decompositions

are taken to Jordan decompositions.

Proof. It is clear that we have:

NL/R1 = TrR2/R1(NL/R2) and SL/R1 = TrR2/R1(SL/R2).

Indeed, picking an element x ∈ L, where ν(qR2(x)) is minimal write qR2(x) =

uπt with π a uniformizer of R1 and u a unit. Then qR1(ax) = πt TrR2/R1(ua
2).

For p 6= 2 the unimodularity TrR2/R1(ua
2) implies that there exists a ∈ R2 for
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which this is a unit. For p = 2 notice that a 7→ TrR2/R1(ua
2) is surjective on

the residue field. The claim for NL/R1 follows immediately, the proof for SL/R1

is similar.

The question of πr modularity now follows from the observation that L is

πr-modular if and only if SL = (πr) and SL# = (pi−r).

With the above result in hand, we shall for the time being restrict to

the case of totally ramified extensions. We introduce some notation before

proceeding.

Let R2/R1 be a totally ramified extension of p-adic rings of degree m. Let

πR2 be a uniformizer of R2 and set πR1 = NR2/R1(πR2) to be a uniformizer of

R1. Let f(X) = fπR2
(X) be the minimal monic polynomial of πR2 over R1.

Suppose u1 ∈ R×1 , u2 ∈ R×2 , v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z, set u = u1u2 and set:

λ =
πkR1

u1u2v2π`R2
f ′(πR2)

.

We remark that if the residue characteristic is not 2, then for any given λ in the

fraction field of R2 there exists (non-unique) corresponding values for u1, v, `, k

with u2 = 1. Now denote by qR2(x) the R2-quadratic form on R2 given by λx2,

and by qR1(x) the R1-quadratic form on R2 given by qR1(x) = TrR2/R1(λx
2).

Consider:

M1 = span{v, . . . , vπ`−1
R2
} and M2 = span{uvπ`R2

, . . . , uvπm−1
R2
}

as quadratic submodules of R2. These submodules will play important roles

in the construction of Jordan decompositions.

4.5.3 Transfer Over Non-Dyadic p-adic Rings

The case of p 6= 2 is simpler for both unary and Hermitian forms. We thus

present the results for this case separately. We assume in this section that the

constant u2, as introduced above, is 1. The important feature we will show is

that in both the unary and binary cases we know that there are at most two
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Jordan blocks and that their modularity differs by a power of πR1 . We may

thus completely recover the invariants of the blocks as in Corollary 4.4.30.

Theorem 4.5.9. Suppose R2/R1 is a totally ramified extension of p-adic fields

for p 6= 2. Let λ, qR1, M1 and M2 be as above. Then R2 = M1⊕M2 is a Jordan

decomposition with M1 and M2 being, respectively, πk−1
R1

and πkR1
modular.

Moreover, the discriminants of 1

πk−1
R1

qR1|M1 and 1
πkR1

qR1|M2 are, respectively:

D

(
1

πk−1
R1

qR1|M1

)
= (−1)`(`+1))/2−m`u−` and

D

(
1

πkR1

qR1|M2

)
= (−1)(m−`)(m−`−1)/2um−`.

See Lemma 3.4.3.

In addition to the above notation, suppose that R3/R2 is a quadratic

extension with involution σ. Fix w a non-square element of R×1 . Writing

x = x1 + x2

√
δR3/R2 consider the quadratic form on R3 given by:

qR3/R1(x) = 1
2

TrR3/R1(λxσ(x)) ' TrR2/R1(λx
2
1)− TrR2/R1(λδR3/R2x

2
2).

Then set λ′ = λδR3/R2 , k
′ = k, u′2 = 1 and choose u′1, v

′, `′ so that λ′ =

πkR1

u′v′2π`
′
R2
f ′(πR2

)
. Let q′R1

,M ′
i be defined similarly to qR1 ,Mi using λ′ instead of

λ so that qR3/R1(x) = qR1(x1) − q′R1
(x2). Now define Ni = Mi ⊕ −M ′

i and

Ñ1 = 1

πk−1
R1

N1 and Ñ2 = 1
πkR1

N2 their unimodular rescalings.

Theorem 4.5.10. The orthogonal decomposition R3 = N1 ⊕ N2 is a Jordan

decomposition for R3 with the form qR3/R1. The sublattices N1 and N2 are,

respectively, πk−1
R1

and πkR1
-modular. Moreover:

1. If δE/R2 = w then D(Ñ1) = (−1)−`w−` and D(Ñ2) = (−1)`−mw`−m.

2. If δE/R2 = πR2 then D(Ñ1) = (−1)m+1u and D(Ñ2) = −u.

3. If δE/R2 = wπR2 then D(Ñ1) = (−1)m−1uw1−` and D(Ñ2) = −uw`−m+1.

4. If δE/R2 = 1, then D(Ñ1) = (−1)−` and D(Ñ2) = (−1)`−m.

See Lemma 3.4.4.
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4.5.4 Transfer Over Dyadic Rings

The case of p = 2 is more complex for a variety of reasons, the failure

of diagonalizability being the most prominent. The goal of this section is

to attain results on Jordan decompositions similar to those of the previous

section keeping track of the additional information about norm ideals. In

order to account for non-diagonalizability, we must consider both unary and

binary lattices.

As before we set λ =
πkR1

u1u2v2f ′(πR2
)π`R2

with u1 ∈ R×1 , u2, v ∈ R×2 , 0 ≤ ` ≤ m,

k ∈ Z and let f(X) be the minimal monic polynomial of πR2 . Consider:

M1 = span{v, . . . , vπ`−1
R2
} and M2 = span{uvπ`R2

, . . . , uvπm−1
R2
},

as quadratic submodules of R2. Note that we may no longer assume that

u2 = 1.

Proposition 4.5.11 (Unary Forms). Let qR2(x) = λx2 and set:

qR1 = TrR2/R1(qR2).

Then R2 = M1⊕M2 is a Jordan decomposition with M1 and M2 being, respec-

tively, πk−1
R1

and πkR1
-modular. They differ in modularity by a multiple of πR1,

hence their discriminants may depend on the choice of Jordan decomposition.

