
1. The Issue

We are interested in studying the square classes in local fields, and the maps between them
that arise under finite extensions. Moreover, we are particularly interested in studying F×/N(L×)
when L/F is a quadratic extension. It is ‘well known’, by local class field theory, that this group is
isomorphic to Z/2Z. In particular that the map from L×/(L×)2 to F×/(F×)2 has image of index
2. For an odd degree (abelian) extension F×/N(L×) will be of odd degree, and one concludes that
the map on square classes is surjective. We will discuss these issues further in what follows.

2. What happens

Proposition 2.1 (Hensel’s Lemma). Let R be a ring complete with respect to m. Let f(x) ∈ R[x]
be a polynomial, let z ∈ R be such that f(z) ∼= 0 mod f ′(z)2m. Then there exists y ∈ R such that
f(y) = 0, moreover y ∼= z mod f ′(z)m.

It is fairly easy to see that F×/(F×)2 decomposes as O×F /(O
×
F )2×Z/2Z where the second factor

corresponds to the valuation mod 2.
What Hensel says about square classes of units:
Let f(x) = x2 − a, then there exists y ∈ R with y2 = a if and only if there exists z ∈ R with

z2 ∼= a mod 4z2m.

2.1. non-2-adic. Now, for non 2-adic local rings, we have that 4 ∈ R∗ and thus, this reduces to a
is a square mod z2m. Moreover, if we have chosen a ∈ O∗ then any candidate solution must also
be a unit, and thus, we have:

Proposition 2.2. Let F be a non 2-adic local field, then a ∈ O∗F is a square if and only if a is
square mod m.

2.2. 2-adic. What about 2-adics? Again we are interested in the case of a a unit, we have that
the condition is:

Proposition 2.3. Let F be a 2-adic local field, suppose (2) = mk then, a ∈ O∗F is a square if and
only if it is a square mod m2k+1.

Now, what is the structure of OF/m2k+1?
Every element can be written as:

a0 + a1π + a2π
2 + · · · a2kπ2k

Or alternatively as:
b0(1 + b1π)(1 + b2π

2) · · · (1 + b2kπ
2k)

Where ai ∈ OF/m. We remark that all these elements of OF/m are in fact squares (in OF/m).
We thus have for l < k the squares:

(1 + bπl)2 = 1 + b2π2l + bπk+l = (1 + b′π2l)

In particular (1 + bπ2l) is a square, modulo π2l+1 for all b.
We conclude that modulo π2k all the square classes have representatives of the form:

1 + a1π + a3π
3 + · · ·+ a2k−1π

2k−1

Or that they can be generated by:
(1 + aπ2l+1

Where a runs over any set of representatives of OF/m, l < k.
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Next noting that (1 + xπk)2 = 1 + (x2 + 2
π2k )π2k, we get that modulo π2k+1 the additional non

square classes:
(1 + bπ2k)

Where b ∈ OF/(b2 + b 2
πk ). The map x2 + x(2/πk) is a linear map from OF/m as a Z/2Z vector

space to itself with kernel 0, 1. Thus, OF/x
2 + 2

πkx is Z/2Z. With representative b any value such

that x2 + 2
π2kx+ b is irreducible over O/m.

Proposition 2.4. There are 2 |OF/m|k distinct square classes.

2.3. Norm-maps. What happens with the norm map for extensions of F?

2.3.1. odd degree extensions. Suppose we have F ⊂ L of odd degree, ramification degree e, inertial
degree f .

Well k in F becomes ek in L. There are now N ef/2 many square classes in L where there
were N in F , Moreover every square class of F becomes a square class of L. The norm map from
NL/F : O∗L/(O∗L)2 → O∗F/(O∗F )2 is a surjective map of abelian groups. It is thus |OL/m|ef to 1.

Since we have that the composition:

O∗F/(O∗F )2 → O∗L/(O∗L)2
N→ O∗F/(O∗F )2

is surjective, we conclude that O∗L/(O∗L)2O∗F .

2.3.2. even degree extensions. What if F ⊂ L is of degree 2. Then f(x) = x2 + a1x + a0 is the
minimal polynomial of some element.

Claim. If L = F (
√
D) and y ∈ F \ F 2 satisfies y = x2 for x ∈ L then y = fD for f ∈ F 2.

Proof. Write x = e+ f
√
D then x2 = e2 + 2ef

√
D + f 2D. Then e = 0. �

Then we have precisely one square class of F that stops being a square class. It is the square
class of 1− 4a0

a21
.

Claim. L/F is unramified if and only if we are adjoining the square root of 1 + bπ2k (where b
makes this non-square).

Proof. For any other non square we have 1 +aπf as a lead term. x2− (1 +aπf ) changing variables

by x 7→ x+ 1 this becomes: x2− aπf + 2. if f < k set x = π
f−1
2 x to make this eisenstein. If f > k

and k odd, set x = π
k−1
2 x to make eisenstein. if f > k and k even, set x = π

k
2 and repeat and be

in first case. if f = k we have x2 − (a + b)πk, where b = 2/πk. If a 6= b set x = π
k−1
2 x to make

eisenstein.
Only case is x2− (1 + 2) = x2− 3, (noting we were in an odd degree extension of Z2 this makes

sense to stay irreducible!.). But, this is the same extension as x2 + 2x− 2, which is eisenstein.
That there exists an unramified extension completes the result!. (we also rigged up this ‘unram-

ified unit’ to give an extension of the residue field) �

Now what of norms:

Claim. Let u = 1 + bπ2k be the unramified unit, Let 1− aπ2l+1 be any ramified unit, let a′ = b/a
in Ok/m.

• u is a norm from F (
√
u).

• u is a norm from F (
√

1− aπ2l+1).



• u is not a norm from F (
√
π(1− aπ2l+1)).

• 1− aπ2l+1 is a norm from F (
√
aπ).

• 1− aπ2l+1 is a norm from F (
√

1− cπ2(k−l)+s). for all c and all s ≥ 1.

• 1− aπ2l+1 is not a norm from F (
√

1− a′π2(k−l)−1).

Proof. Recall that X is a norm from F (
√
Y ) if and only if Y is a norm from F (

√
X).

Observe that from F (
√
u) we have N(1 + bπl) = 1 + Tr(b)πl modulo πl+1 we thus conclude that

all the units are norms from F (
√
u) as the trace map is surjective.

We next observe that aπ can never be a norm from F (
√
u) as the valuations of the norms of

elements are all even.
Usual formula yields:

(1− aπ2l+1, aπ) = 1

indeed 1− aπ2l+1 = 12 − aπ(πl)2.
Now the observation that for s ≥ 1

1 = (1− a(1− cπ2(k−l)+s)π2l+1, a(1− cπ2(k−l)+1)π) = (1− aπ2l+1, a(1− cπ2(k−l)+s)π)

allows us to conclude (1− aπ2l+1, 1− cπ2(k−l)+s) = 1.
Finally we have:

(1− a(1− a′π2(k−l)−1)π2l+1, a(1− a′π2(k−l)−1)π) = 1

(1− aπ2l+1 + bπ2k, a(1− a′π2(k−l)−1)π) = 1

(1− aπ2l+1, a(1− a′π2(k−l)−1)π) = −1

(1− aπ2l+1, 1− a′π2(k−l)−1) = −1

�

With the above we are given a complete description of a generator for the coset of square class
which are not a norm from L.


