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P
One of the challenges with a course like Math 1010 is finding a suitable text-

book. The course covers material from two topics – Precalculus and Calculus
– that are usually offered as separate courses, with separate texts. Before the
ini al offering of Math 1010, I reviewed a number of commercially available
op ons, but these all had two things in common: they did not quite meet our
needs, and they were all very expensive (some were as much as $400).

Since wri ng a new textbook from scratch is a huge undertaking, requiring
resources (like me) we simply did not have, I chose to explore non-commercial
op ons. This took a bit of searching, since non-commercial texts, while inexpen-
sive (or free), are of varying quality. Fortunately, there are some decent texts
out there. Unfortunately, I couldn’t find a single text that covered all of the ma-
terial we need for Math 1010.

To get around this problem, I have selected two textbooks as our primary
sources for the course. The first is Precalculus, version 3, by Carl S tz and Jeff
Zeager. The second is APEX Calculus I, version 3.0, by Hartman et al. (As of
June, 2018, we have updated to version 4.0!) Both texts have two very useful
advantages. First, they’re both free (as in beer): you can download either text
in PDF format from the authors’ web pages. Second, they’re also open source
texts (that is, free, as in speech). Both books are wri en using the LATEXmarkup
language, as is typical in mathema cs publishing. What is not typical is that the
authors of both texts make their source code freely available, allowing others
(such as myself) to edit and customize the books as they see fit.

In the first itera on of this project (Fall 2015), I was only able to edit each text
individually for length and content, resul ng in two separate textbooks forMath
1010. For Fall 2016, I had enough me to take the content of the Precalculus
textbook and adapt its source code to be compa ble with the forma ng of the
Calculus textbook, allowingme to produce a single textbook for all ofMath 1010.

For Fall 2017, I produced thismuch shortened, abridged version of the “Com-
plete (and Current) Edi on” produced the previous year. That version has more
material than an instructor can reasonably expect to cover in one semester. The
unabridged version is s ll available for a student who wants a more complete
treatment of the precalculus material in the text.

The book is very much a work in progress, and I will be edi ng it regularly.
Feedback is always welcome.
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One thing that student evalua ons teach
us is that any given Mathema cs instruc-
tor can be simultaneously the best and
worst teacher ever, depending on who is
comple ng the evalua on.

1: T R N
1.1 Some Basic Set Theory No ons

While the authors would like nothingmore than to delve quickly and deeply into
the sheer excitement that is Precalculus, experience has taught us that a brief
refresher on some basic no ons is welcome, if not completely necessary, at this
stage. To that end, we present a brief summary of ‘set theory’ and some of
the associated vocabulary and nota ons we use in the text. Like all good Math
books, we begin with a defini on.

Defini on 1.1.1 Set

A set is a well-defined collec on of objects which are called the ‘ele-
ments’ of the set. Here, ‘well-defined’ means that it is possible to deter-
mine if something belongs to the collec on or not, without prejudice.

For example, the collec on of le ers that make up the word “pronghorns”
is well-defined and is a set, but the collec on of the worst math teachers in the
world is not well-defined, and so is not a set. In general, there are three ways
to describe sets. They are

Key Idea 1.1.1 Ways to Describe Sets

1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a le brace ‘{’, list each element
of the set only once and then end with a right brace ‘}’.

3. The Set-Builder Method: A combina on of the verbal and roster
methods using a “dummy variable” such as x.

For example, let S be the set described verbally as the set of le ers thatmake
up the word “pronghorns”. A roster descrip on of Swould be {p, r, o, n, g, h, s}.
Note that we listed ‘r’, ‘o’, and ‘n’ only once, even though they appear twice in
“pronghorns.” Also, the order of the elements doesn’tma er, so {o, n, p, r, g, s, h}
is also a roster descrip on of S. A set-builder descrip on of S is:

{x | x is a le er in the word “pronghorns”.}

The way to read this is: ‘The set of elements x such that x is a le er in the
word “pronghorns.”’ In each of the above cases, we may use the familiar equals
sign ‘=’ andwrite S = {p, r, o, n, g, h, s}or S = {x | x is a le er in the word “pronghorns”.}.
Clearly r is in S and q is not in S. We express these sen ments mathema cally
by wri ng r ∈ S and q /∈ S.

More precisely, we have the following.
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Defini on 1.1.2 Nota on for set inclusion

Let A be a set.

• If x is an element of A then we write x ∈ A which is read ‘x is in A’.

• If x is not an element of A then we write x /∈ A which is read ‘x is
not in A’.

Now let’s consider the setC = {x | x is a consonant in the word “pronghorns”}.
A roster descrip on of C is C = {p, r, n, g, h, s}. Note that by construc on, every
element of C is also in S. We express this rela onship by sta ng that the set C
is a subset of the set S, which is wri en in symbols as C ⊆ S. The more formal
defini on is given below.

Defini on 1.1.3 Subset

Given sets A and B, we say that the set A is a subset of the set B andwrite
‘A ⊆ B’ if every element in A is also an element of B.

Note that in our example above C ⊆ S, but not vice-versa, since o ∈ S but
o /∈ C. Addi onally, the set of vowels V = {a, e, i, o, u}, while it does have an
element in common with S, is not a subset of S. (As an added note, S is not a
subset of V, either.) We could, however, build a set which contains both S and
V as subsets by gathering all of the elements in both S and V together into a
single set, say U = {p, r, o, n, g, h, s, a, e, i, u}. Then S ⊆ U and V ⊆ U. The
set U we have built is called the union of the sets S and V and is denoted S ∪ V.
Furthermore, S and V aren’t completely different sets since they both contain
the le er ‘o.’ (Since the word ‘different’ could be ambiguous, mathema cians
use the word disjoint to refer to two sets that have no elements in common.)
The intersec on of two sets is the set of elements (if any) the two sets have in
common. In this case, the intersec on of S and V is {o}, wri en S ∩ V = {o}.
We formalize these ideas below.

Defini on 1.1.4 Intersec on and Union

Suppose A and B are sets.

• The intersec on of A and B is A ∩ B = {x | x ∈ A and x ∈ B}

• The union of A and B is A ∪ B = {x | x ∈ A or x ∈ B (or both)}

The key words in Defini on 1.1.4 to focus on are the conjunc ons: ‘intersec-
on’ corresponds to ‘and’ meaning the elements have to be in both sets to be

in the intersec on, whereas ‘union’ corresponds to ‘or’ meaning the elements
have to be in one set, or the other set (or both). In other words, to belong to
the union of two sets an element must belong to at least one of them.

Returning to the sets C and V above, C ∪ V = {p, r, n, g, h, s, a, e, i, o, u}.
When it comes to their intersec on, however, we run into a bit of nota onal

2



The full extent of the empty set’s role will
not be explored in this text, but it is of fun-
damental importance in Set Theory. In
fact, the empty set can be used to gener-
ate numbers - mathema cians can create
something from nothing! If you’re inter-
ested, read about the von Neumann con-
struc on of the natural numbers or con-
sider signing up for Math 2000.

p r n g h s o a e i u

S V

C

U

Figure 1.1.1: A Venn diagram for C, S, and
V

A B

U

Sets A and B.

A ∩ B

A B

U

A ∩ B is shaded.

A ∪ B

A B

U

A ∪ B is shaded.

Figure 1.1.2: Venn diagrams for intersec-
on and union
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awkwardness since C and V have no elements in common. While we could write
C ∩ V = {}, this sort of thing happens o en enough that we give the set with
no elements a name.

Defini on 1.1.5 Empty set

The Empty Set ∅ is the set which contains no elements. That is,

∅ = {} = {x | x ̸= x}.

As promised, the empty set is the set containing no elements since noma er
what ‘x’ is, ‘x = x.’ Like the number ‘0,’ the empty set plays a vital role in math-
ema cs. We introduce it here more as a symbol of convenience as opposed to
a contrivance. Using this new bit of nota on, we have for the sets C and V
above that C∩V = ∅. A nice way to visualize rela onships between sets and set
opera ons is to draw a Venn Diagram. A Venn Diagram for the sets S, C and V is
drawn in Figure 1.1.1.

In Figure 1.1.1 we have three circles - one for each of the sets C, S and V. We
visualize the area enclosed by each of these circles as the elements of each set.
Here, we’ve spelled out the elements for defini veness. No ce that the circle
represen ng the set C is completely inside the circle represen ng S. This is a
geometric way of showing that C ⊆ S. Also, no ce that the circles represen ng
S and V overlap on the le er ‘o’. This common region is how we visualize S ∩ V.
No ce that since C∩V = ∅, the circles which represent C and V have no overlap
whatsoever.

All of these circles lie in a rectangle labelledU (for ‘universal’ set). A universal
set contains all of the elements under discussion, so it could always be taken as
the union of all of the sets in ques on, or an even larger set. In this case, we
could take U = S ∪ V or U as the set of le ers in the en re alphabet. The usual
triptych of Venn Diagrams indica ng generic sets A and B along with A ∩ B and
A ∪ B is given below.

(The reader may well wonder if there is an ul mate universal set which con-
tains everything. The short answer is ‘no’. Our defini on of a set turns out to
be overly simplis c, but correc ng this takes us well beyond the confines of
this course. If you want the longer answer, you can begin by reading about
Russell’s Paradox on Wikipedia.)

1.1.1 Sets of Real Numbers
The playground formost of this text is the set of Real Numbers. Many quan es
in the ‘real world’ can be quan fied using real numbers: the temperature at a
given me, the revenue generated by selling a certain number of products and
the maximum popula on of Sasquatch which can inhabit a par cular region are
just three basic examples. A succinct, but nonetheless incomplete defini on of
a real number is given below.

Defini on 1.1.6 The real numbers

A real number is any number which possesses a decimal representa on.
The set of real numbers is denoted by the character R.
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An example of a number with a
repea ng decimal expansion is
a = 2.13234234234 . . .. This is ra-
onal since 100a = 213.2342342342...,

and 100000a = 213234.234234... so
99900a = 100000a − 100a = 213021.
This gives us the ra onal expression
a =

213021
99900

.

The classic example of an irra onal num-
ber is the number π, but numbers like

√
2

and 0.101001000100001 . . . are other
fine representa ves.

Chapter 1 The Real Numbers

Certain subsets of the real numbers are worthy of note and are listed below.
In more advanced courses like Analysis, you learn that the real numbers can be
constructed from the ra onal numbers, which in turn can be constructed from
the integers (which themselves come from the natural numbers, which in turn
can be defined as sets...).

Defini on 1.1.7 Sets of Numbers

1. The Empty Set: ∅ = {} = {x | x ̸= x}. This is the set with no elements.
Like the number ‘0,’ it plays a vital role in mathema cs.

2. The Natural Numbers: N = {1, 2, 3, . . .} The periods of ellipsis here indi-
cate that the natural numbers contain 1, 2, 3, ‘and so forth’.

3. The Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

4. The Ra onal Numbers: Q =
{ a

b | a ∈ Z and b ∈ Z
}
. Ra onal numbers

are the ra os of integers (provided the denominator is not zero!) It turns
out that another way to describe the ra onal numbers is:

Q = {x | x possesses a repea ng or termina ng decimal representa on.}

5. The Real Numbers: R = {x | x possesses a decimal representa on.}

6. The Irra onal Numbers: Real numbers that are not ra onal are called ir-
ra onal. As a set, we have {x ∈ R | x /∈ Q}. (There is no standard symbol
for this set.) Every irra onal number has a decimal expansion which nei-
ther repeats nor terminates.

7. The Complex Numbers: C = {a+bi | a,b ∈ R and i =
√
−1} (Wewill not

deal with complex numbers in Math 1010, although they usually make an
appearance in Math 1410.)

It is important to note that every natural number is a whole number is an
integer. Each integer is a ra onal number (take b = 1 in the above defini on for
Q) and the ra onal numbers are all real numbers, since they possess decimal
representa ons (via long division!). If we take b = 0 in the above defini on of
C, we see that every real number is a complex number. In this sense, the sets
N, Z, Q, R, and C are ‘nested’ like Matryoshka dolls. More formally, these sets
form a subset chain: N ⊆ Z ⊆ Q ⊆ R. The reader is encouraged to sketch a
Venn Diagram depic ng R and all of the subsets men oned above.

As youmay recall, weo en visualize the set of real numbersR as a linewhere
each point on the line corresponds to one and only one real number. Given two
different real numbers a and b, we write a < b if a is located to the le of b on
the number line, as shown in Figure 1.1.3.

While this no on seems innocuous, it is worth poin ng out that this conven-
on is rooted in two deep proper es of real numbers. The first property is that

R is complete. This means that there are no ‘holes’ or ‘gaps’ in the real number
line. (This intui ve feel for what it means to be ‘complete’ is as good as it gets at
this level. Completeness does get a muchmore precise meaning later in courses
like Analysis and Topology.) Another way to think about this is that if you choose

4
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a b

Figure 1.1.3: The real number line with
two numbers a and b, where a < b.

The Law of Trichotomy, strictly speaking,
is an axiom of the real numbers: a ba-
sic requirement that we assume to be
true. However, in any construc on of
the real numbers, such as the method of
Dedekind cuts, it is necessary to prove
that the Law of Trichotomy is sa sfied.

1.1 Some Basic Set Theory No ons

any two dis nct (different) real numbers, and look between them, you’ll find a
solid line segment (or interval) consis ng of infinitely many real numbers.

The next result tells us what types of numbers we can expect to find.

Theorem 1.1.1 Density Property ofQ in R

Between any two dis nct real numbers, there is at least one ra onal
number and irra onal number. It then follows that between any two
dis nct real numbers there will be infinitely many ra onal and irra onal
numbers.

The root word ‘dense’ here communicates the idea that ra onals and irra-
onals are ‘thoroughly mixed’ into R. The reader is encouraged to think about

how one would find both a ra onal and an irra onal number between, say,
0.9999 and 1. Once you’ve done that, ask yourself whether there is any dif-
ference between the numbers 0.9 and 1.

The second property R possesses that lets us view it as a line is that the set
is totally ordered. This means that given any two real numbers a and b, either
a < b, a > b or a = b which allows us to arrange the numbers from least
(le ) to greatest (right). You may have heard this property given as the ‘Law of
Trichotomy’.

Defini on 1.1.8 Law of Trichotomy

If a and b are real numbers then exactly one of the following statements
is true:
a < b a > b a = b

The reader is probably familiar with the rela ons a < b and a > b in the
context of solving inequali es. The order proper es of the real number system
can be summarized as a collec on of rules for manipula ng inequali es, as fol-
lows:

Key Idea 1.1.2 Rules for inequali es

Let a, b, and c be any real numbers. Then:

• If a < b, then a+ c < b+ c.

• If a < b, then a− c < b− c.

• If a < b and c > 0, then ac < bc.

• If a < b and c < 0, then ac > bc. (In par cular,−a > −b.)

• If 0 < a < b, then
1
b
<

1
a
.

Note the emphasis in rule #3 above: cau onmust always be exercised when
manipula ng inequali es: mul plying by a nega ve number reverses the sign.

5
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The importance of understanding inter-
val nota on in Calculus cannot be over-
stated. If you don’t find yourself ge ng
the hang of it through repeated use, you
may need to take the me to just memo-
rize this chart.

Chapter 1 The Real Numbers

This is especially important to remember when dealing with inequali es involv-
ing variable quan es, for example, with ra onal inequali es (see Example 3.3.5).

Segments of the real number line are called intervals of numbers. Below
is a summary of the so-called interval nota on associated with given sets of
numbers. For intervals with finite endpoints, we list the le endpoint, then the
right endpoint. We use square brackets, ‘[’ or ‘]’, if the endpoint is included in the
interval and use a filled-in or ‘closed’ dot to indicate membership in the interval.
Otherwise, we use parentheses, ‘(’ or ‘)’ and an ‘open’ circle to indicate that the
endpoint is not part of the set. If the interval does not have finite endpoints,
we use the symbols−∞ to indicate that the interval extends indefinitely to the
le and ∞ to indicate that the interval extends indefinitely to the right. Since
infinity is a concept, and not a number, we always use parentheses when using
these symbols in interval nota on, and use an appropriate arrow to indicate that
the interval extends indefinitely in one (or both) direc ons.

Defini on 1.1.9 Interval Nota on

Let a and b be real numbers with a < b.
Set of Real Numbers Interval Nota on Region on the Real Number Line

{x | a < x < b} (a, b)
a b

{x | a ≤ x < b} [a, b)
a b

{x | a < x ≤ b} (a, b]
a b

{x | a ≤ x ≤ b} [a, b]
a b

{x | x < b} (−∞, b)
b

{x | x ≤ b} (−∞, b]
b

{x | x > a} (a,∞)
a

{x | x ≥ a} [a,∞)
a

R (−∞,∞)

As you can glean from the table, for intervals with finite endpoints we start
by wri ng ‘le endpoint, right endpoint’. We use square brackets, ‘[’ or ‘]’, if the
endpoint is included in the interval. This corresponds to a ‘filled-in’ or ‘closed’
dot on the number line to indicate that the number is included in the set. Oth-
erwise, we use parentheses, ‘(’ or ‘)’ that correspond to an ‘open’ circle which
indicates that the endpoint is not part of the set. If the interval does not have
finite endpoints, we use the symbol −∞ to indicate that the interval extends
indefinitely to the le and the symbol ∞ to indicate that the interval extends
indefinitely to the right. Since infinity is a concept, and not a number, we al-
ways use parentheses when using these symbols in interval nota on, and use
the appropriate arrow to indicate that the interval extends indefinitely in one or

6



−5 1 3
A = [−5, 3), B = (1,∞)

−5 1 3
A ∩ B = (1, 3)

−5 1 3
A ∪ B = [−5,∞)

Figure 1.1.4: Union and intersec on of in-
tervals

−2 2

Figure 1.1.5: The set (−∞,−2] ∪ [2,∞)

3

Figure 1.1.6: The set (−∞, 3) ∪ (3,∞)

−3 3

Figure 1.1.7: The set (−∞,−3) ∪
(−3, 3) ∪ (3,∞)

−1 3 5

Figure 1.1.8: The set (−1, 3] ∪ {5}

1.1 Some Basic Set Theory No ons

both direc ons.
Let’s do a few examples to make sure we have the hang of the nota on:

Set of Real Numbers Interval Nota on Region on the Real Number Line

{x | 1 ≤ x < 3} [1, 3)
1 3

{x | − 1 ≤ x ≤ 4} [−1, 4] −1 4

{x | x ≤ 5} (−∞, 5]
5

{x | x > −2} (−2,∞) −2

We defined the intersec on and union of arbitrary sets in Defini on 1.1.4.
Recall that the union of two sets consists of the totality of the elements in each
of the sets, collected together. For example, if A = {1, 2, 3} and B = {2, 4, 6},
then A ∩ B = {2} and A ∪ B = {1, 2, 3, 4, 6}. If A = [−5, 3) and B = (1,∞),
then we can find A∩B and A∪B graphically. To find A∩B, we shade the overlap
of the two and obtain A ∩ B = (1, 3). To find A ∪ B, we shade each of A and B
and describe the resul ng shaded region to find A ∪ B = [−5,∞).

While both intersec on and union are important, we have more occasion to
use union in this text than intersec on, simply because most of the sets of real
numbers we will be working with are either intervals or are unions of intervals,
as the following example illustrates.

Example 1.1.1 Expressing sets as unions of intervals
Express the following sets of numbers using interval nota on.

1. {x | x ≤ −2 or x ≥ 2} 2. {x | x ̸= 3}

3. {x | x ̸= ±3} 4. {x | − 1 < x ≤ 3 or x = 5}

S

1. The best way to proceed here is to graph the set of numbers on the num-
ber line and glean the answer from it. The inequality x ≤ −2 corresponds
to the interval (−∞,−2] and the inequality x ≥ 2 corresponds to the in-
terval [2,∞). Sincewe are looking to describe the real numbers x in one of
these or the other, we have {x | x ≤ −2 or x ≥ 2} = (−∞,−2]∪ [2,∞).

2. For the set {x | x ̸= 3}, we shade the en re real number line except x = 3,
where we leave an open circle. This divides the real number line into two
intervals, (−∞, 3) and (3,∞). Since the values of x could be in either
one of these intervals or the other, we have that {x | x ̸= 3} = (−∞, 3)∪
(3,∞)

3. For the set {x | x ̸= ±3}, we proceed as before and exclude both x = 3
and x = −3 from our set. This breaks the number line into three inter-
vals, (−∞,−3), (−3, 3) and (3,∞). Since the set describes real num-
bers which come from the first, second or third interval, we have {x | x ̸=
±3} = (−∞,−3) ∪ (−3, 3) ∪ (3,∞).

7
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4. Graphing the set {x | − 1 < x ≤ 3 or x = 5}, we get one interval, (−1, 3]
along with a single number, or point, {5}. While we could express the
la er as [5, 5] (Can you seewhy?), we choose towrite our answer as {x | −
1 < x ≤ 3 or x = 5} = (−1, 3] ∪ {5}.

8



Exercises 1.1
Problems
1. Fill in the chart below:

Set of Real Interval Region on the
Numbers Nota on Real Number Line

{x | − 1 ≤ x < 5}

[0, 3)

2 7

{x | − 5 < x ≤ 0}

(−3, 3)

5 7

{x | x ≤ 3}

(−∞, 9)

4

{x | x ≥ −3}

In Exercises 2 – 7, find the indicated intersec on or union and
simplify if possible. Express your answers in interval nota-
on.

2. (−1, 5] ∩ [0, 8)

3. (−1, 1) ∪ [0, 6]

4. (−∞, 4] ∩ (0,∞)

5. (−∞, 0) ∩ [1, 5]

6. (−∞, 0) ∪ [1, 5]

7. (−∞, 5] ∩ [5, 8)

In Exercises 8 – 19, write the set using interval nota on.

8. {x | x ̸= 5}

9. {x | x ̸= −1}

10. {x | x ̸= −3, 4}

11. {x | x ̸= 0, 2}

12. {x | x ̸= 2, −2}

13. {x | x ̸= 0, ±4}

14. {x | x ≤ −1 or x ≥ 1}

15. {x | x < 3 or x ≥ 2}

16. {x | x ≤ −3 or x > 0}

17. {x | x ≤ 5 or x = 6}

18. {x | x > 2 or x = ±1}

19. {x | − 3 < x < 3 or x = 4}

9



The Cartesian Plane is named in honour
of René Descartes.

Usually extending off towards infinity is
indicated by arrows, but here, the arrows
are used to indicate the direc on of in-
creasing values of x and y.

The names of the coordinates can vary
depending on the context of the appli-
ca on. If, for example, the horizontal
axis represented me we might choose
to call it the t-axis. The first number in
the ordered pair would then be the t-
coordinate.

Chapter 1 The Real Numbers

1.2 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Precalculus, we need to unite
Algebra and Geometry. Simply put, wemust find a way to draw algebraic things.
Let’s start with possibly the greatest mathema cal achievement of all me: the
Cartesian Coordinate Plane. Imagine two real number lines crossing at a right
angle at 0 as drawn below.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The horizontal number line is usually called the x-axiswhile the ver cal num-
ber line is usually called the y-axis. As with the usual number line, we imagine
these axes extending off indefinitely in both direc ons. Having two number lines
allows us to locate the posi ons of points offof the number lines aswell as points
on the lines themselves.

For example, consider the point P on the next page. To use the numbers on
the axes to label this point, we imagine dropping a ver cal line from the x-axis to
P and extending a horizontal line from the y-axis to P. This process is some mes
called ‘projec ng’ the point P to the x- (respec vely y-) axis. We then describe
the point P using the ordered pair (2,−4). The first number in the ordered pair
is called the abscissa or x-coordinate and the second is called the ordinate or
y-coordinate. Taken together, the ordered pair (2,−4) comprise the Cartesian
coordinates of the point P. In prac ce, the dis nc on between a point and its
coordinates is blurred; for example, we o en speak of ‘the point (2,−4).’ We
can think of (2,−4) as instruc ons on how to reach P from the origin (0, 0) by
moving 2 units to the right and 4 units downwards. No ce that the order in the
ordered pair is important− if we wish to plot the point (−4, 2), we would move
to the le 4 units from the origin and then move upwards 2 units, as below on
the right.
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Cartesian coordinates are some mes re-
ferred to as rectangular coordinates, to
dis nguish them from other coordinate
systems such as polar coordinates.

The le er O is almost always reserved for
the origin.

1.2 The Cartesian Coordinate Plane

x

y

P

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

P (2,−4)

(−4, 2)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

When we speak of the Cartesian Coordinate Plane, we mean the set of all
possible ordered pairs (x, y) as x and y take values from the real numbers. Below
is a summary of important facts about Cartesian coordinates.

Key Idea 1.2.1 Important Facts about the Cartesian Coordinate
Plane

• (a, b) and (c, d) represent the same point in the plane if and only
if a = c and b = d.

• (x, y) lies on the x-axis if and only if y = 0.

• (x, y) lies on the y-axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to both
axes.

Example 1.2.1 Plo ng points in the Cartesian Plane
Plot the following points: A(5, 8), B

(
− 5

2 , 3
)
, C(−5.8,−3), D(4.5,−1), E(5, 0),

F(0, 5), G(−7, 0), H(0,−9), O(0, 0).

S To plot these points, we start at the origin and move to the
right if the x-coordinate is posi ve; to the le if it is nega ve. Next, we move up
if the y-coordinate is posi ve or down if it is nega ve. If the x-coordinate is 0,
we start at the origin and move along the y-axis only. If the y-coordinate is 0 we
move along the x-axis only.
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x

y

Quadrant I
x > 0, y > 0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x > 0, y < 0

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

Figure 1.2.1: The four quadrants of the
Cartesian plane

Chapter 1 The Real Numbers

x

y

A(5, 8)

B
(
− 5

2 , 3
)

C(−5.8,−3)

D(4.5,−1)

E(5, 0)

F (0, 5)

G(−7, 0)

H(0,−9)

O(0, 0)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

The axes divide the plane into four regions called quadrants. They are la-
belled with Roman numerals and proceed counterclockwise around the plane:
see Figure 1.2.1.

For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in
Quadrant III and (1,−2) in Quadrant IV. If a point other than the origin happens
to lie on the axes, we typically refer to that point as lying on the posi ve or
nega ve x-axis (if y = 0) or on the posi ve or nega ve y-axis (if x = 0). For
example, (0, 4) lies on the posi ve y-axis whereas (−117, 0) lies on the nega ve
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of Mathema cs is symmetry.
There are many types of symmetry in Mathema cs, but three of them can be
discussed easily using Cartesian Coordinates.

Defini on 1.2.1 Symmetry in the Cartesian Plane

Two points (a, b) and (c, d) in the plane are said to be

• symmetric about the x-axis if a = c and b = −d

• symmetric about the y-axis if a = −c and b = d

• symmetric about the origin if a = −c and b = −d

12



0 x

y

P (x, y)Q(−x, y)

S(x,−y)R(−x,−y)

Figure 1.2.2: The three types of symmetry
in the plane

x

y

P (−2, 3)

(−2,−3)

(2, 3)

(2,−3)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Figure 1.2.3: The point P(−2, 3) and its
three reflec ons

1.2 The Cartesian Coordinate Plane

In Figure 1.2.2, P and S are symmetric about the x-axis, as areQ and R; P and
Q are symmetric about the y-axis, as are R and S; and P and R are symmetric
about the origin, as are Q and S.

Example 1.2.2 Finding points exhibi ng symmetry
Let P be the point (−2, 3). Find the points which are symmetric to P about the:

1. x-axis 2. y-axis 3. origin

Check your answer by plo ng the points.

S The figure a er Defini on 1.2.1 gives us a goodway to think
about finding symmetric points in terms of taking the opposites of the x- and/or
y-coordinates of P(−2, 3).

1. To find the point symmetric about the x-axis, we replace the y-coordinate
with its opposite to get (−2,−3).

2. To find the point symmetric about the y-axis, we replace the x-coordinate
with its opposite to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y-
coordinates with their opposites to get (2,−3).
The points are plo ed in Figure 1.2.3.

One way to visualize the processes in the previous example is with the con-
cept of a reflec on. If we start with our point (−2, 3) and pretend that the x-axis
is a mirror, then the reflec on of (−2, 3) across the x-axis would lie at (−2,−3).
If we pretend that the y-axis is a mirror, the reflec on of (−2, 3) across that axis
would be (2, 3). If we reflect across the x-axis and then the y-axis, we would
go from (−2, 3) to (−2,−3) then to (2,−3), and so we would end up at the
point symmetric to (−2, 3) about the origin. We summarize and generalize this
process below.

Key Idea 1.2.2 Reflec ons in the Cartesian Plane

To reflect a point (x, y) about the:

• x-axis, replace y with−y.

• y-axis, replace x with−x.

• origin, replace x with−x and y with−y.

1.2.1 Distance in the Plane
Another important concept in Geometry is the no on of length. If we are go-
ing to unite Algebra and Geometry using the Cartesian Plane, then we need to
develop an algebraic understanding of what distance in the plane means. Sup-
pose we have two points, P (x0, y0) and Q (x1, y1) , in the plane. By the distance
d between P and Q, we mean the length of the line segment joining P with Q.
(Remember, given any two dis nct points in the plane, there is a unique line

13



P (x0, y0)

Q (x1, y1)

d

P (x0, y0)

Q (x1, y1)

d

(x1, y0)

Figure 1.2.4: Distance between P and Q

Chapter 1 The Real Numbers

containing both points.) Our goal now is to create an algebraic formula to com-
pute the distance between these two points. Consider the generic situa on in
Figure 1.2.4.

With a li le more imagina on, we can envision a right triangle whose hy-
potenuse has length d as drawn above on the right. From the la er figure, we
see that the lengths of the legs of the triangle are |x1 − x0| and |y1 − y0| so the
Pythagorean Theorem gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)
2
+ (y1 − y0)

2
= d2

(Do you remember why we can replace the absolute value nota on with
parentheses?) By extrac ng the square root of both sides of the second equa-
on and using the fact that distance is never nega ve, we get

Key Idea 1.2.3 The Distance Formula

The distance d between the points P (x0, y0) and Q (x1, y1) is:

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

It is not always the case that the points P andQ lend themselves to construct-
ing such a triangle. If the points P and Q are arranged ver cally or horizontally,
or describe the exact same point, we cannot use the above geometric argument
to derive the distance formula. It is le to the reader in Exercise 16 to verify
Equa on 1.2.3 for these cases.

Example 1.2.3 Distance between two points
Find and simplify the distance between P(−2, 3) and Q(1,−3).

S

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

=
√

(1− (−2))2 + (−3− 3)2

=
√
9+ 36

= 3
√
5

So the distance is 3
√
5.

Example 1.2.4 Finding points at a given distance
Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

S We shall soon see that the points we wish to find are on the
line x = 1, but for now we’ll just view them as points of the form (1, y).

We require that the distance from (3, 2) to (1, y) be 4. TheDistance Formula,
Equa on 1.2.3, yields

14

http://en.wikipedia.org/wiki/Pythagorean_Theorem


(1, y)

(3, 2)

x

y

distance is 4 units

2 3

−3

−2

−1

1

2

3

Figure 1.2.5: Diagram for Example 1.2.4

P (x0, y0)

Q (x1, y1)

M

Figure 1.2.6: The midpoint of a line seg-
ment

1.2 The Cartesian Coordinate Plane

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

4 =
√
(1− 3)2 + (y− 2)2

4 =
√
4+ (y− 2)2

42 =
(√

4+ (y− 2)2
)2

squaring both sides

16 = 4+ (y− 2)2

12 = (y− 2)2

(y− 2)2 = 12

y− 2 = ±
√
12 extrac ng the square root

y− 2 = ±2
√
3

y = 2± 2
√
3

We obtain two answers: (1, 2 + 2
√
3) and (1, 2 − 2

√
3). The reader is en-

couraged to think about why there are two answers.

Related to finding the distance between two points is the problem of find-
ing themidpoint of the line segment connec ng two points. Given two points,
P (x0, y0) and Q (x1, y1), the midpoint M of P and Q is defined to be the point
on the line segment connec ng P and Q whose distance from P is equal to its
distance from Q.

Key Idea 1.2.4 The Midpoint Formula

The midpointM of the line segment connec ng P (x0, y0) and Q (x1, y1)
is:

M =

(
x0 + x1

2
,
y0 + y1

2

)

If we let d denote the distance between P and Q, we leave it as Exercise 17
to show that the distance between P and M is d/2 which is the same as the
distance between M and Q. This suffices to show that Key Idea 1.2.4 gives the
coordinates of the midpoint.

Example 1.2.5 Finding the midpoint of a line segment
Find the midpoint of the line segment connec ng P(−2, 3) and Q(1,−3).

S

M =

(
x0 + x1

2
,
y0 + y1

2

)
=

(
(−2) + 1

2
,
3+ (−3)

2

)
=

(
−1
2
,
0
2

)
=

(
−1
2
, 0
)

The midpoint is
(
− 1

2 , 0
)
.
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Exercises 1.2
Problems
1. Plot and label the points A(−3,−7), B(1.3,−2),

C(π,
√
10), D(0, 8), E(−5.5, 0), F(−8, 4), G(9.2,−7.8)

and H(7, 5) in the Cartesian Coordinate Plane given below.

x

y

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

2. For each point given in Exercise 1 above

• Iden fy the quadrant or axis in/on which the point
lies.

• Find the point symmetric to the given point about the
x-axis.

• Find the point symmetric to the given point about the
y-axis.

• Find the point symmetric to the given point about the
origin.

In Exercises 3 – 10, find the distance d between the points and
the midpointM of the line segment which connects them.

3. (1, 2), (−3, 5)

4. (3,−10), (−1, 2)

5.
(
1
2
, 4
)
,
(
3
2
,−1

)

6.
(
−2
3
,
3
2

)
,
(
7
3
, 2
)

7.
(
24
5
,
6
5

)
,
(
−11

5
,−19

5

)
.

8.
(√

2,
√
3
)
,
(
−
√
8,−

√
12
)

9.
(
2
√
45,

√
12
)
,
(√

20,
√
27
)
.

10. (0, 0), (x, y)

11. Find all of the points of the form (x,−1) which are 4 units
from the point (3, 2).

12. Find all of the points on the y-axis which are 5 units from
the point (−5, 3).

13. Find all of the points on the x-axis which are 2 units from
the point (−1, 1).

14. Find all of the points of the form (x,−x) which are 1 unit
from the origin.

15. Let’s assume for a moment that we are standing at the ori-
gin and the posi ve y-axis points due North while the pos-
i ve x-axis points due East. Our Sasquatch-o-meter tells us
that Sasquatch is 3milesWest and 4miles South of our cur-
rent posi on. What are the coordinates of his posi on?
How far away is he from us? If he runs 7 miles due East
what would his new posi on be?

16. Verify the Distance Formula 1.2.3 for the cases when:

(a) The points are arranged ver cally. (Hint: Use P(a, y0)
and Q(a, y1).)

(b) The points are arranged horizontally. (Hint: Use
P(x0, b) and Q(x1, b).)

(c) The points are actually the same point. (You
shouldn’t need a hint for this one.)

17. Verify the Midpoint Formula by showing the distance be-
tween P(x1, y1) and M and the distance between M and
Q(x2, y2) are both half of the distance between P and Q.

18. Show that the points A, B and C below are the ver ces of
a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8)

(b) A(−3, 1), B(4, 0) and C(0,−3)

19. Find a point D(x, y) such that the points A(−3, 1), B(4, 0),
C(0,−3) and D are the corners of a square. Jus fy your
answer.

20. Discuss with your classmates howmany numbers are in the
interval (0, 1).

21. The world is not flat. (There are those who disagree with
this statement. Look them up on the Internet some me
when you’re bored.) Thus the Cartesian Plane cannot pos-
sibly be the end of the story. Discuss with your classmates
how you would extend Cartesian Coordinates to represent
the three dimensional world. What would the Distance and
Midpoint formulas look like, assuming those conceptsmake
sense at all?
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It is common in many areas of mathemat-
ics to use the nota on f : A → B to
denote a func on f with domain A and
codomain B. However, this nota on is
less common in Calculus, where the do-
main and codomain are almost always
subsets ofR. It is more common in calcu-
lus to specify a func on using the formula
by which each element of the domain is
assigned to an element in the codomain.
For example, f(x) = x2 describes the
func on f : R → R that assigns each real
number x ∈ R to its square.

f

x
Domain
(Inputs)

y = f(x)
Range

(Outputs)

Figure 2.1.1: Graphical depic on of a
func on

2: F
2.1 Func on Nota on

Defini on 2.1.1 Func on

A func on f from a set A to a set B is a rule that assigns each element
x ∈ A to a unique element y ∈ B. We express the fact that the func on
f relates the element x to the element y by wri ng y = f(x).
The set A is called the domain of the func on, and the set B is called the
codomain of the func on.

Informally, we view a func on as a process by which each x in its domain is
matched with some y in the codomain. If we think of the domain of a func on
as a set of inputs and the range as a set of outputs, we can think of a func on f
as a process by which each input x is matched with only one output y. Since the
output is completely determined by the input x and the process f, we symbolize
the output with func on nota on: ‘f(x)’, read ‘f of x.’ In other words, f(x) is
the output which results by applying the process f to the input x. In this case,
the parentheses here do not indicate mul plica on, as they do elsewhere in
Algebra. This can cause confusion if the context is not clear, so you must read
carefully. This rela onship is typically visualized using a diagram similar to the
one in Figure 2.1.1.

The value of y is completely dependent on the choice of x. For this reason,
x is o en called the independent variable, or argument of f, whereas y is o en
called the dependent variable.

As we shall see, the process of a func on f is usually described using an al-
gebraic formula. For example, suppose a func on f takes a real number and
performs the following two steps, in sequence

1. Mul ply by 3

2. Add 4

If we choose 5 as our input, in Step 1 wemul ply by 3 to get (5)(3) = 15. In
Step 2, we add 4 to our result from Step 1 which yields 15+4 = 19. Using func-
on nota on, we would write f(5) = 19 to indicate that the result of applying

the process f to the input 5 gives the output 19. In general, if we use x for the
input, applying Step 1 produces 3x. Following with Step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(x) = 3x+ 4. No ce
that to check our formula for the case x = 5, we replace the occurrence of x in
the formula for f(x) with 5 to get f(5) = 3(5) + 4 = 15+ 4 = 19, as required.

Generally, we prefer to define func ons of a real variable using a formula,
rather than giving a verbal descrip on, as in the following example.

Example 2.1.1 Using func on nota on
Let f(x) = −x2 + 3x+ 4

1. Find and simplify the following.

(a) f(−1), f(0), f(2)
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(b) f(2x), 2f(x)

(c) f(x+ 2), f(x) + 2, f(x) + f(2)

2. Solve f(x) = 4.

S

1. (a) To find f(−1), we replace every occurrence of x in the expression
f(x) with−1

f(−1) = −(−1)2 + 3(−1) + 4
= −(1) + (−3) + 4
= 0

Similarly, f(0) = −(0)2+3(0)+4 = 4, and f(2) = −(2)2+3(2)+4 =
−4+ 6+ 4 = 6.

(b) To find f(2x), we replace every occurrence of x with the quan ty 2x

f(2x) = −(2x)2 + 3(2x) + 4
= −(4x2) + (6x) + 4
= −4x2 + 6x+ 4

The expression 2f(x)means we mul ply the expression f(x) by 2

2f(x) = 2
(
−x2 + 3x+ 4

)
= −2x2 + 6x+ 8

(c) To find f(x+ 2), we replace every occurrence of x with the quan ty
x+ 2

f(x+ 2) = −(x+ 2)2 + 3(x+ 2) + 4
= −

(
x2 + 4x+ 4

)
+ (3x+ 6) + 4

= −x2 − 4x− 4+ 3x+ 6+ 4
= −x2 − x+ 6

To find f(x) + 2, we add 2 to the expression for f(x)

f(x) + 2 =
(
−x2 + 3x+ 4

)
+ 2

= −x2 + 3x+ 6

From our work above, we see f(2) = 6 so that

f(x) + f(2) =
(
−x2 + 3x+ 4

)
+ 6

= −x2 + 3x+ 10

2. Since f(x) = −x2 + 3x+ 4, the equa on f(x) = 4 is equivalent to −x2 +
3x+4 = 4. Solving we get−x2+3x = 0, or x(−x+3) = 0. We get x = 0
or x = 3, and we can verify these answers by checking that f(0) = 4 and
f(3) = 4.
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The ‘radicand’ is the expression ‘inside’
the radical.

2.1 Func on Nota on

A few notes about Example 2.1.1 are in order. First note the difference be-
tween the answers for f(2x) and 2f(x). For f(2x), we aremul plying the input by
2; for 2f(x), we aremul plying the output by 2. As we see, we get en rely differ-
ent results. Along these lines, note that f(x+2), f(x)+2 and f(x)+f(2) are three
different expressions as well. Even though func on nota on uses parentheses,
as does mul plica on, there is no general ‘distribu ve property’ of func on no-
ta on. Finally, note the prac ce of using parentheses when subs tu ng one
algebraic expression into another; we highly recommend this prac ce as it will
reduce careless errors.

Suppose now we wish to find r(3) for r(x) =
2x

x2 − 9
. Subs tu on gives

r(3) =
2(3)

(3)2 − 9
=

6
0
,

which is undefined. (Why is this, again?) The number 3 is not an allowable
input to the func on r; in other words, 3 is not in the domain of r. Which other
real numbers are forbidden in this formula? We think back to arithme c. The
reason r(3) is undefined is because subs tu on results in a division by 0. To
determine which other numbers result in such a transgression, we set the de-
nominator equal to 0 and solve

x2 − 9 = 0
x2 = 9

√
x2 =

√
9 extract square roots

x = ±3

As long as we subs tute numbers other than 3 and −3, the expression r(x)
is a real number. Hence, we write our domain in interval nota on (see the Ex-
ercises for Sec on 1.2) as (−∞,−3) ∪ (−3, 3) ∪ (3,∞). When a formula for a
func on is given, we assume that the func on is valid for all real numbers which
make arithme c sense when subs tuted into the formula. This set of numbers
is o en called the implied domain (or ‘implicit domain’) of the func on. At this
stage, there are only two mathema cal sins we need to avoid: division by 0 and
extrac ng even roots of nega ve numbers. The following example illustrates
these concepts.

Example 2.1.2 Determining an implied domain
Find the domain of the following func ons.

1. g(x) =
√
4− 3x

2. h(x) = 5
√
4− 3x

3. f(x) =
2

1− 4x
x− 3

S

1. The poten al disaster for g is if the radicand is nega ve. To avoid this, we
set 4 − 3x ≥ 0. From this, we get 3x ≤ 4 or x ≤ 4

3 . What this shows is
that as long as x ≤ 4

3 , the expression 4 − 3x ≥ 0, and the formula g(x)
returns a real number. Our domain is

(
−∞, 43

]
.
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2. The formula for h(x) is haun ngly close to that of g(x) with one key dif-
ference− whereas the expression for g(x) includes an even indexed root
(namely a square root), the formula for h(x) involves an odd indexed root
(the fi h root). Since odd roots of real numbers (even nega ve real num-
bers) are real numbers, there is no restric on on the inputs to h. Hence,
the domain is (−∞,∞).

3. In the expression for f, there are two denominators. We need to make
sure neither of them is 0. To that end, we set each denominator equal to
0 and solve. For the ‘small’ denominator, we get x− 3 = 0 or x = 3. For
the ‘large’ denominator

1− 4x
x− 3

= 0

1 =
4x

x− 3

(1)(x− 3) =
(

4x
���x− 3

)
����(x− 3) clear denominators

x− 3 = 4x
−3 = 3x
−1 = x

So we get two real numbers which make denominators 0, namely x = −1
and x = 3. Our domain is all real numbers except−1 and 3:

(−∞,−1) ∪ (−1, 3) ∪ (3,∞).

It is worth reitera ng the importance of finding the domain of a func on
before simplifying, as evidenced by the func on I in the previous example. Even
though the formula I(x) simplifies to 3x, it would be inaccurate to write I(x) =
3x without adding the s pula on that x ̸= 0. It would be analogous to not
repor ng taxable income or some other sin of omission.
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Exercises 2.1
Problems
In Exercises 1 – 8, use the given func on f to find and simplify
the following:

• f(3)
• f(−1)
• f
( 3
2

)
• f(4x)
• 4f(x)

• f(−x)

• f(x− 4)

• f(x)− 4

• f
(
x2
)

1. f(x) = 2x+ 1

2. f(x) = 3− 4x

3. f(x) = 2− x2

4. f(x) = x2 − 3x+ 2

5. f(x) = x
x− 1

6. f(x) = 2
x3

7. f(x) = 6

8. f(x) = 0

In Exercises 9 – 16, use the given func on f to find and sim-
plify the following:

• f(2)
• f(−2)
• f(2a)
• 2f(a)
• f(a+ 2)

• f(a) + f(2)

• f
( 2
a

)
• f(a)

2

• f(a+ h)

9. f(x) = 2x− 5

10. f(x) = 5− 2x

11. f(x) = 2x2 − 1

12. f(x) = 3x2 + 3x− 2

13. f(x) =
√
2x+ 1

14. f(x) = 117

15. f(x) = x
2

16. f(x) = 2
x

In Exercises 17 – 24, use the given func on f to find f(0) and
solve f(x) = 0.

17. f(x) = 2x− 1

18. f(x) = 3− 2
5 x

19. f(x) = 2x2 − 6

20. f(x) = x2 − x− 12

21. f(x) =
√
x+ 4

22. f(x) =
√
1− 2x

23. f(x) = 3
4− x

24. f(x) = 3x2 − 12x
4− x2

25. Let f(x) =


x+ 5 if x ≤ −3√
9− x2 if −3 < x ≤ 3
−x+ 5 if x > 3

Compute the

following func on values.

(a) f(−4)
(b) f(−3)
(c) f(3)

(d) f(3.001)
(e) f(−3.001)
(f) f(2)

26. Let f(x) =


x2 if x ≤ −1√

1− x2 if −1 < x ≤ 1
x if x > 1

Compute the

following func on values.

(a) f(4)
(b) f(−3)
(c) f(1)

(d) f(0)
(e) f(−1)
(f) f(−0.999)

In Exercises 27 – 52, find the (implied) domain of the func on.

27. f(x) = x4 − 13x3 + 56x2 − 19

28. f(x) = x2 + 4

29. f(x) = x− 2
x+ 1

30. f(x) = 3x
x2 + x− 2

31. f(x) = 2x
x2 + 3

32. f(x) = 2x
x2 − 3

33. f(x) = x+ 4
x2 − 36
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34. f(x) = x− 2
x− 2

35. f(x) =
√
3− x

36. f(x) =
√
2x+ 5

37. f(x) = 9x
√
x+ 3

38. f(x) =
√
7− x

x2 + 1

39. f(x) =
√
6x− 2

40. f(x) = 6√
6x− 2

41. f(x) = 3√6x− 2

42. f(x) = 6
4−

√
6x− 2

43. f(x) =
√
6x− 2

x2 − 36

44. f(x) =
3√6x− 2
x2 + 36

45. s(t) = t
t− 8

46. Q(r) =
√
r

r− 8

47. b(θ) = θ√
θ − 8

48. A(x) =
√
x− 7+

√
9− x

49. α(y) = 3

√
y

y− 8

50. g(v) = 1

4− 1
v2

51. T(t) =
√
t− 8
5− t

52. u(w) = w− 8
5−

√
w
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Recall that if x is in the domains of both
f and g, then we can say that x is an el-
ement of the intersec on of the two do-
mains.

2.2 Opera ons on Func ons

2.2 Opera ons on Func ons

2.2.1 Arithme c with Func ons
In the previous sec on we used the newly defined func on nota on to make
sense of expressions such as ‘f(x)+2’ and ‘2f(x)’ for a given func on f. It would
seem natural, then, that func ons should have their own arithme c which is
consistent with the arithme c of real numbers. The following defini ons allow
us to add, subtract, mul ply and divide func ons using the arithme cwealready
know for real numbers.

Defini on 2.2.1 Func on Arithme c

Suppose f and g are func ons and x is in both the domain of f and the
domain of g.

• The sum of f and g, denoted f + g, is the func on defined by the
formula

(f+ g)(x) = f(x) + g(x)

• The difference of f and g, denoted f−g, is the func on defined by
the formula

(f− g)(x) = f(x)− g(x)

• The product of f and g, denoted fg, is the func on defined by the
formula

(fg)(x) = f(x)g(x)

• The quo ent of f and g, denoted
f
g
, is the func on defined by the

formula (
f
g

)
(x) =

f(x)
g(x)

,

provided g(x) ̸= 0.

In other words, to add two func ons, we add their outputs; to subtract two
func ons, we subtract their outputs, and so on. Note that while the formula
(f+g)(x) = f(x)+g(x) looks suspiciously like some kind of distribu ve property,
it is nothing of the sort; the addi on on the le hand side of the equa on is
func on addi on, and we are using this equa on to define the output of the
new func on f+ g as the sum of the real number outputs from f and g.