Set M̃1 = 1

πk−1
R1

M1 and M̃2 = 1
πkR1

M2. We can in general only say if NM̃i
is R1.

We have the following cases:

• NM̃1
⊂ (πR1) if ` is even and u2

∼= πR1

πmR2

(mod R2
2π

`
R2

). Otherwise NM̃1
=

R1.

• NM̃2
⊂ (πR1) if m − ` is even and u2

∼= 1 (mod R2πm−`R2
). Otherwise

NM̃2
= R1.

Proof. One easily checks by Lemma 4.5.1 that M1 ⊥M2.

Moreover, the matrix for M1 is of the form (aij)i,j, where the aij satisfy:

1. ai1j1 = ai2j2 whenever i1 + j1 = i2 + j2.
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2. vR1(ai,`−i) = k − 1.

3. vR1(ai,j) > k − 1 whenever i+ j > `.

4. If ` is even and u2
∼=

πmR2

πR1
(mod R2

2π
`
R2

), then vR1(aii) > k − 1 for all i.

Otherwise there exists i with ν(aii) = k − 1.

The first statement is immediate, the second and third follow from Lemma

4.5.3. The last statement is seen as follows. Firstly, the statement depends only

on the square class of u2. This is true even though modifying u2 changes the

basis as the conclusion about the norm groups we are making is independent

of choice of Jordan decomposition. We may thus choose to write:

u2 = 1 + c1πR2 + c3π
3
R2

+ · · · (mod π`R2
)

with ci ∈ R1. Now by taking x = π
(`−i)/2
R2

and setting TrR2/R1(λx
2) = 0

(mod πkR1
) we can solve for ci mod πR1 in terms of cj with j < i (the equations

involve the coefficients of f but these are constant). Explicitly we are solving:

ci = πR1(TrR2/R1(π
−1−i) +

∑
j<i

cj TrR2/R1(π
j−i−1)) (mod πR1).

Lemma 4.5.3 tells us that the right hand side makes sense. As this is solvable

we conclude that up to squares there is a unique value of u2 modulo π`R2
which

makes all values of the quadratic form be contained in πR1R1. Observing that

u2 = πR2/π
m
R1

does this allows us to conclude the result.

The matrix for M2 is of the form (bij)i,j, where the bij satisfy:

1. bi1j1 = bi2j2 whenever i1 + j1 = i2 + j2.

2. vR1(bi,m−`−i) = k.

3. vR1(bi,j) > k whenever i+ j > m− `.

4. If m− ` is even and u2
∼=

πmR2

πR1
(mod R2πm−`R2

), then vR1(bii) > k for all i.

Otherwise there exists i with vR1(bii) = k.

The arguments are identical to those for M1 except that 1 is the necessary

congruence.
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Taking λ as above, we will now consider binary forms. Since we are not

interested in those that decompose as direct sums of unary forms we consider

L over R2 of the form:

λ

u3π
a 1

1 u4π
a+b

 =
πkR1

u1u2v2

 u3
f ′(πR2

)π`−aR2

1
f ′(πR2

)π`R2

1
f ′(πR2

)π`R2

u4
f ′(πR2

)π`−a−bR2


with a > 0 and b ≥ 0.

We use the basis:

{v, . . . vπ`−1
R2
}e1 ∪ {vuπ`R2

, . . . , vuπm−1
R2
}e1,

{v, . . . vπ`−1
R2
}e2 ∪ {vuπ`R2

, . . . , vuπm−1
R2
}e2,

where e1, e2 denote respectively the first and second coordinates of L.

Define the following quadratic submodules with the given basis:

M1 = {v, . . . vπ`−1
R2
}e1, M ′

1 = {v, . . . , vπ`−1
R2
}e2,

M2 = {vuπ`R2
, . . . , vuπm−1

R2
}e1, M ′

2 = {vuπ`R2
, . . . , vuπm−1

R2
}e1.

Also define N1 = M1 +M ′
1 and N2 = M2 +M ′

2. Note these are not orthogonal

decompositions. We are considering the span of both in the ambient space.

Moreover, N1 and N2 also need not be orthogonal complements.

Proposition 4.5.12 (Binary Forms). Let a > 0,b ≥ 0, u3 ∈ R×1 and u4 ∈ R×2 .

Let qR2 be the form associated to the matrix λ
(
u1πa 1

1 u2πa+b

)
. Then the form:

qR1 = TrR2/R1(qR2)

has 2 Jordan blocks, N1 and N2 of modularities πk−1
R1

and πkR1
, respectively.

They differ in modularity by a multiple of πR1. We can only in general deter-

mine if the norm ideals are R1.

• NÑ1
⊂ (πR1) if and only if max(`− a, 0) and max(`− a− b, 0) are even,

and u2u3
∼= πR1/π

m
R2

(mod π`−aR2
) and u2u4

∼= πR1/π
m
R2

(mod R2
1π

`−a−b
R2

)
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• NÑ2
⊂ (πR1) if and only if max(m− `− a, 0) and max(m− `− a− b, 0)

are even, and u2u3
∼= 1 (mod πm−`−aR2

) and u2u4
∼= 1 (mod R2

1π
m−`−a−b
R2

).

Proof. Viewing the underlying space under the basis M1,M
′
1,M2,M

′
2 as above

the matrix for qR1 is of the form:

A B Dt 0

B C 0 Et

D 0 F G

0 E G H


.

The blocks (that is the submatrices A, . . . , H) have the following properties:

1. A,B,C are ` by ` matrices and, F,G,H are m− ` by m− ` matrices.

2. For all the blocks we have ∗i1j1 = ∗i2j2 whenever i1 + j1 = i2 + j2. In

particular, the square blocks are symmetric.

3. ν(∗ij) ≥ k − 1 for all blocks and all i, j. Furthermore,

ν(Aij) > k − 1 for i+ j > `− a,

ν(Bij) > k − 1 for i+ j > `,

ν(Bij) = k − 1 for i+ j = `,

ν(Cij) > k − 1 for i+ j > `− a− b,

ν(Dij), ν(Eij) > k − 1 for all i, j,

ν(Fij) > k for i+ j > m− `− a,

ν(Gij) > k for i+ j > m− `,

ν(Gij) = k for i+ j = m− `, and

ν(Hij) > k for i+ j > m− `− a− b.

4. The discriminant of 1

πk−1
R1

( A B
B C ) and the discriminant of 1

πk−1
R1

( F G
G H ) are

units mod πR1 .
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5. There are changes of basis which realize both N1 and N2 as Jordan blocks

(though not simultaneously).

Hence the questions of whether the norm ideals of the rescaled Jordan

blocks are contained in R1 are determined by 1

πk−1
R1

( A B
B C ) and 1

πkR1

( F G
G H ).

6. The lattice N1 is odd unless max(`−a, 0) and max(`−a− b, 0) are even,

and u2u3
∼= πR1/π

m
R2

(mod π`−a) and u2u4
∼= πR1/π

m
R2

(mod R2
1π

`−a−b)

7. The lattice N2 is odd unless max(m− `− a, 0) and max(m− `− a− b, 0)

are even, and u2u3
∼= 1 (mod πm−`−a) and u2u4

∼= 1 (mod R2
1π

m−`−a−b).

Points (1) and (2) are direct checks. Point (3) uses Lemma 4.5.3. Point (4)

is elementary yet tedious to check. First observe that since modulo πR1 the

matrix 1

πk−1
R1

( A B
B C ) is of the form:

( ∗ ∗ u
∗ X 0
u 0 0

)
,

where X is a 2`− 2 by 2`− 2 block, it has determinant −u2 det(X). We may

iterate this procedure on X until X is of the form:Ã B̃

B̃ C̃


with Ã, B̃, C̃ being `− a− b by `− a− b blocks. We may iterate until X has

additional non-zero entries on the bottom row and rightmost column. Now

use the fact that:

det
(
Ã B̃
B̃ C̃

)
= det(C̃) det(Ã− B̃C̃−1B̃),

combined with the observation that:

Ã− (B̃C̃−1B̃)ij ∈


πR1R1 i+ j > `− a− b

R∗1 i+ j = `− a− b

to conclude the result. We may perform an analogous argument for ( F G
G H ).
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For point (5) notice that the change of bases needed are, respectively:Id − ( A B
B C )

−1 (Dt 0
0 Et

)
0 Id

 and

 Id 0

− ( F G
G H )

−1
(D 0

0 E ) Id

 .

The matrices (D 0
0 E ) ( A B

B C )
−1

and (D 0
0 E ) ( F G

G H )
−1

are integral by points (3) and

(4). One sees that orthogonal complements of N2 and N1 are preserved, re-

spectively, modulo πk−1
R1

and πkR1
. Hence they are modular and we indeed have

a Jordan decomposition.

The arguments for (6) and (7) are analogous to that of the previous lemma.

Indeed, one has norm ideal R1 if and only if the diagonal contains a unit.

Hence the problem reduces to considering the blocks on the diagonal, and we

are reduced to the situation of the previous lemma, (except that we have now

two different subblocks to check for each Jordan decomposition).

Remark. Note that though N1 and N2 are Jordan blocks for some Jordan

decompositions, it is not necessarily true that the space for qR1 is isomorphic

to N1⊕N2 as N1 and N2 may not be Jordan blocks in the same decomposition.

We now move to the special case of forms which arise from Hermitian

forms. We quickly review the possible quadratic extensions R3/R2 of a 2-adic

ring. On the level of their fields of fractions they are of the form K(
√
z). We

therefore look at the various cases for z.

• z = uπR2 for u ∈ R∗2.

Then the extension is ramified, has uniformizer
√
uπR2 , δR3/R2 = 4uπR2 ,

and the ring of integers has integral basis: 1,
√
uπR2 .

In this basis the Hermitian form qR2 = 1
2

TrR3/R2(λxσ(x)) has matrix:

λ

1 0

0 −uπR2

 .

In this case k =
⌈
vR2

(2λf ′(πR2
))+1

2m

⌉
and ` = −(vR2(λf

′(πR2))−mk).
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• z = 1 + aπ2r+1
R2

for 0 ≤ r < vπR2
(2) and a ∈ R×.

Then the extension is ramified, has uniformizer
1+
√

1+aπ2r+1
R2

πrR2

, δR3/R2 =

4
π2r
R2

(1+aπ2r+1
R2

), and the ring of integers has integral basis: 1,
1+
√

1+aπ2r+1
R2

πrR2

.

In this basis the Hermitian form qR2 = 1
2

TrR2(R3/R2(λxσ(x)) has matrix:

λ 1
πrR2

πrR2
1

1 −aπr+1
R2

 .

In this case k =
⌈
vR2

(λf ′(πR2
))−r

m

⌉
and ` = −(vR2(λf

′(πR2))− r −mk).

• z = 1 + bπ2r for r = vπR2
(2) and x2 + 2

πrR2

x− b irreducible mod πR2 .

Then the extension is unramified, has uniformizer πR2 , δR3/R2 = (1 +

bπ2r), and the ring of integers has integral basis 1,
1+
√

1+bπ2r
R2

πrR2

.

In this basis the Hermitian form qR2 = 1
2

TrR3/R2(λxσ(x)) has matrix:

λ 1
πrR2

πrR2
1

1 −bπrR2

 .

In this case k =
⌈
vR2

(λf ′(πR2
))−r

m

⌉
and ` = −(vR2(λf

′(πR2))− r −mk).

We already have from the above that the quadratic forms which result

from these cases will have 2 Jordan blocks. We thus proceed to summarize the

results we can conclude about these cases.

Proposition 4.5.13. Let R3 is the maximal order of R2(
√
z), R2 and R1 being

as above. Let λ =
πkR1

u1u2v2f ′(πR2
)π`R2

with u1 ∈ R×1 , u2, v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z

and let f(X) be the minimal monic polynomial of πR2. consider the Hermitian

form qR2(x) = 1
2

TrR3/R2(λxσ(x)), and qR1(x) = TrR2/R1(qR2(x)). The form qR1

has two Jordan blocks N1 and N2, they are πk−1
R1

and πkR2
- modular, respectively.