Example 2.2.1 Arithme c with func ons
Let f(x) = 6x2 − 2x and g(x) = 3− 1

x
.

1. Find (f+ g)(−1) 2. Find (fg)(2)

3. Find the domain of g− f then find and simplify a formula for (g− f)(x).

4. Find the domain of
(
g
f

)
then find and simplify a formula for

(
g
f

)
(x).

S
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1. To find (f+ g)(−1) we first find f(−1) = 8 and g(−1) = 4. By defini on,
we have that (f+ g)(−1) = f(−1) + g(−1) = 8+ 4 = 12.

2. To find (fg)(2), we first need f(2) and g(2). Since f(2) = 20 and g(2) = 5
2 ,

our formula yields (fg)(2) = f(2)g(2) = (20)
( 5
2
)
= 50.

3. One method to find the domain of g − f is to find the domain of g and
of f separately, then find the intersec on of these two sets. Owing to the
denominator in the expression g(x) = 3 − 1

x , we get that the domain of
g is (−∞, 0) ∪ (0,∞). Since f(x) = 6x2 − 2x is valid for all real numbers,
we have no further restric ons. Thus the domain of g − f matches the
domain of g, namely, (−∞, 0) ∪ (0,∞).
A secondmethod is to analyze the formula for (g−f)(x) before simplifying
and look for the usual domain issues. In this case,

(g− f)(x) = g(x)− f(x) =
(
3− 1

x

)
−
(
6x2 − 2x

)
,

so we find, as before, the domain is (−∞, 0) ∪ (0,∞).
Moving along, we need to simplify a formula for (g − f)(x). One issue
here is that what it means to ‘simplify’ this func on may depend on the
context. On a most basic level, we could simply clear the parentheses:

(g− f)(x) =
(
3− 1

x

)
−
(
6x2 − 2x

)
= 3− 1

x
− 6x2 + 2x.

In many contexts (compu ng a deriva ve comes to mind), this would be
the preferred result. In other contexts, we may instead want to express
our result as a single frac on. Ge ng a common denominator, we would
write

(g− f)(x) =
3x
x

− 1
x
− 6x3

x
+

2x2

x
=

−6x3 − 2x2 + 3x− 1
x

.

4. As in the previous example, we have two ways to approach finding the
domain of g

f . First, we can find the domain of g and f separately, and

find the intersec on of these two sets. In addi on, since
(

g
f

)
(x) = g(x)

f(x) ,
we are introducing a new denominator, namely f(x), so we need to guard
against this being 0 as well. Our previous work tells us that the domain of
g is (−∞, 0) ∪ (0,∞) and the domain of f is (−∞,∞). Se ng f(x) = 0
gives 6x2 − 2x = 0 or x = 0, 13 . As a result, the domain of g

f is all real
numbers except x = 0 and x = 1

3 , or (−∞, 0) ∪
(
0, 13
)
∪
( 1
3 ,∞

)
.

Alterna vely, wemayproceed as above and analyze the expression
(

g
f

)
(x) =

g(x)
f(x) before simplifying. In this case,

(
g
f

)
(x) =

g(x)
f(x)

=

3− 1
x

6x2 − 2x

We see immediately from the ‘li le’ denominator that x ̸= 0. To keep the
‘big’ denominator away from 0, we solve 6x2 − 2x = 0 and get x = 0 or
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x = 1
3 . Hence, as before, we find the domain of

g
f
to be

(−∞, 0) ∪
(
0,

1
3

)
∪
(
1
3
,∞
)
.

Next, we find and simplify a formula for
(
g
f

)
(x).

(
g
f

)
(x) =

g(x)
f(x)

=
3− 1

x
6x2 − 2x

=
3− 1

x
6x2 − 2x

· x
x

simplify compound frac ons

=

(
3− 1

x

)
x

(6x2 − 2x) x
=

3x− 1
(6x2 − 2x) x

=
3x− 1

2x2(3x− 1)
factor

= �����: 1
(3x− 1)

2x2����(3x− 1)
cancel

=
1
2x2

Please note the importance of finding the domain of a func on before sim-
plifying its expression. In number 4 in Example 2.2.1 above, had we waited to
find the domain of

g
f
un l a er simplifying, we’d just have the formula

1
2x2

to

go by, and we would (incorrectly!) state the domain as (−∞, 0)∪ (0,∞), since
the other troublesome number, x = 1

3 , was cancelled away.
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g ◦ f

x f(x)
g(f(x))

Figure 2.2.1: Composi on of func ons

Chapter 2 Func ons

2.2.2 Func on Composi on

The four types of arithme c opera ons with func ons described so far are not
the only ways to combine func ons. There is one more especially important
opera on, known as func on composi on.

Defini on 2.2.2 Composi on of Func ons

Suppose f and g are two func ons. The composite of g with f, denoted
g ◦ f, is defined by the formula (g ◦ f)(x) = g(f(x)), provided x is an
element of the domain of f and f(x) is an element of the domain of g.

The quan ty g ◦ f is also read ‘g composed with f’ or, more simply ‘g of f.’ At
its most basic level, Defini on 2.2.2 tells us to obtain the formula for (g ◦ f) (x),
we replace every occurrence of x in the formula for g(x) with the formula we
have for f(x). If we take a step back and look at this from a procedural, ‘inputs
and outputs’ perspec ve, Defin on 2.2.2 tells us the output from g ◦ f is found
by taking the output from f, f(x), and thenmaking that the input to g. The result,
g(f(x)), is the output from g◦ f. From this perspec ve, we see g◦ f as a two step
process taking an input x and first applying the procedure f then applying the
procedure g. This is diagrammed abstractly in Figure 2.2.1.

Example 2.2.2 Evalua ng composite func ons
Let f(x) = x2 − 4x and g(x) = 2−

√
x+ 3.

Find the indicated func on value for each of the following:

1. (f ◦ g)(1) 2. (g ◦ f)(1) 3. (g ◦ f)(2)

S

1. As before, we use Defini on 2.2.2 to write (f ◦ g)(1) = f(g(1)). We find
g(1) = 0, so

(f ◦ g)(1) = f(g(1)) = f(0) = 0

2. Using Defini on 2.2.2, (g ◦ f)(1) = g(f(1)). We find f(1) = −3, so

(g ◦ f)(1) = g(f(1)) = g(−3) = 2

3. We proceed as in the previous example by first finding f(2) = −4. How-
ever, we now run into trouble, since (g ◦ f)(2) = g(f(2)) = g(−4) is
undefined! We can’t compute

√
( − 4 + 3) =

√
−1 if we are working

over the real numbers. Here we see the importance of domain for com-
posite func ons: it is not enough for x to be in the domain of f: only those
x values such that f(x) belongs to the domain of g are permi ed. We con-
sider this problem more generally in the next example.
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1 3

(+) 0 (−) 0 (+)

Figure 2.2.2: The sign diagram of r(x) =
x2 − 4x+ 3

2.2 Opera ons on Func ons

Example 2.2.3 Domain of composite func ons
With f(x) = x2−4x, g(x) = 2−

√
x+ 3 as in Example 2.2.2 find and simplify the

composite func ons (g◦ f)(x) and (f◦g)(x). State the domain of each func on.

S By defini on, (g◦ f)(x) = g(f(x)). We insert the expression
f(x) into g to get

(g ◦ f)(x) = g(f(x)) = g
(
x2 − 4x

)
= 2−

√
(x2 − 4x) + 3

= 2−
√

x2 − 4x+ 3

Hence, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

To find the domain of g ◦ f, we need to find the elements in the domain of f
whose outputs f(x) are in the domain of g. We accomplish this by following the
rule set forth in Sec on 2.1, that is, we find the domain before we simplify. To
that end, we examine (g ◦ f)(x) = 2−

√
(x2 − 4x) + 3. To keep the square root

happy, we solve the inequality x2 − 4x+ 3 ≥ 0 by crea ng a sign diagram. If we
let r(x) = x2 − 4x+ 3, we find the zeros of r to be x = 1 and x = 3. We obtain
the sign diagram in Figure 2.2.2.

Our solu on to x2− 4x+ 3 ≥ 0, and hence the domain of g ◦ f, is (−∞, 1]∪
[3,∞).

To find (f ◦ g)(x), we find f(g(x)). We insert the expression g(x) into f to get

(f ◦ g)(x) = f(g(x)) = f
(
2−

√
x+ 3

)
=
(
2−

√
x+ 3

)2 − 4
(
2−

√
x+ 3

)
= 4− 4

√
x+ 3+

(√
x+ 3

)2 − 8+ 4
√
x+ 3

= 4+ x+ 3− 8
= x− 1

Thus we get (f ◦ g)(x) = x − 1. To find the domain of (f ◦ g), we look to
the step before we did any simplifica on and find (f ◦ g)(x) =

(
2−

√
x+ 3

)2−
4
(
2−

√
x+ 3

)
. To keep the square root happy, we set x + 3 ≥ 0 and find our

domain to be [−3,∞).

No ce that in Example 2.2.3, we found (g ◦ f)(x) ̸= (f ◦ g)(x). In Example
2.2.4 we add evidence that this is the rule, rather than the excep on.

Example 2.2.4 Comparing order of composi on
Find and simplify the func ons (g ◦ h)(x) and (h ◦ g)(x), where we take g(x) =
2−

√
x+ 3 and h(x) =

2x
x+ 1

. State the domain of each func on.

S To find (g ◦ h)(x), we compute g(h(x)). We insert the ex-
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−1 − 3
5

(+) ‽ (−) 0 (+)

Figure 2.2.3: The sign diagram of
r(x) = 5x+ 3

x+ 1

Chapter 2 Func ons

pression h(x) into g first to get

(g ◦ h)(x) = g(h(x)) = g
(

2x
x+ 1

)
= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

2x
x+ 1

+
3(x+ 1)
x+ 1

get common denominators

= 2−
√

5x+ 3
x+ 1

To find the domain of (g◦h), we look to the step beforewe began to simplify:

(g ◦ h)(x) = 2−

√(
2x

x+ 1

)
+ 3

To avoid division by zero, we need x ̸= −1. To keep the radical happy, we need
to solve

2x
x+ 1

+ 3 =
5x+ 3
x+ 1

≥ 0

Defining r(x) =
5x+ 3
x+ 1

, we see r is undefined at x = −1 and r(x) = 0 at x = − 3
5 .

Our sign diagram is given in Figure 2.2.3.
Our domain is (−∞,−1) ∪

[
− 3

5 ,∞
)
.

Next, we find (h ◦ g)(x) by finding h(g(x)). We insert the expression g(x)
into h first to get

(h ◦ g)(x) = h(g(x)) = h
(
2−

√
x+ 3

)
=

2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

To find the domain of h ◦ g, we look to the step before any simplifica on:

(h ◦ g)(x) =
2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

To keep the square root happy, we require x + 3 ≥ 0 or x ≥ −3. Se ng the
denominator equal to zero gives

(
2−

√
x+ 3

)
+ 1 = 0 or

√
x+ 3 = 3. Squar-

ing both sides gives us x + 3 = 9, or x = 6. Since x = 6 checks in the original
equa on,

(
2−

√
x+ 3

)
+ 1 = 0, we know x = 6 is the only zero of the denom-

inator. Hence, the domain of h ◦ g is [−3, 6) ∪ (6,∞).

A useful skill in Calculus is to be able to take a complicated func on and break
it down into a composi on of easier func ons which our last example illustrates.
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Example 2.2.5 Decomposing func ons
Write each of the following func ons as a composi on of two or more (non-
iden ty) func ons. Check your answer by performing the func on composi on.

1. F(x) = |3x− 1|

2. G(x) =
2

x2 + 1

3. H(x) =
√
x+ 1√
x− 1

S There are many approaches to this kind of problem, and we
showcase a different methodology in each of the solu ons below.

1. Our goal is to express the func on F as F = g ◦ f for func ons g and f.
FromDefini on 2.2.2, we know F(x) = g(f(x)), and we can think of f(x) as
being the ‘inside’ func on and g as being the ‘outside’ func on. Looking
at F(x) = |3x − 1| from an ‘inside versus outside’ perspec ve, we can
think of 3x − 1 being inside the absolute value symbols. Taking this cue,
we define f(x) = 3x− 1. At this point, we have F(x) = |f(x)|. What is the
outside func on? The func onwhich takes the absolute value of its input,
g(x) = |x|. Sure enough, (g ◦ f)(x) = g(f(x)) = |f(x)| = |3x− 1| = F(x),
so we are done.

2. We a ack deconstruc ngG from an opera onal approach. Given an input
x, the first step is to square x, then add 1, then divide the result into 2. We
will assign each of these steps a func on so as to write G as a composite
of three func ons: f, g and h. Our first func on, f, is the func on that
squares its input, f(x) = x2. The next func on is the func on that adds 1
to its input, g(x) = x + 1. Our last func on takes its input and divides it
into 2, h(x) = 2

x . The claim is that G = h ◦ g ◦ f. We find

(h ◦ g ◦ f)(x) = h(g(f(x))) = h(g
(
x2
)
) = h

(
x2 + 1

)
=

2
x2 + 1

= G(x),

so we are done.

3. If we look H(x) =

√
x+ 1√
x− 1

with an eye towards building a complicated

func on from simpler func ons, we see the expression
√
x is a simple

piece of the larger func on. If we define f(x) =
√
x, we have H(x) =

f(x)+1
f(x)−1 . If we want to decompose H = g◦ f, then we can glean the formula
for g(x) by looking at what is being done to f(x). We take g(x) = x+1

x−1 , so

(g ◦ f)(x) = g(f(x)) =
f(x) + 1
f(x)− 1

=

√
x+ 1√
x− 1

= H(x),

as required.
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Figure 2.2.4: The rela onship between a
func on and its inverse

Chapter 2 Func ons

2.2.3 Inverse Func ons
Thinking of a func on as a process like we did in Sec on 2.1, in this sec on we
seek another func on which might reverse that process. As in real life, we will
find that some processes (like pu ng on socks and shoes) are reversible while
some (like cooking a steak) are not. We start by discussing a very basic func on
which is reversible, f(x) = 3x + 4. Thinking of f as a process, we start with an
input x and apply two steps, as we saw in Sec on 2.1

1. mul ply by 3

2. add 4

To reverse this process, we seek a func on g which will undo each of these
steps and take the output from f, 3x + 4, and return the input x. If we think of
the real-world reversible two-step process of first pu ng on socks then pu ng
on shoes, to reverse the process, we first take off the shoes, and then we take
off the socks. In much the same way, the func on g should undo the second
step of f first. That is, the func on g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) =
x− 4
3

. Let’s check to see if the
func on g does the job. If x = 5, then f(5) = 3(5) + 4 = 15+ 4 = 19. Taking
the output 19 from f, we subs tute it into g to get g(19) = 19−4

3 = 15
3 = 5,

which is our original input to f. To check that g does the job for all x in the
domain of f, we take the generic output from f, f(x) = 3x + 4, and subs tute

that into g. That is, g(f(x)) = g(3x + 4) =
(3x+ 4)− 4

3
= 3x

3 = x, which
is our original input to f. If we carefully examine the arithme c as we simplify
g(f(x)), we actually see g first ‘undoing’ the addi on of 4, and then ‘undoing’
the mul plica on by 3. Not only does g undo f, but f also undoes g. That is, if
we take the output from g, g(x) =

x− 4
3

, and put that into f, we get f(g(x)) =

f
(
x− 4
3

)
= 3

(
x− 4
3

)
+ 4 = (x − 4) + 4 = x. Using the language of

func on composi on developed in Sec on 2.2.2, the statements g(f(x)) = x
and f(g(x)) = x can be wri en as (g ◦ f)(x) = x and (f ◦ g)(x) = x, respec vely.
Abstractly, we can visualize the rela onship between f and g in Figure 2.2.4.

The main idea to get from Figure 2.2.4 is that g takes the outputs from f and
returns them to their respec ve inputs, and conversely, f takes outputs from g
and returns them to their respec ve inputs. We now have enough background
to state the central defini on of the sec on.

Defini on 2.2.3 Inverse of a func on

Suppose f and g are two func ons such that

1. (g ◦ f)(x) = x for all x in the domain of f and

2. (f ◦ g)(x) = x for all x in the domain of g

then f and g are inverses of each other and the func ons f and g are said
to be inver ble.
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Figure 2.2.5: Reflec ng y = f(x) across
y = x to obtain y = g(x)
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Figure 2.2.6: The func on f(x) = x2 is not
inver ble
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(b) y = f−1(x)?

Figure 2.2.7: Reflec ng y = x2 across the
line y = x does not produce a func on

2.2 Opera ons on Func ons

We now formalize the concept that inverse func ons exchange inputs and
outputs.

Theorem 2.2.1 Proper es of Inverse Func ons

Suppose f and g are inverse func ons.

• The range (recall this is the set of all outputs of a func on) of f is
the domain of g and the domain of f is the range of g

• f(a) = b if and only if g(b) = a

• (a, b) is on the graph of f if and only if (b, a) is on the graph of g

Theorem 2.2.2 Uniqueness of Inverse Func ons and Their Graphs

Suppose f is an inver ble func on.

• There is exactly one inverse func on for f, denoted f−1 (read f-
inverse)

• The graph of y = f−1(x) is the reflec on of the graph of y = f(x)
across the line y = x.

Let’s turn our a en on to the func on f(x) = x2. Is f inver ble? A likely
candidate for the inverse is the func on g(x) =

√
x. Checking the composi on

yields (g ◦ f)(x) = g(f(x)) =
√
x2 = |x|, which is not equal to x for all x in

the domain (−∞,∞). For example, when x = −2, f(−2) = (−2)2 = 4, but
g(4) =

√
4 = 2, which means g failed to return the input−2 from its output 4.

What g did, however, is match the output 4 to a different input, namely 2, which
sa sfies f(2) = 4. This issue is presented schema cally in Figure 2.2.6.

We see from the diagram that since both f(−2) and f(2) are 4, it is impossi-
ble to construct a func on which takes 4 back to both x = 2 and x = −2. (By
defini on, a func on matches a real number with exactly one other real num-
ber.) From a graphical standpoint, we know that if y = f−1(x) exists, its graph
can be obtained by reflec ng y = x2 about the line y = x, in accordance with
Theorem 2.2.2. Doing so takes the graph in Figure 2.2.7 (a) to the one in Figure
2.2.7 (b).

We see that the line x = 4 intersects the graph of the supposed inverse twice
- meaning the graph fails the Ver cal Line Test, and as such, does not represent y
as a func onof x. The ver cal line x = 4on the graphon the right corresponds to
the horizontal line y = 4 on the graph of y = f(x). The fact that the horizontal
line y = 4 intersects the graph of f twice means two different inputs, namely
x = −2 and x = 2, are matched with the same output, 4, which is the cause of
all of the trouble. In general, for a func on to have an inverse, different inputs
must go to different outputs, or else we will run into the same problem we did
with f(x) = x2. We give this property a name.
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Defini on 2.2.4 One-to-one func on

A func on f is said to be one-to-one if f matches different inputs to dif-
ferent outputs. Equivalently, f is one-to-one if and only if whenever
f(c) = f(d), then c = d.

Graphically, we detect one-to-one func ons using the test below.

Theorem 2.2.3 The Horizontal Line Test

A func on f is one-to-one if and only if no horizontal line intersects the
graph of fmore than once.

We say that the graph of a func on passes the Horizontal Line Test if no hor-
izontal line intersects the graph more than once; otherwise, we say the graph of
the func on fails the Horizontal Line Test. We have argued that if f is inver ble,
then f must be one-to-one, otherwise the graph given by reflec ng the graph
of y = f(x) about the line y = x will fail the Ver cal Line Test. It turns out that
being one-to-one is also enough to guarantee inver bility. To see this, we think
of f as the set of ordered pairs which cons tute its graph. If switching the x- and
y-coordinates of the points results in a func on, then f is inver ble and we have
found f−1. This is precisely what the Horizontal Line Test does for us: it checks to
see whether or not a set of points describes x as a func on of y. We summarize
these results below.

Theorem 2.2.4 Equivalent Condi ons for Inver bility

Suppose f is a func on. The following statements are equivalent.
• f is inver ble

• f is one-to-one

• The graph of f passes the Horizontal Line Test

We put this result to work in the next example.

Example 2.2.6 Finding one-to-one func ons
Determine if the following func ons are one-to-one in two ways: (a) analy cally
using Defini on 2.2.4 and (b) graphically using the Horizontal Line Test.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

3. h(x) = x2 − 2x+ 4
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Figure 2.2.9: The func on g is one-to-one

2.2 Opera ons on Func ons

S

1. (a) To determine if f is one-to-one analy cally, we assume f(c) = f(d)
and a empt to deduce that c = d.

f(c) = f(d)
1− 2c

5
=

1− 2d
5

1− 2c = 1− 2d
−2c = −2d

c = d X

Hence, f is one-to-one.
(b) To check if f is one-to-one graphically, we look to see if the graph of

y = f(x) passes the Horizontal Line Test. We have that f is a non-
constant linear func on, which means its graph is a non-horizontal
line. Thus the graph of f passes the Horizontal Line Test: see Figure
2.2.8.

2. (a) We begin with the assump on that g(c) = g(d) and try to show
c = d.

g(c) = g(d)
2c

1− c
=

2d
1− d

2c(1− d) = 2d(1− c)
2c− 2cd = 2d− 2dc

2c = 2d
c = d X

We have shown that g is one-to-one.

(b) The graph of g is shown in Figure 2.2.9. We get the sole intercept at
(0, 0), a ver cal asymptote x = 1 and a horizontal asymptote (which
the graph never crosses) y = −2. We see from that the graph of g
in Figure 2.2.9 that g passes the Horizontal Line Test.

3. (a) We begin with h(c) = h(d). As we work our way through the prob-
lem, we encounter a nonlinear equa on. We move the non-zero
terms to the le , leave a 0 on the right and factor accordingly.

h(c) = h(d)
c2 − 2c+ 4 = d2 − 2d+ 4

c2 − 2c = d2 − 2d
c2 − d2 − 2c+ 2d = 0

(c+ d)(c− d)− 2(c− d) = 0
(c− d)((c+ d)− 2) = 0 factor by grouping

c− d = 0 or c+ d− 2 = 0
c = d or c = 2− d

We get c = d as one possibility, but we also get the possibility that
c = 2−d. This suggests that fmay not be one-to-one. Taking d = 0,
we get c = 0 or c = 2. With h(0) = 4 and h(2) = 4, we have
produced two different inputs with the same output meaning h is
not one-to-one.
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(b) We note that h is a quadra c func on and we graph y = h(x) using
the techniques presented in Sec on 3.1.3. The vertex is (1, 3) and
the parabola opens upwards. We see immediately from the graph in
Figure 2.2.10 that h is not one-to-one, since there are several hori-
zontal lines which cross the graph more than once.

We have shown that the func ons f and g in Example 2.2.6 are one-to-one.
This means they are inver ble, so it is natural to wonder what f−1(x) and g−1(x)
would be. For f(x) = 1−2x

5 , we can think our way through the inverse since
there is only one occurrence of x. We can track step-by-step what is done to x
and reverse those steps as we did at the beginning of the chapter. The func-
on g(x) = 2x

1−x is a bit trickier since x occurs in two places. When one eval-
uates g(x) for a specific value of x, which is first, the 2x or the 1 − x? We can
imagine func onsmore complicated than these sowe need to develop a general
methodology to a ack this problem. Theorem 2.2.1 tells us equa on y = f−1(x)
is equivalent to f(y) = x and this is the basis of our algorithm.

Key Idea 2.2.1 Steps for finding the Inverse of a One-to-one Func-
on

1. Write y = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f−1(x)

Note that we could have simply wri en ‘Solve x = f(y) for y’ and be done
with it. The act of interchanging the x and y is there to remind us that we are
finding the inverse func on by switching the inputs and outputs.

Example 2.2.7 Compu ng inverse func ons
Find the inverse of the following one-to-one func ons. Check your answers an-
aly cally using func on composi on and graphically.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

S

1. Aswemen oned earlier, it is possible to think ourway through the inverse
of f by recording the steps we apply to x and the order in which we apply
them and then reversing those steps in the reverse order. We encourage
the reader to do this. We, on the other hand, will prac ce the algorithm.
We write y = f(x) and proceed to switch x and y
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Figure 2.2.11: The graphs of f and f−1

from Example 2.2.7
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y = f(x)

y =
1− 2x

5
x =

1− 2y
5

switch x and y

5x = 1− 2y
5x− 1 = −2y
5x− 1
−2

= y

y = −5
2
x+

1
2

We have f−1(x) = − 5
2x +

1
2 . To check this answer analy cally, we first

check that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f, which is all real

numbers. (
f−1 ◦ f

)
(x) = f−1(f(x))

= −5
2
f(x) +

1
2

= −5
2

(
1− 2x

5

)
+

1
2

= −1
2
(1− 2x) +

1
2

= −1
2
+ x+

1
2

= x X

We now check that
(
f ◦ f−1) (x) = x for all x in the range of fwhich is also

all real numbers. (Recall that the domain of f−1) is the range of f.)

(
f ◦ f−1) (x) = f(f−1(x)) =

1− 2f−1(x)
5

=
1− 2

(
− 5

2x+
1
2
)

5
=

1+ 5x− 1
5

=
5x
5

= x X

To check our answer graphically, we graph y = f(x) and y = f−1(x) on the
same set of axes in Figure 2.2.11. They appear to be reflec ons across the
line y = x.

2. To find g−1(x), we start with y = g(x). We note that the domain of g is
(−∞, 1) ∪ (1,∞).

y = g(x)
2x

1− x

x =
2y

1− y
switch x and y

x(1− y) = 2y
x− xy = 2y

x = xy+ 2y = y(x+ 2) factor

y =
x

x+ 2
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Figure 2.2.12: The graphs of g and g−1

from Example 2.2.7

Chapter 2 Func ons

We obtain g−1(x) =
x

x+ 2
. To check this analy cally, we first check(

g−1 ◦ g
)
(x) = x for all x in the domain of g, that is, for all x ̸= 1.

(
g−1 ◦ g

)
(x) = g−1(g(x)) = g−1

(
2x

1− x

)

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

· (1− x)
(1− x)

clear denominators

=
2x

2x+ 2(1− x)
=

2x
2x+ 2− 2x

=
2x
2

= x X

Next, we check g
(
g−1(x)

)
= x for all x in the range of g. From the graph of

g in Example 2.2.6, we have that the range of g is (−∞,−2) ∪ (−2,∞).
This matches the domain we get from the formula g−1(x) = x

x+2 , as it
should.

(
g ◦ g−1) (x) = g

(
g−1(x)

)
= g

(
x

x+ 2

)

=

2
(

x
x+ 2

)
1−

(
x

x+ 2

)

=

2
(

x
x+ 2

)
1−

(
x

x+ 2

) · (x+ 2)
(x+ 2)

clear denominators

=
2x

(x+ 2)− x
=

2x
2

= x X

Graphing y = g(x) and y = g−1(x) on the same set of axes is busy, but we
can see the symmetric rela onship if we thicken the curve for y = g−1(x).
Note that the ver cal asymptote x = 1 of the graph of g corresponds to
the horizontal asymptote y = 1 of the graph of g−1, as it should since x
and y are switched. Similarly, the horizontal asymptote y = −2 of the
graph of g corresponds to the ver cal asymptote x = −2 of the graph of
g−1. See Figure 2.2.12
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Exercises 2.2
Problems
In Exercises 1 – 10, use the pair of func ons f and g to find
the following values if they exist:

• (f+ g)(2)
• (f− g)(−1)
• (g− f)(1)
• (fg)

( 1
2

)
•
(

f
g

)
(0)

•
(
g
f

)
(−2)

1. f(x) = 3x+ 1 and g(x) = 4− x

2. f(x) = x2 and g(x) = −2x+ 1

3. f(x) = x2 − x and g(x) = 12− x2

4. f(x) = 2x3 and g(x) = −x2 − 2x− 3

5. f(x) =
√
x+ 3 and g(x) = 2x− 1

6. f(x) =
√
4− x and g(x) =

√
x+ 2

7. f(x) = 2x and g(x) = 1
2x+ 1

8. f(x) = x2 and g(x) = 3
2x− 3

9. f(x) = x2 and g(x) = 1
x2

10. f(x) = x2 + 1 and g(x) = 1
x2 + 1

In Exercises 11 – 20, use the pair of func ons f and g to find
the domain of the indicated func on then find and simplify
an expression for it.

• (f+ g)(x)

• (f− g)(x)

• (fg)(x)

•
(

f
g

)
(x)

11. f(x) = 2x+ 1 and g(x) = x− 2

12. f(x) = 1− 4x and g(x) = 2x− 1

13. f(x) = x2 and g(x) = 3x− 1

14. f(x) = x2 − x and g(x) = 7x

15. f(x) = x2 − 4 and g(x) = 3x+ 6

16. f(x) = −x2 + x+ 6 and g(x) = x2 − 9

17. f(x) = x
2
and g(x) = 2

x

18. f(x) = x− 1 and g(x) = 1
x− 1

19. f(x) = x and g(x) =
√
x+ 1

20. f(x) =
√
x− 5 and g(x) = f(x) =

√
x− 5

In Exercises 21 – 32, let f be the func on defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the func on defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}.

Compute the indicated value if it exists.

21. (f+ g)(−3)

22. (f− g)(2)

23. (fg)(−1)

24. (g+ f)(1)

25. (g− f)(3)

26. (gf)(−3)

27.
(

f
g

)
(−2)

28.
(

f
g

)
(−1)

29.
(

f
g

)
(2)

30.
(
g
f

)
(−1)

31.
(
g
f

)
(3)

32.
(
g
f

)
(−3)

In Exercises 33 – 44, use the given pair of func ons to find the
following values if they exist.

• (g ◦ f)(0)
• (f ◦ g)(−1)
• (f ◦ f)(2)

• (g ◦ f)(−3)
• (f ◦ g)

( 1
2

)
• (f ◦ f)(−2)

33. f(x) = x2, g(x) = 2x+ 1

34. f(x) = 4− x, g(x) = 1− x2

35. f(x) = 4− 3x, g(x) = |x|
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36. f(x) = |x− 1|, g(x) = x2 − 5

37. f(x) = 4x+ 5, g(x) =
√
x

38. f(x) =
√
3− x, g(x) = x2 + 1

39. f(x) = 6− x− x2, g(x) = x
√
x+ 10

40. f(x) = 3√x+ 1, g(x) = 4x2 − x

41. f(x) = 3
1− x

, g(x) = 4x
x2 + 1

42. f(x) = x
x+ 5

, g(x) = 2
7− x2

43. f(x) = 2x
5− x2

, g(x) =
√
4x+ 1

44. f(x) =
√
2x+ 5, g(x) = 10x

x2 + 1

In Exercises 45 – 56, use the given pair of func ons to find and
simplify expressions for the following func ons and state the
domain of each using interval nota on.

• (g ◦ f)(x) • (f ◦ g)(x) • (f ◦ f)(x)

45. f(x) = 2x+ 3, g(x) = x2 − 9

46. f(x) = x2 − x+ 1, g(x) = 3x− 5

47. f(x) = x2 − 4, g(x) = |x|

48. f(x) = 3x− 5, g(x) =
√
x

49. f(x) = |x+ 1|, g(x) =
√
x

50. f(x) = 3− x2, g(x) =
√
x+ 1

51. f(x) = |x|, g(x) =
√
4− x

52. f(x) = x2 − x− 1, g(x) =
√
x− 5

53. f(x) = 3x− 1, g(x) = 1
x+ 3

54. f(x) = 3x
x− 1

, g(x) = x
x− 3

55. f(x) = x
2x+ 1

, g(x) = 2x+ 1
x

56. f(x) = 2x
x2 − 4

, g(x) =
√
1− x

In Exercises 57 – 62, use f(x) = −2x, g(x) =
√
x and h(x) =

|x| to find and simplify expressions for the following func ons
and state the domain of each using interval nota on.

57. (h ◦ g ◦ f)(x)

58. (h ◦ f ◦ g)(x)

59. (g ◦ f ◦ h)(x)

60. (g ◦ h ◦ f)(x)

61. (f ◦ h ◦ g)(x)

62. (f ◦ g ◦ h)(x)

In Exercises 63 – 72, write the given func on as a composi on
of two ormore non-iden ty func ons. (There are several cor-
rect answers, so check your answer using func on composi-
on.)

63. p(x) = (2x+ 3)3

64. P(x) =
(
x2 − x+ 1

)5
65. h(x) =

√
2x− 1

66. H(x) = |7− 3x|

67. r(x) = 2
5x+ 1

68. R(x) = 7
x2 − 1

69. q(x) = |x|+ 1
|x| − 1

70. Q(x) = 2x3 + 1
x3 − 1

71. v(x) = 2x+ 1
3− 4x

72. w(x) = x2

x4 + 1

In Exercises 73 – 92, show that the given func on is one-to-
one and find its inverse. Check your answers algebraically
and graphically. Verify that the range of f is the domain of
f−1 and vice-versa.

73. f(x) = 6x− 2

74. f(x) = 42− x

75. f(x) = x− 2
3

+ 4

76. f(x) = 1− 4+ 3x
5

77. f(x) =
√
3x− 1+ 5

78. f(x) = 2−
√
x− 5

79. f(x) = 3
√
x− 1− 4
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80. f(x) = 1− 2
√
2x+ 5

81. f(x) = 5√3x− 1

82. f(x) = 3− 3√x− 2

83. f(x) = x2 − 10x, x ≥ 5

84. f(x) = 3(x+ 4)2 − 5, x ≤ −4

85. f(x) = x2 − 6x+ 5, x ≤ 3

86. f(x) = 4x2 + 4x+ 1, x < −1

87. f(x) = 3
4− x

88. f(x) = x
1− 3x

89. f(x) = 2x− 1
3x+ 4

90. f(x) = 4x+ 2
3x− 6

91. f(x) = −3x− 2
x+ 3

92. f(x) = x− 2
2x− 1
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P (x0, y0)

Q (x1, y1)

Figure 3.1.1: The line between two points
P and Q

See www.mathforum.org or
www.mathworld.wolfram.com for
discussions on the use of the le er m to
indicate slope.

3: E F
3.1 Linear and Quadra c Func ons

3.1.1 Linear Func ons

Wenowbegin the study of families of func ons. Our first family, linear func ons,
are old friends as we shall soon see. Recall from Geometry that two dis nct
points in the plane determine a unique line containing those points, as indicated
in Figure 3.1.1.

To give a sense of the ‘steepness’ of the line, we recall that we can compute
the slope of the line using the formula below.

Defini on 3.1.1 Slope

The slopem of the line containing the points P (x0, y0) and Q (x1, y1) is:

m =
y1 − y0
x1 − x0

,

provided x1 ̸= x0.

A couple of notes about Defini on 3.1.1 are in order. First, don’t ask why we
use the le er ‘m’ to represent slope. There are many explana ons out there,
but apparently no one really knows for sure. Secondly, the s pula on x1 ̸= x0
ensures that we aren’t trying to divide by zero. The reader is invited to pause to
think about what is happening geometrically; the anxious reader can skip along
to the next example.

Example 3.1.1 Finding the slope of a line
Find the slope of the line containing the following pairs of points, if it exists. Plot
each pair of points and the line containing them.

1. P(0, 0), Q(2, 4) 2. P(−2, 3), Q(2,−3)

3. P(−3, 2), Q(4, 2) 4. P(2, 3), Q(2,−1)

S In each of these examples, we apply the slope formula, from
Defini on 3.1.1.

1. m =
4− 0
2− 0

=
4
2
= 2

P

Q

x

y

1 2 3 4

1

2

3

4

http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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Figure 3.1.2: Slope as “rise over run”
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2. m =
−3− 3
2− (−2)

=
−6
4

= −3
2

P

Q

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

3. m =
2− 2

4− (−3)
=

0
7
= 0 P Q

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4. m =
−1− 3
2− 2

=
−4
0

, which is undefined

P

Q

x

y

1 2

−3

−2

−1

1

2

3

Youmay recall fromhigh school that slope can be described as the ra o ‘ riserun ’.
For example, in the second part of Example 3.1.1, we found the slope to be 1

2 .
We can interpret this as a rise of 1 unit upward for every 2 units to the right we
travel along the line, as shown in Figure 3.1.2.

Using more formal nota on, given points (x0, y0) and (x1, y1), we use the
Greek le er delta ‘∆’ to write∆y = y1−y0 and∆x = x1−x0. In most scien fic
circles, the symbol∆means ‘change in’.

Hence, we may write

m =
∆y
∆x

,

which describes the slope as the rate of change of y with respect to x. Given a
slopem and a point (x0, y0) on a line, suppose (x, y) is another point on our line,
as in Figure 3.1.3. Defini on 3.1.1 yields

m =
y− y0
x− x0

m (x− x0) = y− y0
y− y0 = m (x− x0)

We have just derived the point-slope form of a line.
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(x0, y0)

(x, y)

Figure 3.1.3: Deriving the point-slope for-
mula

3.1 Linear and Quadra c Func ons

Key Idea 3.1.1 The point-slope form of a line

The point-slope form of the equa on of a line with slope m containing
the point (x0, y0) is the equa on y− y0 = m (x− x0).

Example 3.1.2 Using the point-slope form
Write the equa on of the line containing the points (−1, 3) and (2, 1).

S In order to use Key Idea 3.1.1 we need to find the slope of
the line in ques on so we use Defini on 3.1.1 to getm = ∆y

∆x = 1−3
2−(−1) = − 2

3 .
We are spoiled for choice for a point (x0, y0). We’ll use (−1, 3) and leave it to
the reader to check that using (2, 1) results in the same equa on. Subs tu ng
into the point-slope form of the line, we get

y− y0 = m (x− x0)

y− 3 = −2
3
(x− (−1))

y− 3 = −2
3
(x+ 1)

y− 3 = −2
3
x− 2

3

y = −2
3
x+

7
3
.

In simplifying the equa on of the line in the previous example, we produced
another form of a line, the slope-intercept form. This is the familiar y = mx+ b
form you have probably seen in high school. The ‘intercept’ in ‘slope-intercept’
comes from the fact that if we set x = 0, we get y = b. In other words, the
y-intercept of the line y = mx+ b is (0, b).

Key Idea 3.1.2 Slope intercept form of a line

The slope-intercept form of the line with slopem and y-intercept (0, b)
is the equa on y = mx+ b.

Note that if we have slope m = 0, we get the equa on y = b. The formula
given in Key Idea 3.1.2 can be used to describe all lines except ver cal lines. All
lines except ver cal lines are func ons (Why is this?) so we have finally reached
a good point to introduce linear func ons.

Defini on 3.1.2 Linear func on

A linear func on is a func on of the form

f(x) = mx+ b,

where m and b are real numbers with m ̸= 0. The domain of a linear
func on is (−∞,∞).
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Figure 3.1.4: The graph of f(x) = 3
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Figure 3.1.5: The graph of f(x) = 3x− 1
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Figure 3.1.6: The graph of f(x) = 3− 2x
4
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For the casem = 0, we get f(x) = b. These are given their own classifica on.

Defini on 3.1.3 Constant func on

A constant func on is a func on of the form

f(x) = b,

where b is real number. The domain of a constant func on is (−∞,∞).

Recall that to graph a func on, f, we graph the equa on y = f(x). Hence,
the graph of a linear func on is a line with slope m and y-intercept (0, b); the
graph of a constant func on is a horizontal line (a line with slopem = 0) and a y-
intercept of (0, b). A line with posi ve slope is called an increasing line because
a linear func on with m > 0 is an increasing func on. Similarly, a line with a
nega ve slope is called a decreasing line because a linear func on withm < 0 is
a decreasing func on. And horizontal lines were called constant because, well,
we hope you’ve already made the connec on.

Example 3.1.3 Graphing linear func ons
Graph the following func ons. Iden fy the slope and y-intercept.

1. f(x) = 3

2. f(x) = 3x− 1

3. f(x) =
3− 2x

4

4. f(x) =
x2 − 4
x− 2

S

1. To graph f(x) = 3, we graph y = 3. This is a horizontal line (m = 0)
through (0, 3): see Figure 3.1.4.

2. The graph of f(x) = 3x−1 is the graph of the line y = 3x−1. Comparison
of this equa on with Equa on 3.1.2 yields m = 3 and b = −1. Hence,
our slope is 3 and our y-intercept is (0,−1). To get another point on the
line, we can plot (1, f(1)) = (1, 2). Construc ng the line through these
points gives us Figure 3.1.5.

3. At first glance, the func on f(x) =
3− 2x

4
does not fit the form in Defi-

ni on 3.1.2 but a er some rearranging we get f(x) = 3−2x
4 = 3

4 − 2x
4 =

− 1
2x+

3
4 . We iden fym = − 1

2 and b = 3
4 . Hence, our graph is a line with

a slope of− 1
2 and a y-intercept of

(
0, 34
)
. Plo ng an addi onal point, we

can choose (1, f(1)) to get
(
1, 14
)
: see Figure 3.1.6.

4. If we simplify the expression for f, we get

f(x) =
x2 − 4
x− 2

=
����(x− 2)(x+ 2)

����(x− 2)
= x+ 2.

If wewere to state f(x) = x+2, wewould be commi ng a sin of omission.
Remember, to find the domain of a func on, we do so beforewe simplify!
In this case, f has big problems when x = 2, and as such, the domain of
f is (−∞, 2) ∪ (2,∞). To indicate this, we write f(x) = x + 2, x ̸= 2.
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Figure 3.1.7: The graph of f(x) = x2 − 4
x− 2

3.1 Linear and Quadra c Func ons

So, except at x = 2, we graph the line y = x + 2. The slope m = 1 and
the y-intercept is (0, 2). A second point on the graph is (1, f(1)) = (1, 3).
Since our func on f is not defined at x = 2, we put an open circle at the
point that would be on the line y = x + 2 when x = 2, namely (2, 4), as
shown in Figure 3.1.7.

The last two func ons in the previous example showcase some of the diffi-
culty in defining a linear func on using the phrase ‘of the form’ as in Defini on
3.1.2, since some algebraic manipula ons may be needed to rewrite a given
func on to match ‘the form’. Keep in mind that the domains of linear and con-
stant func ons are all real numbers (−∞,∞), so while f(x) = x2−4

x−2 simplified
to a formula f(x) = x+ 2, f is not considered a linear func on since its domain
excludes x = 2. However, we would consider

f(x) =
2x2 + 2
x2 + 1

to be a constant func on since its domain is all real numbers (Can you tell us
why?) and

f(x) =
2x2 + 2
x2 + 1

=
2����(
x2 + 1

)
����(
x2 + 1

) = 2.

45



Chapter 3 Essen al Func ons

3.1.2 Absolute Value Func ons

Before we move on to quadra c func ons, we pause to consider the absolute
value. The absolute value func on is an example of a piecewise func on, given
by different formulas on different parts of its domain. The absolute value func-
on is in par cular a piecewise linear func on, so we’ve chosen to place it be-

tween linear and quadra c func ons.

There are a few ways to describe what is meant by the absolute value |x| of
a real number x. You may have been taught that |x| is the distance from the real
number x to 0 on the number line. So, for example, |5| = 5 and |−5| = 5, since
each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units

−5 −4 −3 −2 −1 0 1 2 3 4 5

Another way to define absolute value is by the equa on |x| =
√
x2. Using

this defini on, we have |5| =
√

(5)2 =
√
25 = 5 and | − 5| =

√
(−5)2 =√

25 = 5. The long and short of both of these procedures is that |x| takes nega-
ve real numbers and assigns them to their posi ve counterparts while it leaves

posi ve numbers alone. This last descrip on is the one we shall adopt, and is
summarized in the following defini on.

Defini on 3.1.4 Absolute value func on

The absolute value of a real number x, denoted |x|, is given by

|x| =

{
−x, if x < 0
x, if x ≥ 0

InDefini on 3.1.4, wedefine |x|using a piecewise-defined func on. To check
that this defini on agreeswithwhatwepreviously understood as absolute value,
note that since 5 ≥ 0, to find |5| we use the rule |x| = x, so |5| = 5. Similarly,
since−5 < 0, we use the rule |x| = −x, so that |−5| = −(−5) = 5. This is one
of the mes when it’s best to interpret the expression ‘−x’ as ‘the opposite of x’
as opposed to ‘nega ve x’. Before we begin studying absolute value func ons,
we remind ourselves of the proper es of absolute value.
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Theorem 3.1.1 Proper es of Absolute Value

Let a, b and x be real numbers and let n be an integer. Then

• Product Rule: |ab| = |a||b|

• Power Rule: |an| = |a|n whenever an is defined

• Quo ent Rule:
∣∣∣ab ∣∣∣ = |a|

|b|
, provided b ̸= 0

Equality Proper es:

• |x| = 0 if and only if x = 0.

• For c > 0, |x| = c if and only if x = c or−x = c.

• For c < 0, |x| = c has no solu on.

Example 3.1.4 Solving equa ons with absolute values
Solve each of the following equa ons.

1. |3x− 1| = 6 2. 3− |x+ 5| = 1

3. 3|2x+ 1| − 5 = 0 4. 4− |5x+ 3| = 5

S

1. The equa on |3x−1| = 6 is of the form |x| = c for c > 0, so by the Equality
Proper es, |3x−1| = 6 is equivalent to 3x−1 = 6 or 3x−1 = −6. Solving
the former, we arrive at x = 7

3 , and solving the la er, we get x = − 5
3 . We

may check both of these solu ons by subs tu ng them into the original
equa on and showing that the arithme c works out.

2. To use the Equality Proper es to solve 3− |x+ 5| = 1, we first isolate the
absolute value.

3− |x+ 5| = 1
−|x+ 5| = −2 subtract 3
|x+ 5| = 2 divide by−1

From the Equality Proper es, we have x+ 5 = 2 or x+ 5 = −2, and get
our solu ons to be x = −3 or x = −7. We leave it to the reader to check
both answers in the original equa on.

3. As in the previous example, we first isolate the absolute value in the equa-
on 3|2x+1|−5 = 0 and get |2x+1| = 5

3 . Using the Equality Proper es,
we have 2x+ 1 = 5

3 or 2x+ 1 = − 5
3 . Solving the former gives x = 1

3 and
solving the la er gives x = − 4

3 . As usual, wemay subs tute both answers
in the original equa on to check.

4. Upon isola ng the absolute value in the equa on 4−|5x+3| = 5, we get
|5x+ 3| = −1. At this point, we know there cannot be any real solu on,
since, by defini on, the absolute value of anything is never nega ve. We
are done.
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f(x) = |x|, x ≥ 0
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f(x) = |x|

Figure 3.1.8: Construc ng the graph of
f(x) = |x|

Chapter 3 Essen al Func ons

Next, we turn our a en on to graphing absolute value func ons. Our strat-
egy in the next example is tomake liberal use of Defini on 3.1.4 along with what
we know about graphing linear func ons (from Sec on 3.1.1) and piecewise-
defined func ons (from Sec on 2.1).
Example 3.1.5 Graphing the absolute value func on
Graph the func on f(x) = |x|.

S To find the zeros of f, we set f(x) = 0. We get |x| = 0, which,
by Theorem 3.1.1 gives us x = 0. Since the zeros of f are the x-coordinates of
the x-intercepts of the graph of y = f(x), we get (0, 0) as our only x-intercept,
and this of course is our y-intercept as well. Using Defini on 3.1.4, we get

f(x) = |x| =

{
−x, if x < 0
x, if x ≥ 0

.

Hence, for x < 0, we are graphing the line y = −x; for x ≥ 0, we have the line
y = x. Plo ng these gives us the first two graphs in Figure 3.1.8.

No ce that we have an ‘open circle’ at (0, 0) in the graph when x < 0. As
we have seen before, this is due to the fact that the points on y = −x approach
(0, 0) as the x-values approach 0. Since x is required to be strictly less than
zero on this stretch, the open circle is drawn at the origin. However, no ce that
when x ≥ 0, we get to fill in the point at (0, 0), which effec vely ‘plugs’ the hole
indicated by the open circle. Thus our final result is the graph at the bo om of
Figure 3.1.8.
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Figure 3.1.9: The graph of the basic
quadra c func on f(x) = x2
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Figure 3.1.10: The graph y = x2 with
points labelled
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Figure 3.1.11: g(x) = f(x + 2) − 3 =
(x+ 2)2 − 3
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Figure 3.1.12: h(x) = −2f(x − 3) + 1 =
−2(x− 3)2 + 1
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3.1.3 Quadra c Func ons
Youmay recall studying quadra c equa ons in high school. In this sec on, we re-
view those equa ons in the context of our next family of func ons: the quadra c
func ons.

Defini on 3.1.5 Quadra c func on

A quadra c func on is a func on of the form

f(x) = ax2 + bx+ c,

where a, b and c are real numbers with a ̸= 0. The domain of a quadra c
func on is (−∞,∞).