Moreover, we have:

1. If z = aπR2 then the blocks are of dimension 2` − 1 and 2(m − `) + 1,

respectively. Both blocks are always odd (ie N = R1).
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2. If z = (1 + aπ2r+1
R2

) then the blocks are of dimension 2` and 2(m − `),

respectively. The block N1 is odd if r < ` whereas N2 is odd if r < m− `.

3. If z = (1 + bπ2r) then the blocks are of dimension 2` and 2(m − `),

respectively. Neither block is ever odd.

Proof. The result follows immediately from the above discussion and Proposi-

tion 4.5.12.

Remark. As in Proposition 4.5.12 we do not give an explicit Jordan decom-

position, we only prove one exists with the given properties. The blocks N1

and N2 that Proposition 4.5.12 gives us in this case are again both Jordan

blocks in some decomposition, but not necessarily in the same decomposition.

4.6 Computing Local Densities For Hermitian Forms over Q

The problem of computing the main terms in the dimension formulas

for spaces of modular forms on orthogonal Shimura varieties is reduced by

Theorem 2.4.20 to the computation of VolHM(SO(L)\D). Proposition 2.4.26

reduces this to computing α∞(L,L). By Proposition 2.4.29 and the remark

following, the main computational issue is computing αp(L,L), or equivalently

βp(L,L). We now have all the tools in hand to carry out the task of computing

the local densities for Hermitian lattices over Q. This is what we shall do in

this section.

The idea is as follows: given the ring of integers O of some étale algebra E

over Q, we wish to understand the local densities for the form 1
2

TrE/Q(λxσ(x)),

where λ ∈ E×. For each prime p of Q we may write Ep = ⊕p|pEp, where

the sum is over maximal ideals p for the maximal order of Eσ. The first

step is thus to understand the Jordan decompositions of the forms qp =

1
2

TrEp/Qp(λpxσp(x)). Having done this we may then understand the Jordan

decomposition of the orthogonal direct sum qp = ⊕pqp with sufficient precision

to compute the local density from the formulas we have. In particular we need
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strictly more information to compute results for Ep than for Ep as the latter

only has 2 Jordan blocks and so can be handled more simply.

Before we proceed we point out that this does not actually require that

we understand all the invariants of all of the blocks of all of the qp. Indeed the

formulas for Jordan decompositions do not always depend on all the details of

the isomorphism class.

Fix p|p a maximal ideal dividing p in the maximal order of Eσ. Set R3

be the maximal order of Ep, R2 the maximal order of Eσ
p and R1 = Zp. Let

ep and fp be, respectively, the ramification and inertial degrees of R2 over R1.

Let np = 2mp = [R3 : R1]. We shall denote by DRi/Rj the different ideal of Ri

over Rj.

We now proceed to define a variety of constants which allow us to describe

the Jordan blocks. We have:

δp = (−1)[R2:R1]NR2/R1(
1
4
λ2D2

R2/R1
δR3/R2).

This is the discriminant of the quadratic form (see Proposition 4.5.5.) Set:

Hp = CorR2/R1((z,−λf ′z(z))R2)(NR2/R1(z),−1)
mp−1
R1

(−1,−1)
mp(mp−1)/2
R1

,

where
√
z primitively generates the fraction field of R3 over that of R1. This

is the Hasse invariant (see Theorem 4.5.7.)

Set kp =
⌈
vR1

(δp)

np

⌉
. The kp and kp − 1 blocks are those which may be

non-trivial. The value of kp is clear by considering the discriminant. Set:

np,i =


np − vR1(δp) (mod np)

∗ i = k − 1

vR1(δp) (mod np)
∗ i = k

0 otherwise.

Note that we mean that np,i is a value between 0 and np. Moreover, for

the i = kp case use np as the representative for 0, for the i = kp − 1 case use 0
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(so that if there is only one non-trivial block it is the kp modular block). This

represents the dimension of the ith modular block. Again, the computation is

clear in consideration of the discriminant.

Set `p = vR2(λ) + vR2(DR2/R1) + vR2(δR3/R2)/2 (mod ep) (a representative

between 0 and ep). Then define:

χp,i(o) =



0 p = 2, i = kp − 1, kp and vR2(δR3/R2) is odd

0 p = 2, i = kp − 1 and `p < vR2(δR3/R2)/2

0 p = 2, i = kp and ep − `p < vR2(δR3/R2)/2

1 otherwise.

This value is 1 if Ni ⊂ 2Si, and 0 otherwise. This follows immediately from

the criterion for evenness of the previous section.

Set np,i(e) = 2
⌊
np,i−1+χp,i(o)

2

⌋
. This represents the dimension of the maxi-

mal even dimensional unimodular sublattice with N ⊂ (2). Then:

χp,i(e) =



(p,−1)(i+1)mp(δp, p)
i+1(p,−1)np,i/2Hp np,i 6= 0 even, p 6= 2

(p,−1)imp(δp, p)
i(p,−1)(np+2)/2Hp np,i 6= 0 odd, p 6= 2

(δp, 2)i(−1,−1)(n2
p−2np)/8Hp np,i(e) = np,i 6= 0, p = 2

1 otherwise.

.

The above is an intermediate calculation for the discriminant of the ith Jordan

block. For p 6= 2, it amounts to checking if (−1)np,i(e)/2 times the discriminant

of the block is a square based on the Hasse invariant. For p = 2, it computes

this when this block is even. The computation assumes the other block is also

even, for if it were not we would have the freedom to modify the discriminant

of this block.

167



Let u be a non-square in R×1 . For p = 2 set u = 3. Define:

δp,i =


1 (χp,i(o) = 0 and np,i odd) or np,i = 0

(−1)np−np,i/2δp χp,i(o) = 0, np,i even

(−1)bnp,i/2cu(χp,i(e)−1)/2 otherwise.