Themost basic quadra c func on is f(x) = x2, whose graph is given in Figure
3.1.9. Its shape should look familiar from high school – it is called a parabola.
The point (0, 0) is called the vertex of the parabola. In this case, the vertex is a
rela ve minimum and is also the where the absolute minimum value of f can be
found.

Much likemany of the absolute value func ons in Sec on 3.1.2, knowing the
graph of f(x) = x2 enables us to graph an en re family of quadra c func ons
using transforma ons.

Example 3.1.6 Graphics quadra c func ons
Graph the following func ons star ng with the graph of f(x) = x2 and using
transforma ons. Find the vertex, state the range andfind the x- and y-intercepts,
if any exist.

1. g(x) = (x+ 2)2 − 3

2. h(x) = −2(x− 3)2 + 1

S

1. Since g(x) = (x+2)2−3 = f(x+2)−3, we shi the graph of y = f(x) to
the le 2 units, and then down three units. We move our marked points
accordingly and connect the dots in parabolic fashion to get the graph in
Figure 3.1.11.
From the graph, we see that the vertex hasmoved from (0, 0)on the graph
of y = f(x) to (−2,−3) on the graph of y = g(x). This sets [−3,∞) as the
range of g. We see that the graph of y = g(x) crosses the x-axis twice, so
we expect two x-intercepts. To find these, we set y = g(x) = 0 and solve.
Doing so yields the equa on (x+ 2)2− 3 = 0, or (x+ 2)2 = 3. Extrac ng
square roots gives x + 2 = ±

√
3, or x = −2 ±

√
3. Our x-intercepts

are (−2 −
√
3, 0) ≈ (−3.73, 0) and (−2 +

√
3, 0) ≈ (−0.27, 0). The y-

intercept of the graph, (0, 1) was one of the points we originally plo ed,
so we are done.

2. To graph h(x) = −2(x − 3)2 + 1 = −2f(x − 3) + 1, we first shi right
3 units. Next, we mul ply each of our y-values first by −2 and then add
1 to that result. Geometrically, this is a ver cal stretch by a factor of 2,
followed by a reflec on about the x-axis, followed by a ver cal shi up 1
unit. This gives us the graph in Figure 3.1.12.
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The vertex is (3, 1)which makes the range of h (−∞, 1]. From our graph,
we know that there are two x-intercepts, so we set y = h(x) = 0 and
solve. We get −2(x − 3)2 + 1 = 0 which gives (x − 3)2 = 1

2 . Extrac ng
square roots gives x− 3 = ± 1√

2 , so that when we add 3 to each side, we
get x = 3± 1√

2 . Although our graph doesn’t show it, there is a y-intercept
which can be found by se ng x = 0. With h(0) = −2(0−3)2+1 = −17,
we have that our y-intercept is (0,−17).

In the previous example, note that neither the formula given for g(x) nor
the one given for h(x) match the form given in Defini on 3.1.5. We could, of
course, convert both g(x) and h(x) into that form by expanding and collec ng
like terms. Doing so, we find g(x) = (x + 2)2 − 3 = x2 + 4x + 1 and h(x) =
−2(x− 3)2 + 1 = −2x2 + 12x− 17. While these ‘simplified’ formulas for g(x)
and h(x) sa sfy Defini on 3.1.5, they do not lend themselves to graphing easily.
For that reason, the form of g and h presented in Example 3.1.7 is given a special
name, which we list below, along with the form presented in Defini on 3.1.5.

Defini on 3.1.6 Standard andGeneral FormofQuadra c Func ons

Suppose f is a quadra c func on.

• The general form of the quadra c func on f is f(x) = ax2+bx+c,
where a, b and c are real numbers with a ̸= 0.

• The standard form of the quadra c func on f is f(x) = a(x−h)2+
k, where a, h and k are real numbers with a ̸= 0.

One of the advantages of the standard form is that we can immediately read
off the loca on of the vertex:

Theorem 3.1.2 Vertex Formula for Quadra cs in Standard Form

For the quadra c func on f(x) = a(x−h)2+k, where a, h and k are real
numbers with a ̸= 0, the vertex of the graph of y = f(x) is (h, k).

To convert a quadra c func on given in general form into standard form, we
employ the ancient rite of ‘Comple ng the Square’. We remind the reader how
this is done in our next example.

Example 3.1.7 Conver ng from general to standard form
Convert the func ons below from general form to standard form.

1. f(x) = x2 − 4x+ 3.

2. g(x) = 6− x− x2

S

1. To convert from general form to standard form, we complete the square.
First, we verify that the coefficient of x2 is 1. Next, we find the coefficient
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If you forget why we do what we do to
complete the square, start with a(x −
h)2 + k, mul ply it out, step by step, and
then reverse the process.

(0, 3)

(1, 0)

(2,−1)

(3, 0)

x = 2

x

y

−1 1 2 3 4 5

−1

2

3

4

5

6

7

8

Figure 3.1.13: f(x) = x2 − 4x+ 3

(0, 6)

(2, 0)

(
− 1

2 ,
25
4

)

(−3, 0)
x = 1

2

x

y

−3 −2 −1 1 2

2

3

4

5

6

Figure 3.1.14: g(x) = 6− x− x2

3.1 Linear and Quadra c Func ons

of x, in this case −4, and take half of it to get 1
2 (−4) = −2. This tells us

that our target perfect square quan ty is (x − 2)2. To get an expression
equivalent to (x− 2)2, we need to add (−2)2 = 4 to the x2− 4x to create
a perfect square trinomial, but to keep the balance, wemust also subtract
it. We collect the terms which create the perfect square and gather the
remaining constant terms. Pu ng it all together, we get

f(x) = x2 − 4x+ 3 (Compute 1
2 (−4) = −2.)

=
(
x2 − 4x+ 4− 4

)
+ 3 (Add and subtract (−2)2 = 4.)

=
(
x2 − 4x+ 4

)
− 4+ 3 (Group the perfect square trinomial.)

= (x− 2)2 − 1 (Factor the perfect square trinomial.)

From the standard form we can immediately (if desired) produce a sketch
of the graph of f, as shown in Figure 3.1.13.

2. To get started, we rewrite g(x) = 6− x− x2 = −x2 − x+ 6 and note that
the coefficient of x2 is−1, not 1. This means our first step is to factor out
the (−1) from both the x2 and x terms. We then follow the comple ng
the square recipe as above.

g(x) = −x2 − x+ 6
= (−1)

(
x2 + x

)
+ 6 (Factor the coefficient of x2 from x2 and x.)

= (−1)
(
x2 + x+

1
4
− 1

4

)
+ 6

= (−1)
(
x2 + x+

1
4

)
+ (−1)

(
−1
4

)
+ 6

(Group the perfect square trinomial.)

= −
(
x+

1
2

)2

+
25
4

Using the standard form, we can again obtain the graph of g, as shown in
Figure 3.1.14.

In addi on to making it easy for us to sketch the graph of a quadra c func-
on by finding the standard form, comple ng the square is also the technique

needed to obtain the famous quadra c formula.

Theorem 3.1.3 The Quadra c Formula

If a, b and c are real numbers with a ̸= 0, then the solu ons to ax2 +
bx+ c = 0 are

x =
−b±

√
b2 − 4ac
2a

.

Assuming the condi ons of Equa on 3.1.3, the solu ons to ax2+bx+ c = 0
are precisely the zeros of f(x) = ax2 + bx + c. To find these zeros (if possible),
we proceed as follows:
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ax2 + bx+ c = 0

a
(
x2 +

b
a
x
)

= −c

a
(
x2 +

b
a
x+

b2

4a2

)
= −c+

b2

4a

a
(
x+

b
2a

)2

=
b2 − 4ac

4a(
x+

b
2a

)2

=
b2 − 4ac

4a2

x+
b
2a

= ±
√
b2 − 4ac
2a

x =
−b±

√
b2 − 4ac
2a

.

In our discussions of domain, we were warned against having nega ve num-
bers underneath the square root. Given that

√
b2 − 4ac is part of the Quadra c

Formula, we will need to pay special a en on to the radicand b2 − 4ac. It turns
out that the quan ty b2 − 4ac plays a cri cal role in determining the nature of
the solu ons to a quadra c equa on. It is given a special name.

Defini on 3.1.7 Discriminant

If a, b and c are real numbers with a ̸= 0, then the discriminant of the
quadra c equa on ax2 + bx+ c = 0 is the quan ty b2 − 4ac.

The discriminant ‘discriminates’ between the kinds of solu ons we get from
a quadra c equa on. These cases, and their rela on to the discriminant, are
summarized below.

Theorem 3.1.4 Discriminant Trichotomy

Let a, b and c be real numbers with a ̸= 0.

• If b2−4ac < 0, the equa on ax2+bx+c = 0 has no real solu ons.

• If b2 − 4ac = 0, the equa on ax2 + bx + c = 0 has exactly one
real solu on.

• If b2 − 4ac > 0, the equa on ax2 + bx + c = 0 has exactly two
real solu ons.
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Exercises 3.1
Problems
In Exercises 1 – 10, find both the point-slope form and the
slope-intercept form of the line with the given slope which
passes through the given point.

1. m = 3, P(3,−1)

2. m = −2, P(−5, 8)

3. m = −1, P(−7,−1)

4. m = 2
3 , P(−2, 1)

5. m = 2
3 , P(−2, 1)

6. m = 1
7 , P(−1, 4)

7. m = 0, P(3, 117)

8. m = −
√
2, P(0,−3)

9. m = −5, P(
√
3, 2

√
3)

10. m = 678, P(−1,−12)

In Exercises 11 – 20, find the slope-intercept form of the line
which passes through the given points.

11. P(0, 0), Q(−3, 5)

12. P(−1,−2), Q(3,−2)

13. P(5, 0), Q(0,−8)

14. P(3,−5), Q(7, 4)

15. P(−1, 5), Q(7, 5)

16. P(4,−8), Q(5,−8)

17. P
( 1
2 ,

3
4

)
, Q
( 5
2 ,−

7
4

)
18. P

( 2
3 ,

7
2

)
, Q
(
− 1

3 ,
3
2

)
19. P

(√
2,−

√
2
)
, Q
(
−
√
2,
√
2
)

20. P
(
−
√
3,−1

)
, Q
(√

3, 1
)

In Exercises 21 – 26, graph the func on. Find the slope, y-
intercept and x-intercept, if any exist.

21. f(x) = 2x− 1

22. f(x) = 3− x

23. f(x) = 3

24. f(x) = 0

25. f(x) = 2
3 x+

1
3

26. f(x) = 1− x
2

In Exercises 27 – 41, solve the equa on.

27. |x| = 6

28. |3x− 1| = 10

29. |4− x| = 7

30. 4− |x| = 3

31. 2|5x+ 1| − 3 = 0

32. |7x− 1|+ 2 = 0

33. 5− |x|
2

= 1

34. 2
3 |5− 2x| − 1

2 = 5

35. |x| = x+ 3

36. |2x− 1| = x+ 1

37. 4− |x| = 2x+ 1

38. |x− 4| = x− 5

39. |x| = x2

40. |x| = 12− x2

41. |x2 − 1| = 3

Prove that if |f(x)| = |g(x)| then either f(x) = g(x) or
f(x) = −g(x). Use that result to solve the equa ons in Ex-
ercises 42 – 47.

42. |3x− 2| = |2x+ 7|

43. |3x+ 1| = |4x|

44. |1− 2x| = |x+ 1|

45. |4− x| − |x+ 2| = 0

46. |2− 5x| = 5|x+ 1|

47. 3|x− 1| = 2|x+ 1|
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In Exercises 48 – 59, graph the func on. Find the zeros of each
func on and the x- and y-intercepts of each graph, if any ex-
ist. From the graph, determine the domain and range of each
func on, list the intervals onwhich the func on is increasing,
decreasing or constant, and find the rela ve and absolute ex-
trema, if they exist.

48. f(x) = |x+ 4|

49. f(x) = |x|+ 4

50. f(x) = |4x|

51. f(x) = −3|x|

52. f(x) = 3|x+ 4| − 4

53. f(x) = 1
3 |2x− 1|

54. f(x) = |x+ 4|
x+ 4

55. f(x) = |2− x|
2− x

56. f(x) = x+ |x| − 3

57. f(x) = |x+ 2| − x

58. f(x) = |x+ 2| − |x|

59. f(x) = |x+ 4|+ |x− 2|

In Exercises 60 – 67, graph the quadra c func on. Find the
x- and y-intercepts of each graph, if any exist. If it is given
in general form, convert it into standard form; if it is given
in standard form, convert it into general form. Find the do-
main and range of the func on and list the intervals onwhich
the func on is increasing or decreasing. Iden fy the vertex
and the axis of symmetry and determine whether the vertex
yields a rela ve and absolute maximum or minimum.

60. f(x) = x2 + 2

61. f(x) = −(x+ 2)2

62. f(x) = x2 − 2x− 8

63. f(x) = −2(x+ 1)2 + 4

64. f(x) = 2x2 − 4x− 1

65. f(x) = −3x2 + 4x− 7

66. f(x) = x2 + x+ 1

67. f(x) = −3x2 + 5x+ 4

In Exercises 68 – 99, solve the inequality. Write your answer
using interval nota on.

68. |3x− 5| ≤ 4

69. |7x+ 2| > 10

70. |2x+ 1| − 5 < 0

71. |2− x| − 4 ≥ −3

72. |3x+ 5|+ 2 < 1

73. 2|7− x|+ 4 > 1

74. 2 ≤ |4− x| < 7

75. 1 < |2x− 9| ≤ 3

76. |x+ 3| ≥ |6x+ 9|

77. |x− 3| − |2x+ 1| < 0

78. |1− 2x| ≥ x+ 5

79. x+ 5 < |x+ 5|

80. x ≥ |x+ 1|

81. |2x+ 1| ≤ 6− x

82. x+ |2x− 3| < 2

83. |3− x| ≥ x− 5

84. x2 + 2x− 3 ≥ 0

85. 16x2 + 8x+ 1 > 0

86. x2 + 9 < 6x

87. 9x2 + 16 ≥ 24x

88. x2 + 4 ≤ 4x

89. x2 + 1 < 0

90. 3x2 ≤ 11x+ 4

91. x > x2

92. 2x2 − 4x− 1 > 0

93. 5x+ 4 ≤ 3x2

94. 2 ≤ |x2 − 9| < 9

95. x2 ≤ |4x− 3|

96. x2 + x+ 1 ≥ 0

97. x2 ≥ |x|
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98. x|x+ 5| ≥ −6 99. x|x− 3| < 2
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Chapter 3 Essen al Func ons

3.2 Polynomial Func ons
3.2.1 Graphs of Polynomial Func ons
Threeof the families of func ons studied thus far – constant, linear andquadra c
– belong to a much larger group of func ons called polynomials. We begin our
formal study of general polynomials with a defini on and some examples.

Defini on 3.2.1 Polynomial func on

A polynomial func on is a func on of the form

f(x) = anxn + an−1xn−1 + . . .+ a2x2 + a1x+ a0,

where a0, a1, …, an are real numbers and n ≥ 1 is a natural number. The
domain of a polynomial func on is (−∞,∞).

There are several things about Defini on 3.2.1 that may be off-pu ng or
downright frightening. The best thing to do is look at an example. Consider
f(x) = 4x5 − 3x2 + 2x − 5. Is this a polynomial func on? We can re-write the
formula for f as f(x) = 4x5+0x4+0x3+(−3)x2+2x+(−5). Comparing this with
Defini on 3.2.1, we iden fy n = 5, a5 = 4, a4 = 0, a3 = 0, a2 = −3, a1 = 2
and a0 = −5. In other words, a5 is the coefficient of x5, a4 is the coefficient of
x4, and so forth; the subscript on the a’s merely indicates to which power of x
the coefficient belongs. The business of restric ng n to be a natural number lets
us focus on well-behaved algebraic animals. (Yes, there are examples of worse
behaviour s ll to come!)

Example 3.2.1 Iden fying polynomial func ons
Determine if the following func ons are polynomials. Explain your reasoning.

1. g(x) =
4+ x3

x

2. p(x) =
4x+ x3

x

3. q(x) =
4x+ x3

x2 + 4

4. f(x) = 3
√
x

5. h(x) = |x|

6. z(x) = 0

S

1. We note directly that the domain of g(x) =
x3 + 4

x
is x ̸= 0. By defini-

on, a polynomial has all real numbers as its domain. Hence, g can’t be a
polynomial.

2. Even though p(x) =
x3 + 4x

x
simplifies to p(x) = x2 + 4, which certainly

looks like the form given in Defini on 3.2.1, the domain of p, which, as you
may recall, we determine before we simplify, excludes 0. Alas, p is not a
polynomial func on for the same reason g isn’t.

3. A er what happened with p in the previous part, you may be a li le shy

about simplifying q(x) =
x3 + 4x
x2 + 4

to q(x) = x, which certainly fits Defi-
ni on 3.2.1. If we look at the domain of q before we simplified, we see
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Oncewe get to calculus, we’ll see that the
absolute value func on is the classic ex-
ample of a func on which is con nuous
everywhere, but fails to have a deriva ve
everywhere: the graph of h(x) = |x| fails
to be “smooth” at the origin.

In the context of limits, results such as
00 are known as indeterminant forms.
These are cases where the func on fails
to be defined, but the methods of calcu-
lus might s ll be able to extract informa-
on.

3.2 Polynomial Func ons

that it is, indeed, all real numbers. A func on which can be wri en in
the form of Defini on 3.2.1 whose domain is all real numbers is, in fact, a
polynomial.

4. We can rewrite f(x) = 3
√
x as f(x) = x 1

3 . Since 1
3 is not a natural number, f

is not a polynomial.

5. The func on h(x) = |x| isn’t a polynomial, since it can’t be wri en as a
combina on of powers of x even though it can be wri en as a piecewise
func on involving polynomials. As we shall see in this sec on, graphs of
polynomials possess a quality that the graph of h does not.

6. There’s nothing in Defini on 3.2.1 which prevents all the coefficients an,
etc., from being 0. Hence, z(x) = 0, is an honest-to-goodness polynomial.

Defini on 3.2.2 Polynomial terminology

Suppose f is a polynomial func on.

• Given f(x) = anxn+an−1xn−1+ . . .+a2x2+a1x+a0 with an ̸= 0,
we say

– The natural number n is called the degree of the polynomial
f.

– The term anxn is called the leading term of the polynomial f.
– The real number an is called the leading coefficient of the
polynomial f.

– The real number a0 is called the constant term of the poly-
nomial f.

• If f(x) = a0, and a0 ̸= 0, we say f has degree 0.

• If f(x) = 0, we say f has no degree.

The reader may well wonder why we have chosen to separate off constant
func ons from the other polynomials in Defini on 3.2.2. Why not just lump
them all together and, instead of forcing n to be a natural number, n = 1, 2, . . .,
allow n to be a whole number, n = 0, 1, 2, . . .. We could unify all of the cases,
since, a er all, isn’t a0x0 = a0? The answer is ‘yes, as long as x ̸= 0.’ The
func on f(x) = 3 and g(x) = 3x0 are different, because their domains are dif-
ferent. The number f(0) = 3 is defined, whereas g(0) = 3(0)0 is not. Indeed,
much of the theory we will develop in this chapter doesn’t include the constant
func ons, so we might as well treat them as outsiders from the start. One good
thing that comes from Defini on 3.2.2 is that we can now think of linear func-
ons as degree 1 (or ‘first degree’) polynomial func ons and quadra c func ons

as degree 2 (or ‘second degree’) polynomial func ons.

57



Chapter 3 Essen al Func ons

Example 3.2.2 Using polynomial terminiology
Find the degree, leading term, leading coefficient and constant term of the fol-
lowing polynomial func ons.

1. f(x) = 4x5 − 3x2 + 2x− 5

2. g(x) = 12x+ x3

3. h(x) =
4− x
5

4. p(x) = (2x− 1)3(x− 2)(3x+ 2)

S

1. There are no surprises with f(x) = 4x5 − 3x2 + 2x− 5. It is wri en in the
form of Defini on 3.2.2, and we see that the degree is 5, the leading term
is 4x5, the leading coefficient is 4 and the constant term is−5.

2. The form given in Defini on 3.2.2 has the highest power of x first. To that
end, we re-write g(x) = 12x+ x3 = x3 + 12x, and see that the degree of
g is 3, the leading term is x3, the leading coefficient is 1 and the constant
term is 0.

3. We need to rewrite the formula for h so that it resembles the form given
in Defini on 3.2.2: h(x) = 4−x

5 = 4
5 − x

5 = − 1
5x +

4
5 . The degree of h is

1, the leading term is− 1
5x, the leading coefficient is− 1

5 and the constant
term is 4

5 .

4. It may seem that we have some work ahead of us to get p in the form
of Defini on 3.2.2. However, it is possible to glean the informa on re-
quested aboutpwithoutmul plying out the en re expression (2x−1)3(x−
2)(3x + 2). The leading term of p will be the term which has the highest
power of x. Theway to get this term is tomul ply the termswith the high-
est power of x fromeach factor together - in otherwords, the leading term
of p(x) is the product of the leading terms of the factors of p(x). Hence,
the leading term of p is (2x)3(x)(3x) = 24x5. This means that the degree
of p is 5 and the leading coefficient is 24. As for the constant term, we can
perform a similar trick. The constant term is obtained by mul plying the
constant terms from each of the factors (−1)3(−2)(2) = 4.

We now consider the graphs of polynomial func ons. In Figure 3.2.1 the
graphs of y = x2, y = x4 and y = x6, are shown. We have omi ed the axes to
allow you to see that as the exponent increases, the ‘bo om’ becomes ‘fla er’
and the ‘sides’ become ‘steeper.’ If you take the the me to graph these func-
ons by hand, (make sure you choose some x-values between −1 and 1.) you

will see why.
All of these func ons are even, (Do you remember how to show this?) and it

is exactly because the exponent is even. (Herein lies one of the possible origins
of the term ‘even’ when applied to func ons.) This symmetry is important, but
we want to explore a different yet equally important feature of these func ons
which we can be seen graphically – their end behaviour.
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When x → ∞we think of x as moving far
to the right of zero and becoming a very
large posi ve number. When x → −∞
we think of x as becoming a very large (in
the sense of its absolute value) nega ve
number far to the le of zero.

y = x2

y = x4

y = x6

Figure 3.2.1: Graphing even powers of x

y = x3

y = x5

y = x7

Figure 3.2.2: Graphing odd powers of x

3.2 Polynomial Func ons

The end behaviour of a func on is a way to describe what is happening to
the func on values (the y-values) as the x-values approach the ‘ends’ of the x-
axis. (Of course, there are no ends to the x-axis.) That is, what happens to y as
x becomes small without bound (wri en x → −∞) and, on the flip side, as x
becomes large without bound (wri en x → ∞).

For example, given f(x) = x2, as x → −∞, we imagine subs tu ng x =
−100, x = −1000, etc., into f to get f(−100) = 10000, f(−1000) = 1000000,
and so on. Thus the func on values are becoming larger and larger posi ve
numbers (without bound). To describe this behaviour, we write: as x → −∞,
f(x) → ∞. If we study the behaviour of f as x → ∞, we see that in this case,
too, f(x) → ∞. (We told you that the symmetry was important!) The same can
be said for any func on of the form f(x) = xn where n is an even natural number.
If we generalize just a bit to include ver cal scalings and reflec ons across the
x-axis, we have

Key Idea 3.2.1 End behaviour of func ons f(x) = axn, n even.

Suppose f(x) = axn where a ̸= 0 is a real number and n is an even
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

• for a > 0, as x → −∞, f(x) → ∞ and as x → ∞, f(x) → ∞

• for a < 0, as x → −∞, f(x) → −∞ and as x → ∞, f(x) → −∞

This is illustrated graphically below:

a > 0 a < 0

We now turn our a en on to func ons of the form f(x) = xn where n ≥ 3
is an odd natural number. (We ignore the case when n = 1, since the graph
of f(x) = x is a line and doesn’t fit the general pa ern of higher-degree odd
polynomials.) In Figure 3.2.2 we have graphed y = x3, y = x5, and y = x7. The
‘fla ening’ and ‘steepening’ that we saw with the even powers presents itself
here as well, and, it should come as no surprise that all of these func ons are
odd. (And are, perhaps, the inspira on for the moniker ‘odd func on’.) The end
behaviour of these func ons is all the same, with f(x) → −∞ as x → −∞ and
f(x) → ∞ as x → ∞.

As with the even degreed func ons we studied earlier, we can generalize
their end behaviour.
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In fact, when we get to Calculus, you’ll
find that smooth func ons are automat-
ically con nuous, so that saying ‘polyno-
mials are con nuous and smooth’ is re-
dundant.

‘corner’

‘break’

‘cusp’

‘hole’

Figure 3.2.3: Pathologies not found on
graphs of polynomials

Figure 3.2.4: The graph of a polynomial

Chapter 3 Essen al Func ons

Key Idea 3.2.2 End behaviour of func ons f(x) = axn, n odd.

Suppose f(x) = axn where a ̸= 0 is a real number and n ≥ 3 is an odd
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

• for a > 0, as x → −∞, f(x) → −∞ and as x → ∞, f(x) → ∞

• for a < 0, as x → −∞, f(x) → ∞ and as x → ∞, f(x) → −∞

This is illustrated graphically as follows:

a > 0 a < 0

Despite having different end behaviour, all func ons of the form f(x) = axn
for natural numbers n share two proper es which help dis nguish them from
other animals in the algebra zoo: they are con nuous and smooth. While these
concepts are formally defined using Calculus, informally, graphs of con nuous
func ons have no ‘breaks’ or ‘holes’ in them, and the graphs of smooth func ons
have no ‘sharp turns’. It turns out that these traits are preservedwhen func ons
are added together, so general polynomial func ons inherit these quali es. In
Figure 3.2.3, we find the graph of a func on which is neither smooth nor con n-
uous, and to its right we have a graph of a polynomial, for comparison. The func-
onwhose graph appears on the le fails to be con nuouswhere it has a ‘break’

or ‘hole’ in the graph; everywhere else, the func on is con nuous. The func on
is con nuous at the ‘corner’ and the ‘cusp’, but we consider these ‘sharp turns’,
so these are places where the func on fails to be smooth. Apart from these
four places, the func on is smooth and con nuous. Polynomial func ons are
smooth and con nuous everywhere, as exhibited in Figure 3.2.4.

Theno onof smoothness iswhat tells us graphically that, for example, f(x) =
|x|, whose graph is the characteris c ‘∨’ shape, cannot be a polynomial. The no-
on of con nuity is key to construc ng sign diagrams: the zeros of a polynomial

func on are the only possible places where it can change sign. This last result is
formalized in the following theorem.

Theorem 3.2.1 The Intermediate Value Theorem (Zero Version)

Suppose f is a con nuous func on on an interval containing x = a and
x = bwith a < b. If f(a) and f(b) have different signs, then f has at least
one zero between x = a and x = b; that is, for at least one real number
c such that a < c < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart
of what it means to be a real number, and is one of the most o en used and un-
der appreciated theorems in Mathema cs. With that being said, most students
see the result as common sense since it says, geometrically, that the graph of a
polynomial func on cannot be above the x-axis at one point and below the x-
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The validity of the result in Example 3.2.3
of course relies on having a rigorous proof
of Theorem 3.2.1. Although intui ve, its
proof is one of the most difficult in sin-
gle variable calculus. Atmost universi es,
you don’t see a proof un l a first course in
Analysis, like Math 3500.

−2 0 3

(+)

−3

0 (−)

−1

0 (+)

1

0 (+)

4

Figure 3.2.5: The sign diagram of f in Ex-
ample 3.2.4

x

y

Figure 3.2.6: The graph y = f(x) for Ex-
ample 3.2.4

3.2 Polynomial Func ons

axis at another point without crossing the x-axis somewhere in between. We’ll
return to the Intermediate Value Theorem later in the Calculus por on of the
course, when we study con nuity in general. The following example uses the
Intermediate Value Theorem to establish a fact that that most students take for
granted. Many students, and sadly some instructors, will find it silly.

Example 3.2.3 Existence of
√
2

Use the Intermediate Value Theorem to establish that
√
2 is a real number.

S Consider the polynomial func on f(x) = x2−2. Then f(1) =
−1 and f(3) = 7. Since f(1) and f(3) have different signs, the Intermediate
Value Theorem guarantees us a real number c between 1 and 3 with f(c) = 0. If
c2 − 2 = 0 then c = ±

√
2. Since c is between 1 and 3, c is posi ve, so c =

√
2.

Our primary use of the Intermediate Value Theorem is in the construc on
of sign diagrams, since it guarantees us that polynomial func ons are always
posi ve (+) or always nega ve (−) on intervals which do not contain any of its
zeros. The general algorithm for polynomials is given below.

Key Idea 3.2.3 Steps for Construc ng a Sign Diagram for a Polyno-
mial Func on

Suppose f is a polynomial func on.

1. Find the zeros of f and place them on the number line with the
number 0 above them.

2. Choose a real number, called a test value, in each of the intervals
determined in step 1.

3. Determine the sign of f(x) for each test value in step 2, and write
that sign above the corresponding interval.

Example 3.2.4 Using a sign diagram to sketch a polynomial
Construct a sign diagram for f(x) = x3(x− 3)2(x+ 2)

(
x2 + 1

)
. Use it to give a

rough sketch of the graph of y = f(x).

S First, wefind the zeros of fby solving x3(x−3)2(x+2)
(
x2 + 1

)
=

0. We get x = 0, x = 3 and x = −2. (The equa on x2 + 1 = 0 produces no
real solu ons.) These three points divide the real number line into four inter-
vals: (−∞,−2), (−2, 0), (0, 3) and (3,∞). We select the test values x = −3,
x = −1, x = 1 and x = 4. We find f(−3) is (+), f(−1) is (−) and f(1) is (+)
as is f(4). Wherever f is (+), its graph is above the x-axis; wherever f is (−), its
graph is below the x-axis. The x-intercepts of the graph of f are (−2, 0), (0, 0)
and (3, 0). Knowing f is smooth and con nuous allows us to sketch its graph in
Figure 3.2.6.

A couple of notes about the Example 3.2.4 are in order. First, note that we
purposefully did not label the y-axis in the sketch of the graph of y = f(x). This
is because the sign diagram gives us the zeros and the rela ve posi on of the
graph - it doesn’t give us any informa on as to how high or low the graph strays
from the x-axis. Furthermore, as we have men oned earlier in the text, without
Calculus, the values of the rela ve maximum and minimum can only be found
approximately using a calculator. If we took the me to find the leading term of
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A view close to the origin

A ‘zoomed out’ view

Figure 3.2.7: Two views of the polynomi-
als f(x) and g(x)
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f, we would find it to be x8. Looking at the end behaviour of f, we no ce that it
matches the end behaviour of y = x8. This is no accident, as we find out in the
next theorem.

Theorem 3.2.2 End behaviour for Polynomial Func ons

The end behaviour of a polynomial f(x) = anxn+an−1xn−1+. . .+a2x2+
a1x+ a0 with an ̸= 0 matches the end behaviour of y = anxn.

To see why Theorem 3.2.2 is true, let’s first look at a specific example. Con-
sider f(x) = 4x3 − x + 5. If we wish to examine end behaviour, we look to see
the behaviour of f as x → ±∞. Since we’re concerned with x’s far down the
x-axis, we are far away from x = 0 so can rewrite f(x) for these values of x as

f(x) = 4x3
(
1− 1

4x2
+

5
4x3

)

As x becomes unbounded (in either direc on), the terms
1
4x2

and
5
4x3

be-
come closer and closer to 0, as the table below indicates.

x 1
4x2

5
4x3

−1000 0.00000025 −0.00000000125
−100 0.000025 −0.00000125
−10 0.0025 −0.00125
10 0.0025 0.00125

100 0.000025 0.00000125
1000 0.00000025 0.00000000125

In other words, as x → ±∞, f(x) ≈ 4x3 (1− 0+ 0) = 4x3, which is the
leading term of f. The formal proof of Theorem 3.2.2 works in much the same
way. Factoring out the leading term leaves

f(x) = anxn
(
1+

an−1

anx
+ . . .+

a2
anxn−2 +

a1
anxn−1 +

a0
anxn

)
As x → ±∞, any term with an x in the denominator becomes closer and

closer to 0, and we have f(x) ≈ anxn. Geometrically, Theorem 3.2.2 says that if
we graph y = f(x) using a graphing calculator, and con nue to ‘zoom out’, the
graph of it and its leading term become indis nguishable. In Figure 3.2.7 the
graphs of y = 4x3 − x+ 5 and y = 4x3 ) in two different windows.

Let’s return to the func on in Example 3.2.4, f(x) = x3(x−3)2(x+2)
(
x2 + 1

)
,

whose sign diagram and graph are given in Figures 3.2.5 and 3.2.6. Theorem
3.2.2 tells us that the end behaviour is the same as that of its leading term x8.
This tells us that the graph of y = f(x) starts and ends above the x-axis. In other
words, f(x) is (+) as x → ±∞, and as a result, we no longer need to evaluate
f at the test values x = −3 and x = 4. Is there a way to eliminate the need to
evaluate f at the other test values? What we would really need to know is how
the func on behaves near its zeros - does it cross through the x-axis at these
points, as it does at x = −2 and x = 0, or does it simply touch and rebound
like it does at x = 3. From the sign diagram, the graph of f will cross the x-axis
whenever the signs on either side of the zero switch (like they do at x = −2 and
x = 0); it will touch when the signs are the same on either side of the zero (as is
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the case with x = 3). What we need to determine is the reason behind whether
or not the sign change occurs.

Fortunately, f was given to us in factored form: f(x) = x3(x − 3)2(x + 2).
When we a empt to determine the sign of f(−4), we are a emp ng to find the
sign of the number (−4)3(−7)2(−2), which works out to be (−)(+)(−) which
is (+). If we move to the other side of x = −2, and find the sign of f(−1), we
are determining the sign of (−1)3(−4)2(+1), which is (−)(+)(+) which gives
us the (−). No ce that signs of the first two factors in both expressions are the
same in f(−4) and f(−1). The only factor which switches sign is the third factor,
(x + 2), precisely the factor which gave us the zero x = −2. If we move to the
other side of 0 and look closely at f(1), we get the sign pa ern (+1)3(−2)2(+3)
or (+)(+)(+) and we note that, once again, going from f(−1) to f(1), the only
factor which changed sign was the first factor, x3, which corresponds to the
zero x = 0. Finally, to find f(4), we subs tute to get (+4)3(+2)2(+5) which
is (+)(+)(+) or (+). The sign didn’t change for the middle factor (x − 3)2.
Even though this is the factor which corresponds to the zero x = 3, the fact that
the quan ty is squared kept the sign of the middle factor the same on either
side of 3. If we look back at the exponents on the factors (x+ 2) and x3, we see
that they are both odd, so as we subs tute values to the le and right of the cor-
responding zeros, the signs of the corresponding factors change which results in
the sign of the func on value changing. This is the key to the behaviour of the
func on near the zeros. We need a defini on and then a theorem.

Defini on 3.2.3 Mul plicity of a zero

Suppose f is a polynomial func on andm is a natural number. If (x− c)m
is a factor of f(x) but (x − c)m+1 is not, then we say x = c is a zero of
mul plicitym.

Hence, rewri ng f(x) = x3(x−3)2(x+2) as f(x) = (x−0)3(x−3)2(x−(−2))1,
we see that x = 0 is a zero of mul plicity 3, x = 3 is a zero of mul plicity 2 and
x = −2 is a zero of mul plicity 1.

Theorem 3.2.3 The Role of Mul plicity

Suppose f is a polynomial func on and x = c is a zero of mul plicitym.

• Ifm is even, the graph of y = f(x) touches and rebounds from the
x-axis at (c, 0).

• If m is odd, the graph of y = f(x) crosses through the x-axis at
(c, 0).

Our last example showshowendbehaviour andmul plicity allowus to sketch
a decent graph without appealing to a sign diagram.

Example 3.2.5 Using end behaviour and mul plicity
Sketch the graph of f(x) = −3(2x − 1)(x + 1)2 using end behaviour and the
mul plicity of its zeros.

S The end behaviour of the graph of f will match that of its
leading term. To find the leading term, wemul ply by the leading terms of each
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Figure 3.2.8: The graph y = f(x) for Ex-
ample 3.2.5

Chapter 3 Essen al Func ons

factor to get (−3)(2x)(x)2 = −6x3. This tells us that the graph will start above
the x-axis, in Quadrant II, and finish below the x-axis, in Quadrant IV. Next, we
find the zeros of f. Fortunately for us, f is factored. (Obtaining the factored form
of a polynomial is the main focus of the next few sec ons.) Se ng each factor
equal to zero gives is x = 1

2 and x = −1 as zeros. To find the mul plicity of
x = 1

2 we note that it corresponds to the factor (2x − 1). This isn’t strictly in
the form required in Defini on 3.2.3. If we factor out the 2, however, we get
(2x−1) = 2

(
x− 1

2
)
, and we see that the mul plicity of x = 1

2 is 1. Since 1 is an
odd number, we know from Theorem 3.2.3 that the graph of fwill cross through
the x-axis at

( 1
2 , 0
)
. Since the zero x = −1 corresponds to the factor (x+ 1)2 =

(x−(−1))2, we find itsmul plicity to be 2which is an even number. As such, the
graph of f will touch and rebound from the x-axis at (−1, 0). Though we’re not
asked to, we can find the y-intercept by finding f(0) = −3(2(0)−1)(0+1)2 = 3.
Thus (0, 3) is an addi onal point on the graph. Pu ng this together gives us the
graph in Figure 3.2.8.

3.2.2 Polynomial Arithme c
The previous sec on introduced all the important polynomial terminology and
taught us the basic techniques for graphing polynomial func ons. We saw that a
necessary ingredient for obtaining the graph of a polynomial func on is knowl-
edge of the zeros of the polynomial. In the next few sec ons, we will cover the
algebraic techniques needed to obtain this informa on.

In this sec on our focus is en rely on algebraic manipula on, so we will
pause briefly in our discussion of func ons, and simply consider polynomial ex-
pressions. (That is, we simply dispense with wri ng “p(x) =” in front of every
polynomial.)

We begin with (you guessed it) a bit more terminology that can come in
handy when comparing polynomials.

Defini on 3.2.4 Polynomial Vocabulary, Part 2

• Like Terms: Terms in a polynomial are called like terms if they have
the same variables each with the same corresponding exponents.

• Simplified: A polynomial is said to be simplified if all arithme c
opera ons have been completed and there are no longer any like
terms.

• Classifica on by Number of Terms: A simplified polynomial is
called a

– monomial if it has exactly one nonzero term
– binomial if it has exactly two nonzero terms
– trinomial if it has exactly three nonzero terms

For example, x2 + x
√
3+ 4 is a trinomial of degree 2. The coefficient of x2 is

1 and the constant term is 4. The polynomial 27x2y+ 7x
2 is a binomial of degree

3 (x2y = x2y1) with constant term 0.

The concept of ‘like’ terms really amounts to finding terms which can be
combinedusing theDistribu ve Property. For example, in the polynomial 17x2y−
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We caved to peer pressure on this one.
Apparently all of the cool Precalculus
books have FOIL in them even though it’s
redundant once you know how to dis-
tribute mul plica on across addi on. In
general, we don’t like mechanical short-
cuts that interfere with a student’s under-
standing of thematerial and FOIL is one of
the worst.
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3xy2 + 7xy2, −3xy2 and 7xy2 are like terms, since they have the same variables
with the same corresponding exponents. This allows us to combine these two
terms as follows:

17x2y−3xy2+7xy2 = 17x2y+(−3)xy2+7xy2+17x2y+(−3+7)xy2 = 17x2y+4xy2

Note that even though 17x2y and 4xy2 have the same variables, they are not like
terms since in the first term we have x2 and y = y1 but in the second we have
x = x1 and y = y2 so the corresponding exponents aren’t the same. Hence,
17x2y+ 4xy2 is the simplified form of the polynomial.

There are four basic opera ons we can perform with polynomials: addi on,
subtrac on, mul plica on and division. The first three of these opera ons fol-
low directly from proper es of real number arithme c and will be discussed
together first. Division, on the other hand, is a bit more complicated and will be
discussed separately.

3.2.3 Polynomial Addi on, Subtrac on and Mul plica on.
Adding and subtrac ng polynomials comes down to iden fying like terms and
then adding or subtrac ng the coefficients of those like terms. Mul plying poly-
nomials comes to us courtesy of the Generalized Distribu ve Property.

Theorem 3.2.4 Generalized Distribu ve Property

To mul ply a quan ty of n terms by a quan ty ofm terms, mul ply each
of the n terms of the first quan ty by each of them terms in the second
quan ty and add the resul ng n ·m terms together.

In par cular, Theorem3.2.4 says that, before combining like terms, a product
of an n-term polynomial and anm-term polynomial will generate (n ·m)-terms.
For example, a binomial mes a trinomial will produce six terms some of which
may be like terms. Thus the simplified end result may have fewer than six terms
but you will start with six terms.

A special case of Theorem 3.2.4 is the famous F.O.I.L., listed here:

Key Idea 3.2.4 F.O.I.L:

The terms generated from the product of two binomials: (a+ b)(c+ d)
can be verbalized as follows “Take the sum of:

• the product of the First terms a and c, ac

• the product of the Outer terms a and d, ad

• the product of the Inner terms b and c, bc

• the product of the Last terms b and d, bd.”

That is, (a+ b)(c+ d) = ac+ ad+ bc+ bd.
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Theorem 3.2.4 is best proved using the technique known as Mathema cal
Induc on which is covered in Math 2000. The result is really nothing more than
repeated applica ons of the Distribu ve Property so it seems reasonable and
we’ll use it without proof for now. The other major piece of polynomial mul pli-
ca on is the law of exponents anam = an+m. The Commuta ve and Associa ve
Proper es of addi on and mul plica on are also used extensively. We put all
of these proper es to good use in the next example.

Example 3.2.6 Addi on and subtrac on of polynomials
Perform the indicated opera ons and simplify.

1.
(
3x2 − 2x+ 1

)
− (7x− 3)

2. 4xz2 − 3z(xz− x+ 4)

3. (2t+ 1)(3t− 7)

4.
(
3y− 3

√
2
) (

9y2 + 3 3
√
2y+ 3

√
4
)

S

1. We begin ‘distribu ng the nega ve’, then we rearrange and combine like
terms:(

3x2 − 2x+ 1
)
− (7x− 3) = 3x2 − 2x+ 1− 7x+ 3 Distribute

= 3x2 − 2x− 7x+ 1+ 3 Rearrange terms
= 3x2 − 9x+ 4 Combine like terms

Our answer is 3x2 − 9x+ 4.

2. Following in our footsteps from the previous example, we first distribute
the−3z through, then rearrange and combine like terms.

4xz2 − 3z(xz− x+ 4) = 4xz2 − 3z(xz) + 3z(x)− 3z(4) Distribute
= 4xz2 − 3xz2 + 3xz− 12z Mul ply
= xz2 + 3xz− 12z Combine like terms

We get our final answer: xz2 + 3xz− 12z

3. At last, we have a chance to use our F.O.I.L. technique:

(2t+ 1)(3t− 7) = (2t)(3t) + (2t)(−7) + (1)(3t) + (1)(−7) F.O.I.L.
= 6t2 − 14t+ 3t− 7 Mul ply
= 6t2 − 11t− 7 Combine like terms

We get 6t2 − 11t− 7 as our final answer.

4. We use the Generalized Distribu ve Property here, mul plying each term
in the second quan ty first by 3y, then by− 3

√
2:(

3y− 3
√
2
)(

9y2 + 3 3
√
2y+ 3

√
4
)
= 3y

(
9y2
)
+ 3y

(
3 3
√
2y
)
+ 3y

(
3
√
4
)

− 3
√
2
(
9y2
)
− 3
√
2
(
3 3
√
2y
)
− 3
√
2
(

3
√
4
)

= 27y3 + 9y2 3
√
2− 9y2 3

√
2+ 3y 3

√
4− 3y 3

√
4− 2

= 27y3 − 2

To our surprise and delight, this product reduces to 27y3 − 2.
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We conclude our discussion of polynomial mul plica on by showcasing two
special productswhich happeno en enough they should be commi ed tomem-
ory.

Key Idea 3.2.5 Special Products

Let a and b be real numbers:

• Perfect Square: (a+ b)2 = a2 + 2ab+ b2 and
(a− b)2 = a2 − 2ab+ b2

• Difference of Two Squares: (a− b)(a+ b) = a2 − b2

The formulas in Theorem 3.2.5 can be verified by working through the mul-
plica on. (These are both special cases of F.O.I.L.)

3.2.4 Polynomial Long Division.

We now turn our a en on to polynomial long division. Dividing two polyno-
mials follows the same algorithm, in principle, as dividing two natural numbers
so we review that process first. Suppose we wished to divide 2585 by 79. The
standard division tableau is given below.

32
79 2585
− 2 37↓

215
−158

57

In this case, 79 is called the divisor, 2585 is called the dividend, 32 is called
the quo ent and 57 is called the remainder. We can check our answer by show-
ing:

dividend = (divisor)(quo ent) + remainder

or in this case, 2585 = (79)(32)+ 57X. We hope that the long division tableau
evokes warm, fuzzy memories of your forma ve years as opposed to feelings
of hopelessness and frustra on. If you experience the la er, keep in mind that
the Division Algorithm essen ally is a two-step process, iterated over and over
again. First, we guess the number of mes the divisor goes into the dividend and
then we subtract off our guess. We repeat those steps with what’s le over un l
what’s le over (the remainder) is less than what we started with (the divisor).
That’s all there is to it!

The division algorithm for polynomials has the same basic two steps but
when we subtract polynomials, wemust take care to subtract like terms only. As
a transi on to polynomial division, let’s write out our previous division tableau
in expanded form.
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3 · 10 + 2
7 · 10+9 2 · 103 + 5 · 102 + 8 · 10 + 5

−
(
2 · 103+ 3 · 102 +7 · 10) ↓

2 · 102 + 1 · 10 + 5
−
(
1 · 102+ 5 · 10 +8)

5 · 10 + 7

Wri en this way, we see that when we line up the digits we are really lining
up the coefficients of the corresponding powers of 10 - much like howwe’ll have
to keep the powers of x lined up in the same columns. The big difference be-
tween polynomial division and the division of natural numbers is that the value
of x is an unknown quan ty. So unlike using the known value of 10, when we
subtract there can be no regrouping of coefficients as in our previous example.
(The subtrac on 215 − 158 requires us to ‘regroup’ or ‘borrow’ from the tens
digit, then the hundreds digit.) This actually makes polynomial division easier.
(In our opinion - you can judge for yourself.) Before we dive into examples, we
first note that for any polynomial func ons d(x) and p(x) such that the degree
of p is greater than or equal to the degree of d, there exist unique polynomial
func ons q(x) and r(x) such that

p(x) = d(x)q(x) + r(x),

and either r(x) = 0, or the degree of r is less than the degree of d. This result
tells us that we can divide polynomials whenever the degree of the divisor is
less than or equal to the degree of the dividend. We know we’re done with
the division when the polynomial le over (the remainder) has a degree strictly
less than the divisor. It’s me to walk through a few examples to refresh your
memory.
Example 3.2.7 Polynomial long division
Perform the indicated division. Check your answer by showing

dividend = (divisor)(quo ent) + remainder

1.
(
x3 + 4x2 − 5x− 14

)
÷ (x− 2)

2. (2t+ 7)÷ (3t− 4)

3.
(
6y2 − 1

)
÷ (2y+ 5)

4.
(
w3)÷ (w2 −

√
2
)
.

S

1. To begin
(
x3 + 4x2 − 5x− 14

)
÷ (x − 2), we divide the first term in the

dividend, namely x3, by the first term in the divisor, namely x, and get
x3
x = x2. This then becomes the first term in the quo ent. We proceed as
in regular long division at this point: we mul ply the en re divisor, x− 2,
by this first term in the quo ent to get x2(x − 2) = x3 − 2x2. We then
subtract this result from the dividend.

x2

x−2 x3 + 4x2 −5x−14
−
(
x3−2x2

)
↓

6x2 −5x
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Now we ‘bring down’ the next term of the quo ent, namely −5x, and
repeat the process. We divide 6x2

x = 6x, and add this to the quo ent
polynomial, mul ply it by the divisor (which yields 6x(x−2) = 6x2−12x)
and subtract.

x2 + 6x
x−2 x3 + 4x2 − 5x −14

−
(
x3−2x2

)
↓

6x2 − 5x ↓
−
(
6x2−12x) ↓

7x −14

Finally, we ‘bring down’ the last term of the dividend, namely −14, and
repeat the process. We divide 7x

x = 7, add this to the quo ent, mul ply
it by the divisor (which yields 7(x− 2) = 7x− 14) and subtract.

x2 + 6x + 7
x−2 x3 + 4x2 − 5x − 14

−
(
x3−2x2

)
6x2 − 5x

−
(
6x2−12x)

7x − 14
− (7x −14)

0

In this case, we get a quo ent of x2 + 6x + 7 with a remainder of 0. To
check our answer, we compute

(x−2)
(
x2 + 6x+ 7

)
+0 = x3+6x2+7x−2x2−12x−14 = x3+4x2−5x−14X

2. To compute (2t+ 7) ÷ (3t− 4), we start as before. We find 2t
3t = 2

3 , so
that becomes the first (and only) term in the quo ent. We mul ply the
divisor (3t − 4) by 2

3 and get 2t − 8
3 . We subtract this from the divided

and get 29
3 .

2
3

3t−4 2t + 7

−
(
2t− 8

3

)
29
3

Our answer is 2
3 with a remainder of 29

3 . To check our answer, we compute

(3t− 4)
(
2
3

)
+

29
3

= 2t− 8
3
+

29
3

= 2t+
21
3

= 2t+ 7X

3. When we set-up the tableau for
(
6y2 − 1

)
÷ (2y+ 5), we must first issue

a ‘placeholder’ for the ‘missing’ y-term in the dividend, 6y2 − 1 = 6y2 +
0y − 1. We then proceed as before. Since 6y2

2y = 3y, 3y is the first term
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in our quo ent. We mul ply (2y + 5) mes 3y and subtract it from the
dividend. We bring down the−1, and repeat.

3y − 15
2

2y+5 6y2 + 0y − 1

−
(
6y2+ 15y) ↓

−15y − 1

−
(
−15y− 75

2

)
73
2

Our answer is 3y − 15
2 with a remainder of 73

2 . To check our answer, we
compute:

(2y+ 5)
(
3y− 15

2

)
+

73
2

= 6y2 − 15y+ 15y− 75
2

+
73
2

= 6y2 − 1X

4. For our last example, we need ‘placeholders’ for both the divisor w2 −√
2 = w2 + 0w −

√
2 and the dividend w3 = w3 + 0w2 + 0w + 0. The

first term in the quo ent is w3

w2 = w, and when we mul ply and subtract
this from the dividend, we’re le with just 0w2 + w

√
2+ 0 = w

√
2.

w
w2+0w−

√
2 w3 +0w2+ 0w +0
−
(
w3+0w2−w

√
2
)

↓
0w2+ w

√
2 +0

Since the degree ofw
√
2 (which is 1) is less than the degree of the divisor

(which is 2), we are done. Our answer is w with a remainder of w
√
2. To

check, we compute:(
w2 −

√
2
)
w+ w

√
2 = w3 − w

√
2+ w

√
2 = w3 X
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Exercises 3.2
Problems
In Exercises 1 – 10, solve the inequality. Write your answer
using interval nota on.

1. f(x) = 4− x− 3x2

2. g(x) = 3x5 − 2x2 + x+ 1

3. q(r) = 1− 16r4

4. Z(b) = 42b− b3

5. f(x) =
√
3x17 + 22.5x10 − πx7 + 1

3

6. s(t) = −4.9t2 + v0t+ s0

7. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)

8. p(t) = −t2(3− 5t)(t2 + t+ 4)

9. f(x) = −2x3(x+ 1)(x+ 2)2

10. G(t) = 4(t− 2)2
(
t+ 1

2

)
In Exercises 11 – 20, find the real zeros of the given polyno-
mial and their correspondingmul plici es. Use this informa-
on along with a sign chart to provide a rough sketch of the

graph of the polynomial. Compare your answer with the re-
sult from a graphing u lity.

11. a(x) = x(x+ 2)2

12. g(x) = x(x+ 2)3

13. f(x) = −2(x− 2)2(x+ 1)

14. g(x) = (2x+ 1)2(x− 3)

15. F(x) = x3(x+ 2)2

16. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)

17. Q(x) = (x+ 5)2(x− 3)4

18. h(x) = x2(x− 2)2(x+ 2)2

19. H(t) = (3− t)(t2 + 1)

20. Z(b) = b(42− b2)

21. Here are a few other ques ons for you to discuss with your
classmates.

(a) How many local extrema could a polynomial of de-
gree n have? How few local extrema can it have?

(b) Could a polynomial have two local maxima but no lo-
cal minima?

(c) If a polynomial has two local maxima and two local
minima, can it be of odd degree? Can it be of even
degree?

(d) Can a polynomial have local extrema without having
any real zeros?

(e) Why must every polynomial of odd degree have at
least one real zero?

(f) Can a polynomial have two dis nct real zeros and no
local extrema?

(g) Can an x-intercept yield a local extrema? Can it yield
an absolute extrema?

(h) If the y-intercept yields an absolute minimum, what
can we say about the degree of the polynomial and
the sign of the leading coefficient?

In Exercises 22 – 36, perform the indicated opera ons and
simplify.

22. (4− 3x) + (3x2 + 2x+ 7)

23. t2 + 4t− 2(3− t)

24. q(200− 3q)− (5q+ 500)

25. (3y− 1)(2y+ 1)

26.
(
3− x

2

)
(2x+ 5)

27. −(4t+ 3)(t2 − 2)

28. 2w(w3 − 5)(w3 + 5)

29. (5a2 − 3)(25a4 + 15a2 + 9)

30. (x2 − 2x+ 3)(x2 + 2x+ 3)

31. (
√
7− z)(

√
7+ z)

32. (x− 3√5)3

33. (x− 3√5)(x2 + x 3√5+ 3√25)

34. (w− 3)2 − (w2 + 9)

35. (x+ h)2 − 2(x+ h)− (x2 − 2x)

36. (x− [2+
√
5])(x− [2−

√
5])

In Exercises 37 – 48, perform the indicated opera ons and
simplify.

37. (5x2 − 3x+ 1)÷ (x+ 1)

38. (3y2 + 6y− 7)÷ (y− 3)
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39. (6w− 3)÷ (2w+ 5)

40. (2x+ 1)÷ (3x− 4)

41. (t2 − 4)÷ (2t+ 1)

42. (w3 − 8)÷ (5w− 10)

43. (2x2 − x+ 1)÷ (3x2 + 1)

44. (4y4 + 3y2 + 1)÷ (2y2 − y+ 1)

45. w4 ÷ (w3 − 2)

46. (5t3 − t+ 1)÷ (t2 + 4)

47. (t3 − 4)÷ (t− 3√4)

48. Perfect Cube: (a+ b)3 = a3 + 3a2b+ 3ab2 + b3

In Exercises 49 – 55, verify the given formula by showing the
le hand side of the equa on simplifies to the right hand side
of the equa on.

49. Perfect Cube: (a+ b)3 = a3 + 3a2b+ 3ab2 + b3

50. Difference of Cubes: (a− b)(a2 + ab+ b2) = a3 − b3

51. Sum of Cubes: (a+ b)(a2 − ab+ b2) = a3 + b3

52. Perfect Quar c: (a+b)4 = a4+4a3b+6a2b2+4ab3+b4

53. Difference of Quar cs: (a− b)(a+ b)(a2 + b2) = a4 − b4

54. Sum of Quar cs: (a2 + ab
√
2 + b2)(a2 − ab

√
2 + b2) =

a4 + b4
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According to Defini on 3.3.1, all polyno-
mial func ons are also ra onal func ons,
since we can take q(x) = 1.

3.3 Ra onal Func ons

3.3 Ra onal Func ons

3.3.1 Introduc on to Ra onal Func ons

If we add, subtract or mul ply polynomial func ons according to the func on
arithme c rules defined in Sec on 2.2.1, we will produce another polynomial
func on. If, on the other hand, we divide two polynomial func ons, the result
may not be a polynomial. In this chapter we study ra onal func ons - func ons
which are ra os of polynomials.

Defini on 3.3.1 Ra onal Func on

A ra onal func on is a func on which is the ra o of polynomial func-
ons. Said differently, r is a ra onal func on if it is of the form

r(x) =
p(x)
q(x)

,

where p and q are polynomial func ons.

As we recall from Sec on 2.1, we have domain issues any me the denomi-
nator of a frac on is zero. In the example below, we review this concept as well
as some of the arithme c of ra onal expressions.

Example 3.3.1 Domain of ra onal func ons
Find the domain of the following ra onal func ons. Write them in the form

p(x)
q(x)

for polynomial func ons p and q and simplify.

1. f(x) =
2x− 1
x+ 1

2. g(x) = 2− 3
x+ 1

3. h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

4. r(x) =
2x2 − 1
x2 − 1

÷ 3x− 2
x2 − 1

S

1. To find the domain of f, we proceed as we did in Sec on 2.1: we find
the zeros of the denominator and exclude them from the domain. Se ng
x+ 1 = 0 results in x = −1. Hence, our domain is (−∞,−1)∪ (−1,∞).
The expression f(x) is already in the form requested and when we check
for common factors among the numerator anddenominatorwefindnone,
so we are done.

2. Proceeding as before, we determine the domain of g by solving x+1 = 0.
As before, we find the domain of g is (−∞,−1)∪ (−1,∞). To write g(x)
in the form requested, we need to get a common denominator

73



Chapter 3 Essen al Func ons

g(x) = 2− 3
x+ 1

=
2
1
− 3

x+ 1
=

(2)(x+ 1)
(1)(x+ 1)

− 3
x+ 1

=
(2x+ 2)− 3

x+ 1
=

2x− 1
x+ 1

This formula is now completely simplified.

3. The denominators in the formula for h(x) are both x2−1 whose zeros are
x = ±1. As a result, the domain of h is (−∞,−1) ∪ (−1, 1) ∪ (1,∞).
We now proceed to simplify h(x). Since we have the same denominator
in both terms, we subtract the numerators. We then factor the resul ng
numerator and denominator, and cancel out the common factor.

h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

=

(
2x2 − 1

)
− (3x− 2)

x2 − 1

=
2x2 − 1− 3x+ 2

x2 − 1
=

2x2 − 3x+ 1
x2 − 1

=
(2x− 1)(x− 1)
(x+ 1)(x− 1)

=
(2x− 1)����(x− 1)
(x+ 1)����(x− 1)

=
2x− 1
x+ 1

4. To find the domain of r, it may help to temporarily rewrite r(x) as

r(x) =

2x2 − 1
x2 − 1
3x− 2
x2 − 1

We need to set all of the denominators equal to zero which means we
need to solve not only x2−1 = 0, but also

3x− 2
x2 − 1

= 0. Wefind x = ±1 for

the former and x = 2
3 for the la er. Our domain is (−∞,−1)∪

(
−1, 23

)
∪( 2

3 , 1
)
∪(1,∞). We simplify r(x) by rewri ng the division asmul plica on

by the reciprocal and then by cancelling the common factor

r(x) =
2x2 − 1
x2 − 1

÷ 3x− 2
x2 − 1

=
2x2 − 1
x2 − 1

· x
2 − 1
3x− 2

=

(
2x2 − 1

) (
x2 − 1

)
(x2 − 1) (3x− 2)

=

(
2x2 − 1

)
����(
x2 − 1

)
����(
x2 − 1

)
(3x− 2)

=
2x2 − 1
3x− 2

In Example 3.3.1, note that the expressions for f(x), g(x) and h(x) work out
to be the same. However, only two of these func ons are actually equal. For
two func ons to be equal, they need, among other things, to have the same
domain. Since f(x) = g(x) and f and g have the same domain, they are equal
func ons. Even though the formula h(x) is the same as f(x), the domain of h is
different than the domain of f, and thus they are different func ons.
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Figure 3.3.1: The graph of f(x) = 2x− 1
x+ 1

x f(x) (x, f(x))
−1.1 32 (−1.1, 32)

−1.01 302 (−1.01, 302)
−1.001 3002 (−1.001, 3002)

−1.0001 30002 (−1.001, 30002)

x f(x) (x, f(x))
−0.9 −28 (−0.9,−28)

−0.99 −298 (−0.99,−298)
−0.999 −2998 (−0.999,−2998)

−0.9999 −29998 (−0.9999,−29998)

Figure 3.3.2: Values of f(x) = 2x−1
x+1 near

x = −1

x f(x) ≈ (x, f(x)) ≈
−10 2.3333 (−10, 2.3333)

−100 2.0303 (−100, 2.0303)
−1000 2.0030 (−1000, 2.0030)

−10000 2.0003 (−10000, 2.0003)

x f(x) ≈ (x, f(x)) ≈
10 1.7273 (10, 1.7273)

100 1.9703 (100, 1.9703)
1000 1.9970 (1000, 1.9970)

10000 1.9997 (10000, 1.9997)

Figure 3.3.3: Values of f(x) = 2x− 1
x+ 1

for
large nega ve and posi ve values of x

3.3 Ra onal Func ons

We now turn our a en on to the graphs of ra onal func ons. Consider the
func on f(x) =

2x− 1
x+ 1

from Example 3.3.1. Using GeoGebra, we obtain the
graph in Figure 3.3.1

Two behaviours of the graph are worthy of further discussion. First, note
that the graph appears to ‘break’ at x = −1. We know from our last example
that x = −1 is not in the domain of f which means f(−1) is undefined. When
we make a table of values to study the behaviour of f near x = −1 we see that
we can get ‘near’ x = −1 from two direc ons. We can choose values a li le
less than−1, for example x = −1.1, x = −1.01, x = −1.001, and so on. These
values are said to ‘approach −1 from the le .’ Similarly, the values x = −0.9,
x = −0.99, x = −0.999, etc., are said to ‘approach −1 from the right.’ If we
make the two tables in Figure 3.3.2, we find that the numerical results confirm
what we see graphically.

As the x values approach−1 from the le , the func on values become larger
and larger posi ve numbers. (We would need Calculus to confirm this analy -
cally.) We express this symbolically by sta ng as x → −1−, f(x) → ∞. Simi-
larly, using analogous nota on, we conclude from the table that as x → −1+,
f(x) → −∞. For this type of unbounded behaviour, we say the graph of y = f(x)
has a ver cal asymptote of x = −1. Roughly speaking, this means that near
x = −1, the graph looks very much like the ver cal line x = −1.

The other feature worthy of note about the graph of y = f(x) is that it seems
to ‘level off’ on the le and right hand sides of the screen. This is a statement
about the end behaviour of the func on. As we discussed in Sec on 3.2.1, the
end behaviour of a func on is its behaviour as x a ains larger and larger nega ve
values without bound (here, the word ‘larger’ means larger in absolute value),
x → −∞, and as x becomes large without bound, x → ∞.

From the tables in Figure 3.3.3, we see that as x → −∞, f(x) → 2+ and as
x → ∞, f(x) → 2−. Here the ‘+’ means ‘from above’ and the ‘−’ means ‘from
below’. In this case, we say the graph of y = f(x) has a horizontal asymptote
of y = 2. This means that the end behaviour of f resembles the horizontal line
y = 2, which explains the ‘levelling off’ behaviour we see in Figure 3.3.1. We
formalize the concepts of ver cal and horizontal asymptotes in the following
defini ons.

Defini on 3.3.2 Ver cal Asymptote

The line x = c is called a ver cal asymptote of the graph of a func on
y = f(x) if as x → c− or as x → c+, either f(x) → ∞ or f(x) → −∞.

Defini on 3.3.3 Horizontal Asymptote

The line y = c is called a horizontal asymptote of the graph of a func on
y = f(x) if as x → −∞ or as x → ∞, f(x) → c.

Note that in Defini on 3.3.3, wewrite f(x) → c (not f(x) → c+ or f(x) → c−)
because we are unconcerned fromwhich direc on the values f(x) approach the
value c, just as long as they do so.

In our discussion following Example 3.3.1, we determined that, despite the
fact that the formula for h(x) reduced to the same formula as f(x), the func ons
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x h(x) ≈ (x, h(x)) ≈
0.9 0.4210 (0.9, 0.4210)

0.99 0.4925 (0.99, 0.4925)
0.999 0.4992 (0.999, 0.4992)

0.9999 0.4999 (0.9999, 0.4999)

x h(x) ≈ (x, h(x)) ≈
1.1 0.5714 (1.1, 0.5714)

1.01 0.5075 (1.01, 0.5075)
1.001 0.5007 (1.001, 0.5007)

1.0001 0.5001 (1.0001, 0.5001)

Figure 3.3.4: Values of h(x) = 2x2−1
x2−1 −

3x−2
x2−1 near x = 1

In Calculus, we will see how these ‘holes’
in graphs can be ‘plugged’ once we’ve
made a more advanced study of con nu-
ity.

x

y

−4−3−2 1 2 3 4−1
−2
−3
−4
−5
−6

1

3
4
5
6
7
8

Figure 3.3.5: The graph y = h(x) showing
asymptotes and the ‘hole’

In English, Theorem 3.3.1 says that if x =
c is not in the domain of r but, when we
simplify r(x), it no longer makes the de-
nominator 0, then we have a hole at x =
c. Otherwise, the line x = c is a ver cal
asymptote of the graph of y = r(x). In
other words, Theorem 3.3.1 tells us ‘How
to tell your asymptote from a hole in the
graph.’

Chapter 3 Essen al Func ons

f and h are different, since x = 1 is in the domain of f, but x = 1 is not in the

domain of h. If we graph h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

using a graphing calculator,
we are surprised to find that the graph looks iden cal to the graph of y = f(x).
There is a ver cal asymptote at x = −1, but near x = 1, everything seem fine.
Tables of values provide numerical evidence which supports the graphical ob-
serva on: see Figure 3.3.4.

We see that as x → 1−, h(x) → 0.5− and as x → 1+, h(x) → 0.5+. In
other words, the points on the graph of y = h(x) are approaching (1, 0.5), but
since x = 1 is not in the domain of h, it would be inaccurate to fill in a point at
(1, 0.5). To indicate this, we put an open circle (also called a hole in this case)
at (1, 0.5). Figure 3.3.5 is a detailed graph of y = h(x), with the ver cal and
horizontal asymptotes as dashed lines.

Neither x = −1 nor x = 1 are in the domain of h, yet the behaviour of the
graph of y = h(x) is dras cally different near these x-values. The reason for
this lies in the second to last step when we simplified the formula for h(x) in

Example 3.3.1, where we had h(x) =
(2x− 1)(x− 1)
(x+ 1)(x− 1)

. The reason x = −1 is

not in the domain of h is because the factor (x+ 1) appears in the denominator
of h(x); similarly, x = 1 is not in the domain of h because of the factor (x − 1)
in the denominator of h(x). The major difference between these two factors is
that (x − 1) cancels with a factor in the numerator whereas (x + 1) does not.
Loosely speaking, the trouble caused by (x− 1) in the denominator is cancelled
away while the factor (x+1) remains to cause mischief. This is why the graph of
y = h(x) has a ver cal asymptote at x = −1 but only a hole at x = 1. These ob-
serva ons are generalized and summarized in the theorem below, whose proof
is found in Calculus.

Theorem 3.3.1 Loca on of Ver cal Asymptotes and Holes

Suppose r is a ra onal func on which can be wri en as r(x) =
p(x)
q(x)

where p and q have no common zeros (in other words, r(x) is in lowest
terms). Let c be a real number which is not in the domain of r.

• If q(c) ̸= 0, then the graph of y = r(x) has a hole at
(
c,

p(c)
q(c)

)
.

• If q(c) = 0, then the line x = c is a ver cal asymptote of the graph
of y = r(x).

Example 3.3.2 Finding ver cal asymptotes
Find the ver cal asymptotes of, and/or holes in, the graphs of the following ra-
onal func ons. Verify your answers using so ware or a graphing calculator,

and describe the behaviour of the graph near them using proper nota on.

1. f(x) =
2x

x2 − 3

2. g(x) =
x2 − x− 6
x2 − 9

3. h(x) =
x2 − x− 6
x2 + 9

4. r(x) =
x2 − x− 6
x2 + 4x+ 4

S
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Figure 3.3.6: The graph y = f(x) in Exam-
ple 3.3.2

Figure 3.3.7: The graph y = g(x) in Exam-
ple 3.3.2

Figure 3.3.8: The graph y = h(x) in Exam-
ple 3.3.2

Figure 3.3.9: The graph y = r(x) in Exam-
ple 3.3.2

3.3 Ra onal Func ons

1. To use Theorem 3.3.1, we first find all of the real numbers which aren’t in
the domain of f. To do so, we solve x2−3 = 0 and get x = ±

√
3. Since the

expression f(x) is in lowest terms, there is no cancella on possible, and
we conclude that the lines x = −

√
3 and x =

√
3 are ver cal asymptotes

to the graph of y = f(x). Plo ng the func on in GeoGebra verifies this
claim, and from the graph in Figure 3.3.6, we see that as x → −

√
3−,

f(x) → −∞, as x → −
√
3+, f(x) → ∞, as x →

√
3−, f(x) → −∞, and

finally as x →
√
3+, f(x) → ∞.

2. Solving x2 − 9 = 0 gives x = ±3. In lowest terms g(x) =
x2 − x− 6
x2 − 9

=

(x− 3)(x+ 2)
(x− 3)(x+ 3)

=
x+ 2
x+ 3

. Since x = −3 con nues to make trouble in the

denominator, we know the line x = −3 is a ver cal asymptote of the graph
of y = g(x). Since x = 3 no longer produces a 0 in the denominator, we
have a hole at x = 3. To find the y-coordinate of the hole, we subs tute
x = 3 into

x+ 2
x+ 3

and find the hole is at
(
3, 56
)
. When we graph y = g(x)

using GeoGebra, we clearly see the ver cal asymptote at x = −3, but
everything seems calm near x = 3: see Figure 3.3.7. Hence, as x → −3−,
g(x) → ∞, as x → −3+, g(x) → −∞, as x → 3−, g(x) → 5

6
−, and as

x → 3+, g(x) → 5
6
+.

3. The domain of h is all real numbers, since x2+9 = 0 has no real solu ons.
Accordingly, the graph of y = h(x) is devoid of both ver cal asymptotes
and holes, as see in Figure 3.3.8.

4. Se ng x2 + 4x + 4 = 0 gives us x = −2 as the only real number of

concern. Simplifying, we see r(x) =
x2 − x− 6
x2 + 4x+ 4

=
(x− 3)(x+ 2)

(x+ 2)2
=

x− 3
x+ 2

. Since x = −2 con nues to produce a 0 in the denominator of the
reduced func on, we know x = −2 is a ver cal asymptote to the graph.
The graph in Figure 3.3.9 bears this out, and, moreover, we see that as
x → −2−, r(x) → ∞ and as x → −2+, r(x) → −∞.

Now that we have thoroughly inves gated ver cal asymptotes, we can turn
our a en on to horizontal asymptotes. The next theorem tells us when to ex-
pect horizontal asymptotes.

Theorem 3.3.2 Loca on of Horizontal Asymptotes

Suppose r is a ra onal func on and r(x) =
p(x)
q(x)

, where p and q are

polynomial func ons with leading coefficients a and b, respec vely.

• If the degree of p(x) is the same as the degree of q(x), then y = a
b

is the horizontal asymptote of the graph of y = r(x).

• If the degree of p(x) is less than the degree of q(x), then y = 0 is
the horizontal asymptote of the graph of y = r(x).

• If the degree of p(x) is greater than the degree of q(x), then the
graph of y = r(x) has no horizontal asymptotes.
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More specifically, as x → −∞, f(x) →
2+, and as x → ∞, f(x) → 2−. No ce
that the graph gets close to the same y
value as x → −∞ or x → ∞. This means
that the graph can have only one horizon-
tal asymptote if it is going to have one at
all. Thus we were jus fied in using ‘the’
in the previous theorem.

y = f(x)

y = g(x)

y = h(x)

Figure 3.3.10: Graphs of the three func-
ons in Example 3.3.3

Chapter 3 Essen al Func ons

Like Theorem 3.3.1, Theorem 3.3.2 is proved using Calculus. Nevertheless,
we can understand the idea behind it using our example f(x) =

2x− 1
x+ 1

. If we
interpret f(x) as a division problem, (2x−1)÷ (x+1), we find that the quo ent
is 2 with a remainder of−3. Using what we know about polynomial division, we
get 2x−1 = 2(x+1)−3. Dividing both sides by (x+1) gives

2x− 1
x+ 1

= 2− 3
x+ 1

.

As x becomes unbounded in either direc on, the quan ty
3

x+ 1
gets closer and

closer to 0 so that the values of f(x) become closer and closer (as seen in the
tables in Figure 3.3.3) to 2. In symbols, as x → ±∞, f(x) → 2, and we have the
result.

Example 3.3.3 Finding horizontal asymptotes
List the horizontal asymptotes, if any, of the graphs of the following func ons.
Verify your answers using a graphing calculator, and describe the behaviour of
the graph near them using proper nota on.

1. f(x) =
5x

x2 + 1

2. g(x) =
x2 − 4
x+ 1

3. h(x) =
6x3 − 3x+ 1

5− 2x3

S

1. The numerator of f(x) is 5x, which has degree 1. The denominator of f(x) is
x2+1, which has degree 2. Applying Theorem3.3.2, y = 0 is the horizontal
asymptote. Sure enough, we see from the graph that as x → −∞, f(x) →
0− and as x → ∞, f(x) → 0+.

2. The numerator of g(x), x2 − 4, has degree 2, but the degree of the de-
nominator, x + 1, has degree 1. By Theorem 3.3.2, there is no horizontal
asymptote. From the graph, we see that the graph of y = g(x) doesn’t ap-
pear to level off to a constant value, so there is no horizontal asymptote.
(Sit ght! We’ll revisit this func on and its end behaviour shortly.)

3. The degrees of the numerator and denominator of h(x) are both three,
so Theorem 3.3.2 tells us y = 6

−2 = −3 is the horizontal asymptote. We
see from the calculator’s graph that as x → −∞, h(x) → −3+, and as
x → ∞, h(x) → −3−.

78



x g(x) x− 1
−10 ≈ −10.6667 −11

−100 ≈ −100.9697 −101
−1000 ≈ −1000.9970 −1001

−10000 ≈ −10000.9997 −10001

Figure 3.3.11: The graph y =
x2 − 4
x+ 1

as
x → −∞

x g(x) x− 1
10 ≈ 8.7273 9

100 ≈ 98.9703 99
1000 ≈ 998.9970 999

10000 ≈ 9998.9997 9999

Figure 3.3.12: The graph y =
x2 − 4
x+ 1

as
x → +∞

3.3 Ra onal Func ons

We close this sec onwith a discussion of the third (and final!) kind of asymp-
tote which can be associated with the graphs of ra onal func ons. Let us return

to the func on g(x) =
x2 − 4
x+ 1

in Example 3.3.3. Performing long division, (see

the remarks following Theorem 3.3.2) we get g(x) =
x2 − 4
x+ 1

= x − 1 − 3
x+ 1

.

Since the term
3

x+ 1
→ 0 as x → ±∞, it stands to reason that as x becomes

unbounded, the func on values g(x) = x − 1 − 3
x+ 1

≈ x − 1. Geometri-
cally, this means that the graph of y = g(x) should resemble the line y = x− 1
as x → ±∞. We see this play out both numerically and graphically in Figures
3.3.11 and 3.3.12.

The way we symbolize the rela onship between the end behaviour of y =
g(x)with that of the line y = x−1 is to write ‘as x → ±∞, g(x) → x−1.’ In this
case, we say the line y = x − 1 is a slant asymptote (or ‘oblique’ asymptote)
to the graph of y = g(x). Informally, the graph of a ra onal func on has a slant
asymptote if, as x → ∞ or as x → −∞, the graph resembles a non-horizontal,
or ‘slanted’ line. Formally, we define a slant asymptote as follows.

Defini on 3.3.4 Slant Asymptote

The line y = mx + b where m ̸= 0 is called a slant asymptote of the
graph of a func on y = f(x) if as x → −∞ or as x → ∞, f(x) → mx+ b.

A few remarks are in order. First, note that the s pula onm ̸= 0 inDefini on
3.3.4 is what makes the ‘slant’ asymptote ‘slanted’ as opposed to the case when
m = 0 in which case we’d have a horizontal asymptote. Secondly, while we
have mo vated what me mean intui vely by the nota on ‘f(x) → mx+ b,’ like
so many ideas in this sec on, the formal defini on requires Calculus. Another
way to express this sen ment, however, is to rephrase ‘f(x) → mx+b’ as ‘f(x)−
(mx + b) → 0.’ In other words, the graph of y = f(x) has the slant asymptote
y = mx + b if and only if the graph of y = f(x) − (mx + b) has a horizontal
asymptote y = 0.

Our next task is to determine the condi ons under which the graph of a
ra onal func on has a slant asymptote, and if it does, how to find it. In the case

of g(x) =
x2 − 4
x+ 1

, the degree of the numerator x2 − 4 is 2, which is exactly
one more than the degree if its denominator x + 1 which is 1. This results in a
linear quo ent polynomial, and it is this quo ent polynomial which is the slant
asymptote. Generalizing this situa on gives us the following theorem.

Theorem 3.3.3 Determina on of Slant Asymptotes

Suppose r is a ra onal func on and r(x) =
p(x)
q(x)

, where the degree of

p is exactly one more than the degree of q. Then the graph of y = r(x)
has the slant asymptote y = L(x)where L(x) is the quo ent obtained by
dividing p(x) by q(x).

In the same way that Theorem 3.3.2 gives us an easy way to see if the graph
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Figure 3.3.13: The graph y = f(x) in Ex-
ample 3.3.4

Note that we are purposefully avoiding
nota on like ‘as x → ∞, f(x) → (−x +
3)+. While it is possible to define these
no ons formally with Calculus, it is not
standard to do so. Besides, with the in-
troduc on of the symbol ‘‽’ in the next
sec on, the authors feel we are in enough
trouble already.

Figure 3.3.14: The graph y = g(x) in Ex-
ample 3.3.4

Figure 3.3.15: The graph y = h(x) in Ex-
ample 3.3.4

Chapter 3 Essen al Func ons

of a ra onal func on r(x) =
p(x)
q(x)

has a horizontal asymptote by comparing

the degrees of the numerator and denominator, Theorem 3.3.3 gives us an easy
way to check for slant asymptotes. Unlike Theorem 3.3.2, which gives us a quick
way to find the horizontal asymptotes (if any exist), Theorem 3.3.3 gives us no
such ‘short-cut’. If a slant asymptote exists, we have no recourse but to use long
division to find it. (That’s OK, though. In the next sec on, we’ll use long division
to analyze end behaviour and it’s worth the effort!)

Example 3.3.4 Finding slant asymptotes
Find the slant asymptotes of the graphs of the following func ons if they exist.
Verify your answers using so ware or a graphing calculator and describe the
behaviour of the graph near them using proper nota on.

1. f(x) =
x2 − 4x+ 2

1− x

2. g(x) =
x2 − 4
x− 2

3. h(x) =
x3 + 1
x2 − 4

S

1. The degree of the numerator is 2 and the degree of the denominator is 1,
so Theorem 3.3.3 guarantees us a slant asymptote. To find it, we divide
1 − x = −x + 1 into x2 − 4x + 2 and get a quo ent of −x + 3, so our
slant asymptote is y = −x + 3. We confirm this graphically in Figure
3.3.13, andwe see that as x → −∞, the graph of y = f(x) approaches the
asymptote from below, and as x → ∞, the graph of y = f(x) approaches
the asymptote from above.

2. Aswith the previous example, the degree of the numerator g(x) =
x2 − 4
x− 2

is 2 and the degree of the denominator is 1, so Theorem 3.3.3 applies.

g(x) =
x2 − 4
x− 2

=
(x+ 2)(x− 2)

(x− 2)
=

(x+ 2)����(x− 2)

����: 1
(x− 2)

= x+ 2, x ̸= 2

so we have that the slant asymptote y = x + 2 is iden cal to the graph
of y = g(x) except at x = 2 (where the la er has a ‘hole’ at (2, 4).) The
graph (using GeoGebra) in Figure 3.3.14 supports this claim.

3. For h(x) =
x3 + 1
x2 − 4

, the degree of the numerator is 3 and the degree of
the denominator is 2 so again, we are guaranteed the existence of a slant
asymptote. The long division

(
x3 + 1

)
÷
(
x2 − 4

)
gives a quo ent of just

x, so our slant asymptote is the line y = x. The graph confirms this, and
we find that as x → −∞, the graph of y = h(x) approaches the asymp-
tote from below, and as x → ∞, the graph of y = h(x) approaches the
asymptote from above: see Figure 3.3.15.
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− 1
2

0 1

(+) 0 (−) 0 (+) ‽ (+)

Figure 3.3.16: The sign diagram for the in-
equality in Example 3.3.5

3.3 Ra onal Func ons

We end this sec on by giving a few examples of ra onal equa ons and in-
equali es. Par cular care must be taken with ra onal inequali es, since the
sign of both numerator and denominator can affect the solu on. (Many are
the students who have gone wrong by a emp ng to clear denominators in an
inequality!)

Example 3.3.5 Ra onal equa on and inequality

1. Solve
x3 − 2x+ 1

x− 1
=

1
2
x− 1.

2. Solve
x3 − 2x+ 1

x− 1
≥ 1

2
x− 1.

3. Use your computer or calculator to graphically check your answers to 1
and 2.

S

1. To solve the equa on, we clear denominators

x3 − 2x+ 1
x− 1

=
1
2
x− 1(

x3 − 2x+ 1
x− 1

)
· 2(x− 1) =

(
1
2
x− 1

)
· 2(x− 1)

2x3 − 4x+ 2 = x2 − 3x+ 2 expand
2x3 − x2 − x = 0

x(2x+ 1)(x− 1) = 0 factor
x = − 1

2 , 0, 1

Since we cleared denominators, we need to check for extraneous solu-
ons. Sure enough, we see that x = 1 does not sa sfy the original equa-
on and must be discarded. Our solu ons are x = − 1

2 and x = 0.

2. To solve the inequality, it may be temp ng to begin as we did with the
equa on− namely by mul plying both sides by the quan ty (x− 1). The
problem is that, depending on x, (x − 1) may be posi ve (which doesn’t
affect the inequality) or (x − 1) could be nega ve (which would reverse
the inequality). Instead of working by cases, we collect all of the terms on
one side of the inequality with 0 on the other and make a sign diagram.

x3 − 2x+ 1
x− 1

≥ 1
2
x− 1

x3 − 2x+ 1
x− 1

− 1
2
x+ 1 ≥ 0

2
(
x3 − 2x+ 1

)
− x(x− 1) + 1(2(x− 1))
2(x− 1)

≥ 0 get a common denominator

2x3 − x2 − x
2x− 2

≥ 0 expand

Viewing the le hand side as a ra onal func on r(x) we make a sign dia-
gram. The only value excluded from the domain of r is x = 1 which is the
solu on to 2x−2 = 0. The zeros of r are the solu ons to 2x3−x2−x = 0,
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Figure 3.3.17: The ini al plot of f(x) and
g(x)

Figure 3.3.18: Zooming in to find the in-
tersec on points

Chapter 3 Essen al Func ons

which we have already found to be x = 0, x = − 1
2 and x = 1, the la er

was discounted as a zero because it is not in the domain. Choosing test
values in each test interval, we obtain the sign diagram in Figure 3.3.16.
We are interested in where r(x) ≥ 0. We find r(x) > 0, or (+), on the in-
tervals

(
−∞,− 1

2
)
, (0, 1) and (1,∞). We add to these intervals the zeros

of r,− 1
2 and 0, to get our final solu on:

(
−∞,− 1

2
]
∪ [0, 1) ∪ (1,∞).

3. Geometrically, if we set f(x) =
x3 − 2x+ 1

x− 1
and g(x) = 1

2x− 1, the solu-
ons to f(x) = g(x) are the x-coordinates of the points where the graphs

of y = f(x) and y = g(x) intersect. The solu on to f(x) ≥ g(x) represents
not only where the graphs meet, but the intervals over which the graph
of y = f(x) is above (>) the graph of g(x). Entering these two func ons
into GeoGebra gives us Figure 3.3.17.
Zooming in and using the Intersect tool, we see in Figure 3.3.18 that the
graphs cross when x = − 1

2 and x = 0. It is clear from the calculator that
the graph of y = f(x) is above the graph of y = g(x) on

(
−∞,− 1

2
)
as well

as on (0,∞). According to the calculator, our solu on is then
(
−∞,− 1

2
]
∪

[0,∞) which almost matches the answer we found analy cally. We have
to remember that f is not defined at x = 1, and, even though it isn’t
shown on the calculator, there is a hole in the graph of y = f(x) when
x = 1 which is why x = 1 is not part of our final answer. (There is no
asymptote at x = 1 since the graph is well behaved near x = 1. According
to Theorem 3.3.1, there must be a hole there.)
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Exercises 3.3
Problems
In Exercises 1 – 18, for the given ra onal func on f:

• Find the domain of f.
• Iden fy any ver cal asymptotes of the graph of y =

f(x).
• Iden fy any holes in the graph.
• Find the horizontal asymptote, if it exists.
• Find the slant asymptote, if it exists.
• Graph the func on using a graphing u lity and de-

scribe the behaviour near the asymptotes.

1. f(x) = x
3x− 6

2. f(x) = 3+ 7x
5− 2x

3. f(x) = x
x2 + x− 12

4. f(x) = x
x2 + 1

5. f(x) = x+ 7
(x+ 3)2

6. f(x) = x3 + 1
x2 − 1

7. f(x) = 4x
x2 + 4

8. f(x) = 4x
x2 − 4

9. f(x) = x2 − x− 12
x2 + x− 6

10. f(x) = 3x2 − 5x− 2
x2 − 9

11. f(x) = x3 + 2x2 + x
x2 − x− 2

12. f(x) = x3 − 3x+ 1
x2 + 1

13. f(x) = 2x2 + 5x− 3
3x+ 2

14. f(x) = −x3 + 4x
x2 − 9

15. f(x) = −5x4 − 3x3 + x2 − 10
x3 − 3x2 + 3x− 1

16. f(x) = x3

1− x

17. f(x) = 18− 2x2

x2 − 9

18. f(x) = x3 − 4x2 − 4x− 5
x2 + x+ 1

In Exercises 19 – 24, solve the ra onal equa on. Be sure to
check for extraneous solu ons.

19. x
5x+ 4

= 3

20. 3x− 1
x2 + 1

= 1

21. 1
x+ 3

+
1

x− 3
=

x2 − 3
x2 − 9

22. 2x+ 17
x+ 1

= x+ 5

23. x2 − 2x+ 1
x3 + x2 − 2x

= 1

24. −x3 + 4x
x2 − 9

= 4x

In Exercises 25 – 38, solve the ra onal inequality. Express
your answer using interval nota on.

25. 1
x+ 2

≥ 0

26. x− 3
x+ 2

≤ 0

27. x
x2 − 1

> 0

28. 4x
x2 + 4

≥ 0

29. x2 − x− 12
x2 + x− 6

> 0

30. 3x2 − 5x− 2
x2 − 9

< 0

31. x3 + 2x2 + x
x2 − x− 2

≥ 0

32. x2 + 5x+ 6
x2 − 1

> 0

33. 3x− 1
x2 + 1

≤ 1

34. 2x+ 17
x+ 1

> x+ 5
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35. −x3 + 4x
x2 − 9

≥ 4x

36. 1
x2 + 1

< 0

37. x4 − 4x3 + x2 − 2x− 15
x3 − 4x2

≥ x

38. 5x3 − 12x2 + 9x+ 10
x2 − 1

≥ 3x− 1
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Exponen al and logarithmic func ons
frequently occur in solu ons to differen-
al equa ons, which are used to pro-

duce mathema cal models of phenom-
ena throughout the physical, life, and so-
cial sciences. You’ll see some examples if
you con nue on to Calculus I and II, and
evenmore if you takeMath 3600, our first
course in differen al equa ons.

x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1 = 1

2

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (3, 8)

x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

Figure 3.4.1: Plo ng f(x) = 2x

To fully understand the argument we
used to define 2x when x is irra onal,
you’ll have to proceed far enough through
the Calculus sequence (Calculus III should
do it) to encounter the topic of conver-
gence of infinite sequences.

3.4 Exponen al and Logarithmic Func ons

3.4 Exponen al and Logarithmic Func ons

3.4.1 Introduc on to Exponen al and Logarithmic Func ons

Of all of the func ons we study in this text, exponen al and logarithmic func-
ons are possibly the ones which impact everyday life the most. This sec on

introduces us to these func ons while the rest of the chapter will more thor-
oughly explore their proper es. Up to this point, we have dealt with func ons
which involve terms like x2 or x2/3, in other words, terms of the form xp where
the base of the term, x, varies but the exponent of each term, p, remains con-
stant. In this chapter, we study func ons of the form f(x) = bx where the base
b is a constant and the exponent x is the variable. We start our explora on of
these func ons with f(x) = 2x. (Apparently this is a tradi on. Every textbook
we have ever read starts with f(x) = 2x.) We make a table of values, plot the
points and connect the dots in a pleasing fashion: see Figure 3.4.1

A few remarks about the graph of f(x) = 2x which we have constructed are
in order. As x → −∞ and a ains values like x = −100 or x = −1000, the
func on f(x) = 2x takes on values like f(−100) = 2−100 = 1

2100 or f(−1000) =
2−1000 = 1

21000 . In other words, as x → −∞,

2x ≈ 1
very big (+)

≈ very small (+)

So as x → −∞, 2x → 0+. This is represented graphically using the x-axis (the
line y = 0) as a horizontal asymptote. On the flip side, as x → ∞, we find
f(100) = 2100, f(1000) = 21000, and so on, thus 2x → ∞. As a result, our graph
suggests the range of f is (0,∞). The graph of f passes the Horizontal Line Test
which means f is one-to-one and hence inver ble. We also note that when we
‘connected the dots in a pleasing fashion’, we havemade the implicit assump on
that f(x) = 2x is con nuous (recall that this means there are no holes or other
kinds of breaks in the graph) and has a domain of all real numbers. In par cular,
we have suggested that things like 2

√
3 exist as real numbers. We should take

a moment to discuss what something like 2
√
3 might mean, and refer the inter-

ested reader to a solid course in Calculus for a more rigorous explana on. The
number

√
3 = 1.73205 . . . is an irra onal number and as such, its decimal repre-

senta on neither repeats nor terminates. We can, however, approximate
√
3 by

termina ng decimals, and it stands to reason (this is where Calculus and con -
nuity come into play) that we can use these to approximate 2

√
3. For example, if

we approximate
√
3 by 1.73, we can approximate 2

√
3 ≈ 21.73 = 2 173

100 =
100
√
2173.

It is not, by anymeans, a pleasant number, but it is at least a number that we un-
derstand in terms of powers and roots. It also stands to reason that be er and
be er approxima ons of

√
3 yield be er and be er approxima ons of 2

√
3, so

the value of 2
√
3 should be the result of this sequence of approxima ons.
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y
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(a) y = f(x) = 2x

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

(b) y = g(x) = f(−x) = 2−x

Figure 3.4.2: Reflec ng y = 2x across the
y-axis to obtain the graph y = 2−x

Chapter 3 Essen al Func ons

Suppose we wish to study the family of func ons f(x) = bx. Which bases b
make sense to study? We find that we run into difficulty if b < 0. For example,
if b = −2, then the func on f(x) = (−2)x has trouble, for instance, at x = 1

2
since (−2)1/2 =

√
−2 is not a real number. In general, if x is any ra onal num-

ber with an even denominator, then (−2)x is not defined, so we must restrict
our a en on to bases b ≥ 0. What about b = 0? The func on f(x) = 0x is
undefined for x ≤ 0 because we cannot divide by 0 and 00 is an indeterminant
form. For x > 0, 0x = 0 so the func on f(x) = 0x is the same as the func on
f(x) = 0, x > 0. We know everything we can possibly know about this func-
on, so we exclude it from our inves ga ons. The only other base we exclude

is b = 1, since the func on f(x) = 1x = 1 is, once again, a func on we have
already studied. We are now ready for our defini on of exponen al func ons.

Defini on 3.4.1 Exponen al func on

A func on of the form f(x) = bx where b is a fixed real number, b > 0,
b ̸= 1 is called a base b exponen al func on.

We leave it to the reader to verify (by graphing somemore examples on your
own) that if b > 1, then the exponen al func on f(x) = bx will share the same
basic shape and characteris cs as f(x) = 2x. What if 0 < b < 1? Consider
g(x) =

( 1
2
)x. We could certainly build a table of values and connect the points,

or we could take a step back and note that g(x) =
( 1
2
)x

=
(
2−1)x = 2−x =

f(−x), where f(x) = 2x. The graph of f(−x) is obtained from the graph of f(x)
by reflec ng it across the y-axis. We get the graph in Figure 3.4.2 (b).

We see that the domain and range of gmatch that of f, namely (−∞,∞) and
(0,∞), respec vely. Like f, g is also one-to-one. Whereas f is always increasing,
g is always decreasing. As a result, as x → −∞, g(x) → ∞, and on the flip
side, as x → ∞, g(x) → 0+. It shouldn’t be too surprising that for all choices
of the base 0 < b < 1, the graph of y = bx behaves similarly to the graph of
g. We summarize the basic proper es of exponen al func ons in the following
theorem. (The proof of which, like many things discussed in the text, requires
Calculus.)
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3.4 Exponen al and Logarithmic Func ons

Theorem 3.4.1 Proper es of Exponen al Func ons

Suppose f(x) = bx.

• The domain of f is (−∞,∞) and the range of f is (0,∞).

• (0, 1) is on the graph of f and y = 0 is a horizontal asymptote to
the graph of f.

• f is one-to-one, con nuous and smooth (the graph of f has no
sharp turns or corners).

• If b > 1:

– f is always increasing
– As x → −∞, f(x) →
0+

– As x → ∞, f(x) → ∞
– The graph of f resem-
bles:

y = bx, b > 1

• If 0 < b < 1:

– f is always decreasing
– As x → −∞, f(x) →
∞

– As x → ∞, f(x) → 0+

– The graph of f resem-
bles:

y = bx, 0 < b < 1

Of all of the bases for exponen al func ons, two occur the most o en in
scien fic circles. The first, base 10, is o en called the common base. The sec-
ond base is an irra onal number, e ≈ 2.718, called the natural base. You may
encounter a more formal discussion of the number e in later Calculus courses.
For now, it is enough to know that since e > 1, f(x) = ex is an increasing ex-
ponen al func on. The following examples give us an idea how these func ons
are used in the wild.

Example 3.4.1 Modelling vehicle deprecia on
The value of a car can be modelled by V(x) = 25

( 4
5
)x, where x ≥ 0 is age of the

car in years and V(x) is the value in thousands of dollars.

1. Find and interpret V(0).

2. Sketch the graph of y = V(x) using transforma ons.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

S

1. To find V(0), we replace x with 0 to obtain V(0) = 25
( 4
5
)0

= 25. Since x
represents the age of the car in years, x = 0 corresponds to the car being
brand new. Since V(x) is measured in thousands of dollars, V(0) = 25
corresponds to a value of $25,000. Pu ng it all together, we interpret
V(0) = 25 to mean the purchase price of the car was $25,000.
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(0, 1)

H.A. y = 0

x

y

−3−2−1 1 2 3

2

y = f(x) =
( 4
5

)x
↓

(0, 25)

H.A. y = 0

x

y

1 2 3 4 5 6

5

10

15

20

30

y = V(x) = 25f(x), x ≥ 0

Figure 3.4.3: The graph y = V(x) in Exam-
ple 3.4.1

Chapter 3 Essen al Func ons

2. To graph y = 25
( 4
5
)x, we start with the basic exponen al func on f(x) =( 4

5
)x. Since the base b = 4

5 is between 0 and 1, the graph of y = f(x) is
decreasing. We plot the y-intercept (0, 1) and two other points,

(
−1, 54

)
and

(
1, 45
)
, and label the horizontal asymptote y = 0. To obtain V(x) =

25
( 4
5
)x, x ≥ 0, we mul ply the output from f by 25, in other words,

V(x) = 25f(x). This results in a ver cal stretch by a factor of 25. We
mul ply all of the y values in the graph by 25 (including the y value of
the horizontal asymptote) and obtain the points

(
−1, 1254

)
, (0, 25) and

(1, 20). The horizontal asymptote remains y = 0. Finally, we restrict the
domain to [0,∞) to fit with the applied domain given to us. We have the
result in Figure 3.4.3.

3. We see from the graph of V that its horizontal asymptote is y = 0. (We
leave it to reader to verify this analy cally by thinking aboutwhat happens
as we take larger and larger powers of 4

5 .) This means as the car gets older,
its value diminishes to 0.

The func on in the previous example is o en called a ‘decay curve’. Increas-
ing exponen al func ons are used to model ‘growth curves’ many examples of
which are encountered in applica ons of exponen al func ons. For now, we
present another common decay curve which will serve as the basis for further
study of exponen al func ons. Although it may lookmore complicated than the
previous example, it is actually just a basic exponen al func on which has been
modified by a few transforma ons.

Example 3.4.2 Newton’s Law of Cooling
According to Newton’s Law of Cooling the temperature of coffee T (in degrees
Fahrenheit) tminutes a er it is served can bemodelled by T(t) = 70+90e−0.1t.