This represents a valid discriminant for the ith modular Jordan block. For

p = 2 the value is typically accurate mod 8. If p = 2, np,i = 1,mp = 1 it is only

accurate mod 4 but this case does not impact the following computations. The

first two cases compute the discriminant when this block is odd. It does so

assuming the complementary block is hyperbolic, since if this block were odd,

we would be able to assume the hyperbolicity of the complementary block. We

now set:

Hp,i =


1 p 6= 2

1 np,i = 1

(−1,−1)(np−np,i)(np−np,i−2)/8(δp,i,−1)mp−np,i/2(δp, 2)iHp otherwise.

This represents a valid Hasse invariant for the ith modular block. We compute

it assuming the complementary block is even. If it is not, then the Hasse

invariant of the ith block depends on a choice. Hence the result is still valid.

Now we set χp,i = 0 if ni is odd or if p = 2 and either χp,i−1(o)χp,i+1(o) = 0 or

χp,i(o) = 0 and δp,i = (−1)(np,i−1)/2 (mod 4) otherwise define χp,i by:

χp,i =


((−1)np,i/2δp,i, p) p 6= 2,

(−1,−1)np,i(np,i−2)/8Hp,i p = 2.

This value is 0 if the isomorphism class of the maximal even unimodular sub-

lattice is not well-defined. The value is 1 if it is hyperbolic and it is −1 if it is

not hyperbolic. The computation is based on those in the proof of Corollary

4.4.20.
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We now proceed to introduce the remaining terms which appear in the

formulas:

tp =
∑
i

(1− χp,i(o))np,i + (1− χp,i(o))(1− χp,i+1(o))−

∑
i

δnp,i,0(1− χp,i−1(o)χp,i+1(o)),

sp = |{i | np,i 6= 0}| ,

wp = (k − 1)[R3 : R1]([R3 : R1] + 1)/2 + nk(nk + 1)/2,

Pp,i =

np,i(e)

2∏
j=1

(1− q−2j),

Ep,i = (1 + χp,iq
−np,i(e)/2)−1,

Pp =
∏
i

Pp,i,

Ep =
∏
i

E−1
p,i .

Theorem 4.6.1. Let R1 = Zp and R3 be the ring of integers of a p-adic field

with involution σ and maximal ideal p. Suppose λ ∈ (Rσ
3 )×. Consider the

lattice L = R3 with the bilinear form:

(x, y) = 1
2

TrR3/R1(λxσ(y)).

Using all the notation as above, we have:

βp(L,L) = 2sp−tpqwpPpEp.

Proof. The result follows immediately from Theorem 4.4.29 and the above

computations of the relevant terms.

We now combine what we know about the quadratic forms qp to get suffi-

cient information about the form qp to compute its local densities. We define
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the relevant constants in terms of the decomposed ones:

np,i =
∑
p|p

np,i,

δp,i =
∏
p|p

δp,i,

χp,i(o) =
∏
p|p

χp,i(o),

np,i(e) = 2

⌊
ni + 1− χp,i(o)

2

⌋
, and

Hp,i =
∏
p|p

Hp,i

∏
p<q

(δp,i, δq,i).

The above formulas are all clear. Now we set χp,i = 0 if ni is odd or if p = 2 and

either χp,i−1(o)χp,i+1(o) = 0 or χp,i(o) = 0 and δp,i = (−1)(np,i−1)/2 (mod 4)

otherwise define χp,i by:

χp,i =


((−1)np,i/2δp,i, p) p 6= 2

(−1,−1)np,i(np,i−2)/8Hp,i p = 2.

As above, this formula is based on the computations of Corollary 4.4.20. We

may now introduce the terms which will appear in the formulas:

tp =
∑
i

(1− χp,i(o))np,i + (1− χp,i(o))(1− χp,i+1(o))−

∑
i

δnp,i,0(1− χp,i−1(o)χp,i+1(o)),

sp = |{i | np,i 6= 0}| ,

wp =
∑
i

inp,i((np,i + 1)/2 +
∑
j>i

np,j),

Pp,i =

np,i(e)

2∏
j=1

(1− q−2j),

Ep,i = (1 + χp,iq
−np,i(e)/2).
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Finally, define:

Pp =
∏
i

Pp,i and Ep =
∏
i

E−1
p,i .

Theorem 4.6.2. Let OE be the ring of integers of a number field with in-

volution. Using all the notation above the p-adic local density of the form

1
2

TrE/Q(λxσ(y)) on OE is:

βp(L,L) = 2sp−tpqwpPpEp.

Proof. Again, the result follows immediately from Theorem 4.4.29 and the

above computations of the relevant terms.

The above formula is complicated. This is largely by virtue of the fact

that each p|p could contribute to different Jordan blocks, and hence we must

independently compute the invariants for each. One can thus in general expect

no reasonable cancellation in the above formulas as there are cases where none

occurs. The advantage of this formula over those of the previous section is that

the formula is expressed entirely in terms of the invariants of the rings involved

(and λ) and thus given a ring which one understands, one can compute this

formula.

We now present a restricted case, that is, we shall suppose that λp has

small valuation for all p so that k = 1 and the final lattice has at most 2 Jordan

blocks at each p. In particular assume that 0 ≤ vp(λ/2) + vp(δOE/OEσ )/2 +

vp(DOEσ/Z) ≤ ep for all primes p of Eσ.

Under these assumptions we have:

• The dimension of the space is n = 2m = [E : Q].

• The dimensions of the Jordan blocks are:

np,0 = n− vp(N(λ/2)2δE/Qp) and np,1 = vp(N(λ/2)2δE/Qp).

• The conditions for the blocks to be odd are:

171



χp,0(o) = 0 if and only if either vp(δE/Eσ) odd or ep > vp(λ) + vp(DEσ/Q)

for some p.

χp,1(o) = 0 if and only if either vp(δE/Eσ) odd or vp(δE/Eσ) > 2ep−vp(λ)−

vp(DEσ/Q) for some p.

• As before one computes np,i(e) = 2
⌊
ni+1−χp,i(o)

2

⌋
.