1. Find and interpret T(0).

2. Sketch the graph of y = T(t) using transforma ons.

3. Find and interpret the horizontal asymptote of the graph.

S

1. To find T(0), we replace every occurrence of the independent variable t
with 0 to obtain T(0) = 70+90e−0.1(0) = 160. Thismeans that the coffee
was served at 160◦F.

2. To graph y = T(t) using transforma ons, we start with the basic func on,
f(t) = et. As we have already remarked, e ≈ 2.718 > 1 so the graph of f is
an increasing exponen alwith y-intercept (0, 1) andhorizontal asymptote
y = 0. The points

(
−1, e−1) ≈ (−1, 0.37) and (1, e) ≈ (1, 2.72) are also

on the graph. We have

T(t) = 70+ 90e−0.1t = 90e−0.1t + 70 = 90f(−0.1t) + 70

Mul plica on of the input to f, t, by−0.1 results in a horizontal expansion
by a factor of 10 as well as a reflec on about the y-axis. We divide each
of the x values of our points by−0.1 (which amounts to mul plying them
by −10) to obtain

(
10, e−1), (0, 1), and (−10, e). Since none of these

changes affected the y values, the horizontal asymptote remains y = 0.
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Figure 3.4.4: Graphing T(t) in Example
3.4.2

The reader is cau oned that in more ad-
vanced mathema cs textbooks, the no-
ta on log(x) is o en used to denote the
natural logarithm (or its generaliza on to
the complex numbers). In mathema cs,
the natural logarithm is preferred since
it is be er behaved with respect to the
opera ons of Calculus. The base 10 log-
arithm tends to appear in other science
fields.

3.4 Exponen al and Logarithmic Func ons

Next, we see that the output from f is being mul plied by 90. This re-
sults in a ver cal stretch by a factor of 90. We mul ply the y-coordinates
by 90 to obtain

(
10, 90e−1), (0, 90), and (−10, 90e). We also mul ply

the y value of the horizontal asymptote y = 0 by 90, and it remains
y = 0. Finally, we add 70 to all of the y-coordinates, which shi s the
graph upwards to obtain

(
10, 90e−1 + 70

)
≈ (10, 103.11), (0, 160), and

(−10, 90e+ 70) ≈ (−10, 314.64). Adding 70 to the horizontal asymp-
tote shi s it upwards as well to y = 70. We connect these three points
using the same shape in the same direc on as in the graph of f and, last
but not least, we restrict the domain to match the applied domain [0,∞).
The result is given in Figure 3.4.4.

3. From the graph, we see that the horizontal asymptote is y = 70. It is
worth a moment or two of our me to see how this happens analy cally.
As t → ∞, We get T(t) = 70 + 90e−0.1t ≈ 70 + 90every big (−). Since
e > 1,

every big (−) =
1

every big (+)
≈ 1

very big (+)
≈ very small (+)

The larger t becomes, the smaller e−0.1t becomes, so the term 90e−0.1t ≈
very small (+). Hence, T(t) ≈ 70+very small (+)whichmeans the graph
is approaching the horizontal line y = 70 from above. This means that as
me goes by, the temperature of the coffee is cooling to 70◦F, presumably

room temperature.

As we have already remarked, the graphs of f(x) = bx all pass the Horizon-
tal Line Test. Thus the exponen al func ons are inver ble. We now turn our
a en on to these inverses, the logarithmic func ons, which are called ‘logs’ for
short.

Defini on 3.4.2 Logarithm func on

The inverse of the exponen al func on f(x) = bx is called the base b
logarithm func on, and is denoted f−1(x) = logb(x) We read ‘logb(x)’
as ‘log base b of x.’

We have special nota ons for the common base, b = 10, and the natural
base, b = e.

Defini on 3.4.3 Common and Natural Logarithms

The common logarithm of a real number x is log10(x) and is usually writ-
ten log(x). The natural logarithm of a real number x is loge(x) and is
usually wri en ln(x).

Since logs are defined as the inverses of exponen al func ons, we can use
Theorems 2.2.1 and 2.2.2 to tell us about logarithmic func ons. For example, we
know that the domain of a log func on is the range of an exponen al func on,
namely (0,∞), and that the range of a log func on is the domain of an exponen-
al func on, namely (−∞,∞). Since we know the basic shapes of y = f(x) =
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y = bx, b > 1

y = logb(x), b > 1

y = bx, 0 < b < 1

y = logb(x), 0 < b < 1

Figure 3.4.5: The logarithm is the inverse
of the exponen al func on

Chapter 3 Essen al Func ons

bx for the different cases of b, we can obtain the graph of y = f−1(x) = logb(x)
by reflec ng the graph of f across the line y = x as shown below. The y-intercept
(0, 1) on the graph of f corresponds to an x-intercept of (1, 0) on the graph of
f−1. The horizontal asymptotes y = 0 on the graphs of the exponen al func ons
become ver cal asymptotes x = 0 on the log graphs: see Figure 3.4.5.

On a procedural level, logs undo the exponen als. Consider the func on
f(x) = 2x. When we evaluate f(3) = 23 = 8, the input 3 becomes the exponent
on the base 2 to produce the real number 8. The func on f−1(x) = log2(x)
then takes the number 8 as its input and returns the exponent 3 as its output.
In symbols, log2(8) = 3. More generally, log2(x) is the exponent you put on 2 to
get x. Thus, log2(16) = 4, because 24 = 16. The following theorem summarizes
the basic proper es of logarithmic func ons, all ofwhich come from the fact that
they are inverses of exponen al func ons.

Theorem 3.4.2 Proper es of Logarithmic Func ons

Suppose f(x) = logb(x).

• The domain of f is (0,∞) and the range of f is (−∞,∞).

• (1, 0) is on the graph of f and x = 0 is a ver cal asymptote of the
graph of f.

• f is one-to-one, con nuous and smooth

• ba = c if and only if logb(c) = a. That is, logb(c) is the exponent you
put on b to obtain c.

• logb (bx) = x for all x and blogb(x) = x for all x > 0

• If b > 1:

– f is always increasing
– As x → 0+, f(x) →
−∞

– As x → ∞, f(x) → ∞
– The graph of f resem-
bles:

y = logb(x), b > 1

• If 0 < b < 1:

– f is always decreasing

– As x → 0+, f(x) → ∞

– As x → ∞, f(x) → −∞

– The graph of f resem-
bles:

y = logb(x), 0 < b < 1

As we have men oned, Theorem 3.4.2 is a consequence of Theorems 2.2.1
and 2.2.2. However, it is worth the reader’s me to understand Theorem 3.4.2
from an exponen al perspec ve. For instance, we know that the domain of
g(x) = log2(x) is (0,∞). Why? Because the range of f(x) = 2x is (0,∞). In a
way, this says everything, but at the same me, it doesn’t. For example, if we try
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It is worth a moment of your me to
think your way throughwhy 117log117(6) =
6. By defini on, log117(6) is the expo-
nent we put on 117 to get 6. What are
we doing with this exponent? We are
pu ng it on 117. By defini on we get 6.
In other words, the exponen al func on
f(x) = 117x undoes the logarithmic func-
on g(x) = log117(x).

3.4 Exponen al and Logarithmic Func ons

to find log2(−1), we are trying to find the exponent we put on 2 to give us −1.
In other words, we are looking for x that sa sfies 2x = −1. There is no such real
number, since all powers of 2 are posi ve. Whilewhatwe have said is exactly the
same thing as saying ‘the domain of g(x) = log2(x) is (0,∞) because the range
of f(x) = 2x is (0,∞)’, we feel it is in a student’s best interest to understand the
statements in Theorem 3.4.2 at this level instead of just merely memorizing the
facts.

Example 3.4.3 Using proper es of logarithms
Simplify the following.

1. log3(81)

2. log2
(
1
8

)
3. log√5(25)

4. ln
(

3
√
e2
)

5. log(0.001)

6. 2log2(8)

7. 117− log117(6)

S

1. The number log3(81) is the exponent we put on 3 to get 81. As such, we
want to write 81 as a power of 3. We find 81 = 34, so that log3(81) = 4.

2. To find log2
( 1
8
)
, we need rewrite 1

8 as a power of 2. We find 1
8 = 1

23 =

2−3, so log2
( 1
8
)
= −3.

3. To determine log√5(25), we need to express 25 as a power of
√
5. We

know 25 = 52, and 5 =
(√

5
)2, so we have 25 =

((√
5
)2)2

=
(√

5
)4.

We get log√5(25) = 4.

4. First, recall that the nota on ln
(

3
√
e2
)
means loge

(
3
√
e2
)
, so we are look-

ing for the exponent to put on e to obtain 3
√
e2. Rewri ng 3

√
e2 = e2/3, we

find ln
(

3
√
e2
)
= ln

(
e2/3

)
= 2

3 .

5. Rewri ng log(0.001) as log10(0.001), we see that we need to write 0.001
as a power of 10. Wehave0.001 = 1

1000 = 1
103 = 10−3. Hence, log(0.001) =

log
(
10−3) = −3.

6. We can use Theorem 3.4.2 directly to simplify 2log2(8) = 8. We can also
understand this problem by first finding log2(8). By defini on, log2(8) is
the exponent we put on 2 to get 8. Since 8 = 23, we have log2(8) = 3.
We now subs tute to find 2log2(8) = 23 = 8.

7. From Theorem 3.4.2, we know 117log117(6) = 6, but we cannot directly
apply this formula to the expression 117− log117(6). (Can you see why?) At
this point, we use a property of exponents followed by Theorem 3.4.2 to
get

117− log117(6) =
1

117log117(6)
=

1
6
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Figure 3.4.6: y = f(x) = 2 log(3− x)− 1

(+)

0

0 (−)

1

‽ (+)

Figure 3.4.7: Sign diagram for r(x) = x
x−1

Figure 3.4.8: y = g(x) = ln
(

x
x−1

)

Chapter 3 Essen al Func ons

Up un l this point, restric ons on the domains of func ons came fromavoid-
ing division by zero and keeping nega ve numbers from beneath even radicals.
With the introduc on of logs, we now have another restric on. Since the do-
main of f(x) = logb(x) is (0,∞), the argument of the log must be strictly posi-
ve.

Example 3.4.4 Domain for logarithmic func ons
Find the domain of the following func ons. Check your answers graphically us-
ing the computer or calculator.

1. f(x) = 2 log(3− x)− 1

2. g(x) = ln
(

x
x− 1

)

S

1. We set 3 − x > 0 to obtain x < 3, or (−∞, 3). The graph in Figure 3.4.6
verifies this. Note thatwe could have graphed fusing transforma ons. We
rewrite f(x) = 2 log10(−x+ 3)− 1 and find the main func on involved is
y = h(x) = log10(x). We select three points to track,

( 1
10 ,−1

)
, (1, 0) and

(10, 1), along with the ver cal asymptote x = 0. Since f(x) = 2h(−x +
3)− 1, to obtain the des na ons of these points, we first subtract 3 from
the x-coordinates (shi ing the graph le 3 units), then divide (mul ply)
by the x-coordinates by−1 (causing a reflec on across the y-axis). These
transforma ons apply to the ver cal asymptote x = 0 aswell. Subtrac ng
3 gives us x = −3 as our asymptote, then mul plying by −1 gives us the
ver cal asymptote x = 3. Next, we mul ply the y-coordinates by 2 which
results in a ver cal stretch by a factor of 2, then we finish by subtrac ng 1
from the y-coordinates which shi s the graph down 1 unit. We leave it to
the reader to perform the indicated arithme c on the points themselves
and to verify the graph produced by the calculator below.

2. To find the domain of g, we need to solve the inequality x
x−1 > 0. As

usual, we proceed using a sign diagram. If we define r(x) =
x

x− 1
, we

find r is undefined at x = 1 and r(x) = 0 when x = 0. Choosing some test
values, we generate the sign diagram in Figure 3.4.7.

We find x
x−1 > 0 on (−∞, 0)∪(1,∞) to get the domain of g. The graph of

y = g(x) in Figure 3.4.8 confirms this. We can tell from the graph of g that
it is not the result of transforma ons being applied to the graph y = ln(x),
so barring a more detailed analysis using Calculus, the calculator graph
is the best we can do. One thing worthy of note, however, is the end
behaviour of g. The graph suggests that as x → ±∞, g(x) → 0. We can
verify this analy cally. We know that as x → ±∞, x

x−1 ≈ 1. Hence, it

makes sense that g(x) = ln
(

x
x−1

)
≈ ln(1) = 0.

While logarithmshave some interes ng applica ons of their ownwhich you’ll
explore in the exercises, their primary use to uswill be to undo exponen al func-
ons. (This is, a er all, how they were defined.) Our last example solidifies this

and reviews all of the material in the sec on.
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Figure 3.4.9: Graphing f(x) = 2x−1 − 3 in
Example 3.4.5

3.4 Exponen al and Logarithmic Func ons

Example 3.4.5 Inver ng an exponen al func on
Let f(x) = 2x−1 − 3.

1. Graph f using transforma ons and state the domain and range of f.

2. Explain why f is inver ble and find a formula for f−1(x).

3. Graph f−1 using transforma ons and state the domain and range of f−1.

4. Verify
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and

(
f ◦ f−1) (x) = x

for all x in the domain of f−1.

5. Graph f and f−1 on the same set of axes and check the symmetry about
the line y = x.

S

1. If we iden fy g(x) = 2x, we see f(x) = g(x − 1) − 3. We pick the
points

(
−1, 12

)
, (0, 1) and (1, 2) on the graph of g along with the hori-

zontal asymptote y = 0 to track through the transforma ons. We first
add 1 to the x-coordinates of the points on the graph of g (shi ing g to
the right 1 unit) to get

(
0, 12
)
, (1, 1) and (2, 2). The horizontal asymptote

remains y = 0. Next, we subtract 3 from the y-coordinates, shi ing the
graph down 3 units. We get the points

(
0,− 5

2
)
, (1,−2) and (2,−1) with

the horizontal asymptote now at y = −3. Connec ng the dots in the or-
der and manner as they were on the graph of g, we get the bo om graph
in Figure 3.4.9. We see that the domain of f is the same as g, namely
(−∞,∞), but that the range of f is (−3,∞).

2. The graph of f passes the Horizontal Line Test so f is one-to-one, hence
inver ble. To find a formula for f−1(x), we normally set y = f(x), inter-
change the x and y, then proceed to solve for y. Doing so in this situa on
leads us to the equa on x = 2y−1 − 3. We have yet to discuss how to
solve this kind of equa on, so we will a empt to find the formula for f−1

from a procedural perspec ve. If we break f(x) = 2x−1 − 3 into a series
of steps, we find f takes an input x and applies the steps

(a) subtract 1
(b) put as an exponent on 2
(c) subtract 3

Clearly, to undo subtrac ng 1, we will add 1, and similarly we undo sub-
trac ng 3 by adding 3. How do we undo the second step? The answer is
we use the logarithm. By defini on, log2(x) undoes exponen a on by 2.
Hence, f−1 should

(a) add 3
(b) take the logarithm base 2
(c) add 1

In symbols, f−1(x) = log2(x+ 3) + 1.

3. To graph f−1(x) = log2(x + 3) + 1 using transforma ons, we start with
j(x) = log2(x). We track the points

( 1
2 ,−1

)
, (1, 0) and (2, 1) on the graph

of j along with the ver cal asymptote x = 0 through the transforma ons.
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Figure 3.4.10: Graphing f−1(x) =
log2(x+ 3) + 1 in Example 3.4.5
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Figure 3.4.11: The graphs of f and f−1 in
Example 3.4.5
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Since f−1(x) = j(x+3)+1, we first subtract 3 fromeach of the x values (in-
cluding the ver cal asymptote) to obtain

(
− 5

2 ,−1
)
, (−2, 0) and (−1, 1)

with a ver cal asymptote x = −3. Next, we add 1 to the y values on the
graph and get

(
− 5

2 , 0
)
, (−2, 1) and (−1, 2). If you are experiencing déjà

vu, there is a good reason for it but we leave it to the reader to determine
the source of this uncanny familiarity. We obtain the graph below. The
domain of f−1 is (−3,∞), which matches the range of f, and the range of
f−1 is (−∞,∞), which matches the domain of f.

4. We now verify that f(x) = 2x−1 − 3 and f−1(x) = log2(x+ 3) + 1 sa sfy
the composi on requirement for inverses. For all real numbers x,

(
f−1 ◦ f

)
(x) = f−1(f(x))

= f−1 (2x−1 − 3
)

= log2
([
2x−1 − 3

]
+ 3
)
+ 1

= log2
(
2x−1)+ 1

= (x− 1) + 1
Since log2 (2u) = u for all real numbers u

= x X

For all real numbers x > −3, we have (pay a en on - can you spot in
which step below we need x > −3?)

(
f ◦ f−1) (x) = f

(
f−1(x)

)
= f (log2(x+ 3) + 1)

= 2(log2(x+3)+1)−1 − 3

= 2log2(x+3) − 3
= (x+ 3)− 3

Since 2log2(u) = u for all real numbers u > 0
= x X

5. Last, but certainly not least, we graph y = f(x) and y = f−1(x) on the
same set of axes and see the symmetry about the line y = x in Figure
3.4.11

3.4.2 Proper es of Logarithms
In Sec on 3.4.1, we introduced the logarithmic func ons as inverses of expo-
nen al func ons and discussed a few of their func onal proper es from that
perspec ve. In this sec on, we explore the algebraic proper es of logarithms.
Historically, these have played a huge role in the scien fic development of our
society since, among other things, they were used to develop analog compu ng
devices called slide rules which enabled scien sts and engineers to perform ac-
curate calcula ons leading to such things as space travel and the moon landing.
As we shall see shortly, logs inherit analogs of all of the proper es of exponents
you learned in Elementary and Intermediate Algebra. We first extract two prop-
er es from Theorem 3.4.2 to remind us of the defini on of a logarithm as the
inverse of an exponen al func on.
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3.4 Exponen al and Logarithmic Func ons

Theorem 3.4.3 Inverse Proper es of Exponen al and Logarithmic
Func ons

Let b > 0, b ̸= 1.

• ba = c if and only if logb(c) = a

• logb (bx) = x for all x and blogb(x) = x for all x > 0

Next, we spell out what it means for exponen al and logarithmic func ons
to be one-to-one.

Theorem 3.4.4 One-to-one Proper es of Exponen al and Logarith-
mic Func ons

Let f(x) = bx and g(x) = logb(x) where b > 0, b ̸= 1. Then f and g are
one-to-one and

• bu = bw if and only if u = w for all real numbers u and w.

• logb(u) = logb(w) if and only if u = w for all real numbers u > 0,
w > 0.

We now state the algebraic proper es of exponen al func ons which will
serve as a basis for the proper es of logarithms. While these proper es may
look iden cal to the ones you learned in Elementary and Intermediate Algebra,
they apply to real number exponents, not just ra onal exponents. Note that
in the theorem that follows, we are interested in the proper es of exponen al
func ons, so the base b is restricted to b > 0, b ̸= 1.

Theorem 3.4.5 Algebraic Proper es of Exponen al Func ons

Let f(x) = bx be an exponen al func on (b > 0, b ̸= 1) and let u and w
be real numbers.

• Product Rule: f(u+ w) = f(u)f(w). In other words, bu+w = bubw

• Quo ent Rule: f(u− w) =
f(u)
f(w)

. In other words, bu−w =
bu

bw

• Power Rule: (f(u))w = f(uw). In other words, (bu)w = buw

While the proper es listed in Theorem 3.4.5 are certainly believable based
on similar proper es of integer and ra onal exponents, the full proofs require
Calculus. To each of these proper es of exponen al func ons corresponds an
analogous property of logarithmic func ons. We list these below in our next
theorem.
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Interes ngly enough, expanding loga-
rithms is the exact opposite process
(which we will prac ce later) that is most
useful in Algebra. The u lity of expanding
logarithms becomes apparent in Calculus.

Chapter 3 Essen al Func ons

Theorem 3.4.6 Algebraic Proper es of Logarithmic Func ons

Let g(x) = logb(x) be a logarithmic func on (b > 0, b ̸= 1) and let u > 0
and w > 0 be real numbers.

• Product Rule: g(uw) = g(u) + g(w). In other words, logb(uw) =
logb(u) + logb(w)

• Quo ent Rule: g
( u
w

)
= g(u) − g(w). In other words,

logb
( u
w

)
= logb(u)− logb(w)

• Power Rule: g (uw) = wg(u). In other words, logb (uw) =
w logb(u)

There are a couple of different ways to understand why Theorem 3.4.6 is
true. Consider the product rule: logb(uw) = logb(u) + logb(w). Let a =
logb(uw), c = logb(u), and d = logb(w). Then, by defini on, ba = uw, bc = u
and bd = w. Hence, ba = uw = bcbd = bc+d, so that ba = bc+d. By the
one-to-one property of bx, we have a = c + d. In other words, logb(uw) =
logb(u) + logb(w). The remaining proper es are proved similarly.

Example 3.4.6 Expanding logarithmic expressions
Expand the following using the proper es of logarithms and simplify. Assume
when necessary that all quan es represent posi ve real numbers.

1. log2
(
8
x

)

2. ln
(

3
ex

)2

3. log 3

√
100x2

yz5

4. log117
(
x2 − 4

)

S

1. To expand log2
( 8
x

)
, we use the Quo ent Rule iden fying u = 8 andw = x

and simplify.

log2
(
8
x

)
= log2(8)− log2(x) Quo ent Rule

= 3− log2(x) Since 23 = 8
= − log2(x) + 3

2. We have a power, quo ent and product occurring in ln
( 3
ex

)2. Since the
exponent 2 applies to the en re quan ty inside the logarithm, we begin
with the Power Rule with u = 3

ex and w = 2. Next, we see the Quo ent
Rule is applicable, with u = 3 and w = ex, so we replace ln

( 3
ex

)
with the

quan ty ln(3) − ln(ex). Since ln
( 3
ex

)
is being mul plied by 2, the en re

quan ty ln(3)−ln(ex) ismul plied by 2. Finally, we apply the Product Rule
with u = e and w = x, and replace ln(ex) with the quan ty ln(e) + ln(x),
and simplify, keeping in mind that the natural log is log base e.
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At this point in the text, the reader is en-
couraged to carefully read through each
step and think of which quan ty is play-
ing the role of u and which is playing the
role of w as we apply each property.

3.4 Exponen al and Logarithmic Func ons

ln
(

3
ex

)2

= 2 ln
(

3
ex

)
Power Rule

= 2 [ln(3)− ln(ex)] Quo ent Rule
= 2 ln(3)− 2 ln(ex)
= 2 ln(3)− 2 [ln(e) + ln(x)] Product Rule
= 2 ln(3)− 2 ln(e)− 2 ln(x)
= 2 ln(3)− 2− 2 ln(x) Since e1 = e
= −2 ln(x) + 2 ln(3)− 2

3. Recalling that a cube root is the same thing as the power 1/3, we begin
by using the Power Rule, and we keep in mind that the common log is log
base 10.

log 3

√
100x2

yz5
= log

(
100x2

yz5

)1/3

=
1
3
log
(
100x2

yz5

)
Power Rule

=
1
3
[
log
(
100x2

)
− log

(
yz5
)]

Quo ent Rule

=
1
3
log
(
100x2

)
− 1

3
log
(
yz5
)

=
1
3
[
log(100) + log

(
x2
)]

− 1
3
[
log(y) + log

(
z5
)]

Product Rule

=
1
3
log(100) +

1
3
log
(
x2
)
− 1

3
log(y)− 1

3
log
(
z5
)

=
1
3
log(100) +

2
3
log(x)− 1

3
log(y)− 5

3
log(z)

Power Rule

=
2
3
+

2
3
log(x)− 1

3
log(y)− 5

3
log(z) Since 102 = 100

=
2
3
log(x)− 1

3
log(y)− 5

3
log(z) +

2
3

4. At first it seems as if we have nomeans of simplifying log117
(
x2 − 4

)
, since

none of the proper es of logs addresses the issue of expanding a differ-
ence inside the logarithm. However, wemay factor x2−4 = (x+2)(x−2)
thereby introducing a product which gives us license to use the Product
Rule.

log117
(
x2 − 4

)
= log117 [(x+ 2)(x− 2)] Factor
= log117(x+ 2) + log117(x− 2) Product Rule
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Chapter 3 Essen al Func ons

Example 3.4.7 Combining logarithmic expressions
Use the proper es of logarithms to write the following as a single logarithm.

1. log3(x− 1)− log3(x+ 1) 2. log(x) + 2 log(y)− log(z)

3. 4 log2(x) + 3 4. − ln(x)− 1
2

S Whereas in Example 3.4.6 we read the proper es in Theo-
rem 3.4.6 from le to right to expand logarithms, in this example we read them
from right to le .

1. The difference of logarithms requires the Quo ent Rule: log3(x − 1) −
log3(x+ 1) = log3

(
x−1
x+1

)
.

2. In the expression, log(x)+2 log(y)−log(z), we have both a sumand differ-
ence of logarithms. However, before we use the product rule to combine
log(x) + 2 log(y), we note that we need to somehow deal with the co-
efficient 2 on log(y). This can be handled using the Power Rule. We can
then apply the Product and Quo ent Rules as we move from le to right.
Pu ng it all together, we have

log(x) + 2 log(y)− log(z) = log(x) + log
(
y2
)
− log(z) Power Rule

= log
(
xy2
)
− log(z) Product Rule

= log
(
xy2

z

)
Quo ent Rule

3. We can certainly get started rewri ng 4 log2(x)+3 by applying the Power
Rule to 4 log2(x) to obtain log2

(
x4
)
, but in order to use the Product Rule

to handle the addi on, we need to rewrite 3 as a logarithm base 2. From
Theorem 3.4.3, we know 3 = log2

(
23
)
, so we get

4 log2(x) + 3 = log2
(
x4
)
+ 3 Power Rule

= log2
(
x4
)
+ log2

(
23
)

Since 3 = log2
(
23
)

= log2
(
x4
)
+ log2(8)

= log2
(
8x4
)

Product Rule

4. To get started with− ln(x)− 1
2 , we rewrite− ln(x) as (−1) ln(x). We can

then use the Power Rule to obtain (−1) ln(x) = ln
(
x−1). In order to use

the Quo ent Rule, we need to write 1
2 as a natural logarithm. Theorem

3.4.3 gives us 1
2 = ln

(
e1/2

)
= ln

(√
e
)
. We have
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3.4 Exponen al and Logarithmic Func ons

− ln(x)− 1
2
= (−1) ln(x)− 1

2

= ln
(
x−1)− 1

2
Power Rule

= ln
(
x−1)− ln

(
e1/2

)
Since 1

2 = ln
(
e1/2

)
= ln

(
x−1)− ln

(√
e
)

= ln
(
x−1
√
e

)
Quo ent Rule

= ln
(

1
x
√
e

)

As we would expect, the rule of thumb for re-assembling logarithms is the
opposite of what it was for dismantling them. That is, if we are interested in
rewri ng an expression as a single logarithm, we apply log proper es following
the usual order of opera ons: deal with mul ples of logs first with the Power
Rule, then deal with addi on and subtrac on using the Product and Quo ent
Rules, respec vely. Addi onally, we find that using log proper es in this fash-
ion can increase the domain of the expression. For example, we leave it to the
reader to verify the domain of f(x) = log3(x−1)− log3(x+1) is (1,∞) but the
domain of g(x) = log3

(
x−1
x+1

)
is (−∞,−1) ∪ (1,∞).

The two logarithm bu ons commonly found on calculators are the ‘LOG’ and
‘LN’ bu ons which correspond to the common and natural logs, respec vely.
Suppose we wanted an approxima on to log2(7). The answer should be a li le
less than 3, (Can you explain why?) but how do we coerce the calculator into
telling us a more accurate answer? We need the following theorem.

Theorem 3.4.7 Change of Base Formulas

Let a, b > 0, a, b ̸= 1.

• ax = bx logb(a) for all real numbers x.

• loga(x) =
logb(x)
logb(a)

for all real numbers x > 0.

Example 3.4.8 Using change of base formulas
Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a computer or calcu-
lator, as appropriate.

1. 32 to base 10

2. 2x to base e

3. log4(5) to base e

4. ln(x) to base 10

S
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Figure 3.4.12: y = f(x) = 2x and y =
g(x) = ex ln(2)

Figure 3.4.13: y = f(x) = 2x and y =
g(x) = ex ln(2)

Chapter 3 Essen al Func ons

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain
32 = 102 log(3). Typing the la er in the calculator produces an answer of
9 as required.

2. Here, a = 2 and b = e so we have 2x = ex ln(2). To verify this on our
calculator, we can graph f(x) = 2x (in red) and g(x) = ex ln(2) (in blue).
Their graphs are indis nguishable which provides evidence that they are
the same func on: see Figure 3.4.12.

3. Applying the change of base with a = 4 and b = e leads us to write
log4(5) =

ln(5)
ln(4) . Evalua ng this in the calculator gives ln(5)

ln(4) ≈ 1.16. How
do we check this really is the value of log4(5)? By defini on, log4(5) is the
exponent we put on 4 to get 5. The plot from GeoGebra in Figure 3.4.13
confirms this. (Which means if it is lying to us about the first answer it
gave us, at least it is being consistent.)

4. We write ln(x) = loge(x) = log(x)
log(e) . We graph both f(x) = ln(x) and

g(x) = log(x)
log(e) and find both graphs appear to be iden cal.
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Exercises 3.4
Problems
In Exercises 1 – 15, use the property: ba = c if and only if
logb(c) = a fromTheorem3.4.2 to rewrite the given equa on
in the other form. That is, rewrite the exponen al equa ons
as logarithmic equa ons and rewrite the logarithmic equa-
ons as exponen al equa ons.

1. 23 = 8

2. 5−3 = 1
125

3. 45/2 = 32

4.
( 1
3

)−2
= 9

5.
( 4
25

)−1/2
= 5

2

6. 10−3 = 0.001

7. e0 = 1

8. log5(25) = 2

9. log25(5) = 1
2

10. log3
( 1
81

)
= −4

11. log 4
3

( 3
4

)
= −1

12. log(100) = 2

13. log(0.1) = −1

14. ln(e) = 1

15. ln
(

1√
e

)
= − 1

2

In Exercises 16 – 42, evaluate the expression.

16. log3(27)

17. log6(216)

18. log2(32)

19. log6
( 1
36

)
20. log8(4)

21. log36(216)

22. log 1
5
(625)

23. log 1
6
(216)

24. log36(36)

25. log
( 1
1000000

)
26. log(0.01)

27. ln
(
e3
)

28. log4(8)

29. log6(1)

30. log13
(√

13
)

31. log36
( 4√36

)
32. 7log7(3)

33. 36log36(216)

34. log36
(
36216

)
35. ln

(
e5
)

36. log
(

9√1011
)

37. log
(

3√105
)

38. ln
(

1√
e

)
39. log5

(
3log3(5)

)
40. log

(
eln(100)

)
41. log2

(
3− log3(2)

)
42. ln

(
426 log(1)

)
In Exercises 43 – 57, find the domain of the func on.

43. f(x) = ln(x2 + 1)

44. f(x) = log7(4x+ 8)

45. f(x) = ln(4x− 20)

46. f(x) = log
(
x2 + 9x+ 18

)
47. f(x) = log

(
x+ 2
x2 − 1

)

48. f(x) = log
(
x2 + 9x+ 18

4x− 20

)
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49. f(x) = ln(7− x) + ln(x− 4)

50. f(x) = ln(4x− 20) + ln
(
x2 + 9x+ 18

)
51. f(x) = log

(
x2 + x+ 1

)
52. f(x) = 4

√
log4(x)

53. f(x) = log9(|x+ 3| − 4)

54. f(x) = ln(
√
x− 4− 3)

55. f(x) = 1
3− log5(x)

56. f(x) =
√
−1− x
log 1

2
(x)

57. f(x) = ln(−2x3 − x2 + 13x− 6)

In Exercises 58 – 63, sketch the graph of y = g(x) by start-
ing with the graph of y = f(x) and using transforma ons.
Track at least three points of your choice and the horizontal
asymptote through the transforma ons. State the domain
and range of g.

58. f(x) = 2x, g(x) = 2x − 1

59. f(x) =
( 1
3

)x, g(x) = ( 13)x−1

60. f(x) = 3x, g(x) = 3−x + 2

61. f(x) = 10x, g(x) = 10
x+1
2 − 20

62. f(x) = ex, g(x) = 8− e−x

63. f(x) = ex, g(x) = 10e−0.1x

In Exercises 64 – 69, sketch the graph of y = g(x) by star ng
with the graph of y = f(x) and using transforma ons. Track
at least three points of your choice and the ver cal asymptote
through the transforma ons. State the domain and range of
g.

64. f(x) = log2(x), g(x) = log2(x+ 1)

65. f(x) = log 1
3
(x), g(x) = log 1

3
(x) + 1

66. f(x) = log3(x), g(x) = − log3(x− 2)

67. f(x) = log(x), g(x) = 2 log(x+ 20)− 1

68. f(x) = ln(x), g(x) = − ln(8− x)

69. f(x) = ln(x), g(x) = −10 ln
( x
10

)
In Exercises 70 – 84, expand the given logarithm and simplify.
Assumewhen necessary that all quan es represent posi ve
real numbers.

70. ln(x3y2)

71. log2
(

128
x2 + 4

)

72. log5
( z
25

)3
73. log(1.23× 1037)

74. ln
(√

z
xy

)

75. log5
(
x2 − 25

)
76. log√2

(
4x3
)

77. log 1
3
(9x(y3 − 8))

78. log
(
1000x3y5

)
79. log3

(
x2

81y4

)

80. ln
(

4

√
xy
ez

)

81. log6
(
216
x3y

)4

82. log
(
100x√y

3√10

)

83. log 1
2

(
4 3√x2

y
√
z

)

84. ln
(

3
√
x

10√yz

)
In Exercises 85 – 98, use the proper es of logarithms to write
the expression as a single logarithm.

85. 4 ln(x) + 2 ln(y)

86. log2(x) + log2(y)− log2(z)

87. log3(x)− 2 log3(y)

88. 1
2 log3(x)− 2 log3(y)− log3(z)

89. 2 ln(x)− 3 ln(y)− 4 ln(z)

90. log(x)− 1
3 log(z) +

1
2 log(y)

91. − 1
3 ln(x)−

1
3 ln(y) +

1
3 ln(z)

92. log5(x)− 3
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93. 3− log(x)

94. log7(x) + log7(x− 3)− 2

95. ln(x) + 1
2

96. log2(x) + log4(x)

97. log2(x) + log4(x− 1)

98. log2(x) + log 1
2
(x− 1)

In Exercises 99 – 102, use the appropriate change of base for-
mula to convert the given expression to an expression with
the indicated base.

99. 7x−1 to base e

100. log3(x+ 2) to base 10

101.
(
2
3

)x

to base e

102. log(x2 + 1) to base e

In Exercises 103 – 108, use the appropriate change of base
formula to approximate the logarithm.

103. log3(12)

104. log5(80)

105. log6(72)

106. log4
(

1
10

)
107. log 3

5
(1000)

108. log 2
3
(50)
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x

y

1

1

P (cos(θ), sin(θ))

θ

Figure 4.1.2: Defining cos(θ) and sin(θ)

The etymology of the name ‘sine’ is quite
colourful, and the interested reader is in-
vited to research it; the ‘co’ in ‘cosine’ is
explained in Sec on 4.3.

x

y

1

1

P (−1, 0)

θ = −π

Figure 4.1.3: Finding cos(−π) and
sin(−π)

4: F
T

4.1 The Unit Circle: Sine and Cosine

In this sec on, we consider the problem of describing the posi on of a point
on the unit circle. To that end, consider an angle θ in standard posi on and let
P denote the point where the terminal side of θ intersects the Unit Circle, as
in Figure 4.1.2. By associa ng the point P with the angle θ, we are assigning a
posi on on the Unit Circle to the angle θ. The x-coordinate of P is called the
cosine of θ, wri en cos(θ), while the y-coordinate of P is called the sine of θ,
wri en sin(θ). The reader is encouraged to verify that these rules used tomatch
an angle with its cosine and sine do, in fact, sa sfy the defini on of a func on.
That is, for each angle θ, there is only one associated value of cos(θ) and only
one associated value of sin(θ).

Example 4.1.1 Evalua ng cos(θ) and sin(θ)
Find the cosine and sine of the following angles.

1. θ = −π

2. θ = π
4

3. θ = π
6

4. θ = π
3

S

1. The angle θ = −π represents one half of a clockwise revolu on so its
terminal side lies on the nega ve x-axis. The point on the Unit Circle that
lies on the nega ve x-axis is (−1, 0) which means cos(−π) = −1 and
sin(−π) = 0.

2. Whenwe sketch θ = π
4 in standard posi on, we see in Figure 4.1.1 that its

terminal does not lie along any of the coordinate axes which makes our
job of finding the cosine and sine values a bit more difficult. Let P(x, y)
denote the point on the terminal side of θ which lies on the Unit Circle.
By defini on, x = cos

(
π
4
)
and y = sin

(
π
4
)
. If we drop a perpendicular

line segment from P to the x-axis, we obtain a 45◦−45◦−90◦ right triangle
whose legs have lengths x and y units. FromGeometry, we get y = x. (Can
you show this?) Since P(x, y) lies on the Unit Circle, we have x2 + y2 = 1.
Subs tu ng y = x into this equa on yields 2x2 = 1, or x = ±

√
1
2 = ±

√
2
2 .

Since P(x, y) lies in the first quadrant, x > 0, so x = cos
(
π
4
)
=

√
2
2 and

with y = x we have y = sin
(
π
4
)
=

√
2
2 .
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x

y

1

1

P (x, y)

θ = 45◦

θ = 45◦

45◦

x

y

P (x, y)

θ = π
4 in standard posi on 45◦ − 45◦ − 90◦ triangle

Figure 4.1.1: Finding cos
(
π
4

)
and sin

(
π
4

)

3. As before, the terminal side of θ = π
6 does not lie on any of the coordinate

axes, so we proceed using a triangle approach. Le ng P(x, y) denote the
point on the terminal side of θ which lies on the Unit Circle, we drop a
perpendicular line segment from P to the x-axis to form a 30◦−60◦−90◦
right triangle: see Figure 4.1.4. A er a bit of Geometry (again, can you
show this?) we find y = 1

2 so sin
(
π
6
)
= 1

2 . Since P(x, y) lies on the Unit
Circle, we subs tute y = 1

2 into x2 + y2 = 1 to get x2 = 3
4 , or x = ±

√
3
2 .

Here, x > 0 so x = cos
(
π
6
)
=

√
3
2 .

x

y

1

1

P (x, y)

θ = π
6

θ = π
6 = 30◦

60◦

x

y

P (x, y)

θ = π
6 in standard posi on 30◦ − 60◦ − 90◦ triangle

Figure 4.1.4: Finding cos
(
π
6

)
and sin

(
π
6

)

4. Plo ng θ = π
3 in standard posi on, wefind it is not a quadrantal angle and

set about using a triangle approach. Once again, we get a 30◦−60◦−90◦
right triangle and, a er the usual computa ons, find x = cos

(
π
3
)
= 1

2 and
y = sin

(
π
3
)
=

√
3
2 .
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x

y

1

1

P (x, y)

θ = 60◦

θ = 60◦

30◦

x

y

P (x, y)

θ = π
3 in standard posi on 30◦ − 60◦ − 90◦ triangle

Figure 4.1.5: Finding cos
(
π
3

)
and sin

(
π
3

)
In Example 4.1.1, it was quite easy to find the cosine and sine of the quad-

rantal angles, but for non-quadrantal angles, the task was much more involved.
In these la er cases, we made good use of the fact that the point P(x, y) =
(cos(θ), sin(θ)) lies on the Unit Circle, x2 + y2 = 1. If we subs tute x = cos(θ)
and y = sin(θ) into x2 + y2 = 1, we get (cos(θ))2 + (sin(θ))2 = 1. An
unfortunate conven on, which the authors are compelled to perpetuate, is to
write (cos(θ))2 as cos2(θ) and (sin(θ))2 as sin2(θ). (This is unfortunate from a
‘func on nota on’ perspec ve, as you will see once you encounter the inverse
trigonometric func ons.) Rewri ng the iden ty using this conven on results
in the following theorem, which is without a doubt one of the most important
results in Trigonometry.

Theorem 4.1.1 The Pythagorean Iden ty

For any angle θ, cos2(θ) + sin2(θ) = 1.

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from
which both the Distance Formula and the equa on for a circle are ul mately de-
rived. The word ‘Iden ty’ reminds us that, regardless of the angle θ, the equa-
on in Theorem4.1.1 is always true. If one of cos(θ) or sin(θ) is known, Theorem

4.1.1 can be used to determine the other, up to a (±) sign. If, in addi on, we
know where the terminal side of θ lies when in standard posi on, then we can
remove the ambiguity of the (±) and completely determine the missing value
as the next example illustrates.

Example 4.1.2 Using the Pythagorean Iden ty
Using the given informa on about θ, find the indicated value.

1. If θ is a Quadrant II angle with sin(θ) = 3
5 , find cos(θ).

2. If π < θ < 3π
2 with cos(θ) = −

√
5
5 , find sin(θ).

3. If sin(θ) = 1, find cos(θ).
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1

1

P = Q

α

Figure 4.1.7: Reference angle α for a
Quadrant I angle

x

y

1

1

P Q

αα

Figure 4.1.8: Reference angle α for a
Quadrant II angle
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1

1

P

Q

α

α

Figure 4.1.9: Reference angle α for a
Quadrant III angle

x

y

1

1

P

Q

α

α

Figure 4.1.10: Reference angle α for a
Quadrant IV angle
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S

1. When we subs tute sin(θ) = 3
5 into The Pythagorean Iden ty, cos2(θ) +

sin2(θ) = 1, we obtain cos2(θ) + 9
25 = 1. Solving, we find cos(θ) = ± 4

5 .
Since θ is a Quadrant II angle, its terminal side, when plo ed in standard
posi on, lies in Quadrant II. Since the x-coordinates are nega ve in Quad-
rant II, cos(θ) is too. Hence, cos(θ) = − 4

5 .

2. Subs tu ng cos(θ) = −
√
5
5 into cos2(θ) + sin2(θ) = 1 gives sin(θ) =

± 2√
5 = ± 2

√
5

5 . Since we are given that π < θ < 3π
2 , we know θ is a

Quadrant III angle. Hence both its sine and cosine are nega ve and we
conclude sin(θ) = − 2

√
5

5 .

3. When we subs tute sin(θ) = 1 into cos2(θ) + sin2(θ) = 1, we find
cos(θ) = 0.

Another tool which helps immensely in determining cosines and sines of an-
gles is the symmetry inherent in the Unit Circle. Suppose, for instance, we wish
to know the cosine and sine of θ = 5π

6 . We plot θ in standard posi on be-
low and, as usual, let P(x, y) denote the point on the terminal side of θ which
lies on the Unit Circle. Note that the terminal side of θ lies π

6 radians short of
one half revolu on. In Example 4.1.1, we determined that cos

(
π
6
)
=

√
3
2 and

sin
(
π
6
)
= 1

2 . Thismeans that the point on the terminal side of the angle π
6 , when

plo ed in standard posi on, is
(√

3
2 , 12

)
. From Figure 4.1.6, it is clear that the

point P(x, y) we seek can be obtained by reflec ng that point about the y-axis.
Hence, cos

( 5π
6
)
= −

√
3
2 and sin

( 5π
6
)
= 1

2 .

x

y

1

1

P (x, y) θ = 5π
6

π
6

x

y

1

1

(√
3

2 , 1
2

)
P

(
−

√
3

2 , 1
2

)
π
6

π
6

θ = 5π
6

Figure 4.1.6: Refelc ng P(x, y) across the y-axis to obtain a Quadrant I angle

In the above scenario, the angle π
6 is called the reference angle for the angle5π

6 . In general, for a non-quadrantal angle θ, the reference angle for θ (usually
denoted α) is the acute angle made between the terminal side of θ and the x-
axis. If θ is a Quadrant I or IV angle, α is the angle between the terminal side
of θ and the posi ve x-axis; if θ is a Quadrant II or III angle, α is the angle be-
tween the terminal side of θ and the nega ve x-axis. If we let P denote the point
(cos(θ), sin(θ)), then P lies on the Unit Circle. Since the Unit Circle possesses
symmetry with respect to the x-axis, y-axis and origin, regardless of where the
terminal side of θ lies, there is a point Q symmetric with Pwhich determines θ’s
reference angle, α as seen below.

We have just outlined the proof of the following theorem.
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x

y

1

1

θ = 225◦

45◦

Figure 4.1.11: Finding cos
( 5π

4

)
and

sin
( 5π

4

)

x

y

1

1

θ = 11π
6

π
6

Figure 4.1.12: Finding cos
( 11π

6

)
and

sin
( 11π

6

)

x

y

1

1

θ = − 5π
4

π
4

Figure 4.1.13: Finding cos
(
− 5π

4

)
and

sin
(
− 5π

4

)

x

y

1

1

θ = 7π
3

π
3

Figure 4.1.14: Finding cos
( 7π

3

)
and

sin
( 7π

3

)

4.1 The Unit Circle: Sine and Cosine

Theorem 4.1.2 Reference Angle Theorem

Suppose α is the reference angle for θ. Then cos(θ) = ± cos(α) and
sin(θ) = ± sin(α), where the choice of the (±) depends on the quadrant
in which the terminal side of θ lies.

In light of Theorem 4.1.2, it pays to know the cosine and sine values for cer-
tain common angles. In the table below, we summarize the values which we
consider essen al and must be memorized.

Cosine and Sine Values of Common Angles
θ(degrees) θ(radians) cos(θ) sin(θ)

0◦ 0 1 0
30◦ π

6

√
3
2

1
2

45◦ π
4

√
2
2

√
2
2

60◦ π
3

1
2

√
3
2

90◦ π
2 0 1

Example 4.1.3 Using reference angles
Find the cosine and sine of the following angles.

1. θ = 5π
4

2. θ = 11π
6

3. θ = − 5π
4

4. θ = 7π
3

S

1. We begin by plo ng θ = 5π
4 in standard posi on and find its terminal side

overshoots the nega ve x-axis to land in Quadrant III. Hence, we obtain
θ’s reference angle α by subtrac ng: α = θ − π = 5π

4 − π = π
4 . Since θ

is a Quadrant III angle, both cos(θ) < 0 and sin(θ) < 0. The Reference
Angle Theorem yields: cos

( 5π
4
)
= − cos

(
π
4
)
= −

√
2
2 and sin

( 5π
4
)
=

− sin
(
π
4
)
= −

√
2
2 .

2. The terminal side of θ = 11π
6 , when plo ed in standard posi on, lies in

Quadrant IV, just shy of the posi ve x-axis. To find θ’s reference angle α,
we subtract: α = 2π − θ = 2π − 11π

6 = π
6 . Since θ is a Quadrant IV

angle, cos(θ) > 0 and sin(θ) < 0, so the Reference Angle Theorem gives:
cos
( 11π

6
)
= cos

(
π
6
)
=

√
3
2 and sin

( 11π
6
)
= − sin

(
π
6
)
= − 1

2 .

3. To plot θ = − 5π
4 , we rotate clockwise an angle of 5π

4 from the posi ve x-
axis. The terminal side of θ, therefore, lies in Quadrant II making an angle
of α = 5π

4 − π = π
4 radians with respect to the nega ve x-axis. Since θ

is a Quadrant II angle, the Reference Angle Theorem gives: cos
(
− 5π

4
)
=

− cos
(
π
4
)
= −

√
2
2 and sin

(
− 5π

4
)
= sin

(
π
4
)
=

√
2
2 .

4. Since the angle θ = 7π
3 measuresmore than 2π = 6π

3 , we find the terminal
side of θ by rota ng one full revolu on followed by an addi onalα = 7π

3 −
2π = π

3 radians. Since θ and α are coterminal, cos
( 7π

3
)
= cos

(
π
3
)
= 1

2
and sin

( 7π
3
)
= sin

(
π
3
)
=

√
3
2 .
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Chapter 4 Founda ons of Trigonometry

The reader may have no ced that when expressed in radian measure, the
reference angle is easy to spot. Reduced frac on mul ples of π with a denom-
inator of 6 have π

6 as a reference angle, those with a denominator of 4 have
π
4 as their reference angle, and those with a denominator of 3 have π

3 as their
reference angle. The Reference Angle Theorem in conjunc on with the table of
cosine and sine values on Page 109 can be used to generate the following figure,
which the authors feel should be commi ed to memory. (At the very least, one
should memorize the first quadrant and learn to make use of Theorem 4.1.2.)

x

y

(0, 1)

(1, 0)

(0,−1)

(−1, 0)

(√
2
2 ,

√
2
2

)
(√

3
2 ,

1
2

)

(
1
2 ,

√
3
2

)
(
−

√
2
2 ,

√
2
2

)
(
−

√
3
2 ,

1
2

)

(
− 1

2 ,
√
3
2

)

(√
2
2 ,−

√
2
2

)
(√

3
2 ,−

1
2

)

(
1
2 ,−

√
3
2

)
(
−

√
2
2 ,−

√
2
2

)
(
−

√
3
2 ,−

1
2

)

(
− 1

2 ,−
√
3
2

)

0, 2π

π

2

π

3π

2

π

4

π

6

π

3

3π

4

5π

6

2π

3

5π

4

7π

6

4π

3

7π

4

11π

6

5π

3

Figure 4.1.15: Important Points on the Unit Circle
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4.1 The Unit Circle: Sine and Cosine

Our next example asks us to solve some very basic trigonometric equa ons.