• We have the following formula for χp,i:

χp,i =



0 ni = 0 or ni odd

0 p = 2, χp,i−1χp,i+1 = 0

0 p = 2, δp = (−1)m−1 (mod 4)

CorEσp /Qp((z, (−1)mpi+1λf ′z(z))Eσp ) p 6= 2, ni even

CorEσp /Qp((z, (−1)m2iλf ′z(z))Eσp ) otherwise,

where
√
z primitively generates the E over Qp.

Remark. Notice that for all primes which are unramified in E and for which

vp(N(λ)) = 0 (or for p = 2 take λ = 2) the above formula for χp,i reduces to

((−1)mD, p). The lack of symmetry at 2 is a consequence of our normalization

of the form. The normalization we have chosen makes the Witt invariant

formula cleaner, but breaks the symmetry in this formula.

Now set:

tp =


(1− χp,0(o))(np,0 − 1) + (1− χp,1(o))(np,1 − 1)+

(1− χp,0(o))(1− χp,1(o))
np,0np,1 6= 0

(1− χp,0(o))(np,0 − 2) + (1− χp,1(o))(np,1 − 2) otherwise,

sp = |{i | np,i 6= 0}| , and

wp = np,1(np,1 + 1)/2.
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Theorem 4.6.3. Let E/Q be a finite extension with involution σ, supposing

E is primitively generated by
√
z over Q with z ∈ Eσ. Let λ ∈ (Eσ)× with:

0 ≤ vp(λ/2) + vp(δOE/OEσ )/2 + vp(δOEσ/Z) ≤ ep,

for all primes p of Eσ. Then with notation as above the local density of the

form 1
2

TrE/Q(λxσ(x)) is:

2sp−tpqw

np,0(e)

2∏
j=1

(1−q−2j)

np,1(e)

2∏
j=1

(1−q−2j)(1+χp,0q
−np,0(e)/2)−1(1+χp,1q

−np,1(e)/2)−1.

Proof. Once again this is an immediate application of Theorem 4.4.29 together

with the above computations of the relevant terms.

4.7 Example of Q(µp)

Fix a prime p of Z. In this section we shall compute the local densities

for the form

qE,λ = 1
2

TrE/Q(λxσ(x)),

where E = Q(µp) is the cyclotomic field of pth roots of unity, σ is complex con-

jugation, and λ is restricted in valuation so that 0 ≤ vq(λ/2)+vq(δOE/OEσ )/2+

vq(DOEσ/Z) ≤ eq for all q.

We shall use the following ‘elementary’ facts.

• The ring of integers of E is OE = Z[ζap ] for each a ∈ (Z/pZ)×.

• The ring of integers of F := Eσ is:

OF = Z[ζp + ζ−1
p ] = Z[(ζp − ζ−1

p )2] = Z[(ζap − ζ−ap )2]

for each a ∈ (Z/pZ)×.

Denote by za = (ζap − ζ−ap )2 then za is totally negative and E = Q(
√
za).

Denote by fz the minimal polynomial of za (this does not depend on a).

• There is a unique prime in each of OE and OF over p. Denote by p the

prime over p in OF .
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• The discriminant of E/Q is δE/Q = (−1)(p−1)/2pp−2.

• Since ζ2
p 6= 1 (mod q) for all q - p it follows that ζap − ζ−ap and hence

(ζap − ζ−ap )2 is a unit away from 2 and p.

• Since the different ideal is DF/Q = (f ′z(za)) it follows that f ′z(za) is a unit

at all places away from p.

• The elements ζap − ζ−ap and (ζap − ζ−ap )2 are uniformizing elements in the

respective cases.

This follows from the observation that the order Z[
√
za] = OF [

√
za] is

maximal away from 2.

• The ramification degrees are e` =


p− 1 ` = p

1 otherwise

.

In the formulas of the previous section we have the following:

• The dimension of the space is [E : Q] = p− 1.

• The dimensions of the Jordan blocks are for ` 6= p are:

n`,0 = p− 1− 2ν`(NF/Q(λ/2)) and n`,1 = 2ν`(NF/Q(λ/2))

and for ` = p they are:

n`,0 = 1− 2νp(NF/Q(λ)) and n`,1 = p− 2 + 2νp(NF/Q(λ)).

Thus we set:

w` = n`,1(n`,1 + 1)/2 and

s` =


1 ` 6= p, ν`(NF/Q(λ)) = 0,±(p− 1)/2

2 otherwise.

• The parity of the Jordan blocks at 2 are:

χ2,i(o) = 1
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so long as the blocks are non-trivial. This is true because the extension

is unramified at 2. Consequently, t` = 0 for all `.

• The character for the blocks are computed as follows:

χ`,i =


0 ` = p

CorEσ/Q
(
(za, (−1)(p−1)/22iλf ′z(za))

)
`

` = 2

CorEσ/Q
(
(za, (−1)(p−1)/2`i+1λf ′z(za))

)
`

` 6= 2, p.

We are thus interested in computing:

CorF/Q ((za, λ)) CorF/Q
(
(za, (−1)(p−1)/2f ′z(za))

)
.

For all ` 6= 2, p we have that za and f ′z(za) are units and thus:

CorF/Q
(
(za, (−1)(p−1)/2f ′z(za))

)
`

= 1.

For ` = 2 we have that:

CorF/Q
(
(za, (−1)(p−1)/2f ′z(za))

)
2
· (−1)(p−1)(p−3)/8

computes the Hasse invariant of the form (for λ = 1). Since this Hasse

invariant is 1 for all places (including infinite) other than p we can con-

clude that:

CorF/Q((za,(−1)(p−1)/2f ′z(za)))2

= (−1)(p−1)(p−3)/8 CorF/Q
(
(za, (−1)(p−1)/2f ′z(za))

)
p
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We are thus reduced to computing CorF/Q
(
(za, (−1)(p−1)/2f ′z(za)

)
p
. Ob-

serve that:

(
za, (−1)(p−1)/2f ′z(za)

)
p

=
(
za,−z−1

a

)(p−3)/2

p

(
za, (−1)(p−1)/2f ′z(za)

)
p

= (za,−1)p
(
za, z

−(p−3)/2f ′z(za)
)
p

= (za,−1)p
∏

a6=b∈(Z/pZ)×/±1

(
za, 1− zb

za

)
p
.

Now, we may use that za is a uniformizer and that:

zb
za
∼=
a2

b2
(mod za).

It follows that the terms we wish to evaluate are actually:

(
za, 1− zb

za

)
p

=
(
za, 1− b2

a2

)
p

=
(
za, 1− b

a

)
p

(
za, 1 + b

a

)
p
.

The resulting expression now becomes:

(
za, (−1)(p−1)/2f ′z(za)

)
p

= (za,−1)p
∏

±a6=b∈(Z/pZ)×

(
za, 1− b

a

)
p

= (za,−2)p .

Applying the Corestriction map we have:

CorF/Q ((za,−2)p) =
(
NF/Q(za),−2

)
p

=
(
(−1)(p−1)/2p,−2

)
p

= (p,−2)p .

From this we can conclude that:

CorF/Q
(
(za, (−1)(p−1)/2f ′z(za))

)
2

= (−1)(p−1)(p−3)/8(p,−2)p = 1.

Now, for all ` 6= p we find:

CorEσ/Q ((za, `))` =
(

(−1)(p−1)/2p
`

)
=
(
`
p

)
.
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Thus we can conclude that:

χ`,i =



0 ` = p

CorEσ/Q ((za, λ))` ` = 2, i = 0

CorEσ/Q ((za, λ))`

(
`
p

)
` = 2, i = 1

CorEσ/Q ((za, λ))` ` 6= p, i = 1

CorEσ/Q ((za, λ))`

(
`
p

)
` 6= p, i = 0.

� Examples

Combining all of the above we can easily compute the product over all

local densities for the following cases:

• Case λ = 2, the arithmetic volume is:

2p(p−2)(p−1)/2(1− pp−1)
∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2µ, where µ ∈ O×F has a unique negative embedding and

(za, µ)p = −1, the arithmetic volume is:

2p(p−2)(p−1)/2(1− pp−1)
∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2µ, where µ ∈ O×F has a unique negative embedding and

(za, µ)p = 1, the arithmetic volume is:

2p(p−2)(p−1)/2(1− pp−1)
1−

(
2
p

)
2(p−1)/2

1 +
(

2
p

)
2(p−1)/2

∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .
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• Case λ = 2q, where (q)|q 6= p is prime and (q, p)p = −1, set nq =

νq(NF/Q(q)) and suppose (q) 6= (q) and q is totally positive, the arith-

metic volume is:

22p(p−2)(p−1)/2qnq(nq−1)/2 (1− qnq)
(
1 + q(p−1)/2−nq

) nq∏
i=1

(
1− q2i

)−1

p−1−nq∏
i=1

(
1− q2i

)−1
∏
`6=q

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2q, where q|q 6= p, 2 is prime and (q, p)p = 1, set nq =

νq(NF/Q(q)) and suppose (q) 6= (q) and q is totally positive, the arith-

metic volume is:

22p(p−2)(p−1)/2qnq(nq−1)/2 (1 + qnq)
(
1 + q(p−1)/2−nq

) nq∏
i=1

(
1− q2i

)−1

p−1−nq∏
i=1

(
1− q2i

)−1
1−

(
2
p

)
2(p−1)/2

1 +
(

2
p

)
2(p−1)/2

∏
`6=q

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

Other more complicated combinations can be handled similarly.
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CHAPTER 5
Conclusion

The topic of Shimura varieties of orthogonal type provides for many av-

enues of research. The main results of this thesis resolves only a few. Even

these results aren’t the end of the road as further questions can still be asked.

In terms of the results of Chapter 3, concerning the characterization of spe-

cial points (or more accurately algebraic tori) associated to orthogonal groups,

the following generalizations remain open:

1. A characterization of the non-maximal tori which do not appear as direct

factors. Specifically we can consider embeddings

TF,σ ↪→ GL(F n)

and ask when such a torus preserves a quadratic form on F n. Or equiv-

alently when does there exist an extension (E, σ) of (F, σ) such that

q ' qE,σ,λ. This question relates to a characterization of ‘generalized

special cycles’ (see Section 2.5.3).

2. A characterization of the algebraic tori in other reductive groups, in-

cluding the outer forms of orthogonal groups and Spin groups. For Spin

groups, our results shed a fair bit of light on the problem, but in this

setting some questions remain open. One may still ask, for example,

which algebras are complete reflex algebras? For classical groups arising

from involutions one expects many similar phenomena to arise.

3. Even more generally one may ask for a characterization of inclusions of

algebraic groups G ↪→ Oq or more ambitiously G1 ↪→ G2 or G1 → G2. A

necessary condition is certainly that for all T ↪→ G1 there exists a map

T → G2. This motivates looking at the case of tori first.
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Besides these generalizations, another problem which the present work does

not discuss is that of relating the characterization of tori given in Chapter 3

with that given in my masters thesis [Fio09]. The characterization there is in

terms of certain cohomology classes in H1(Gal(k/k), NO(T )) and it would be

interesting to relate this to the characterization given here in terms of étale

algebras with involution. One expects the correspondence to be quite natural

and this is something I intend to look at in a more general context in upcoming

work.

As for the results of Chapter 4 a number of natural questions remain open:

4. Obtaining more general formulas for βp(L,M) for primes p over 2. Some

of the results of Chapter 4 are easily extended to this context, in particu-

lar Theorem 4.4.11. Other results would require performing a significant

number of new computations, specifically Theorem 4.4.18. Finally, some

of the results may simply not extend in any natural way and thus require

entirely new ideas, for example Theorem 4.4.28.

5. Computing more explicitly the contribution of the structure of distinct

Jordan decompositions to βp(L,L). Specifically, over Q2, the formula

simplifies greatly, and one should expect a similar result for other explicit

(especially unramified) extensions of Q2.

6. More refined computation of invariants for transfer of lattices over 2-adic

rings. In particular a complete description of the norm group.

A major theme of Chapter 2 is computing dimension formulas. The work

here suggests several areas needing more work.

7. An explicit description of a smooth projective toroidal compactification

for the O(2, n) Shimura varieties. In particular a detailed understanding

of the cone decomposition for the relevant cone Ω.