Example 4.1.4 Solving basic trigonometric equa ons
Find all of the angles which sa sfy the given equa on.

1. cos(θ) =
1
2

2. sin(θ) = −1
2

3. cos(θ) = 0.

S

1. If cos(θ) = 1
2 , then the terminal side of θ, when plo ed in standard posi-

on, intersects the Unit Circle at x = 1
2 . This means θ is a Quadrant I or IV

angle with reference angle π
3 .

x

y

1
1
2

1

π
3

x

y

1

1
2

1

π
3

Figure 4.1.16: Angles with cos(θ) = 1
2

One solu on in Quadrant I is θ = π
3 , and since all other Quadrant I so-

lu ons must be coterminal with π
3 , we find θ = π

3 + 2πk for integers
k. Proceeding similarly for the Quadrant IV case, we find the solu on to
cos(θ) = 1

2 here is
5π
3 , so our answer in this Quadrant is θ = 5π

3 + 2πk for
integers k.

2. If sin(θ) = − 1
2 , then when θ is plo ed in standard posi on, its terminal

side intersects the Unit Circle at y = − 1
2 . From this, we determine θ is a

Quadrant III or Quadrant IV angle with reference angle π
6 .

x

y

1

− 1
2

1

π
6

x

y

1

− 1
2

1

π
6

Figure 4.1.17: Angles with sin(θ) = − 1
2

In Quadrant III, one solu on is 7π
6 , so we capture all Quadrant III solu ons

by adding integer mul ples of 2π: θ = 7π
6 + 2πk. In Quadrant IV, one
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x

y

1

1

θ = t

t

x

y

1

1

P (cos(t), sin(t))

θ = t

Figure 4.1.19: Defining cos(t) and sin(t)
as func ons of a real variable

Chapter 4 Founda ons of Trigonometry

solu on is 11π
6 so all the solu ons here are of the form θ = 11π

6 + 2πk for
integers k.

3. The angles with cos(θ) = 0 are quadrantal angles whose terminal sides,
when plo ed in standard posi on, lie along the y-axis.

x

y

1

1

π
2

x

y

1

1

π
2

π
2

π

Figure 4.1.18: Angles with cos(θ) = 0

While, technically speaking, π
2 isn’t a reference angle we can nonetheless

use it to find our answers. If we follow the procedure set forth in the
previous examples, we find θ = π

2 + 2πk and θ = 3π
2 + 2πk for integers,

k. While this solu on is correct, it can be shortened to θ = π
2 + πk for

integers k. (Can you see why this works from the diagram?)

One of the key items to take from Example 4.1.4 is that, in general, solu-
ons to trigonometric equa ons consist of infinitely many answers. The reader

is encouraged write out as many of these answers as necessary to get a feel for
them. This is especially important when checking answers to the exercises. For
example, another Quadrant IV solu on to sin(θ) = − 1

2 is θ = − π
6 . Hence, the

family of Quadrant IV answers to number 2 above could just have easily been
wri en θ = − π

6 + 2πk for integers k. While on the surface, this family may look
different than the stated solu on of θ = 11π

6 + 2πk for integers k, we leave it to
the reader to show they represent the same list of angles.

We close this sec on by no ng thatwe can easily extend the func ons cosine
and sine to real numbers by iden fying a real number t with the angle θ = t ra-
dians. Using this iden fica on, we define cos(t) = cos(θ) and sin(t) = sin(θ).
In prac ce this means expressions like cos(π) and sin(2) can be found by re-
garding the inputs as angles in radian measure or real numbers; the choice is
the reader’s.

In the same way we studied polynomial, ra onal, exponen al, and loga-
rithmic func ons, we will study the trigonometric func ons f(t) = cos(t) and
g(t) = sin(t). The first order of business is to find the domains and ranges of
these func ons. Whether we think of iden fying the real number twith the an-
gle θ = t radians, or think of wrapping an oriented arc around the Unit Circle to
find coordinates on the Unit Circle, it should be clear that both the cosine and
sine func ons are defined for all real numbers t. In other words, the domain of
f(t) = cos(t) and of g(t) = sin(t) is (−∞,∞). Since cos(t) and sin(t) represent
x- and y-coordinates, respec vely, of points on the Unit Circle, they both take
on all of the values between −1 an 1, inclusive. In other words, the range of
f(t) = cos(t) and of g(t) = sin(t) is the interval [−1, 1]. To summarize:
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4.1 The Unit Circle: Sine and Cosine

Theorem4.1.3 Domain and Range of the Cosine and Sine Func ons

• The func on f(t) = cos(t)

– has domain (−∞,∞)

– has range [−1, 1]

• The func on g(t) = sin(t)

– has domain (−∞,∞)

– has range [−1, 1]

Suppose, as in the Exercises, we are asked to solve an equa on such as
sin(t) = − 1

2 . As we have already men oned, the dis nc on between t as a
real number and as an angle θ = t radians is o en blurred. Indeed, we solve
sin(t) = − 1

2 in the exact same manner as we did in Example 4.1.4 number 2.
Our solu on is only cosme cally different in that the variable used is t rather
than θ: t = 7π

6 + 2πk or t = 11π
6 + 2πk for integers, k. We will study the co-

sine and sine func ons in greater detail in Sec on 4.4. Un l then, keep in mind
that any proper es of cosine and sine developed in the following sec ons which
regard them as func ons of angles in radian measure apply equally well if the
inputs are regarded as real numbers.

113



Exercises 4.1
Problems
In Exercises 1 – 20, find the exact value of the cosine and sine
of the given angle.

1. θ = 0

2. θ =
π

4

3. θ =
π

3

4. θ =
π

2

5. θ =
2π
3

6. θ =
3π
4

7. θ = π

8. θ =
7π
6

9. θ =
5π
4

10. θ =
4π
3

11. θ =
3π
2

12. θ =
5π
3

13. θ =
7π
4

14. θ =
23π
6

15. θ = −13π
2

16. θ = −43π
6

17. θ = −3π
4

18. θ = −π

6

19. θ =
10π
3

20. θ = 117π

In Exercises 21 – 30, use the results developed throughout
the sec on to find the requested value.

21. If sin(θ) = − 7
25

with θ in Quadrant IV, what is cos(θ)?

22. If cos(θ) = 4
9
with θ in Quadrant I, what is sin(θ)?

23. If sin(θ) = 5
13

with θ in Quadrant II, what is cos(θ)?

24. If cos(θ) = − 2
11

with θ in Quadrant III, what is sin(θ)?

25. If sin(θ) = −2
3
with θ in Quadrant III, what is cos(θ)?

26. If cos(θ) = 28
53

with θ in Quadrant IV, what is sin(θ)?

27. If sin(θ) = 2
√
5

5
and π

2
< θ < π, what is cos(θ)?

28. If cos(θ) =
√
10
10

and 2π < θ <
5π
2
, what is sin(θ)?

29. If sin(θ) = −0.42 and π < θ <
3π
2
, what is cos(θ)?

30. If cos(θ) = −0.98 and π

2
< θ < π, what is sin(θ)?

In Exercises 31 – 39, find all of the angles which sa sfy the
given equa on.

31. sin(θ) = 1
2

32. cos(θ) = −
√
3
2

33. sin(θ) = 0

34. cos(θ) =
√
2
2

35. sin(θ) =
√
3
2

36. cos(θ) = −1

37. sin(θ) = −1

38. cos(θ) =
√
3
2

39. cos(θ) = −1.001
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The func ons in Defini on 4.2.1 are also
(and perhaps, more commonly) known as
trigonometric func ons, owing to the fact
that the can also be defined in terms of
ra os of the three sides of a right-angle
triangle

θ

x

y

1

O B(1, 0)A(x, 0)

P (x, y)

Q(1, y′) = (1, tan(θ))

Figure 4.2.1: Explaining the tangent and
secant func ons

4.2 The Six Circular Func ons and Fundamental Iden es

4.2 The Six Circular Func ons and Fundamental Iden-
es

In sec on 4.1, we defined cos(θ) and sin(θ) for angles θ using the coordinate
values of points on the Unit Circle. As such, these func ons earn the moniker
circular func ons. It turns out that cosine and sine are just two of the six com-
monly used circular func ons which we define below.

Defini on 4.2.1 The Circular Func ons

Suppose θ is an angle plo ed in standard posi on and P(x, y) is the point
on the terminal side of θ which lies on the Unit Circle.

• The cosine of θ, denoted cos(θ), is defined by cos(θ) = x.

• The sine of θ, denoted sin(θ), is defined by sin(θ) = y.

• The secant of θ, denoted sec(θ), is defined by sec(θ) =
1
x
, pro-

vided x ̸= 0.

• The cosecant of θ, denoted csc(θ), is defined by csc(θ) = 1
y
, pro-

vided y ̸= 0.

• The tangent of θ, denoted tan(θ), is defined by tan(θ) =
y
x
, pro-

vided x ̸= 0.

• The cotangent of θ, denoted cot(θ), is defined by cot(θ) =
x
y
,

provided y ̸= 0.

While we le the history of the name ‘sine’ as an interes ng research project
in Sec on 4.1, the names ‘tangent’ and ‘secant’ can be explained using the dia-
gram below. Consider the acute angle θ below in standard posi on. Let P(x, y)
denote, as usual, the point on the terminal side of θ which lies on the Unit Cir-
cle and let Q(1, y′) denote the point on the terminal side of θ which lies on the
ver cal line x = 1, as in Figure 4.2.1.

The word ‘tangent’ comes from the La n meaning ‘to touch,’ and for this
reason, the line x = 1 is called a tangent line to the Unit Circle since it intersects,
or ‘touches’, the circle at only one point, namely (1, 0). Dropping perpendiculars
from P and Q creates a pair of similar triangles∆OPA and∆OQB. Thus y′

y = 1
x

which gives y′ = y
x = tan(θ), where this last equality comes from applying

Defini on 4.2.1. We have just shown that for acute angles θ, tan(θ) is the y-
coordinate of the point on the terminal side of θ which lies on the line x = 1
which is tangent to the Unit Circle. Now the word ‘secant’ means ‘to cut’, so a
secant line is any line that ‘cuts through’ a circle at two points. (Compare this
with the defini on given in Sec on 3.1.1.) The line containing the terminal side
of θ is a secant line since it intersects the Unit Circle in Quadrants I and III. With
the point P lying on the Unit Circle, the length of the hypotenuse of ∆OPA is
1. If we let h denote the length of the hypotenuse of ∆OQB, we have from
similar triangles that h

1 = 1
x , or h = 1

x = sec(θ). Hence for an acute angle θ,
sec(θ) is the length of the line segment which lies on the secant line determined
by the terminal side of θ and ‘cuts off’ the tangent line x = 1. Not only do
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Chapter 4 Founda ons of Trigonometry

these observa ons help explain the names of these func ons, they serve as the
basis for a fundamental inequality needed for Calculus whichwe’ll explore in the
Exercises.

Of the six circular func ons, only cosine and sine are defined for all angles.
Since cos(θ) = x and sin(θ) = y in Defini on 4.2.1, it is customary to rephrase
the remaining four circular func ons in terms of cosine and sine. The following
theorem is a result of simply replacing x with cos(θ) and y with sin(θ) in Defini-
on 4.2.1.

Theorem 4.2.1 Reciprocal and Quo ent Iden es

• sec(θ) =
1

cos(θ)
, provided cos(θ) ̸= 0; if cos(θ) = 0, sec(θ) is

undefined.

• csc(θ) =
1

sin(θ)
, provided sin(θ) ̸= 0; if sin(θ) = 0, csc(θ) is

undefined.

• tan(θ) =
sin(θ)
cos(θ)

, provided cos(θ) ̸= 0; if cos(θ) = 0, tan(θ) is

undefined.

• cot(θ) =
cos(θ)
sin(θ)

, provided sin(θ) ̸= 0; if sin(θ) = 0, cot(θ) is

undefined.

Example 4.2.1 Evalua ng circular func ons
Find the indicated value, if it exists.

1. csc
( 7π

4
)

2. cot(3)

3. tan (θ), where θ is any angle coterminal with 3π
2 .

4. cos (θ), where csc(θ) = −
√
5 and θ is a Quadrant IV angle.

5. sin (θ), where tan(θ) = 3 and π < θ < 3π
2 .

S

1. Since sin
( 7π

4
)
= −

√
2
2 , csc

( 7π
4
)
= 1

sin( 7π
4 )

= 1
−
√
2/2 = − 2√

2 = −
√
2.

2. Since θ = 3 radians is not one of the ‘common angles’ from Sec on 4.1,
we resort to the calculator for a decimal approxima on. Ensuring that the
calculator is in radian mode, we find cot(3) = cos(3)

sin(3) ≈ −7.015.

3. If θ is coterminal with 3π
2 , then cos(θ) = cos

( 3π
2
)
= 0 and sin(θ) =

sin
( 3π

2
)
= −1. A emp ng to compute tan(θ) = sin(θ)

cos(θ) results in
−1
0 , so

tan(θ) is undefined.

4. We are given that csc(θ) = 1
sin(θ) = −

√
5 so sin(θ) = − 1√

5 = −
√
5
5 .

As we saw in Sec on 4.1, we can use the Pythagorean Iden ty, cos2(θ) +
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4.2 The Six Circular Func ons and Fundamental Iden es

sin2(θ) = 1, to find cos(θ)by knowing sin(θ). Subs tu ng, we get cos2(θ)+(
−

√
5
5

)2
= 1, which gives cos2(θ) = 4

5 , or cos(θ) = ± 2
√
5

5 . Since θ is a

Quadrant IV angle, cos(θ) > 0, so cos(θ) = 2
√
5

5 .

5. If tan(θ) = 3, then sin(θ)
cos(θ) = 3. Be careful - this does NOT mean we

can take sin(θ) = 3 and cos(θ) = 1. Instead, from sin(θ)
cos(θ) = 3 we get:

sin(θ) = 3 cos(θ). To relate cos(θ) and sin(θ), we once again employ the
Pythagorean Iden ty, cos2(θ)+sin2(θ) = 1. Solving sin(θ) = 3 cos(θ) for
cos(θ), we find cos(θ) = 1

3 sin(θ). Subs tu ng this into the Pythagorean
Iden ty, we find sin2(θ) +

( 1
3 sin(θ)

)2
= 1. Solving, we get sin2(θ) = 9

10
so sin(θ) = ± 3

√
10

10 . Since π < θ < 3π
2 , θ is a Quadrant III angle. This

means sin(θ) < 0, so our final answer is sin(θ) = − 3
√
10

10 .

Our next step is to provide versions of the iden ty cos2(θ) + sin2(θ) = 1
for the remaining circular func ons. Assuming cos(θ) ̸= 0, we may start with
cos2(θ) + sin2(θ) = 1 and divide both sides by cos2(θ) to obtain 1 + sin2(θ)

cos2(θ) =
1

cos2(θ) . Using proper es of exponents along with the Reciprocal and Quo ent
Iden es, this reduces to 1 + tan2(θ) = sec2(θ). If sin(θ) ̸= 0, we can divide
both sides of the iden ty cos2(θ)+ sin2(θ) = 1 by sin2(θ), apply Theorem 4.2.1
once again, and obtain cot2(θ) + 1 = csc2(θ). These three Pythagorean Iden-

es are worth memorizing and they, along with some of their other common
forms, are summarized in the following theorem.

Theorem 4.2.2 The Pythagorean Iden es

1. cos2(θ) + sin2(θ) = 1.
Common Alternate Forms:

• 1− sin2(θ) = cos2(θ)
• 1− cos2(θ) = sin2(θ)

2. 1+ tan2(θ) = sec2(θ), provided cos(θ) ̸= 0.
Common Alternate Forms:

• sec2(θ)− tan2(θ) = 1
• sec2(θ)− 1 = tan2(θ)

3. 1+ cot2(θ) = csc2(θ), provided sin(θ) ̸= 0.
Common Alternate Forms:

• csc2(θ)− cot2(θ) = 1
• csc2(θ)− 1 = cot2(θ)
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Example 4.2.2 Verifying trigonometric iden es
Verify the following iden es. Assume that all quan es are defined.

1.
1

csc(θ)
= sin(θ) 2. tan(θ) = sin(θ) sec(θ)

3. (sec(θ) − tan(θ))(sec(θ) +
tan(θ)) = 1

4.
sec(θ)

1− tan(θ)
=

1
cos(θ)− sin(θ)

S In verifying iden es, we typically start with the more com-
plicated side of the equa on and use known iden es to transform it into the
other side of the equa on.

1. To verify 1
csc(θ) = sin(θ), we start with the le side. Using csc(θ) = 1

sin(θ) ,
we get:

1
csc(θ)

=
1
1

sin(θ)
= sin(θ),

which is what we were trying to prove.

2. Star ngwith the right hand side of tan(θ) = sin(θ) sec(θ), weuse sec(θ) =
1

cos(θ) and find:

sin(θ) sec(θ) = sin(θ)
1

cos(θ)
=

sin(θ)
cos(θ)

= tan(θ),

where the last equality is courtesy of Theorem 4.2.1.

3. Expanding the le hand side of the equa on gives: (sec(θ)−tan(θ))(sec(θ)+
tan(θ)) = sec2(θ) − tan2(θ). According to Theorem 4.2.2, sec2(θ) −
tan2(θ) = 1. Pu ng it all together,

(sec(θ)− tan(θ))(sec(θ) + tan(θ)) = sec2(θ)− tan2(θ) = 1.

4. While both sides of our last iden ty contain frac ons, the le side affords
us more opportuni es to use our iden es. Subs tu ng sec(θ) = 1

cos(θ)

and tan(θ) = sin(θ)
cos(θ) , we get:

sec(θ)
1− tan(θ)

=

1
cos(θ)

1− sin(θ)
cos(θ)

=

1
cos(θ)

1− sin(θ)
cos(θ)

· cos(θ)
cos(θ)

=

(
1

cos(θ)

)
(cos(θ))(

1− sin(θ)
cos(θ)

)
(cos(θ))

=
1

(1)(cos(θ))−
(
sin(θ)
cos(θ)

)
(cos(θ))

=
1

cos(θ)− sin(θ)
,

which is exactly what we had set out to show.
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4.2 The Six Circular Func ons and Fundamental Iden es

Verifying trigonometric iden es requires a healthy mix of tenacity and in-
spira on. You will need to spend many hours struggling with them just to be-
come proficient in the basics. Like many things in life, there is no short-cut here
– there is no complete algorithm for verifying iden es. Nevertheless, a sum-
mary of some strategies which may be helpful (depending on the situa on) is
provided below and ample prac ce is provided for you in the Exercises.

Key Idea 4.2.1 Strategies for Verifying Iden es

• Try working on the more complicated side of the iden ty.

• Use the Reciprocal and Quo ent Iden es in Theorem 4.2.1 to
write func ons on one side of the iden ty in terms of the func-
ons on the other side of the iden ty. Simplify the resul ng com-

plex frac ons.

• Add ra onal expressions with unlike denominators by obtaining
common denominators.

• Use the Pythagorean Iden es in Theorem 4.2.2 to ‘exchange’
sines and cosines, secants and tangents, cosecants and cotan-
gents, and simplify sums or differences of squares to one term.

• Mul ply numerator and denominator by Pythagorean Conjugates
in order to take advantage of the Pythagorean Iden es in Theo-
rem 4.2.2.

• If you find yourself stuck working with one side of the iden ty, try
star ng with the other side of the iden ty and see if you can find
a way to bridge the two parts of your work.
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Exercises 4.2
Problems
In Exercises 1 – 20, find the exact value of the cosine and sine
of the given angle.

1. θ = 0

2. θ =
π

4

3. θ =
π

3

4. θ =
π

2

5. θ =
2π
3

6. θ =
3π
4

7. θ = π

8. θ =
7π
6

9. θ =
5π
4

10. θ =
4π
3

11. θ =
3π
2

12. θ =
5π
3

13. θ =
7π
4

14. θ =
23π
6

15. θ = −13π
2

16. θ = −43π
6

17. θ = −3π
4

18. θ = −π

6

19. θ =
10π
3

20. θ = 117π

In Exercises 21 – 34, use the given the informa on to find the
exact values of the remaining circular func ons of θ.

21. sin(θ) = 3
5
with θ in Quadrant II

22. tan(θ) = 12
5

with θ in Quadrant III

23. csc(θ) = 25
24

with θ in Quadrant I

24. sec(θ) = 7 with θ in Quadrant IV

25. csc(θ) = −10
√
91

91
with θ in Quadrant III

26. cot(θ) = −23 with θ in Quadrant II

27. tan(θ) = −2 with θ in Quadrant IV.

28. sec(θ) = −4 with θ in Quadrant II.

29. cot(θ) =
√
5 with θ in Quadrant III.

30. cos(θ) = 1
3
with θ in Quadrant I.

31. cot(θ) = 2 with 0 < θ <
π

2
.

32. csc(θ) = 5 with π

2
< θ < π.

33. tan(θ) =
√
10 with π < θ <

3π
2
.

34. sec(θ) = 2
√
5 with 3π

2
< θ < 2π.

In Exercises 35 – 49, find all of the angles which sa sfy the
equa on.

35. tan(θ) =
√
3

36. sec(θ) = 2

37. csc(θ) = −1

38. cot(θ) =
√
3
3

39. tan(θ) = 0

40. sec(θ) = 1

41. csc(θ) = 2

42. cot(θ) = 0
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43. tan(θ) = −1

44. sec(θ) = 0

45. csc(θ) = −1
2

46. sec(θ) = −1

47. tan(θ) = −
√
3

48. csc(θ) = −2

49. cot(θ) = −1

In Exercises 50 – 57, solve the equa on for t. Give exact val-
ues.

50. cot(t) = 1

51. tan(t) =
√
3
3

52. sec(t) = −2
√
3

3

53. csc(t) = 0

54. cot(t) = −
√
3

55. tan(t) = −
√
3
3

56. sec(t) = 2
√
3

3

57. csc(t) = 2
√
3

3

In Exercises 58 – 104, verify the iden ty. Assume that all
quan es are defined.

58. cos(θ) sec(θ) = 1

59. tan(θ) cos(θ) = sin(θ)

60. sin(θ) csc(θ) = 1

61. tan(θ) cot(θ) = 1

62. csc(θ) cos(θ) = cot(θ)

63. sin(θ)
cos2(θ)

= sec(θ) tan(θ)

64. cos(θ)
sin2(θ)

= csc(θ) cot(θ)

65. 1+ sin(θ)
cos(θ)

= sec(θ) + tan(θ)

66. 1− cos(θ)
sin(θ)

= csc(θ)− cot(θ)

67. cos(θ)
1− sin2(θ)

= sec(θ)

68. sin(θ)
1− cos2(θ)

= csc(θ)

69. sec(θ)
1+ tan2(θ)

= cos(θ)

70. csc(θ)
1+ cot2(θ)

= sin(θ)

71. tan(θ)
sec2(θ)− 1

= cot(θ)

72. cot(θ)
csc2(θ)− 1

= tan(θ)

73. 4 cos2(θ) + 4 sin2(θ) = 4

74. 9− cos2(θ)− sin2(θ) = 8

75. tan3(θ) = tan(θ) sec2(θ)− tan(θ)

76. sin5(θ) =
(
1− cos2(θ)

)2 sin(θ)
77. sec10(θ) =

(
1+ tan2(θ)

)4 sec2(θ)
78. cos2(θ) tan3(θ) = tan(θ)− sin(θ) cos(θ)

79. sec4(θ)− sec2(θ) = tan2(θ) + tan4(θ)

80. cos(θ) + 1
cos(θ)− 1

=
1+ sec(θ)
1− sec(θ)

81. sin(θ) + 1
sin(θ)− 1

=
1+ csc(θ)
1− csc(θ)

82. 1− cot(θ)
1+ cot(θ)

=
tan(θ)− 1
tan(θ) + 1

83. 1− tan(θ)
1+ tan(θ)

=
cos(θ)− sin(θ)
cos(θ) + sin(θ)

84. tan(θ) + cot(θ) = sec(θ) csc(θ)

85. csc(θ)− sin(θ) = cot(θ) cos(θ)

86. cos(θ)− sec(θ) = − tan(θ) sin(θ)

87. cos(θ)(tan(θ) + cot(θ)) = csc(θ)

88. sin(θ)(tan(θ) + cot(θ)) = sec(θ)

89. 1
1− cos(θ)

+
1

1+ cos(θ)
= 2 csc2(θ)
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90. 1
sec(θ) + 1

+
1

sec(θ)− 1
= 2 csc(θ) cot(θ)

91. 1
csc(θ) + 1

+
1

csc(θ)− 1
= 2 sec(θ) tan(θ)

92. 1
csc(θ)− cot(θ)

− 1
csc(θ) + cot(θ)

= 2 cot(θ)

93. cos(θ)
1− tan(θ)

+
sin(θ)

1− cot(θ)
= sin(θ) + cos(θ)

94. 1
sec(θ) + tan(θ)

= sec(θ)− tan(θ)

95. 1
sec(θ)− tan(θ)

= sec(θ) + tan(θ)

96. 1
csc(θ)− cot(θ)

= csc(θ) + cot(θ)

97. 1
csc(θ) + cot(θ)

= csc(θ)− cot(θ)

98. 1
1− sin(θ)

= sec2(θ) + sec(θ) tan(θ)

99. 1
1+ sin(θ)

= sec2(θ)− sec(θ) tan(θ)

100. 1
1− cos(θ)

= csc2(θ) + csc(θ) cot(θ)

101. 1
1+ cos(θ)

= csc2(θ)− csc(θ) cot(θ)

102. cos(θ)
1+ sin(θ)

=
1− sin(θ)
cos(θ)

103. csc(θ)− cot(θ) = sin(θ)
1+ cos(θ)

104. 1− sin(θ)
1+ sin(θ)

= (sec(θ)− tan(θ))2
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As men oned at the end of Sec on 4.1,
proper es of the circular func ons when
thought of as func ons of angles in ra-
dian measure hold equally well if we view
these func ons as func ons of real num-
bers. Not surprisingly, the Even / Odd
proper es of the circular func ons are so
named because they iden fy cosine and
secant as even func ons, while the re-
maining four circular func ons are odd.

x

y

1

1

θ

θ0

x

y

1

1

θ0

−θ0

P (cos(θ0), sin(θ0))

Q(cos(−θ0), sin(−θ0))

Figure 4.3.1: Establishing Theorem 4.3.1

4.3 Trigonometric Iden es

4.3 Trigonometric Iden es

In Sec on 4.2, we saw the u lity of the Pythagorean Iden es in Theorem 4.2.2
alongwith the Quo ent and Reciprocal Iden es in Theorem 4.2.1. Not only did
these iden es help us compute the values of the circular func ons for angles,
they were also useful in simplifying expressions involving the circular func ons.
In this sec on, we introduce several collec ons of iden es which have uses in
this course and beyond. Our first set of iden es is the ‘Even / Odd’ iden es.

Theorem 4.3.1 Even / Odd Iden es

For all applicable angles θ,

• cos(−θ) = cos(θ)

• sin(−θ) = − sin(θ)

• tan(−θ) = − tan(θ)

• sec(−θ) = sec(θ)

• csc(−θ) = − csc(θ)

• cot(−θ) = − cot(θ)

In light of the Quo ent and Reciprocal Iden es, Theorem 4.2.1, it suffices
to show cos(−θ) = cos(θ) and sin(−θ) = − sin(θ). The remaining four circular
func ons can be expressed in terms of cos(θ) and sin(θ) so the proofs of their
Even / Odd Iden es are le as exercises.

By adding the appropriate mul ple of 2π, we may replace θ by the cotermi-
nal angle θ0 with 0 ≤ θ0 < 2π; the reader can verify that the angles −θ and
−θ0 are then also coterminal. The Evan / Odd iden es then follow by observ-
ing that the points P = (cos(θ0), sin(θ0)) and Q = (cos(−θ0), sin(−θ0)) lie on
opposite sides of the x-axis, as shown in Figure 4.3.1.

The Even / Odd Iden es are readily demonstrated using any of the ‘com-
mon angles’ noted in Sec on 4.1. Their true u lity, however, lies not in com-
puta on, but in simplifying expressions involving the circular func ons. In fact,
our next batch of iden es makes heavy use of the Even / Odd Iden es.

Theorem 4.3.2 Sum and Difference Iden es for Cosine

For all angles α and β,

• cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

• cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

We first prove the result for differences. As in the proof of the Even / Odd
Iden es, we can reduce the proof for general angles α and β to angles α0 and
β0, coterminal withα and β, respec vely, each ofwhichmeasure between 0 and
2π radians. Since α and α0 are coterminal, as are β and β0, it follows that α−β
is coterminal with α0 − β0. Consider the case in Figure 4.3.2 where α0 ≥ β0.

Since the angles POQ and AOB are congruent, the distance between P andQ
is equal to the distance between A and B. The distance formula, Equa on 1.2.3,
yields
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α0

β0

x

y

1O

P (cos(α0), sin(α0))

Q(cos(β0), sin(β0))α0 − β0

x

y

1

O

A(cos(α0 − β0), sin(α0 − β0))

B(1, 0)

α0 − β0

Figure 4.3.2: Establishing Theorem 4.3.2

In Figure 4.3.2, the triangles POQ and
AOB are congruent, which is even be er.
However, α0 − β0 could be 0 or it could
be π, neither of whichmakes a triangle. It
could also be larger than π, which makes
a triangle, just not the one we’ve drawn.
You should think about those three cases.

Chapter 4 Founda ons of Trigonometry

√
(cos(α0)− cos(β0))

2 + (sin(α0)− sin(β0))
2

=
√
(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2

Squaring both sides, we expand the le hand side of this equa on as

(cos(α0)− cos(β0))
2 + (sin(α0)− sin(β0))

2

= cos2(α0)− 2 cos(α0) cos(β0) + cos2(β0)

+ sin2(α0)− 2 sin(α0) sin(β0) + sin2(β0)

= cos2(α0) + sin2(α0) + cos2(β0) + sin2(β0)

− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

From the Pythagorean Iden es we have cos2(α0) + sin2(α0) = 1 and
cos2(β0) + sin2(β0) = 1, so

(cos(α0)− cos(β0))
2+(sin(α0)− sin(β0))

2

= 2− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

Turning our a en on to the right hand side of our equa on, we find

(cos(α0 − β0)− 1)2+(sin(α0 − β0)− 0)2

= cos2(α0 − β0)− 2 cos(α0 − β0) + 1+ sin2(α0 − β0)

= 1+ cos2(α0 − β0) + sin2(α0 − β0)− 2 cos(α0 − β0)

Once again, we simplify cos2(α0 − β0) + sin2(α0 − β0) = 1, so that

(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2 = 2− 2 cos(α0 − β0)

Pu ng it all together, we get 2 − 2 cos(α0) cos(β0) − 2 sin(α0) sin(β0) =
2 − 2 cos(α0 − β0), which simplifies to: cos(α0 − β0) = cos(α0) cos(β0) +
sin(α0) sin(β0). Sinceα andα0, β andβ0 andα−β andα0−β0 are all coterminal
pairs of angles, we have cos(α − β) = cos(α) cos(β) + sin(α) sin(β). For the
case where α0 ≤ β0, we can apply the above argument to the angle β0 − α0 to
obtain the iden ty cos(β0−α0) = cos(β0) cos(α0)+ sin(β0) sin(α0). Applying
the Even Iden ty of cosine, we get cos(β0−α0) = cos(−(α0−β0)) = cos(α0−
β0), and we get the iden ty in this case, too.

To get the sum iden ty for cosine, we use the difference formula along with
the Even/Odd Iden es

cos(α+ β) = cos(α− (−β)) = cos(α) cos(−β) + sin(α) sin(−β)

= cos(α) cos(β)− sin(α) sin(β)
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4.3 Trigonometric Iden es

Example 4.3.1 Using Theorem 4.3.2

1. Find the exact value of cos (15◦).

2. Verify the iden ty: cos
(
π
2 − θ

)
= sin(θ).

S

1. In order to use Theorem 4.3.2 to find cos (15◦), we need to write 15◦ as
a sum or difference of angles whose cosines and sines we know. One way
to do so is to write 15◦ = 45◦ − 30◦.

cos (15◦) = cos (45◦ − 30◦)
= cos (45◦) cos (30◦) + sin (45◦) sin (30◦)

=

(√
2
2

)(√
3
2

)
+

(√
2
2

)(
1
2

)

=

√
6+

√
2

4

2. In a straigh orward applica on of Theorem 4.3.2, we find

cos
(π
2
− θ
)

= cos
(π
2

)
cos (θ) + sin

(π
2

)
sin (θ)

= (0) (cos(θ)) + (1) (sin(θ))
= sin(θ)

The iden ty verified in Example 4.3.1, namely, cos
(
π
2 − θ

)
= sin(θ), is the

first of what are called the ‘cofunc on’ iden es. From sin(θ) = cos
(
π
2 − θ

)
,

we get:

sin
(π
2
− θ
)
= cos

(π
2
−
[π
2
− θ
])

= cos(θ),

which says, inwords, that the ‘co’sine of an angle is the sine of its ‘co’mplement.
Now that these iden es have been established for cosine and sine, the remain-
ing circular func ons follow suit. The remaining proofs are le as exercises.

Theorem 4.3.3 Cofunc on Iden es

For all applicable angles θ,

• cos
(π
2
− θ
)
= sin(θ)

• sin
(π
2
− θ
)
= cos(θ)

• sec
(π
2
− θ
)
= csc(θ)

• csc
(π
2
− θ
)
= sec(θ)

• tan
(π
2
− θ
)
= cot(θ)

• cot
(π
2
− θ
)
= tan(θ)

With the Cofunc on Iden es in place, we are now in the posi on to derive
the sum and difference formulas for sine. To derive the sum formula for sine, we
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Chapter 4 Founda ons of Trigonometry

convert to cosines using a cofunc on iden ty, then expand using the difference
formula for cosine

sin(α+ β) = cos
(π
2
− (α+ β)

)
= cos

([π
2
− α

]
− β

)
= cos

(π
2
− α

)
cos(β) + sin

(π
2
− α

)
sin(β)

= sin(α) cos(β) + cos(α) sin(β)

We can derive the difference formula for sine by rewri ng sin(α − β) as
sin(α+ (−β)) and using the sum formula and the Even / Odd Iden es. Again,
we leave the details to the reader.

Theorem 4.3.4 Sum and Difference Iden es for Sine

For all angles α and β,

• sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

• sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

Example 4.3.2 Using Theorem 4.3.4

1. Find the exact value of sin
( 19π

12
)

2. If α is a Quadrant II angle with sin(α) = 5
13 , and β is a Quadrant III angle

with tan(β) = 2, find sin(α− β).

3. Derive a formula for tan(α+ β) in terms of tan(α) and tan(β).

S

1. As in Example 4.3.1, we need to write the angle 19π
12 as a sum or difference

of common angles. The denominator of 12 suggests a combina on of an-
gles with denominators 3 and 4. One such combina on is 19π

12 = 4π
3 + π

4 .
Applying Theorem 4.3.4, we get

sin
(
19π
12

)
= sin

(
4π
3

+
π

4

)
= sin

(
4π
3

)
cos
(π
4

)
+ cos

(
4π
3

)
sin
(π
4

)
=

(
−
√
3
2

)(√
2
2

)
+

(
−1
2

)(√
2
2

)

=
−
√
6−

√
2

4

2. In order to find sin(α−β)using Theorem4.3.4, weneed to find cos(α) and
both cos(β) and sin(β). To find cos(α), we use the Pythagorean Iden ty

126



Note: As with any trigonometric iden-
ty, this formula is limited to those cases

where all of the tangents are defined.

4.3 Trigonometric Iden es

cos2(α)+ sin2(α) = 1. Since sin(α) = 5
13 , we have cos

2(α)+
( 5
13
)2

= 1,
or cos(α) = ± 12

13 . Since α is a Quadrant II angle, cos(α) = − 12
13 . We now

set about finding cos(β) and sin(β). We have several ways to proceed,
but the Pythagorean Iden ty 1+ tan2(β) = sec2(β) is a quick way to get
sec(β), and hence, cos(β). With tan(β) = 2, we get 1+ 22 = sec2(β) so
that sec(β) = ±

√
5. Since β is a Quadrant III angle, we choose sec(β) =

−
√
5 so cos(β) = 1

sec(β) = 1
−
√
5 = −

√
5
5 . We now need to determine

sin(β). We could use The Pythagorean Iden ty cos2(β) + sin2(β) = 1,
but we opt instead to use a quo ent iden ty. From tan(β) = sin(β)

cos(β) , we

have sin(β) = tan(β) cos(β) so we get sin(β) = (2)
(
−

√
5
5

)
= − 2

√
5

5 .
We now have all the pieces needed to find sin(α− β):

sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

=

(
5
13

)(
−
√
5
5

)
−
(
−12
13

)(
−2

√
5

5

)
= −29

√
5

65

3. We can start expanding tan(α+ β) using a quo ent iden ty and our sum
formulas

tan(α+ β) =
sin(α+ β)

cos(α+ β)

=
sin(α) cos(β) + cos(α) sin(β)
cos(α) cos(β)− sin(α) sin(β)

Since tan(α) = sin(α)
cos(α) and tan(β) =

sin(β)
cos(β) , it looks as though if we divide

both numerator and denominator by cos(α) cos(β)wewill have what we
want

tan(α+ β) =
sin(α) cos(β) + cos(α) sin(β)
cos(α) cos(β)− sin(α) sin(β)

·

1
cos(α) cos(β)

1
cos(α) cos(β)

=

sin(α) cos(β)
cos(α) cos(β)

+
cos(α) sin(β)
cos(α) cos(β)

cos(α) cos(β)
cos(α) cos(β)

− sin(α) sin(β)
cos(α) cos(β)

=

sin(α)���cos(β)
cos(α)���cos(β)

+
���cos(α) sin(β)
���cos(α) cos(β)

���cos(α)���cos(β)
���cos(α)���cos(β)

− sin(α) sin(β)
cos(α) cos(β)

=
tan(α) + tan(β)
1− tan(α) tan(β)

The formula developed in Exercise 4.3.2 for tan(α + β) can be used to find
a formula for tan(α − β) by rewri ng the difference as a sum, tan(α + (−β)),
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Chapter 4 Founda ons of Trigonometry

and the reader is encouraged to fill in the details. Below we summarize all of
the sum and difference formulas for cosine, sine and tangent.

Theorem 4.3.5 Sum and Difference Iden es

For all applicable angles α and β,

• cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

• sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• tan(α± β) =
tan(α)± tan(β)
1∓ tan(α) tan(β)

In the statement of Theorem 4.3.5, we have combined the cases for the sum
‘+’ and difference ‘−’ of angles into one formula. The conven on here is that if
you want the formula for the sum ‘+’ of two angles, you use the top sign in the
formula; for the difference, ‘−’, use the bo om sign. For example,

tan(α− β) =
tan(α)− tan(β)
1+ tan(α) tan(β)

If we specialize the sum formulas in Theorem 4.3.5 to the case when α = β,
we obtain the following ‘Double Angle’ Iden es.

Theorem 4.3.6 Double Angle Iden es

For all applicable angles θ,

• cos(2θ) =


cos2(θ)− sin2(θ)

2 cos2(θ)− 1

1− 2 sin2(θ)

• sin(2θ) = 2 sin(θ) cos(θ)

• tan(2θ) =
2 tan(θ)

1− tan2(θ)

The three different forms for cos(2θ) can be explained by our ability to ‘ex-
change’ squares of cosine and sine via the Pythagorean Iden ty cos2(θ)+sin2(θ) =
1 and we leave the details to the reader. It is interes ng to note that to de-
termine the value of cos(2θ), only one piece of informa on is required: either
cos(θ) or sin(θ). To determine sin(2θ), however, it appears that we must know
both sin(θ) and cos(θ). In the next example, we show how we can find sin(2θ)
knowing just one piece of informa on, namely tan(θ).

128



4.3 Trigonometric Iden es

Example 4.3.3 Using Theorem 4.3.6

1. Suppose P(−3, 4) lies on the terminal side of θ when θ is plo ed in stan-
dard posi on. Find cos(2θ) and sin(2θ) and determine the quadrant in
which the terminal side of the angle 2θ lies when it is plo ed in standard
posi on.

2. If sin(θ) = x for− π
2 ≤ θ ≤ π

2 , find an expression for sin(2θ) in terms of x.

3. Verify the iden ty: sin(2θ) =
2 tan(θ)

1+ tan2(θ)
.

4. Express cos(3θ) as a polynomial in terms of cos(θ).

S

1. The point (−3, 4) lies on a circle of radius r =
√

x2 + y2 = 5. Hence,
cos(θ) = − 3

5 and sin(θ) =
4
5 . Applying Theorem 4.3.6, we get cos(2θ) =

cos2(θ)−sin2(θ) =
(
− 3

5
)2−( 45)2 = − 7

25 , and sin(2θ) = 2 sin(θ) cos(θ) =
2
( 4
5
) (

− 3
5
)
= − 24

25 . Since both cosine and sine of 2θ are nega ve, the ter-
minal side of 2θ, when plo ed in standard posi on, lies in Quadrant III.

2. If your first reac on to ‘sin(θ) = x’ is ‘No it’s not, cos(θ) = x!’ then you
have indeed learned something, and we take comfort in that. However,
context is everything. Here, ‘x’ is just a variable - it does not necessarily
represent the x-coordinate of the point on The Unit Circle which lies on
the terminal side of θ, assuming θ is drawn in standard posi on. Here,
x represents the quan ty sin(θ), and what we wish to know is how to
express sin(2θ) in terms of x. Since sin(2θ) = 2 sin(θ) cos(θ), we need to
write cos(θ) in terms of x to finish the problem. We subs tute x = sin(θ)
into the Pythagorean Iden ty, cos2(θ) + sin2(θ) = 1, to get cos2(θ) +
x2 = 1, or cos(θ) = ±

√
1− x2. Since − π

2 ≤ θ ≤ π
2 , cos(θ) ≥ 0, and

thus cos(θ) =
√
1− x2. Our final answer is sin(2θ) = 2 sin(θ) cos(θ) =

2x
√
1− x2.

3. We startwith the right hand side of the iden ty andnote that 1+tan2(θ) =
sec2(θ). From this point, we use the Reciprocal and Quo ent Iden es to
rewrite tan(θ) and sec(θ) in terms of cos(θ) and sin(θ):

2 tan(θ)
1+ tan2(θ)

=
2 tan(θ)
sec2(θ)

=

2
(
sin(θ)
cos(θ)

)
1

cos2(θ)

= 2
(
sin(θ)
cos(θ)

)
cos2(θ)

= 2
(
sin(θ)
���cos(θ)

)
���cos(θ) cos(θ) = 2 sin(θ) cos(θ) = sin(2θ)

4. In Theorem 4.3.6, the formula cos(2θ) = 2 cos2(θ)− 1 expresses cos(2θ)
as a polynomial in terms of cos(θ). We are now asked to find such an
iden ty for cos(3θ). Using the sum formula for cosine, we begin with

cos(3θ) = cos(2θ + θ)

= cos(2θ) cos(θ)− sin(2θ) sin(θ)
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Our ul mate goal is to express the right hand side in terms of cos(θ) only.
We subs tute cos(2θ) = 2 cos2(θ) − 1 and sin(2θ) = 2 sin(θ) cos(θ)
which yields

cos(3θ) = cos(2θ) cos(θ)− sin(2θ) sin(θ)
=

(
2 cos2(θ)− 1

)
cos(θ)− (2 sin(θ) cos(θ)) sin(θ)

= 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)

Finally, we exchange sin2(θ) for 1 − cos2(θ) courtesy of the Pythagorean
Iden ty, and get

cos(3θ) = 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)
= 2 cos3(θ)− cos(θ)− 2

(
1− cos2(θ)

)
cos(θ)

= 2 cos3(θ)− cos(θ)− 2 cos(θ) + 2 cos3(θ)
= 4 cos3(θ)− 3 cos(θ)

and we are done.

In the last problem in Example 4.3.3, we saw how we could rewrite cos(3θ)
as sums of powers of cos(θ). In Calculus, we have occasion to do the reverse;
that is, reduce the power of cosine and sine. Solving the iden ty cos(2θ) =
2 cos2(θ) − 1 for cos2(θ) and the iden ty cos(2θ) = 1 − 2 sin2(θ) for sin2(θ)
results in the aptly-named ‘Power Reduc on’ formulas below.

Theorem 4.3.7 Power Reduc on Formulas

For all angles θ,

• cos2(θ) =
1+ cos(2θ)

2

• sin2(θ) =
1− cos(2θ)

2

Example 4.3.4 Using Theorem 4.3.7
Rewrite sin2(θ) cos2(θ) as a sum and difference of cosines to the first power.

S Webeginwith a straigh orward applica onof Theorem4.3.7

sin2(θ) cos2(θ) =

(
1− cos(2θ)

2

)(
1+ cos(2θ)

2

)
=

1
4
(
1− cos2(2θ)

)
=

1
4
− 1

4
cos2(2θ)

Next, we apply the power reduc on formula to cos2(2θ) to finish the reduc-
on
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sin2(θ) cos2(θ) =
1
4
− 1

4
cos2(2θ)

=
1
4
− 1

4

(
1+ cos(2(2θ))

2

)
=

1
4
− 1

8
− 1

8
cos(4θ)

=
1
8
− 1

8
cos(4θ)

Another applica on of the Power Reduc on Formulas is the Half Angle For-
mulas. To start, we apply the Power Reduc on Formula to cos2

(
θ
2
)

cos2
(
θ

2

)
=

1+ cos
(
2
(
θ
2
))

2
=

1+ cos(θ)
2

.

We can obtain a formula for cos
(
θ
2
)
by extrac ng square roots. In a similar

fashion, we may obtain a half angle formula for sine, and by using a quo ent
formula, obtain a half angle formula for tangent. We summarize these formulas
below.

Theorem 4.3.8 Half Angle Formulas

For all applicable angles θ,

• cos
(
θ

2

)
= ±

√
1+ cos(θ)

2

• sin
(
θ

2

)
= ±

√
1− cos(θ)

2

• tan
(
θ

2

)
= ±

√
1− cos(θ)
1+ cos(θ)

where the choice of ± depends on the quadrant in which the terminal
side of

θ

2
lies.

Example 4.3.5 Using Theorem 4.3.8

1. Use a half angle formula to find the exact value of cos (15◦).

2. Suppose−π ≤ θ ≤ 0 with cos(θ) = − 3
5 . Find sin

(
θ
2
)
.

3. Use the iden ty given in number 3 of Example 4.3.3 to derive the iden ty

tan
(
θ

2

)
=

sin(θ)
1+ cos(θ)

131



Note: Back in Example 4.3.1, we found
cos (15◦) by using the difference formula
for cosine. In that case, we determined
cos (15◦) =

√
6+

√
2

4 . The reader is en-
couraged to prove that these two expres-
sions are equal.

Chapter 4 Founda ons of Trigonometry

S

1. To use the half angle formula, we note that 15◦ = 30◦
2 and since 15◦ is a

Quadrant I angle, its cosine is posi ve. Thus we have

cos (15◦) = +

√
1+ cos (30◦)

2
=

√
1+

√
3
2

2

=

√
1+

√
3
2

2
· 2
2
=

√
2+

√
3

4
=

√
2+

√
3

2

2. If −π ≤ θ ≤ 0, then − π
2 ≤ θ

2 ≤ 0, which means sin
(
θ
2
)
< 0. Theorem

4.3.8 gives

sin
(
θ

2

)
= −

√
1− cos (θ)

2
= −

√
1−

(
− 3

5
)

2

= −
√

1+ 3
5

2
· 5
5
= −

√
8
10

= −2
√
5

5

3. Instead of our usual approach to verifying iden es, namely star ng with
one side of the equa on and trying to transform it into the other, we will
start with the iden ty we proved in number 3 of Example 4.3.3 and ma-
nipulate it into the iden ty we are asked to prove. The iden ty we are
asked to start with is sin(2θ) = 2 tan(θ)

1+tan2(θ) . If we are to use this to derive
an iden ty for tan

(
θ
2
)
, it seems reasonable to proceed by replacing each

occurrence of θ with θ
2

sin
(
2
(
θ
2
))

=
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

sin(θ) =
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

We now have the sin(θ) we need, but we somehow need to get a factor
of 1+ cos(θ) involved. To get cosines involved, recall that 1+ tan2

(
θ
2
)
=

sec2
(
θ
2
)
. We con nue to manipulate our given iden ty by conver ng se-

cants to cosines and using a power reduc on formula

sin(θ) =
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

sin(θ) =
2 tan

(
θ
2
)

sec2
(
θ
2
)

sin(θ) = 2 tan
(
θ
2
)
cos2

(
θ
2
)

sin(θ) = 2 tan
(
θ
2
)(1+ cos

(
2
(
θ
2
))

2

)
sin(θ) = tan

(
θ
2
)
(1+ cos(θ))

tan
(
θ

2

)
=

sin(θ)
1+ cos(θ)
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The iden es in Theorem 4.3.9 are also
known as the Prosthaphaeresis Formulas
and have a rich history. The authors rec-
ommend that you conduct some research
on them as your schedule allows.