8. Computations of the intersection numbers for Chern classes and bound-

ary components relevant for the Riemann-Roch theorem.
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9. Explicit formulas for the numbers of cusps of a compactification.

10. More refined results on the vanishing of cohomology.

Another topic of great interest, alluded to in Chapter 2, is that of studying

the many types of cycles which appear in orthogonal Shimura varieties. Many

of the questions one may ask about these cycles naturally generalize those one

asks about special points. In particular, one can ask about the field of definition

of a cycle and its irreducible components, and consequently, about the precise

role the various cycles may play in explicit class field theory. Moreover, these

cycles have an important role in Arakelov theory and an understanding of

the relationship between their intersection theory and the special values of

L-functions is a topic of great interest.

I hope that the above provides an indication at the breadth of the field

which remains to be explored.
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Index of Notations

AX 102
(a, b)K 12
αR(M,L) 115

B(~x, ~y) 11
b(~x, ~y) 11
bΛ(·, ·) 100
BΛ(x, y) 101
BM(x, y) 100
BE,σ,λ(x, y) 68
βR(M,L) 116

Cq 11, 69
C0
q 11, 69

CorL/F 73

D(q) 12, 70, 103
DΛ 103
D 13
DRi/Rj 166
DL,S 40
Dφ 43
∆α 32
δE/k 60
δΛ 103

EΦ 62
Eφ 62
Eσ 61
ep 166
eρ 60

Ĕ 29
E 29
Eρ 29
(E, σ) 61

Fα 22
fp 166

Γφ 62

Ğ 14
Gr(V ) 15
GSpinq 12

H 13

H(Λ) 103
H(q) 12, 70
Hφ 44
HL,S 40
Hq 17

JDL 141

κ 16

L(2) 120
La,b 107
Λ(2) 120
Λ# 102

M⊥ 100
Mk(Γ) 31

NΛ 103
ni(e) 145
NΛ 104
nΛ 104

Ω 17
Ω1
X

(log) 30
Oq 12

Pα 23
P± 14
PAut,L,r 143
Peq,I,r 142
PI=J,r 142
PJD,r 141
p± 14

q(~x) 11
qΛ(x) 101
qE,λ(x) 68
qR1(x) 150

Rad(M) 100
(rρ, sρ)ρ 12, 70

Sk(Γ) 31, 37
SΛ 104
SOq 12
Spinq 12
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S̃k(Γ) 37
S 18, 49

TE 67
TE,σ 68

Uc 107
U 17

VolHM(X) 29
νπ 106
(V, q) 11

W (Λ) 103
W (q) 12, 70
wΛ,π 104

X∗(T ) 66

X
BB

24
χ(E) 27

X
Sat

23
χ(V ) 122

183



Index of Definitions

algebraic torus 66
type E 67

a-modular see lattice
anisotropic see lattice

boundary component see symmetric space, 22
rational 23

canonical see model
canonical model see model
Clifford algebra see quadratic form, 11, 69
connected Shimura datum see Shimura datum
connected Shimura variety see Shimura variety

discriminant see quadratic form, 12, 103, see lattice
discriminant group 103, see lattice
discriminant ideal 103, see lattice
dual see lattice

étale algebra 60
étale algebra with involution 61
discriminant 60

Euler characteristic 27
even see lattice

γ-canonical see singularity
generalized Heegner cycle 40
generalized special cycle 43
generalized special cycles 42

Hasse invariant see quadratic form, 12, 103, see lattice
Hermitian see symmetric space
Hermitian form 98
Hermitian lattice 98
Hilbert polynomial 27
Hirzebruch-Mumford volume 29
holomorphic see modular form
hyperbolic see lattice

integral see lattice
isotropic see lattice

Jordan Decomposition see lattice
Jordan form see lattice

lattice 99
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a-modular 99
π-weight ideal 104
anisotropic 102
discriminant 103
discriminant group 103
discriminant ideal 103
dual 102
even 99
Hasse invariant 103
hyperbolic 103
integral 99
isotropic 102
Jordan Decomposition 109
Jordan form 141
level 103
local density 115
modular 99
norm group 104
norm ideal 104
primitive 102
pseudo-hyperbolic 102
rank 103
scale ideal 104
signature 104
stuffe 103
unimodular 99
Witt invariant 103

level 103, see lattice
local density see lattice

meromorphic see modular form
model 50, see Shimura variety

canonical 52
canonical model 52
weakly canonical 52

modular see lattice
modular form 23, 25

ρ-form 30
holomorphic 24, 30
meromorphic 24

M ′-valued quadratic module see quadratic module

non-degenerate see quadratic module, see quadratic module
norm group 104, see lattice
norm ideal 104, see lattice

orthogonal discriminant see quadratic form
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orthogonal Witt invariant see quadratic form

p-adic ring 106
π-weight ideal 104, see lattice
primitive 102, see lattice
pseudo-hyperbolic see lattice

quadratic form 11
Clifford algebra 11, 69
discriminant 12, 70
Hasse invariant 12, 70
orthogonal discriminant 70
orthogonal Witt invariant 70
signature 12, 70
Witt invariant 12, 70

quadratic module 11, 100
M ′-valued quadratic module 100
non-degenerate 11, 100
regular 11, 100

rank 103, see lattice
rational see boundary component
reciprocity map 51
reflex field see special point
regular see quadratic module
ρ-form 30, see modular form

scale ideal 104, see lattice
Shimura datum 49

connected Shimura datum 49
Shimura variety 50

connected Shimura variety 49
model 50
special field 52
special point 52

σ-reflex algebra 62
complete σ-reflex algebra 62

σ-reflex norm 63
σ-type 61
signature see quadratic form, 12, see lattice
singularity

γ-canonical 38
special field see Shimura variety, see special point
special point see Shimura variety, 52

reflex field 52
special field 52

spinor norm 12
stuffe see lattice
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symmetric space 13
boundary component 22
Hermitian 13

transfer 150
type E see algebraic torus

unimodular see lattice

weakly canonical see model
Witt invariant see quadratic form, 12, 103, see lattice
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