4.3 Trigonometric Iden es

Our next batch of iden es, the Product to Sum Formulas, are easily verified
by expanding each of the right hand sides in accordance with Theorem 4.3.5
and as you should expect by now we leave the details as exercises. They are of
par cular use in Calculus, and we list them here for reference.

Theorem 4.3.9 Product to Sum Formulas

For all angles α and β,

• cos(α) cos(β) = 1
2 [cos(α− β) + cos(α+ β)]

• sin(α) sin(β) = 1
2 [cos(α− β)− cos(α+ β)]

• sin(α) cos(β) = 1
2 [sin(α− β) + sin(α+ β)]

Related to the Product to Sum Formulas are the Sum to Product Formulas,
which come in handy when a emp ng to solve equa ons involving trigonomet-
ric func ons. These are easily verified using the Product to Sum Formulas, and
as such, their proofs are le as exercises.

Theorem 4.3.10 Sum to Product Formulas

For all angles α and β,

• cos(α) + cos(β) = 2 cos
(
α+ β

2

)
cos
(
α− β

2

)

• cos(α)− cos(β) = −2 sin
(
α+ β

2

)
sin
(
α− β

2

)

• sin(α)± sin(β) = 2 sin
(
α± β

2

)
cos
(
α∓ β

2

)

Example 4.3.6 Using Theorems 4.3.9 and 4.3.10

1. Write cos(2θ) cos(6θ) as a sum.

2. Write sin(θ)− sin(3θ) as a product.

S

1. Iden fying α = 2θ and β = 6θ, we find

cos(2θ) cos(6θ) = 1
2 [cos(2θ − 6θ) + cos(2θ + 6θ)]

= 1
2 cos(−4θ) + 1

2 cos(8θ)
= 1

2 cos(4θ) +
1
2 cos(8θ),

where the last equality is courtesy of the even iden ty for cosine, cos(−4θ) =
cos(4θ).
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2. Iden fying α = θ and β = 3θ yields

sin(θ)− sin(3θ) = 2 sin
(
θ − 3θ

2

)
cos
(
θ + 3θ

2

)
= 2 sin (−θ) cos (2θ)
= −2 sin (θ) cos (2θ) ,

where the last equality is courtesy of the odd iden ty for sine, sin(−θ) =
− sin(θ).

This sec on and the one before it present a rather large volume of trigono-
metric iden es, leading to a very common student ques on: “Do I have to
memorize all of these?” The answer, of course, is no. The indispensable iden-

es are the Pythagorean iden es (Theorem 4.1.1), and the sum/difference
iden es (Theorems 4.3.2 and 4.3.4). They are the most common, and all other
iden es can be derived from them. That said, there are a number of topics
in Calculus (trig integra on comes to mind) where having other iden es like
the power reduc on formulas in Theorem 4.3.7 at your finger ps will come in
handy.

The reader is reminded that all of the iden es presented in this sec on
which regard the circular func ons as func ons of angles (in radian measure)
apply equally well to the circular (trigonometric) func ons regarded as func ons
of real numbers. In Exercises 36 - 41 in Sec on 4.4, we see how some of these
iden esmanifest themselves geometrically aswe study the graphs of the these
func ons. In the upcoming Exercises, however, you need to do all of your work
analy cally without graphs.
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Exercises 4.3
Problems
In Exercises 1 – 6, use the Even / Odd Iden es to verify the
iden ty. Assume all quan es are defined.

1. sin(3π − 2θ) = − sin(2θ − 3π)

2. cos
(
−π

4
− 5t

)
= cos

(
5t+ π

4

)
3. tan(−t2 + 1) = − tan(t2 − 1)

4. csc(−θ − 5) = − csc(θ + 5)

5. sec(−6t) = sec(6t)

6. cot(9− 7θ) = − cot(7θ − 9)

In Exercises 7 – 21, use the Sum and Difference Iden es to
find the exact value. You may have need of the Quo ent, Re-
ciprocal or Even / Odd Iden es as well.

7. cos(75◦)

8. sec(165◦)

9. sin(105◦)

10. csc(195◦)

11. cot(255◦)

12. tan(375◦)

13. cos
(
13π
12

)

14. sin
(
11π
12

)

15. tan
(
13π
12

)

16. cos
(
7π
12

)

17. tan
(
17π
12

)

18. sin
( π

12

)

19. cot
(
11π
12

)

20. csc
(
5π
12

)

21. sec
(
− π

12

)

22. If α is a Quadrant IV angle with cos(α) =

√
5
5

, and

sin(β) =
√
10
10

, where π

2
< β < π, find

(a) cos(α+ β)

(b) sin(α+ β)

(c) tan(α+ β)

(d) cos(α− β)

(e) sin(α− β)

(f) tan(α− β)

23. If csc(α) = 3, where 0 < α <
π

2
, and β is a Quadrant II

angle with tan(β) = −7, find

(a) cos(α+ β)

(b) sin(α+ β)

(c) tan(α+ β)

(d) cos(α− β)

(e) sin(α− β)

(f) tan(α− β)

24. If sin(α) = 3
5
, where 0 < α <

π

2
, and cos(β) = 12

13
where

3π
2

< β < 2π, find

(a) sin(α+ β)

(b) cos(α− β)

(c) tan(α− β)

25. If sec(α) = −5
3
, where π

2
< α < π, and tan(β) =

24
7
,

where π < β <
3π
2
, find

(a) csc(α− β)

(b) sec(α+ β)

(c) cot(α+ β)

In Exercises 26 – 38, verify the iden ty.

26. cos(θ − π) = − cos(θ)

27. sin(π − θ) = sin(θ)

28. tan
(
θ +

π

2

)
= − cot(θ)

29. sin(α+ β) + sin(α− β) = 2 sin(α) cos(β)

30. sin(α+ β)− sin(α− β) = 2 cos(α) sin(β)

31. cos(α+ β) + cos(α− β) = 2 cos(α) cos(β)

32. cos(α+ β)− cos(α− β) = −2 sin(α) sin(β)

33. sin(α+ β)

sin(α− β)
=

1+ cot(α) tan(β)
1− cot(α) tan(β)

34. cos(α+ β)

cos(α− β)
=

1− tan(α) tan(β)
1+ tan(α) tan(β)
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35. tan(α+ β)

tan(α− β)
=

sin(α) cos(α) + sin(β) cos(β)
sin(α) cos(α)− sin(β) cos(β)

36. sin(t+ h)− sin(t)
h

= cos(t)
(
sin(h)
h

)
+

sin(t)
(
cos(h)− 1

h

)

37. cos(t+ h)− cos(t)
h

= cos(t)
(
cos(h)− 1

h

)
−

sin(t)
(
sin(h)
h

)

38. tan(t+ h)− tan(t)
h

=

(
tan(h)

h

)(
sec2(t)

1− tan(t) tan(h)

)
In Exercises 39 – 48, use the Half Angle Formulas to find the
exact value. You may have need of the Quo ent, Reciprocal
or Even / Odd Iden es as well.

39. cos(75◦) (compare with Exercise 7)

40. sin(105◦) (compare with Exercise 9)

41. cos(67.5◦)

42. sin(157.5◦)

43. tan(112.5◦)

44. cos
(
7π
12

)
(compare with Exercise 16)

45. sin
( π

12

)
(compare with Exercise 18)

46. cos
(π
8

)

47. sin
(
5π
8

)

48. tan
(
7π
8

)
In Exercises 49 – 58, use the given informa on about θ to find
the exact values of

• sin(2θ)

• sin
(
θ

2

) • cos(2θ)

• cos
(
θ

2

) • tan(2θ)

• tan
(
θ

2

)

49. sin(θ) = − 7
25

where 3π
2

< θ < 2π

50. cos(θ) = 28
53

where 0 < θ <
π

2

51. tan(θ) = 12
5

where π < θ <
3π
2

52. csc(θ) = 4 where π

2
< θ < π

53. cos(θ) = 3
5
where 0 < θ <

π

2

54. sin(θ) = −4
5
where π < θ <

3π
2

55. cos(θ) = 12
13

where 3π
2

< θ < 2π

56. sin(θ) = 5
13

where π

2
< θ < π

57. sec(θ) =
√
5 where 3π

2
< θ < 2π

58. tan(θ) = −2 where π

2
< θ < π

In Exercises 59 – 73, verify the iden ty. Assume all quan es
are defined.

59. (cos(θ) + sin(θ))2 = 1+ sin(2θ)

60. (cos(θ)− sin(θ))2 = 1− sin(2θ)

61. tan(2θ) = 1
1− tan(θ)

− 1
1+ tan(θ)

62. csc(2θ) = cot(θ) + tan(θ)
2

63. 8 sin4(θ) = cos(4θ)− 4 cos(2θ) + 3

64. 8 cos4(θ) = cos(4θ) + 4 cos(2θ) + 3

65. sin(3θ) = 3 sin(θ)− 4 sin3(θ)

66. sin(4θ) = 4 sin(θ) cos3(θ)− 4 sin3(θ) cos(θ)

67. 32 sin2(θ) cos4(θ) = 2+ cos(2θ)− 2 cos(4θ)− cos(6θ)

68. 32 sin4(θ) cos2(θ) = 2− cos(2θ)− 2 cos(4θ) + cos(6θ)

69. cos(4θ) = 8 cos4(θ)− 8 cos2(θ) + 1

70. cos(8θ) = 128 cos8(θ) − 256 cos6(θ) + 160 cos4(θ) −
32 cos2(θ) + 1 (HINT: Use the result to 69.)

71. sec(2θ) = cos(θ)
cos(θ) + sin(θ)

+
sin(θ)

cos(θ)− sin(θ)

72. 1
cos(θ)− sin(θ)

+
1

cos(θ) + sin(θ)
=

2 cos(θ)
cos(2θ)

73. 1
cos(θ)− sin(θ)

− 1
cos(θ) + sin(θ)

=
2 sin(θ)
cos(2θ)

In Exercises 74 – 79, write the given product as a sum. You
may need to use an Even/Odd Iden ty.

74. cos(3θ) cos(5θ)
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75. sin(2θ) sin(7θ)

76. sin(9θ) cos(θ)

77. cos(2θ) cos(6θ)

78. sin(3θ) sin(2θ)

79. cos(θ) sin(3θ)

In Exercises 80 – 85, write the given sum as a product. You
may need to use an Even/Odd or Cofunc on Iden ty.

80. cos(3θ) + cos(5θ)

81. sin(2θ)− sin(7θ)

82. cos(5θ)− cos(6θ)

83. sin(9θ)− sin(−θ)

84. sin(θ) + cos(θ)

85. cos(θ)− sin(θ)

86. Suppose θ is a Quadrant I angle with sin(θ) = x. Verify the
following formulas

(a) cos(θ) =
√
1− x2

(b) sin(2θ) = 2x
√
1− x2

(c) cos(2θ) = 1− 2x2

87. Discuss with your classmates how each of the formulas, if
any, in Exercise 86 change if we change assume θ is a Quad-
rant II, III, or IV angle.

88. Suppose θ is a Quadrant I angle with tan(θ) = x. Verify the
following formulas

(a) cos(θ) = 1√
x2 + 1

(b) sin(θ) = x√
x2 + 1

(c) sin(2θ) = 2x
x2 + 1

(d) cos(2θ) = 1− x2

x2 + 1

89. Discuss with your classmates how each of the formulas, if
any, in Exercise 88 change if we change assume θ is a Quad-
rant II, III, or IV angle.

90. If sin(θ) =
x
2
for −π

2
< θ <

π

2
, find an expression for

cos(2θ) in terms of x.

91. If tan(θ) =
x
7
for −π

2
< θ <

π

2
, find an expression for

sin(2θ) in terms of x.

92. If sec(θ) =
x
4
for 0 < θ <

π

2
, find an expression for

ln | sec(θ) + tan(θ)| in terms of x.

93. Show that cos2(θ)−sin2(θ) = 2 cos2(θ)−1 = 1−2 sin2(θ)
for all θ.

94. Let θ be a Quadrant III angle with cos(θ) = −1
5
. Show

that this is not enough informa on to determine the sign of

sin
(
θ

2

)
by first assuming 3π < θ <

7π
2

and then assum-

ing π < θ <
3π
2

and compu ng sin
(
θ

2

)
in both cases.

95. Without using your calculator, show that
√

2+
√
3

2
=

√
6+

√
2

4

96. In part 4 of Example 4.3.3, we wrote cos(3θ) as a polyno-
mial in terms of cos(θ). In Exercise 69, we had you verify an
iden ty which expresses cos(4θ) as a polynomial in terms
of cos(θ). Can you find a polynomial in terms of cos(θ) for
cos(5θ)? cos(6θ)? Can you find a pa ern so that cos(nθ)
could be wri en as a polynomial in cosine for any natural
number n?

97. In Exercise 65, we has you verify an iden ty which ex-
presses sin(3θ) as a polynomial in terms of sin(θ). Can you
do the same for sin(5θ)? What about for sin(4θ)? If not,
what goes wrong?

98. Verify the Even / Odd Iden es for tangent, secant, cose-
cant and cotangent.

99. Verify the Cofunc on Iden es for tangent, secant, cose-
cant and cotangent.

100. Verify the Difference Iden es for sine and tangent.

101. Verify the Product to Sum Iden es.

102. Verify the Sum to Product Iden es.
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To see that p = 2π is the smallest value
such that cos(t + p) = cos(t), no ce
that when t = 0, we would need to have
cos(p) = cos(0) = 1, and we know that
there are no numbers p between 0 and 2π
such that cos(p) = 1.

Technically, we should study the interval
[0, 2π), since whatever happens at t =
2π is the same as what happens at t = 0.
As we will see shortly, t = 2π gives us an
extra ‘check’ when we go to graph these
func ons. In some texts, the interval of
choice is [−π, π).

Chapter 4 Founda ons of Trigonometry

4.4 Graphs of the Trigonometric Func ons

4.4.1 Graphs of the Cosine and Sine Func ons
Since radian measure allows us to iden fy angles with real numbers, and the
sine and cosine func ons are defined for any angle, we know that the domain
of f(t) = cos(t) and of g(t) = sin(t) is all real numbers, (−∞,∞), and the
range of both func ons is [−1, 1]. The Even / Odd Iden es in Theorem 4.3.1
tell us cos(−t) = cos(t) for all real numbers t and sin(−t) = − sin(t) for all
real numbers t. This means f(t) = cos(t) is an even func on, while g(t) =
sin(t) is an odd func on. Another important property of these func ons is that
cos(t+ 2πk) = cos(t) and sin(t+ 2πk) = sin(t) for all real numbers t and any
integer k. This last property is given a special name.

Defini on 4.4.1 Periodic Func on

A func on f is said to be periodic if there is a real number c so that f(t+
c) = f(t) for all real numbers t in the domain of f. The smallest posi ve
number p for which f(t + p) = f(t) for all real numbers t in the domain
of f, if it exists, is called the period of f.

We have already seen a family of periodic func ons in Sec on 3.1.1: the
constant func ons. However, despite being periodic, a constant func on has
no period. (We’ll leave that odd gem as an exercise for you.) Returning to the
circular func ons, we see that by Defini on 4.4.1, f(t) = cos(t) is periodic with
period 2π, since cos(t+ 2πk) = cos(t) for any integer k, in par cular, for k = 1.
Similarly, we can show g(t) = sin(t) is also periodic with 2π as its period. Hav-
ing period 2π essen ally means that we can completely understand everything
about the func ons f(t) = cos(t) and g(t) = sin(t) by studying one interval of
length 2π, say [0, 2π].

One last property of the func ons f(t) = cos(t) and g(t) = sin(t) is worth
poin ng out: both of these func ons are con nuous and smooth. Recall from
Sec on 3.2.1 that geometrically this means the graphs of the cosine and sine
func ons have no jumps, gaps, holes in the graph, asymptotes, corners or cusps.
As we shall see, the graphs of both f(t) = cos(t) and g(t) = sin(t) meander
nicely and don’t cause any trouble. We summarize these facts in the following
theorem.

Theorem 4.4.1 Proper es of the Cosine and Sine Func ons

• The func on f(x) = cos(x)

– has domain (−∞,∞)

– has range [−1, 1]
– is con nuous and
smooth

– is even
– has period 2π

• The func on f(x) = sin(x)

– has domain (−∞,∞)

– has range [−1, 1]
– is con nuous and
smooth

– is odd
– has period 2π
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x cos(x) (x, cos(x))
0 1 (0, 1)
π
4

√
2
2

(
π
4 ,

√
2
2

)
π
2 0

(
π
2 , 0
)

3π
4 −

√
2
2

(
3π
4 ,−

√
2
2

)
π −1 (π,−1)
5π
4 −

√
2
2

(
5π
4 ,−

√
2
2

)
3π
2 0

( 3π
2 , 0

)
7π
4

√
2
2

(
7π
4 ,

√
2
2

)
2π 1 (2π, 1)

Values of f(x) = cos(x) on [0, 2π]

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = cos(x).

Figure 4.4.3: Graphing y = cos(x)

x sin(x) (x, sin(x))
0 0 (0, 0)
π
4

√
2
2

(
π
4 ,

√
2
2

)
π
2 1

(
π
2 , 1
)

3π
4

√
2
2

(
3π
4 ,

√
2
2

)
π 0 (π, 0)
5π
4 −

√
2
2

(
5π
4 ,−

√
2
2

)
3π
2 −1

( 3π
2 ,−1

)
7π
4 −

√
2
2

(
7π
4 ,−

√
2
2

)
2π 0 (2π, 0)

Values of f(x) = sin(x) on [0, 2π]

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = sin(x)

Figure 4.4.4: Graphing y = sin(x)

4.4 Graphs of the Trigonometric Func ons

In this sec on, we follow the usual graphing conven on and use x as the
independent variable and y as the dependent variable. This allows us to turn
our a en on to graphing the cosine and sine func ons in the Cartesian Plane.
(Cau on: the use of x and y in this context is not to be confused with the x- and
y-coordinates of points on the Unit Circle which define cosine and sine. Using
the term ‘trigonometric func on’ as opposed to ‘circular func on’ can help with
that, but one could then ask, “Hey, where’s the triangle?”) To graph y = cos(x),
we make a table using some of the ‘common values’ of x in the interval [0, 2π].
This generates a por on of the cosine graph, which we call the ‘fundamental
cycle’ of y = cos(x).

A few things about the graph above are worth men oning. First, this graph
represents only part of the graph of y = cos(x). To get the en re graph, we
imagine ‘copying and pas ng’ this graph end to end infinitely in both direc ons
(le and right) on the x-axis. Secondly, the ver cal scale here has been greatly
exaggerated for clarity and aesthe cs. Below is an accurate-to-scale graph of
y = cos(x) showing several cycles with the ‘fundamental cycle’ plo ed thicker
than the others. The graph of y = cos(x) is usually described as ‘wavelike’ –
indeed, many of the applica ons involving the cosine and sine func ons feature
modelling wavelike phenomena.

x

y

Figure 4.4.1: An accurately scaled graph of y = cos(x).

We can plot the fundamental cycle of the graph of y = sin(x) similarly, with
similar results.

As with the graph of y = cos(x), we provide an accurately scaled graph of
y = sin(x) below with the fundamental cycle highlighted.

x

y

Figure 4.4.2: An accurately scaled graph of y = sin(x).

It is no accident that the graphs of y = cos(x) and y = sin(x) are so similar.
Using a cofunc on iden ty along with the even property of cosine, we have

sin(x) = cos
(π
2
− x
)
= cos

(
−
(
x− π

2

))
= cos

(
x− π

2

)
,

so that the graph of y = sin(x) is the result of shi ing the graph of y = cos(x)
to the right π

2 units. A visual inspec on confirms this.
Now that we know the basic shapes of the graphs of y = cos(x) and y =

sin(x), we can graph transforma ons to graph more complicated curves. To do
so, we need to keep track of the movement of some key points on the original
graphs. We choose to track the values x = 0, π

2 , π,
3π
2 and 2π. These ‘quarter

marks’ correspond to quadrantal angles, and as such, mark the loca on of the
zeros and the local extrema of these func ons over exactly one period. Before
we begin our next example, we need to review the concept of the ‘argument’
of a func on as first introduced in Sec on 2.1. For the func on f(x) = 1 −
5 cos(2x− π), the argument of f is x. We shall have occasion, however, to refer
to the argument of the cosine, which in this case is 2x − π. Loosely stated, the
argument of a trigonometric func on is the expression ‘inside’ the func on.
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a πx−π
2 = a x

0 πx−π
2 = 0 1

π
2

πx−π
2 = π

2 2

π πx−π
2 = π 3

3π
2

πx−π
2 = 3π

2 4

2π πx−π
2 = 2π 5

Figure 4.4.7: Reference points for f(x) in
Example 4.4.1

a π − 2x = a x

0 π − 2x = 0 π
2

π
2 π − 2x = π

2
π
4

π π − 2x = π 0
3π
2 π − 2x = 3π

2 − π
4

2π π − 2x = 2π − π
2

Figure 4.4.8: Reference points for g(x) in
Example 4.4.1
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Example 4.4.1 Plo ng cosine and sine func ons
Graph one cycle of the following func ons. State the period of each.

1. f(x) = 3 cos
(
πx−π
2
)
+ 1

2. g(x) = 1
2 sin(π − 2x) + 3

2

S

1. We set the argument of the cosine, πx−π
2 , equal to each of the values: 0,

π
2 , π,

3π
2 , 2π and solve for x. We summarize the results in Figure 4.4.7.

Next, we subs tute each of these x values into f(x) = 3 cos
(
πx−π
2
)
+ 1 to

determine the corresponding y-values and connect the dots in a pleasing
wavelike fashion.

x f(x) (x, f(x))

1 4 (1, 4)
2 1 (2, 1)
3 −2 (3,−2)
4 1 (4, 1)
5 4 (5, 4)

x

y

1 2 3 4 5

−2

−1

1

2

3

4

Figure 4.4.5: Plo ng one cycle of y = f(x) in Example 4.4.1

One cycle is graphed on [1, 5] so the period is the length of that interval
which is 4.

2. Proceeding as above, we set the argument of the sine, π − 2x, equal to
each of our quarter marks and solve for x in Figure 4.4.8.
We nowfind the corresponding y-values on the graph by subs tu ng each
of these x-values into g(x) = 1

2 sin(π − 2x) + 3
2 . Once again, we connect

the dots in a wavelike fashion.

x g(x) (x, g(x))
π
2

3
2

(
π
2 ,

3
2
)

π
4 2

(
π
4 , 2
)

0 3
2

(
0, 32
)

− π
4 1

(
− π

4 , 1
)

− π
2

3
2
(
− π

2 ,
3
2
)

x

y

−
π

2
−

π

4

π

4

π

2

1

2

Figure 4.4.6: Plo ng one cycle of y = g(x) in Example 4.4.1
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We have already seen how the Even/Odd
and Cofunc on Iden es can be used to
rewrite g(x) = sin(x) as a transformed
version of f(x) = cos(x), so of course, the
reverse is true: f(x) = cos(x) can be writ-
ten as a transformed version of g(x) =
sin(x). The authors have seen some in-
stances where sinusoids are always con-
verted to cosine func ons while in other
disciplines, the sinusoids are always writ-
ten in terms of sine func ons.

amplitude

baseline

period

Figure 4.4.9: Proper es of sinusoids

4.4 Graphs of the Trigonometric Func ons

One cyclewas graphedon the interval
[
− π

2 ,
π
2
]
so the period is π

2−
(
− π

2
)
=

π.

The func ons in Example 4.4.1 are examples of sinusoids. Sinusoids can
be characterized by four proper es: period, amplitude, phase shi and ver -
cal shi . We have already discussed period, that is, how long it takes for the
sinusoid to complete one cycle. The standard period of both f(x) = cos(x) and
g(x) = sin(x) is 2π, but horizontal scalings will change the period of the result-
ing sinusoid. The amplitude of the sinusoid is a measure of how ‘tall’ the wave
is, as indicated in the figure below. The amplitude of the standard cosine and
sine func ons is 1, but ver cal scalings can alter this: see Figure 4.4.9.

The phase shi of the sinusoid is the horizontal shi experienced by the
fundamental cycle. We have seen that a phase (horizontal) shi of π

2 to the right
takes f(x) = cos(x) to g(x) = sin(x) since cos

(
x− π

2
)
= sin(x). As the reader

can verify, a phase shi of π
2 to the le takes g(x) = sin(x) to f(x) = cos(x). In

most contexts, the ver cal shi of a sinusoid is assumed to be 0, but we state
the more general case below. The following theorem shows how to find these
four fundamental quan es from the formula of the given sinusoid.

Theorem 4.4.2 Standard form of sinusoids

For ω > 0, the func ons

C(x) = A cos(ωx+ ϕ) + B and S(x) = A sin(ωx+ ϕ) + B

• have period
2π
ω

• have amplitude |A|

• have phase shi −ϕ

ω

• have ver cal shi B

We note that in some scien fic and engineering circles, the quan ty ϕmen-
oned in Theorem 4.4.2 is called the phase of the sinusoid. Since our interest

in this book is primarily with graphing sinusoids, we focus our a en on on the
horizontal shi − ϕ

ω induced by ϕ.
The parameter ω, which is s pulated to be posi ve, is called the (angular)

frequency of the sinusoid and is the number of cycles the sinusoid completes
over a 2π interval. We can always ensure ω > 0 using the Even/Odd Iden es.
(Try using the formulas in Theorem 4.4.2 applied to C(x) = cos(−x+ π) to see
why we need ω > 0.)

Example 4.4.2 Conver ng a sinusoid to standard form
Consider the func on f(x) = cos(2x)−

√
3 sin(2x). Find a formula for f(x):

1. in the form C(x) = A cos(ωx+ ϕ) + B for ω > 0

2. in the form S(x) = A sin(ωx+ ϕ) + B for ω > 0

S

1. The key to this problem is to use the expanded forms of the sinusoid for-
mulas andmatchup corresponding coefficients. Equa ng f(x) = cos(2x)−√
3 sin(2x) with the expanded form of C(x) = A cos(ωx+ ϕ) + B, we get

cos(2x)−
√
3 sin(2x) = A cos(ωx) cos(ϕ)− A sin(ωx) sin(ϕ) + B
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It should be clear that we can take ω = 2 and B = 0 to get

cos(2x)−
√
3 sin(2x) = A cos(2x) cos(ϕ)− A sin(2x) sin(ϕ)

To determine A and ϕ, a bit more work is involved. We get started by
equa ng the coefficients of the trigonometric func ons on either side of
the equa on. On the le hand side, the coefficient of cos(2x) is 1, while
on the right hand side, it is A cos(ϕ). Since this equa on is to hold for
all real numbers, we must have that A cos(ϕ) = 1. Similarly, we find by
equa ng the coefficients of sin(2x) that A sin(ϕ) =

√
3. What we have

here is a systemof nonlinear equa ons! We can temporarily eliminate the
dependence on ϕ by using the Pythagorean Iden ty. We know cos2(ϕ) +
sin2(ϕ) = 1, so mul plying this by A2 gives A2 cos2(ϕ)+A2 sin2(ϕ) = A2.
Since A cos(ϕ) = 1 and A sin(ϕ) =

√
3, we get A2 = 12 + (

√
3)2 = 4 or

A = ±2. Choosing A = 2, we have 2 cos(ϕ) = 1 and 2 sin(ϕ) =
√
3 or,

a er some rearrangement, cos(ϕ) = 1
2 and sin(ϕ) =

√
3
2 . One such angle

ϕ which sa sfies this criteria is ϕ = π
3 . Hence, one way to write f(x) as a

sinusoid is f(x) = 2 cos
(
2x+ π

3
)
. We can easily check our answer using

the sum formula for cosine

f(x) = 2 cos
(
2x+ π

3
)

= 2
[
cos(2x) cos

(
π
3
)
− sin(2x) sin

(
π
3
)]

= 2
[
cos(2x)

( 1
2
)
− sin(2x)

(√
3
2

)]
= cos(2x)−

√
3 sin(2x)

2. Proceeding as before, we equate f(x) = cos(2x) −
√
3 sin(2x) with the

expanded form of S(x) = A sin(ωx+ ϕ) + B to get

cos(2x)−
√
3 sin(2x) = A sin(ωx) cos(ϕ) + A cos(ωx) sin(ϕ) + B

Once again, we may take ω = 2 and B = 0 so that

cos(2x)−
√
3 sin(2x) = A sin(2x) cos(ϕ) + A cos(2x) sin(ϕ)

Weequate (be careful here!) the coefficients of cos(2x) on either side and
get A sin(ϕ) = 1 and A cos(ϕ) = −

√
3. Using A2 cos2(ϕ) + A2 sin2(ϕ) =

A2 as before, we get A = ±2, and again we choose A = 2. This means
2 sin(ϕ) = 1, or sin(ϕ) = 1

2 , and 2 cos(ϕ) = −
√
3, whichmeans cos(ϕ) =

−
√
3
2 . One such angle which meets these criteria is ϕ = 5π

6 . Hence, we
have f(x) = 2 sin

(
2x+ 5π

6
)
. Checking our work analy cally, we have

f(x) = 2 sin
(
2x+ 5π

6
)

= 2
[
sin(2x) cos

( 5π
6
)
+ cos(2x) sin

( 5π
6
)]

= 2
[
sin(2x)

(
−

√
3
2

)
+ cos(2x)

( 1
2
)]

= cos(2x)−
√
3 sin(2x)

It is important to note that in order for the technique presented in Example
4.4.2 to fit a func on into one of the forms in Theorem 4.4.2, the arguments
of the cosine and sine func on much match. That is, while f(x) = cos(2x) −√
3 sin(2x) is a sinusoid, g(x) = cos(2x) −

√
3 sin(3x) is not.(This graph does,

however, exhibit sinusoid-like characteris cs! Check it out!) It is also worth
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Note: provided that sec(α) and sec(β)
are defined, sec(α) = sec(β) if and only
if cos(α) = cos(β). Hence, sec(x) inher-
its its period from cos(x).

4.4 Graphs of the Trigonometric Func ons

men oning that, hadwe chosen A = −2 instead ofA = 2 asweworked through
Example 4.4.2, our final answers would have looked different. The reader is
encouraged to rework Example 4.4.2 using A = −2 to see what these differ-
ences are, and then for a challenging exercise, use iden es to show that the
formulas are all equivalent. The general equa ons to fit a func on of the form
f(x) = a cos(ωx) + b sin(ωx) + B into one of the forms in Theorem 4.4.2 are
explored in Exercise 35.

4.4.2 Graphs of the Secant and Cosecant Func ons
Wenow turn our a en on to graphing y = sec(x). Since sec(x) = 1

cos(x) , we can
use our table of values for the graph of y = cos(x) and take reciprocals. We run
into trouble at odd mul ples of π

2 such as x = π
2 and x = 3π

2 since cos(x) = 0
at these values. This results in ver cal asymptotes at x = π

2 and x = 3π
2 . Since

cos(x) is periodic with period 2π, it follows that sec(x) is also. Below we graph
a fundamental cycle of y = sec(x) along with a more complete graph obtained
by the usual ‘copying and pas ng.’

x cos(x) sec(x) (x, sec(x))
0 1 1 (0, 1)
π
4

√
2
2

√
2

(
π
4 ,
√
2
)

π
2 0 undefined

3π
4 −

√
2
2 −

√
2
( 3π

4 ,−
√
2
)

π −1 −1 (π,−1)
5π
4 −

√
2
2 −

√
2
( 5π

4 ,−
√
2
)

3π
2 0 undefined
7π
4

√
2
2

√
2

( 7π
4 ,

√
2
)

2π 1 1 (2π, 1)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

Figure 4.4.10: The ‘fundamental cycle’ of y = sec(x).

x

y

Figure 4.4.11: The graph of y = sec x

As one would expect, to graph y = csc(x) we begin with y = sin(x) and
take reciprocals of the corresponding y-values. Here, we encounter issues at
x = 0, x = π and x = 2π. Proceeding with the usual analysis, we graph the
fundamental cycle of y = csc(x) below alongwith the do ed graph of y = sin(x)
for reference. Since y = sin(x) and y = cos(x) are merely phase shi s of each
other, so too are y = csc(x) and y = sec(x).
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x sin(x) csc(x) (x, csc(x))
0 0 undefined
π
4

√
2
2

√
2

(
π
4 ,
√
2
)

π
2 1 1

(
π
2 , 1
)

3π
4

√
2
2

√
2

( 3π
4 ,

√
2
)

π 0 undefined
5π
4 −

√
2
2 −

√
2
( 5π

4 ,−
√
2
)

3π
2 −1 −1

( 3π
2 ,−1

)
7π
4 −

√
2
2 −

√
2
( 7π

4 ,−
√
2
)

2π 0 undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

Figure 4.4.12: The ‘fundamental cycle’ of y = csc(x).

x

y

Figure 4.4.13: The graph of y = csc x

Note that, on the intervals between the ver cal asymptotes, both F(x) =
sec(x) and G(x) = csc(x) are con nuous and smooth. In other words, they
are con nuous and smooth on their domains. The following theorem summa-
rizes the proper es of the secant and cosecant func ons. Note that all of these
proper es are direct results of them being reciprocals of the cosine and sine
func ons, respec vely.
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a 2x = a x

0 2x = 0 0
π
2 2x = π

2
π
4

π 2x = π π
2

3π
2 2x = 3π

2
3π
4

2π 2x = 2π π

Figure 4.4.15: Reference points for f(x) in
Example 4.4.3

4.4 Graphs of the Trigonometric Func ons

Theorem 4.4.3 Proper es of the Secant and Cosecant Func ons

• The func on F(x) = sec(x)

– has domain
{
x : x ̸= π

2 + πk, k is an integer
}
=

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is con nuous and smooth on its domain
– is even
– has period 2π

• The func on G(x) = csc(x)

– has domain {x : x ̸= πk, k is an integer} =

∞∪
k=−∞

(kπ, (k+ 1)π)

– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is con nuous and smooth on its domain
– is odd
– has period 2π

In the next example, we discuss graphing more general secant and cosecant
curves.
Example 4.4.3 Graphing secant and cosecant curves
Graph one cycle of the following func ons. State the period of each.

1. f(x) = 1− 2 sec(2x)

2. g(x) =
csc(π − πx)− 5

3

S

1. To graph y = 1− 2 sec(2x), we follow the same procedure as in Example
4.4.1. First, we set the argument of secant, 2x, equal to the ‘quartermarks’
0, π

2 , π,
3π
2 and 2π and solve for x in Figure 4.4.15.

Next, we subs tute these x values into f(x). If f(x) exists, we have a point
on the graph; otherwise, we have found a ver cal asymptote. In addi on
to these points and asymptotes, we have graphed the associated cosine
curve – in this case y = 1− 2 cos(2x) – do ed in the picture below. Since
one cycle is graphed over the interval [0, π], the period is π − 0 = π.
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a π − πx = a x

0 π − πx = 0 1
π
2 π − πx = π

2
1
2

π π − πx = π 0
3π
2 π − πx = 3π

2 − 1
2

2π π − πx = 2π −1

Figure 4.4.18: Reference points for g(x) in
Example 4.4.3
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x f(x) (x, f(x))
0 −1 (0,−1)
π
4 undefined
π
2 3

(
π
2 , 3
)

3π
4 undefined
π −1 (π,−1)

x

y

π
4

π
2

3π
4

π−1

1

2

3

Figure 4.4.14: Plo ng one cycle of y = f(x) in Example 4.4.3

2. Proceeding as before, we set the argument of cosecant ing(x) = csc(π−πx)−5
3

equal to the quarter marks and solve for x in Figure 4.4.18.
Subs tu ng these x-values into g(x), we generate the graph below and
find the period to be 1 − (−1) = 2. The associated sine curve, y =
sin(π−πx)−5

3 , is do ed in as a reference.

x g(x) (x, g(x))
1 undefined
1
2 − 4

3
( 1
2 ,−

4
3
)

0 undefined
− 1

2 −2
(
− 1

2 ,−2
)

−1 undefined

x

y

−1 − 1
2

1
2

1

−2

−1

Figure 4.4.16: Plo ng one cycle of y = g(x) in Example 4.4.3

Before moving on, we note that it is possible to speak of the period, phase
shi and ver cal shi of secant and cosecant graphs and use even/odd iden es
to put them in a form similar to the sinusoid formsmen oned in Theorem 4.4.2.
Since these quan es match those of the corresponding cosine and sine curves,
we do not spell this out explicitly. Finally, since the ranges of secant and cosecant
are unbounded, there is no amplitude associated with these curves.

4.4.3 Graphs of the Tangent and Cotangent Func ons
Finally, we turn our a en on to the graphs of the tangent and cotangent func-
ons. When construc ng a table of values for the tangent func on, we see that

J(x) = tan(x) is undefined at x = π
2 and x = 3π

2 , and we have ver cal asymp-
totes at these points. Plo ng this informa on and performing the usual ‘copy
and paste’ produces Figures 4.4.17 and 4.4.19 below.
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4.4 Graphs of the Trigonometric Func ons

x tan(x) (x, tan(x))
0 0 (0, 0)
π
4 1

(
π
4 , 1
)

π
2 undefined

3π
4 −1

( 3π
4 ,−1

)
π 0 (π, 0)
5π
4 1

( 5π
4 , 1

)
3π
2 undefined
7π
4 −1

( 7π
4 ,−1

)
2π 0 (2π, 0)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

Figure 4.4.17: The graph of y = tan(x) over [0, 2π]

x

y

Figure 4.4.19: The graph of y = tan(x)

From the graph, it appears as if the tangent func on is periodic with period
π. To prove that this is the case, we appeal to the sum formula for tangents. We
have:

tan(x+ π) =
tan(x) + tan(π)
1− tan(x) tan(π)

=
tan(x) + 0

1− (tan(x))(0)
= tan(x),

which tells us the period of tan(x) is at most π. To show that it is exactly
π, suppose p is a posi ve real number so that tan(x + p) = tan(x) for all real
numbers x. For x = 0, we have tan(p) = tan(0 + p) = tan(0) = 0, which
means p is a mul ple of π. The smallest posi ve mul ple of π is π itself, so we
have established the result. We take as our fundamental cycle for y = tan(x)
the interval

(
− π

2 ,
π
2
)
, and use as our ‘quarter marks’ x = − π

2 ,−
π
4 , 0,

π
4 and π

2 .

It should be no surprise that K(x) = cot(x) behaves similarly to J(x) =
tan(x). Plo ng cot(x) over the interval [0, 2π] results in the graph in Figure
4.4.20 below.
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x cot(x) (x, cot(x))
0 undefined
π
4 1

(
π
4 , 1
)

π
2 0

(
π
2 , 0
)

3π
4 −1

( 3π
4 ,−1

)
π undefined
5π
4 1

( 5π
4 , 1

)
3π
2 0

( 3π
2 , 0

)
7π
4 −1

( 7π
4 ,−1

)
2π undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

Figure 4.4.20: The graph of y = cot(x) over [0, 2π]

From these data, it clearly appears as if the period of cot(x) is π, and we
leave it to the reader to prove this. (Certainly, mimicking the proof that the
period of tan(x) is an op on; for another approach, consider transforming tan(x)
to cot(x) using iden es.) We take as one fundamental cycle the interval (0, π)
with quartermarks: x = 0, π4 ,

π
2 ,

3π
4 and π. Amore complete graph of y = cot(x)

is below, along with the fundamental cycle highlighted as usual.

x

y

Figure 4.4.21: The graph of y = cot(x)

The proper es of the tangent and cotangent func ons are summarized be-
low. As with Theorem 4.4.3, each of the results below can be traced back to
proper es of the cosine and sine func ons and the defini on of the tangent
and cotangent func ons as quo ents thereof.
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a x
2 = a x

− π
2

x
2 = − π

2 −π

− π
4

x
2 = − π

4 − π
2

0 x
2 = 0 0

π
4

x
2 = π

4
π
2

π
2

x
2 = π

2 π

Figure 4.4.23: Reference points for f(x) in
Example 4.4.4

4.4 Graphs of the Trigonometric Func ons

Theorem 4.4.4 Proper es of the Tangent and Cotangent Func ons

• The func on J(x) = tan(x)

– has domain
{
x : x ̸= π

2 + πk, k is an integer
}
=

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range (−∞,∞)

– is con nuous and smooth on its domain
– is odd
– has period π

• The func on K(x) = cot(x)

– has domain {x : x ̸= πk, k is an integer} =

∞∪
k=−∞

(kπ, (k+ 1)π)

– has range (−∞,∞)

– is con nuous and smooth on its domain
– is odd
– has period π

Example 4.4.4 Plo ng tangent and cotangent curves
Graph one cycle of the following func ons. Find the period.

1. f(x) = 1− tan
( x
2
)
.

2. g(x) = 2 cot
(
π
2 x+ π

)
+ 1.

S

1. We proceed as we have in all of the previous graphing examples by se ng
the argument of tangent in f(x) = 1 − tan

( x
2
)
, namely x

2 , equal to each
of the ‘quarter marks’ − π

2 , −
π
4 , 0,

π
4 and π

2 , and solving for x: see Figure
4.4.23.

Subs tu ng these x-values into f(x), we find points on the graph and the
ver cal asymptotes.
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a π
2 x+ π = a x

0 π
2 x+ π = 0 −2

π
4

π
2 x+ π = π

4 − 3
2

π
2

π
2 x+ π = π

2 −1
3π
4

π
2 x+ π = 3π

4 − 1
2

π π
2 x+ π = π 0

Figure 4.4.25: Reference points for g(x) in
Example 4.4.4

Chapter 4 Founda ons of Trigonometry

x f(x) (x, f(x))
−π undefined
− π

2 2
(
− π

2 , 2
)

0 1 (0, 1)
π
2 0

(
π
2 , 0
)

π undefined

x

y

−π −π
2

π
2

π

−2

−1

1

2

Figure 4.4.22: Plo ng one cycle of y = f(x) in Example 4.4.4

We see that the period is π − (−π) = 2π.

2. The ‘quarter marks’ for the fundamental cycle of the cotangent curve are
0, π

4 ,
π
2 ,

3π
4 and π. To graph g(x) = 2 cot

(
π
2 x+ π

)
+1, we begin by se ng

π
2 x+ π equal to each quarter mark and solving for x in Figure 4.4.25.
We now use these x-values to generate our graph.

x g(x) (x, g(x))
−2 undefined
− 3

2 3
(
− 3

2 , 3
)

−1 1 (−1, 1)
− 1

2 −1
(
− 1

2 ,−1
)

0 undefined

x

y

−2 −1

−1

1

2

3

Figure 4.4.24: Plo ng one cycle of y = g(x) in Example 4.4.4

We find the period to be 0− (−2) = 2.

As with the secant and cosecant func ons, it is possible to extend the no on
of period, phase shi and ver cal shi to the tangent and cotangent func ons
as we did for the cosine and sine func ons in Theorem 4.4.2. Since the number
of classical applica ons involving sinusoids far outnumber those involving tan-
gent and cotangent func ons, we omit this. The ambi ous reader is invited to
formulate such a theorem, however.
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Exercises 4.4
Problems
In Exercises 1 – 12, graph one cycle of the given func on.
State the period, amplitude, phase shi and ver cal shi of
the func on.

1. y = 3 sin(x)

2. y = sin(3x)

3. y = −2 cos(x)

4. y = cos
(
x− π

2

)
5. y = − sin

(
x+ π

3

)
6. y = sin(2x− π)

7. y = −1
3
cos
(
1
2
x+ π

3

)
8. y = cos(3x− 2π) + 4

9. y = sin
(
−x− π

4

)
− 2

10. y = 2
3
cos
(π
2
− 4x

)
+ 1

11. y = −3
2
cos
(
2x+ π

3

)
− 1

2

12. y = 4 sin(−2πx+ π)

In Exercises 13 – 24, graph one cycle of the given func on.
State the period of the func on.

13. y = tan
(
x− π

3

)

14. y = 2 tan
(
1
4
x
)
− 3

15. y = 1
3
tan(−2x− π) + 1

16. y = sec
(
x− π

2

)
17. y = − csc

(
x+ π

3

)

18. y = −1
3
sec
(
1
2
x+ π

3

)
19. y = csc(2x− π)

20. y = sec(3x− 2π) + 4

21. y = csc
(
−x− π

4

)
− 2

22. y = cot
(
x+ π

6

)

23. y = −11 cot
(
1
5
x
)

24. y = 1
3
cot
(
2x+ 3π

2

)
+ 1

In Exercises 25 – 34, use Example 4.4.2 as a guide to show
that the func on is a sinusoid by rewri ng it in the forms
C(x) = A cos(ωx + ϕ) + B and S(x) = A sin(ωx + ϕ) + B
for ω > 0 and 0 ≤ ϕ < 2π.

25. f(x) =
√
2 sin(x) +

√
2 cos(x) + 1

26. f(x) = 3
√
3 sin(3x)− 3 cos(3x)

27. f(x) = − sin(x) + cos(x)− 2

28. f(x) = −1
2
sin(2x)−

√
3
2

cos(2x)

29. f(x) = 2
√
3 cos(x)− 2 sin(x)

30. f(x) = 3
2
cos(2x)− 3

√
3

2
sin(2x) + 6

31. f(x) = −1
2
cos(5x)−

√
3
2

sin(5x)

32. f(x) = −6
√
3 cos(3x)− 6 sin(3x)− 3

33. f(x) = 5
√
2

2
sin(x)− 5

√
2

2
cos(x)

34. f(x) = 3 sin
( x
6

)
− 3

√
3 cos

( x
6

)
35. you should have no ced a rela onship between the phases

ϕ for the S(x) and C(x). Show that if f(x) = A sin(ωx+α)+

B, then f(x) = A cos(ωx+ β) + B where β = α− π

2
.

In Exercises 36 – 41, verify the iden ty by graphing the right
and le hand sides on a computer or calculator.

36. sin2(x) + cos2(x) = 1

37. sec2(x)− tan2(x) = 1

38. cos(x) = sin
(π
2
− x
)

39. tan(x+ π) = tan(x)

40. sin(2x) = 2 sin(x) cos(x)
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41. tan
( x
2

)
=

sin(x)
1+ cos(x)

In Exercises 42 – 48, graph the func on with the help of your
computer or calculator and discuss the given ques ons with
your classmates.

42. f(x) = cos(3x) + sin(x). Is this func on periodic? If so,
what is the period?

43. f(x) = sin(x)
x . What appears to be the horizontal asymptote

of the graph?

44. f(x) = x sin(x). Graph y = ±x on the same set of axes and
describe the behaviour of f.

45. f(x) = sin
( 1
x

)
. What’s happening as x → 0?

46. f(x) = x− tan(x). Graph y = x on the same set of axes and
describe the behaviour of f.

47. f(x) = e−0.1x (cos(2x) + sin(2x)). Graph y = ±e−0.1x on
the same set of axes and describe the behaviour of f.

48. f(x) = e−0.1x (cos(2x) + 2 sin(x)). Graph y = ±e−0.1x on
the same set of axes and describe the behaviour of f.

49. Show that a constant func on f is periodic by showing that
f(x + 117) = f(x) for all real numbers x. Then show that
f has no period by showing that you cannot find a smallest
number p such that f(x + p) = f(x) for all real numbers
x. Said another way, show that f(x + p) = f(x) for all real
numbers x for ALL values of p > 0, so no smallest value
exists to sa sfy the defini on of ‘period’.
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x

y

π
2

π

−1

1

f(x) = cos(x), 0 ≤ x ≤ π

x

y

π
2

π

−1 1

f−1(x) = arccos(x)

Figure 4.5.3: Reflec ng y = cos(x) across
y = x yields y = arccos(x)

4.5 Inverse Trigonometric Func ons

4.5 Inverse Trigonometric Func ons

As the tle indicates, in this sec onwe concern ourselveswith finding inverses of
the (circular) trigonometric func ons. Our immediate problem is that, owing to
their periodic nature, none of the six circular func ons is one-to-one. To remedy
this, we restrict the domains of the circular func ons to obtain a one-to-one
func on. We first consider f(x) = cos(x). Choosing the interval [0, π] allows
us to keep the range as [−1, 1] as well as the proper es of being smooth and
con nuous.

x

y

Figure 4.5.1: Restric ng the domain of f(x) = cos(x) to [0, π].

Recall from Sec on 2.2.3 that the inverse of a func on f is typically denoted
f−1. For this reason, some textbooks use the nota on f−1(x) = cos−1(x) for the
inverse of f(x) = cos(x). The obvious pi all here is our conven on of wri ng
(cos(x))2 as cos2(x), (cos(x))3 as cos3(x) and so on. It is far too easy to confuse
cos−1(x)with 1

cos(x) = sec(x) so wewill not use this nota on in our text. (But be
aware that many books do! As always, be sure to check the context!) Instead,
we use the nota on f−1(x) = arccos(x), read ‘arc-cosine of x’. To understand
the ‘arc’ in ‘arccosine’, recall that an inverse func on, by defini on, reverses the
process of the original func on. The func on f(t) = cos(t) takes a real number
input t, associates it with the angle θ = t radians, and returns the value cos(θ).
Digging deeper, we have that cos(θ) = cos(t) is the x-coordinate of the termi-
nal point on the Unit Circle of an oriented arc of length |t| whose ini al point is
(1, 0). Hence, we may view the inputs to f(t) = cos(t) as oriented arcs and the
outputs as x-coordinates on the Unit Circle. The func on f−1, then, would take
x-coordinates on the Unit Circle and return oriented arcs, hence the ‘arc’ in arc-
cosine. Figure 4.5.3 shows the graphs of f(x) = cos(x) and f−1(x) = arccos(x),
where we obtain the la er from the former by reflec ng it across the line y = x,
in accordance with Theorem 2.2.2.

We restrict g(x) = sin(x) in a similar manner, although the interval of choice
is
[
− π

2 ,
π
2
]
.

x

y

Figure 4.5.2: Restric ng the domain of f(x) = sin(x) to
[
− π

2 ,
π
2

]
.

It should be no surprise that we call g−1(x) = arcsin(x), which is read ‘arc-
sine of x’.

We list some important facts about the arccosine and arcsine func ons in
the following theorem.
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x

y

−π
2

π
2

−1

1

g(x) = sin(x),− π
2 ≤ x ≤ π

2

x

y

−π
2

π
2

−1 1

g−1(x) = arcsin(x)

Figure 4.5.4: Reflec ng y = sin(x) across
y = x yields y = arcsin(x)

Chapter 4 Founda ons of Trigonometry

Theorem 4.5.1 Proper es of the Arccosine and Arcsine Func ons

• Proper es of F(x) = arccos(x)

– Domain: [−1, 1]
– Range: [0, π]
– arccos(x) = t if and only if 0 ≤ t ≤ π and cos(t) = x
– cos(arccos(x)) = x provided−1 ≤ x ≤ 1
– arccos(cos(x)) = x provided 0 ≤ x ≤ π

• Proper es of G(x) = arcsin(x)

– Domain: [−1, 1]
– Range:

[
− π

2 ,
π
2
]

– arcsin(x) = t if and only if− π
2 ≤ t ≤ π

2 and sin(t) = x
– sin(arcsin(x)) = x provided−1 ≤ x ≤ 1
– arcsin(sin(x)) = x provided− π

2 ≤ x ≤ π
2

– addi onally, arcsine is odd

Everything in Theorem 4.5.1 is a direct consequence of the facts that f(x) =
cos(x) for 0 ≤ x ≤ π and F(x) = arccos(x) are inverses of each other as are
g(x) = sin(x) for − π

2 ≤ x ≤ π
2 and G(x) = arcsin(x). It’s about me for an

example.

Example 4.5.1 Evalua ng the arcsine and arccosine func ons

1. Find the exact values of the following.

(a) arccos
( 1
2
)

(b) arcsin
(√

2
2

)
(c) arccos

(
−

√
2
2

)
(d) arcsin

(
− 1

2
)

(e) arccos
(
cos
(
π
6
))

(f) arccos
(
cos
( 11π

6
))

(g) cos
(
arccos

(
− 3

5
))

(h) sin
(
arccos

(
− 3

5
))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan (arccos (x)) (b) cos (2 arcsin(x))

S

1. (a) To find arccos
( 1
2
)
, we need to find the real number t (or, equiva-

lently, an anglemeasuring t radians) which lies between 0 and πwith
cos(t) = 1

2 . We know t = π
3 meets these criteria, so arccos

( 1
2
)
= π

3 .

(b) The value of arcsin
(√

2
2

)
is a real number t between− π

2 and
π
2 with

sin(t) =
√
2
2 . The number we seek is t = π

4 . Hence, arcsin
(√

2
2

)
=

π
4 .
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An alterna ve approach to finding tan(t)
is to use the iden ty 1 + tan2(t) =
sec2(t). Since x = cos(t), sec(t) =

1
cos(t) = 1

x . The reader is invited to work
through this approach to see what, if any,
difficul es arise.

4.5 Inverse Trigonometric Func ons

(c) Thenumber t = arccos
(
−

√
2
2

)
lies in the interval [0, π]with cos(t) =

−
√
2
2 . Our answer is arccos

(
−

√
2
2

)
= 3π

4 .

(d) To find arcsin
(
− 1

2
)
, we seek the number t in the interval

[
− π

2 ,
π
2
]

with sin(t) = − 1
2 . The answer is t = − π

6 so that arcsin
(
− 1

2
)
= − π

6 .
(e) Since 0 ≤ π

6 ≤ π, one op on would be to simply invoke Theorem
4.5.1 to get arccos

(
cos
(
π
6
))

= π
6 . However, in order to make sure

we understandwhy this is the case, we choose to work the example
through using the defini on of arccosine. Working from the inside
out, arccos

(
cos
(
π
6
))

= arccos
(√

3
2

)
. Now, arccos

(√
3
2

)
is the real

number t with 0 ≤ t ≤ π and cos(t) =
√
3
2 . We find t = π

6 , so that
arccos

(
cos
(
π
6
))

= π
6 .

(f) Since 11π
6 does not fall between 0 and π, Theorem 4.5.1 does not ap-

ply. We are forced to work through from the inside out star ng with
arccos

(
cos
( 11π

6
))

= arccos
(√

3
2

)
. From the previous problem, we

know arccos
(√

3
2

)
= π

6 . Hence, arccos
(
cos
( 11π

6
))

= π
6 .

(g) One way to simplify cos
(
arccos

(
− 3

5
))

is to use Theorem 4.5.1 di-
rectly. Since− 3

5 is between−1 and1, wehave that cos
(
arccos

(
− 3

5
))

=
− 3

5 and we are done. However, as before, to really understand why
this cancella on occurs, we let t = arccos

(
− 3

5
)
. Then, by defini-

on, cos(t) = − 3
5 . Hence, cos

(
arccos

(
− 3

5
))

= cos(t) = − 3
5 , and

we are finished in (nearly) the same amount of me.
(h) As in the previous example, we let t = arccos

(
− 3

5
)
so that cos(t) =

− 3
5 for some t where 0 ≤ t ≤ π. Since cos(t) < 0, we can nar-

row this down a bit and conclude that π
2 < t < π, so that t cor-

responds to an angle in Quadrant II. In terms of t, then, we need
to find sin

(
arccos

(
− 3

5
))

= sin(t). Using the Pythagorean Iden ty
cos2(t) + sin2(t) = 1, we get

(
− 3

5
)2

+ sin2(t) = 1 or sin(t) = ± 4
5 .

Since t corresponds to a Quadrants II angle, we choose sin(t) = 4
5 .

Hence, sin
(
arccos

(
− 3

5
))

= 4
5 .

2. (a) We begin this problem in the same manner we began the previous
two problems. To help us see the forest for the trees, we let t =
arccos(x), so our goal is to find a way to express tan (arccos (x)) =
tan(t) in terms of x. Since t = arccos(x), we know cos(t) = xwhere
0 ≤ t ≤ π, but since we are a er an expression for tan(t), we know
we need to throw out t = π

2 from considera on. Hence, either
0 ≤ t < π

2 or π
2 < t ≤ π so that, geometrically, t corresponds

to an angle in Quadrant I or Quadrant II. One approach to finding
tan(t) is to use the quo ent iden ty tan(t) = sin(t)

cos(t) . Subs tu ng
cos(t) = x into the Pythagorean Iden ty cos2(t) + sin2(t) = 1 gives
x2+ sin2(t) = 1, from which we get sin(t) = ±

√
1− x2. Since t cor-

responds to angles in Quadrants I and II, sin(t) ≥ 0, so we choose
sin(t) =

√
1− x2. Thus,

tan(t) =
sin(t)
cos(t)

=

√
1− x2

x

To determine the values of x for which this equivalence is valid, we
consider our subs tu on t = arccos(x). Since thedomain of arccos(x)
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x

y

−π
4−π

2
π
4

π
2

−1

1

f(x) = tan(x),− π
2 < x < π

2

x

y

−π
4

−π
2

π
4

π
2

−1 1

f−1(x) = arctan(x)

Figure 4.5.5: Reflec ng y = tan(x) across
y = x yields y = arctan(x)
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is [−1, 1], we knowwemust restrict−1 ≤ x ≤ 1. Addi onally, since
we had to discard t = π

2 , we need to discard x = cos
(
π
2
)
= 0.

Hence, tan (arccos (x)) =
√
1−x2
x is valid for x in [−1, 0) ∪ (0, 1].

(b) We proceed as in the previous problem by wri ng t = arcsin(x) so
that t lies in the interval

[
− π

2 ,
π
2
]
with sin(t) = x. We aim to ex-

press cos (2 arcsin(x)) = cos(2t) in terms of x. Since cos(2t) is de-
fined everywhere, we get no addi onal restric ons on t as we did in
the previous problem. We have three choices for rewri ng cos(2t):
cos2(t) − sin2(t), 2 cos2(t) − 1 and 1 − 2 sin2(t). Since we know
x = sin(t), it is easiest to use the last form:

cos (2 arcsin(x)) = cos(2t) = 1− 2 sin2(t) = 1− 2x2

To find the restric ons on x, we once again appeal to our subs tu on
t = arcsin(x). Since arcsin(x) is defined only for −1 ≤ x ≤ 1, the
equivalence cos (2 arcsin(x)) = 1− 2x2 is valid only on [−1, 1].

A few remarks about Example 4.5.1 are in order. Most of the common errors
encountered in dealing with the inverse circular func ons come from the need
to restrict the domains of the original func ons so that they are one-to-one. One
instance of this phenomenon is the fact that arccos

(
cos
( 11π

6
))

= π
6 as opposed

to 11π
6 . This is the exact same phenomenon discussed in Sec on 2.2.3 when we

saw
√
(−2)2 = 2 as opposed to −2. Addi onally, even though the expression

we arrived at in part 2b above, namely 1 − 2x2, is defined for all real numbers,
the equivalence cos (2 arcsin(x)) = 1 − 2x2 is valid for only −1 ≤ x ≤ 1. This
is akin to the fact that while the expression x is defined for all real numbers, the
equivalence

(√
x
)2

= x is valid only for x ≥ 0. For this reason, it pays to be
careful when we determine the intervals where such equivalences are valid.

The next pair of func ons we wish to discuss are the inverses of tangent and
cotangent, which are named arctangent and arccotangent, respec vely. First,
we restrict f(x) = tan(x) to its fundamental cycle on

(
− π

2 ,
π
2
)
to obtain f−1(x) =

arctan(x). Among other things, note that the ver cal asymptotes x = − π
2 and

x = π
2 of the graph of f(x) = tan(x) become the horizontal asymptotes y = − π

2
and y = π

2 of the graph of f−1(x) = arctan(x): see Figure 4.5.5.

Next, we restrict g(x) = cot(x) to its fundamental cycle on (0, π) to obtain
g−1(x) = arccot(x). Once again, the ver cal asymptotes x = 0 and x = π of
the graph of g(x) = cot(x) become the horizontal asymptotes y = 0 and y = π
of the graph of g−1(x) = arccot(x). We show these graphs in Figure 4.5.6; the
basic proper es of the arctangent and arccotangent func ons are given in the
following theorem.
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Figure 4.5.6: Reflec ng y = cot(x) across
y = x yields y = arccot(x)

4.5 Inverse Trigonometric Func ons

Theorem 4.5.2 Proper es of the Arctangent and Arccotangent
Func ons

• Proper es of F(x) = arctan(x)

– Domain: (−∞,∞)

– Range:
(
− π

2 ,
π
2
)

– as x → −∞, arctan(x) → − π
2
+; as x → ∞, arctan(x) → π

2
−

– arctan(x) = t if and only if− π
2 < t < π

2 and tan(t) = x
– arctan(x) = arccot

( 1
x

)
for x > 0

– tan (arctan(x)) = x for all real numbers x
– arctan(tan(x)) = x provided− π

2 < x < π
2

– addi onally, arctangent is odd

• Proper es of G(x) = arccot(x)

– Domain: (−∞,∞)

– Range: (0, π)
– as x → −∞, arccot(x) → π−; as x → ∞, arccot(x) → 0+

– arccot(x) = t if and only if 0 < t < π and cot(t) = x
– arccot(x) = arctan

( 1
x

)
for x > 0

– cot (arccot(x)) = x for all real numbers x
– arccot(cot(x)) = x provided 0 < x < π

Example 4.5.2 Evalua ng the arctangent and arccotangent func ons

1. Find the exact values of the following.

(a) arctan(
√
3) (b) arccot(−

√
3)

(c) cot(arccot(−5)) (d) sin
(
arctan

(
− 3

4
))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(2 arctan(x)) (b) cos(arccot(2x))

S

1. (a) We know arctan(
√
3) is the real number t between − π

2 and π
2 with

tan(t) =
√
3. We find t = π

3 , so arctan(
√
3) = π

3 .

(b) The real number t = arccot(−
√
3) lies in the interval (0, π) with

cot(t) = −
√
3. We get arccot(−

√
3) = 5π

6 .
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It’s always a good idea to make sure
the iden es used in these situa ons are
valid for all values t under considera on.
Check our work back in Example 4.5.1.
Were the iden es we used there valid
for all t under considera on? A pedan c
point, to be sure, but what else do you ex-
pect from this book?

Chapter 4 Founda ons of Trigonometry

(c) We can apply Theorem 4.5.2 directly and obtain cot(arccot(−5)) =
−5. However, working it through provides us with yet another op-
portunity to understandwhy this is the case. Le ng t = arccot(−5),
wehave that tbelongs to the interval (0, π) and cot(t) = −5. Hence,
cot(arccot(−5)) = cot(t) = −5.

(d) We start simplifying sin
(
arctan

(
− 3

4
))

by le ng t = arctan
(
− 3

4
)
.

Then tan(t) = − 3
4 for some − π

2 < t < π
2 . Since tan(t) < 0, we

know, in fact, − π
2 < t < 0. One way to proceed is to use The

Pythagorean Iden ty, 1 + cot2(t) = csc2(t), since this relates the
reciprocals of tan(t) and sin(t) and is valid for all t under considera-
on. From tan(t) = − 3

4 , we get cot(t) = − 4
3 . Subs tu ng, we get

1 +
(
− 4

3
)2

= csc2(t) so that csc(t) = ± 5
3 . Since − π

2 < t < 0, we
choose csc(t) = − 5

3 , so sin(t) = − 3
5 . Hence, sin

(
arctan

(
− 3

4
))

=
− 3

5 .

2. (a) If we let t = arctan(x), then − π
2 < t < π

2 and tan(t) = x. We look
for a way to express tan(2 arctan(x)) = tan(2t) in terms of x. Before
we get started using iden es, we note that tan(2t) is undefined
when 2t = π

2 +πk for integers k. Dividing both sides of this equa on
by 2 tells us we need to exclude values of twhere t = π

4 +
π
2 k, where

k is an integer. The only members of this family which lie in
(
− π

2 ,
π
2
)

are t = ± π
4 , which means the values of t under considera on are(

− π
2 ,−

π
4
)
∪
(
− π

4 ,
π
4
)
∪
(
π
4 ,

π
2
)
. Returning to arctan(2t), we note the

double angle iden ty tan(2t) = 2 tan(t)
1−tan2(t) , is valid for all the values of

t under considera on, hence we get

tan(2 arctan(x)) = tan(2t) =
2 tan(t)

1− tan2(t)
=

2x
1− x2

To findwhere this equivalence is valid we check backwith our subs -
tu on t = arctan(x). Since the domain of arctan(x) is all real num-
bers, the only exclusions come from the values of t we discarded
earlier, t = ± π

4 . Since x = tan(t), this means we exclude x =
tan
(
± π

4
)
= ±1. Hence, the equivalence tan(2 arctan(x)) = 2x

1−x2
holds for all x in (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(b) To get started, we let t = arccot(2x) so that cot(t) = 2x where
0 < t < π. In terms of t, cos(arccot(2x)) = cos(t), and our goal is to
express the la er in terms of x. Since cos(t) is always defined, there
are no addi onal restric ons on t, so we can begin using iden es
to relate cot(t) to cos(t). The iden ty cot(t) = cos(t)

sin(t) is valid for t in
(0, π), so our strategy is to obtain sin(t) in terms of x, then write
cos(t) = cot(t) sin(t). The iden ty 1 + cot2(t) = csc2(t) holds
for all t in (0, π) and relates cot(t) and csc(t) = 1

sin(t) . Subs tu ng
cot(t) = 2x, we get 1 + (2x)2 = csc2(t), or csc(t) = ±

√
4x2 + 1.

Since t is between 0 and π, csc(t) > 0, so csc(t) =
√
4x2 + 1 which

gives sin(t) = 1√
4x2+1 . Hence,

cos(arccot(2x)) = cos(t) = cot(t) sin(t) =
2x√

4x2 + 1

Since arccot(2x) is defined for all real numbers x and we encoun-
tered no addi onal restric ons on t, we have cos (arccot(2x)) =

2x√
4x2+1 for all real numbers x.
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4.5 Inverse Trigonometric Func ons

The last two func ons to invert are secant and cosecant. A por on of each of
their graphs, which were first discussed in Subsec on 4.4.2, are given in Figure
4.5.7 below with the fundamental cycles highlighted.

x

y

x

y

The graph y = sec(x) The graph y = csc(x)

Figure 4.5.7: The fundamental cycles of f(x) = sec(x) and g(x) = csc(x)

It is clear from the graph of secant that we cannot find one single con nu-
ous piece of its graph which covers its en re range of (−∞,−1] ∪ [1,∞) and
restricts the domain of the func on so that it is one-to-one. The same is true for
cosecant. Thus in order to define the arcsecant and arccosecant func ons, we
must se le for a piecewise approach wherein we choose one piece to cover the
top of the range, namely [1,∞), and another piece to cover the bo om, namely
(−∞,−1]. There are two generally acceptedwaysmake these choiceswhich re-
strict the domains of these func ons so that they are one-to-one. One approach
simplifies the Trigonometry associated with the inverse func ons, but compli-
cates the Calculus; the other makes the Calculus easier, but the Trigonometry
less so. We present both points of view.

4.5.1 Inverses of Secant and Cosecant: Trigonometry Friendly
Approach

In this subsec on, we restrict the secant and cosecant func ons to coincide with
the restric ons on cosine and sine, respec vely. For f(x) = sec(x), we restrict
the domain to

[
0, π

2
)
∪
(
π
2 , π
]
(Figure 4.5.8) and we restrict g(x) = csc(x) to[

− π
2 , 0
)
∪
(
0, π

2
]
(Figure 4.5.9.

Note that for both arcsecant and arccosecant, the domain is (−∞,−1] ∪
[1,∞). Taking a page from Sec on 3.1.2, we can rewrite this as {x : |x| ≥ 1}.
This is o en done in Calculus textbooks, so we include it here for completeness.
Using these defini ons, we get the following proper es of the arcsecant and
arccosecant func ons.
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f−1(x) = arcsec(x)

Figure 4.5.8: The “Trigonometry Friendly”
defini on of arcsec(x)
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g(x) = csc(x) on
[
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2 , 0
)
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]
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g−1(x) = arccsc(x)

Figure 4.5.9: The “Trigonometry Friendly”
defini on of arccsc(x)

Chapter 4 Founda ons of Trigonometry

Theorem 4.5.3 Proper es of the Arcsecant and Arccosecant Func-
ons (“Trigonometry Friendly” version)

• Proper es of F(x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π

2
)
∪
(
π
2 , π
]

– as x → −∞, arcsec(x) → π
2
+; as x → ∞, arcsec(x) → π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π

2 < t ≤ π and
sec(t) = x

– arcsec(x) = arccos
( 1
x

)
provided |x| ≥ 1

– sec (arcsec(x)) = x provided |x| ≥ 1
– arcsec(sec(x)) = x provided 0 ≤ x < π

2 or π
2 < x ≤ π

• Proper es of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
− π

2 , 0
)
∪
(
0, π

2
]

– as x → −∞, arccsc(x) → 0−; as x → ∞, arccsc(x) → 0+

– arccsc(x) = t if and only if − π
2 ≤ t < 0 or 0 < t ≤ π

2 and
csc(t) = x

– arccsc(x) = arcsin
( 1
x

)
provided |x| ≥ 1

– csc (arccsc(x)) = x provided |x| ≥ 1
– arccsc(csc(x)) = x provided− π

2 ≤ x < 0 or 0 < x ≤ π
2

– addi onally, arccosecant is odd

Example 4.5.3 Evalua ng the arcsecant and arccosecant func ons

1. Find the exact values of the following.

(a) arcsec(2)
(b) arccsc(−2)

(c) arcsec
(
sec
( 5π

4
))

(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

S

1. (a) Using Theorem 4.5.3, we have arcsec(2) = arccos
( 1
2
)
= π

3 .
(b) Once again, Theorem 4.5.3 gives us arccsc(−2) = arcsin

(
− 1

2
)
=

− π
6 .

(c) Since 5π
4 doesn’t fall between 0 and π

2 or π
2 and π, we cannot use

the inverse property stated in Theorem 4.5.3. We can, neverthe-
less, begin by working ‘inside out’ which yields arcsec

(
sec
( 5π

4
))

=

arcsec(−
√
2) = arccos

(
−

√
2
2

)
= 3π

4 .
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4.5 Inverse Trigonometric Func ons

(d) Oneway to begin to simplify cot (arccsc (−3)) is to let t = arccsc(−3).
Then, csc(t) = −3 and, since this is nega ve, we have that t lies in
the interval

[
− π

2 , 0
)
. We are a er cot (arccsc (−3)) = cot(t), so we

use the Pythagorean Iden ty 1 + cot2(t) = csc2(t). Subs tu ng,
we have 1 + cot2(t) = (−3)2, or cot(t) = ±

√
8 = ±2

√
2. Since

− π
2 ≤ t < 0, cot(t) < 0, so we get cot (arccsc (−3)) = −2

√
2.

2. (a) We begin simplifying tan(arcsec(x)) by le ng t = arcsec(x). Then,
sec(t) = x for t in

[
0, π

2
)
∪
(
π
2 , π
]
, and we seek a formula for tan(t).

Since tan(t) is defined for all t values under considera on, we have
no addi onal restric ons on t. To relate sec(t) to tan(t), we use
the iden ty 1 + tan2(t) = sec2(t). This is valid for all values of t
under considera on, and when we subs tute sec(t) = x, we get
1+ tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. If t belongs to

[
0, π

2
)

then tan(t) ≥ 0; if, on the the other hand, t belongs to
(
π
2 , π
]
then

tan(t) ≤ 0. As a result, we get a piecewise defined func on for
tan(t)

tan(t) =

{ √
x2 − 1, if 0 ≤ t < π

2

−
√
x2 − 1, if π

2 < t ≤ π

Now we need to determine what these condi ons on t mean for x.
Since x = sec(t), when 0 ≤ t < π

2 , x ≥ 1, and when π
2 < t ≤

π, x ≤ −1. Since we encountered no further restric ons on t, the
equivalence below holds for all x in (−∞,−1] ∪ [1,∞).

tan(arcsec(x)) =

{ √
x2 − 1, if x ≥ 1

−
√
x2 − 1, if x ≤ −1

(b) To simplify cos(arccsc(4x)), we start by le ng t = arccsc(4x). Then
csc(t) = 4x for t in

[
− π

2 , 0
)
∪
(
0, π

2
]
, and we now set about finding

an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any addi onal restric ons on t. From
csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use
if the iden ty cos2(t) + sin2(t) = 1. Subs tu ng sin(t) = 1

4x gives
cos2(t) +

( 1
4x
)2

= 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√
16x2 − 1
4|x|

Since t belongs to
[
− π

2 , 0
)
∪
(
0, π

2
]
, we know cos(t) ≥ 0, so we

choose cos(t) =
√
16−x2
4|x| . (The absolute values here are necessary,

since x could be nega ve.) To find the values for which this equiva-
lence is valid, we look back at our original substu on, t = arccsc(4x).
Since the domain of arccsc(x) requires its argument x to sa sfy |x| ≥
1, the domain of arccsc(4x) requires |4x| ≥ 1. We rewrite this in-
equality and solve to get x ≤ − 1

4 or x ≥ 1
4 . Since we had no addi-

onal restric ons on t, the equivalence cos(arccsc(4x)) =
√
16x2−1
4|x|

holds for all x in
(
−∞,− 1

4
]
∪
[ 1
4 ,∞

)
.
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Figure 4.5.10: The “Calculus Friendly”
defini on of arcsec(x)
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Figure 4.5.11: The “Calculus Friendly def-
ini on of arccsc(x)

Chapter 4 Founda ons of Trigonometry

4.5.2 Inverses of Secant and Cosecant: Calculus Friendly Ap-
proach

In this subsec on, we restrict f(x) = sec(x) to
[
0, π

2
)
∪
[
π, 3π2

)
, and we restrict

g(x) = csc(x) to
(
0, π

2
]
∪
(
π, 3π2

]
.

Using these defini ons, we get the following result.

Theorem 4.5.4 Proper es of the Arcsecant and Arccosecant Func-
ons (“Calculus Friendly” version)

• Proper es of F(x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π

2
)
∪
[
π, 3π2

)
– as x → −∞, arcsec(x) → 3π

2
−; as x → ∞, arcsec(x) → π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π ≤ t < 3π

2 and
sec(t) = x

– arcsec(x) = arccos
( 1
x

)
for x ≥ 1 only (Compare this with

the similar result in Theorem 4.5.3.)
– sec (arcsec(x)) = x provided |x| ≥ 1
– arcsec(sec(x)) = x provided 0 ≤ x < π

2 or π ≤ x < 3π
2

• Proper es of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
(
0, π

2
]
∪
(
π, 3π2

]
– as x → −∞, arccsc(x) → π+; as x → ∞, arccsc(x) → 0+

– arccsc(x) = t if and only if 0 < t ≤ π
2 or π < t ≤ 3π

2 and
csc(t) = x

– arccsc(x) = arcsin
( 1
x

)
for x ≥ 1 only (Compare this with the

similar result in Theorem 4.5.3.)
– csc (arccsc(x)) = x provided |x| ≥ 1
– arccsc(csc(x)) = x provided 0 < x ≤ π

2 or π < x ≤ 3π
2

Our next example is a duplicate of Example 4.5.3. The interested reader is
invited to compare and contrast the solu on to each.

Example 4.5.4 Evalua ng the arcsecant and arccosecant func ons

1. Find the exact values of the following.

(a) arcsec(2)
(b) arccsc(−2)

(c) arcsec
(
sec
( 5π

4
))

(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.
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4.5 Inverse Trigonometric Func ons

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

S

1. (a) Since 2 ≥ 1, we canuse Theorem4.5.4 to get arcsec(2) = arccos
( 1
2
)
=

π
3 .

(b) Unfortunately, −2 is not greater to or equal to 1, so we cannot ap-
ply Theorem 4.5.4 to arccsc(−2) and convert this into an arcsine
problem. Instead, we appeal to the defini on. The real number
t = arccsc(−2) lies in

(
0, π

2
]
∪
(
π, 3π2

]
and sa sfies csc(t) = −2.

The t we’re a er is t = 7π
6 , so arccsc(−2) = 7π

6 .

(c) Since 5π
4 lies between π and 3π

2 , we may apply Theorem 4.5.4 di-
rectly to simplify arcsec

(
sec
( 5π

4
))

= 5π
4 . We encourage the reader

to work this through using the defini on as we have done in the pre-
vious examples to see how it goes.

(d) To help simplify cot (arccsc (−3)) we define t = arccsc (−3) so that
cot (arccsc (−3)) = cot(t). We know csc(t) = −3, and since this is
nega ve, t lies in

(
π, 3π2

]
. Using the iden ty 1 + cot2(t) = csc2(t),

we find 1 + cot2(t) = (−3)2 so that cot(t) = ±
√
8 = ±2

√
2.

Since t is in the interval
(
π, 3π2

]
, we know cot(t) > 0. Our answer is

cot (arccsc (−3)) = 2
√
2.

2. (a) We begin simplifying tan(arcsec(x)) by le ng t = arcsec(x). Then,
sec(t) = x for t in

[
0, π

2
)
∪
[
π, 3π2

)
, and we seek a formula for tan(t).

Since tan(t) is defined for all t values under considera on, we have
no addi onal restric ons on t. To relate sec(t) to tan(t), we use
the iden ty 1 + tan2(t) = sec2(t). This is valid for all values of t
under considera on, and when we subs tute sec(t) = x, we get
1+ tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. Since t lies in

[
0, π

2
)
∪[

π, 3π2
)
, tan(t) ≥ 0, sowe choose tan(t) =

√
x2 − 1. Sincewe found

no addi onal restric ons on t, the equivalence tan(arcsec(x)) =√
x2 − 1holds for all x in the domain of t = arcsec(x), namely (−∞,−1]∪

[1,∞).

(b) To simplify cos(arccsc(4x)), we start by le ng t = arccsc(4x). Then
csc(t) = 4x for t in

(
0, π

2
]
∪
(
π, 3π2

]
, and we now set about finding

an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any addi onal restric ons on t. From
csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use
if the iden ty cos2(t) + sin2(t) = 1. Subs tu ng sin(t) = 1

4x gives
cos2(t) +

( 1
4x
)2

= 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√
16x2 − 1
4|x|

If t lies in
(
0, π

2
]
, then cos(t) ≥ 0, and we choose cos(t) =

√
16x2−1
4|x| .

Otherwise, t belongs to
(
π, 3π2

]
in which case cos(t) ≤ 0, so, we

choose cos(t) = −
√
16x2−1
4|x| This leads us to a (momentarily) piece-

wise defined func on for cos(t)
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cos(t) =


√
16x2 − 1
4|x|

, if 0 ≤ t ≤ π
2

−
√
16x2 − 1
4|x|

, if π < t ≤ 3π
2

We now see what these restric ons mean in terms of x. Since 4x =
csc(t), we get that for 0 ≤ t ≤ π

2 , 4x ≥ 1, or x ≥ 1
4 . In this case, we

can simplify |x| = x so

cos(t) =
√
16x2 − 1
4|x|

=

√
16x2 − 1
4x

Similarly, for π < t ≤ 3π
2 , we get 4x ≤ −1, or x ≤ − 1

4 . In this case,
|x| = −x, so we also get

cos(t) = −
√
16x2 − 1
4|x|

= −
√
16x2 − 1
4(−x)

=

√
16x2 − 1
4x

Hence, in all cases, cos(arccsc(4x)) =
√
16x2−1
4x , and this equivalence

is valid for all x in the domain of t = arccsc(4x), namely(
−∞,− 1

4
]
∪
[ 1
4 ,∞

)
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Exercises 4.5
Problems
In Exercises 1 – 40, find the exact value.

1. arcsin (−1)

2. arcsin
(
−
√
3
2

)

3. arcsin
(
−
√
2
2

)

4. arcsin
(
−1
2

)
5. arcsin (0)

6. arcsin
(
1
2

)

7. arcsin
(√

2
2

)

8. arcsin
(√

3
2

)
9. arcsin (1)

10. arccos (−1)

11. arccos
(
−
√
3
2

)

12. arccos
(
−
√
2
2

)

13. arccos
(
−1
2

)
14. arccos (0)

15. arccos
(
1
2

)

16. arccos
(√

2
2

)

17. arccos
(√

3
2

)
18. arccos (1)

19. arctan
(
−
√
3
)

20. arctan (−1)

21. arctan
(
−
√
3
3

)
22. arctan (0)

23. arctan
(√

3
3

)
24. arctan (1)

25. arctan
(√

3
)

26. arccot
(
−
√
3
)

27. arccot (−1)

28. arccot
(
−
√
3
3

)
29. arccot (0)

30. arccot
(√

3
3

)
31. arccot (1)

32. arccot
(√

3
)

33. arcsec (2)

34. arccsc (2)

35. arcsec
(√

2
)

36. arccsc
(√

2
)

37. arcsec
(
2
√
3

3

)

38. arccsc
(
2
√
3

3

)
39. arcsec (1)

40. arccsc (1)

In Exercises 41 – 48, assume that the range of arcsecant is[
0, π

2

)
∪
[
π, 3π

2

)
and that the range of arccosecant is

(
0, π

2

]
∪(

π, 3π
2

]
when finding the exact value.

41. arcsec (−2)

42. arcsec
(
−
√
2
)

43. arcsec
(
−2

√
3

3

)
44. arcsec (−1)
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45. arccsc (−2)

46. arccsc
(
−
√
2
)

47. arccsc
(
−2

√
3

3

)
48. arccsc (−1)

In Exercises 49 – 56, assume that the range of arcsecant is[
0, π

2

)
∪
(
π
2 , π
]
and that the range of arccosecant is

[
− π

2 , 0
)
∪(

0, π
2

]
when finding the exact value.

49. arcsec (−2)

50. arcsec
(
−
√
2
)

51. arcsec
(
−2

√
3

3

)
52. arcsec (−1)

53. arccsc (−2)

54. arccsc
(
−
√
2
)

55. arccsc
(
−2

√
3

3

)
56. arccsc (−1)

In Exercises 57 – 86, find the exact value or state that it is
undefined.

57. sin
(
arcsin

(
1
2

))

58. sin
(
arcsin

(
−
√
2
2

))

59. sin
(
arcsin

(
3
5

))
60. sin (arcsin (−0.42))

61. sin
(
arcsin

(
5
4

))

62. cos
(
arccos

(√
2
2

))

63. cos
(
arccos

(
−1
2

))

64. cos
(
arccos

(
5
13

))
65. cos (arccos (−0.998))

66. cos (arccos (π))

67. tan (arctan (−1))

68. tan
(
arctan

(√
3
))

69. tan
(
arctan

(
5
12

))
70. tan (arctan (0.965))

71. tan (arctan (3π))

72. cot (arccot (1))

73. cot
(
arccot

(
−
√
3
))

74. cot
(
arccot

(
− 7
24

))
75. cot (arccot (−0.001))

76. cot
(
arccot

(
17π
4

))
77. sec (arcsec (2))

78. sec (arcsec (−1))

79. sec
(
arcsec

(
1
2

))
80. sec (arcsec (0.75))

81. sec (arcsec (117π))

82. csc
(
arccsc

(√
2
))

83. csc
(
arccsc

(
−2

√
3

3

))

84. csc
(
arccsc

(√
2
2

))
85. csc (arccsc (1.0001))

86. csc
(
arccsc

(π
4

))
In Exercises 87 – 106, find the exact value or state that it is
undefined.

87. arcsin
(
sin
(π
6

))
88. arcsin

(
sin
(
−π

3

))

89. arcsin
(
sin
(
3π
4

))
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90. arcsin
(
sin
(
11π
6

))

91. arcsin
(
sin
(
4π
3

))

92. arccos
(
cos
(π
4

))
93. arccos

(
cos
(
2π
3

))

94. arccos
(
cos
(
3π
2

))

95. arccos
(
cos
(
−π

6

))
96. arccos

(
cos
(
5π
4

))

97. arctan
(
tan
(π
3

))
98. arctan

(
tan
(
−π

4

))
99. arctan (tan (π))

100. arctan
(
tan
(π
2

))
101. arctan

(
tan
(
2π
3

))

102. arccot
(
cot
(π
3

))
103. arccot

(
cot
(
−π

4

))
104. arccot (cot (π))

105. arccot
(
cot
(π
2

))
106. arccot

(
cot
(
2π
3

))
In Exercises 107 – 118, assume that the range of arcsecant is[
0, π

2

)
∪
[
π, 3π

2

)
and that the range of arccosecant is

(
0, π

2

]
∪(

π, 3π
2

]
when finding the exact value.

107. arcsec
(
sec
(π
4

))
108. arcsec

(
sec
(
4π
3

))

109. arcsec
(
sec
(
5π
6

))

110. arcsec
(
sec
(
−π

2

))

111. arcsec
(
sec
(
5π
3

))

112. arccsc
(
csc
(π
6

))

113. arccsc
(
csc
(
5π
4

))

114. arccsc
(
csc
(
2π
3

))

115. arccsc
(
csc
(
−π

2

))

116. arccsc
(
csc
(
11π
6

))

117. arcsec
(
sec
(
11π
12

))

118. arccsc
(
csc
(
9π
8

))
In Exercises 119 – 130, assume that the range of arcsecant is[
0, π

2

)
∪
(
π
2 , π
]
and that the range of arccosecant is

[
− π

2 , 0
)
∪(

0, π
2

]
when finding the exact value.

119. arcsec
(
sec
(π
4

))

120. arcsec
(
sec
(
4π
3

))

121. arcsec
(
sec
(
5π
6

))

122. arcsec
(
sec
(
−π

2

))

123. arcsec
(
sec
(
5π
3

))

124. arccsc
(
csc
(π
6

))

125. arccsc
(
csc
(
5π
4

))

126. arccsc
(
csc
(
2π
3

))

127. arccsc
(
csc
(
−π

2

))

128. arccsc
(
csc
(
11π
6

))

129. arcsec
(
sec
(
11π
12

))
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130. arccsc
(
csc
(
9π
8

))
In Exercises 131 – 154, find the exact value or state that it is
undefined.

131. sin
(
arccos

(
−1
2

))

132. sin
(
arccos

(
3
5

))
133. sin (arctan (−2))

134. sin
(
arccot

(√
5
))

135. sin (arccsc (−3))

136. cos
(
arcsin

(
− 5
13

))

137. cos
(
arctan

(√
7
))

138. cos (arccot (3))

139. cos (arcsec (5))

140. tan
(
arcsin

(
−2

√
5

5

))

141. tan
(
arccos

(
−1
2

))

142. tan
(
arcsec

(
5
3

))
143. tan (arccot (12))

144. cot
(
arcsin

(
12
13

))

145. cot
(
arccos

(√
3
2

))

146. cot
(
arccsc

(√
5
))

147. cot (arctan (0.25))

148. sec
(
arccos

(√
3
2

))

149. sec
(
arcsin

(
−12
13

))
150. sec (arctan (10))

151. sec
(
arccot

(
−
√
10
10

))

152. csc (arccot (9))

153. csc
(
arcsin

(
3
5

))

154. csc
(
arctan

(
−2
3

))
In Exercises 155 – 164, find the exact value or state that it is
undefined.

155. sin
(
arcsin

(
5
13

)
+

π

4

)
156. cos (arcsec(3) + arctan(2))

157. tan
(
arctan(3) + arccos

(
−3
5

))

158. sin
(
2 arcsin

(
−4
5

))

159. sin
(
2 arccsc

(
13
5

))
160. sin (2 arctan (2))

161. cos
(
2 arcsin

(
3
5

))

162. cos
(
2 arcsec

(
25
7

))

163. cos
(
2 arccot

(
−
√
5
))

164. sin
(
arctan(2)

2

)
In Exercises 165 – 184, rewrite the quan ty as algebraic ex-
pressions of x and state the domain onwhich the equivalence
is valid.

165. sin (arccos (x))

166. cos (arctan (x))

167. tan (arcsin (x))

168. sec (arctan (x))

169. csc (arccos (x))

170. sin (2 arctan (x))

171. sin (2 arccos (x))

172. cos (2 arctan (x))

173. sin(arccos(2x))
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174. sin
(
arccos

( x
5

))

175. cos
(
arcsin

( x
2

))
176. cos (arctan (3x))

177. sin(2 arcsin(7x))

178. sin
(
2 arcsin

(
x
√
3

3

))

179. cos(2 arcsin(4x))

180. sec(arctan(2x)) tan(arctan(2x))

181. sin (arcsin(x) + arccos(x))

182. cos (arcsin(x) + arctan(x))

183. tan (2 arcsin(x))

184. sin
(
1
2
arctan(x)

)
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Figure 5.1.1: sin(x)/x near x = 1.
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Figure 5.1.2: sin(x)/x near x = 0.

5: L
Calculus means “a method of calcula on or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathema cs that had taken place into
the first half of the 17th century, mathema cians and scien sts were keenly
aware of what they could not do. (This is true even today.) In par cular, two
important concepts eluded mastery by the great thinkers of that me: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× me.” But what if the rate is not constant
– can distance s ll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathema cians, Sir
IsaacNewton andGo ried Leibniz, are creditedwith independently formula ng
a system of compu ng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The founda on of “the calculus” is the limit. It is a tool to describe a par-
cular behaviour of a func on. This chapter begins our study of the limit by

approxima ng its value graphically and numerically. A er a formal defini on of
the limit, proper es are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

5.1 An Introduc on To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the func on y =
sin x
x

. When x is near the value 1, what value (if
any) is y near?

While our ques on is not precisely formed (what cons tutes “near the value
1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this func on to approximate the appropriate y values. Consider Figure
5.1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 5.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives



x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 5.1.3: Approximate values of
sin(x)/x with x near 1.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 5.1.4: Approximate values of
sin(x)/x with x near 0.
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Figure 5.1.5: Graphically approxima ng a
limit in Example 5.1.1.

Chapter 5 Limits

no informa on about what is going on with the func on nearby. We cannot find
out how y behaves near x = 0 for this func on simply by le ng x = 0.

Finding a limit entails understanding how a func on behaves near a par cu-
lar value of x. Before con nuing, it will be useful to establish some nota on. Let
y = f(x); that is, let y be a func on of x for some func on f. The expression “the
limit of y as x approaches 1” describes a number, o en referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete defini on; this is a pseudo-defini on that will allow us
to explore the idea of a limit. A more detailed, but s ll informal, defini on of
the limit is given in Defini on 5.1.1 at the end of this sec on. A more precise
defini on is beyond the scope of this text.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-defini on of a limit, not the actual defini on.)

In the next sec on, we will find limits analy cally; that is, exactly using a
variety of mathema cal tools. For now, we will approximate limits both graph-
ically and numerically. Graphing a func on can provide a good approxima on,
though o en not very precise. Numerical methods can provide a more accurate
approxima on. We have already approximated limits graphically, so we now
turn our a en on to numerical approxima ons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
5.1.3.

No ce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the func on at that par cular x value; we are only concerned
with the values of the func on when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 5.1.2. The table in Figure 5.1.4
shows the value of sin(x)/x for values of x near 0. Ten places a er the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concernedwith the value of our func on at x = 0, only on the behaviour
of the func on near 0.

This numerical method gives confidence to say that 1 is a good approxima-
on of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example 5.1.1 Approxima ng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.
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x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 5.1.6: Numerically approxima ng
a limit in Example 5.1.1.
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0.5
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Figure 5.1.7: Graphically approxima ng a
limit in Example 5.1.2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 5.1.8: Numerically approxima ng
a limit in Example 5.1.2.

5.1 An Introduc on To Limits

S To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 5.1.5 and
5.1.6, respec vely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a be er approxima on.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few ques ons about approxima ng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approxima on as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approxima on?

Graphs are useful since they give a visual understanding concerning the be-
haviour of a func on. Some mes a func on may act “erra cally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing u li es are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in ques on. In Example 5.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do be er. Using values “on both sides of 3” helps us iden fy trends.

Example 5.1.2 Approxima ng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x < 0
−x2 + 1 x > 0 .

S Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined func on, so it
behaves differently on either side of 0. Figure 5.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 5.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.
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Figure 5.1.9: Observing no limit as x → 1
in Example 5.1.3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 5.1.10: Values of f(x) near x = 1 in
Example 5.1.3.
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Figure 5.1.11: Observing no limit as x →
1 in Example 5.1.4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106
1.001 1.× 106
1.01 10000.
1.1 100.

Figure 5.1.12: Values of f(x) near x = 1 in
Example 5.1.4.

Chapter 5 Limits

Iden fying When Limits Do Not Exist

A func on may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The func on f(x)may approach different values on either side of c.

2. The func on may grow without upper or lower bound as x approaches c.

3. The func on may oscillate as x approaches c without approaching a spe-
cific value.

We’ll explore each of these in turn.

Example 5.1.3 Different Values Approached From Le and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1

S A graph of f(x) around x = 1 and a table are given in Figures
5.1.9 and 5.1.10, respec vely. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the le ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behaviour is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 5.1.4 The Func on Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

S A graph and table of f(x) = 1/(x − 1)2 are given in Figures
5.1.11 and 5.1.12, respec vely. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist.
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Figure 5.1.14: Interpre ng a difference
quo ent as the slope of a secant line.

5.1 An Introduc on To Limits

Example 5.1.5 The Func on Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

S Two graphs of f(x) = sin(1/x) are given in Figures 5.1.13.
Figure 5.1.13(a) shows f(x) on the interval [−1, 1]; no ce how f(x) seems to os-
cillate near x = 0. One might think that despite the oscilla on, as x approaches
0, f(x) approaches 0. However, Figure 5.1.13(b) zooms in on sin(1/x), on the
interval [−0.1, 0.1]. Here the oscilla on is even more pronounced. Finally, in
the table in Figure 5.1.13(c), we see sin(1/x) evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinitely many mes! Because of this oscilla on,

lim
x→0

sin(1/x) does not exist.
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x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 5.1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 5.1.5.

Limits of Difference Quo ents

We have approximated limits of func ons as x approached a par cular num-
ber. We will consider another important kind of limit a er explaining a few key
ideas.

Let f(x) represent the posi on func on, in feet, of some par cle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the par cle is at posi on 10 ., and when x = 5, the par cle is at 20 . Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the par cle travelled 10 feet in 4 seconds, we can say the par cle’s average
velocity was 2.5 /s. We write this calcula on using a “quo ent of differences,”
or, a difference quo ent:

f(5)− f(1)
5− 1

=
10
4

= 2.5 /s.

This difference quo ent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essen ally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 5.1.14.

Now consider finding the average speed on another me interval. We again
start at x = 1, but consider the posi on of the par cle h seconds later. That is,
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Figure 5.1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 5.1.16: The difference quo ent
evaluated at values of h near 0.

Chapter 5 Limits

consider the posi ons of the par cle when x = 1 and when x = 1 + h. The
difference quo ent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quo ent for all values of h (even
nega ve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quo ent computes the
average velocity of the par cle over an interval of me of length h star ng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average veloci es
over very short me periods and compute secant lines over small intervals. See
Figure 5.1.15. This leads us to wonder what the limit of the difference quo ent
is as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true defini on of a limit nor an exact method for
compu ng it, we se le for approxima ng the value. While we could graph the
difference quo ent (where the x-axis would represent h values and the y-axis
would represent values of the difference quo ent) we se le for making a table.
See Figure 5.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathema cal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathema cal curiosi es; they allow us to link posi on, velocity and
accelera on together, connect cross-sec onal areas to volume, find the work
done by a variable force, and much more.

Despite the importance of limits to calculus, we o en se le for an impre-
cise, intui ve understanding of what the limit of a func on means. The precise
defini on of the limit omi ed from a course like Math 1560, and le for later
courses, such as Math 3500. For this course, we will use the following informal
defini on.

Defini on 5.1.1 Informal Defini on of the Limit

Let I be an open interval containing c, and let f be a func on defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c, is
L, and write

lim
x→c

f(x) = L,

if we can make the value of f(x) arbitrarily close to L by choosing x ̸= c
sufficiently close to c.

The formal defini on of the limit makes precise the meaning of the phrases
“arbitrarily close” and “sufficiently close”. The problem with the defini on we
have given is that, while it gives an intui ve understanding of themeaning of the
limit, it’s of no use for proving theorems about limits. In Sec on 5.2 wewill state
(but not prove) several theorems about limits which will allow use to compute
their values analy cally, without recourse to tables of values.176



Exercises 5.1
Terms and Concepts

1. In your own words, what does it mean to “find the limit of
f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situa ons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quo ent?

6. When x is near 0, sin x
x

is near what value?

Problems
In Exercises 7 – 16, approximate the given limits both numer-
ically and graphically.

7. lim
x→1

x2 + 3x− 5

8. lim
x→0

x3 − 3x2 + x− 5

9. lim
x→0

x+ 1
x2 + 3x

10. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

11. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

12. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

13. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

14. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

15. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

16. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 17 – 24, a func on f and a value a are
given. Approximate the limit of the difference quo ent,
lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

17. f(x) = −7x+ 2, a = 3

18. f(x) = 9x+ 0.06, a = −1

19. f(x) = x2 + 3x− 7, a = 1

20. f(x) = 1
x+ 1

, a = 2

21. f(x) = −4x2 + 5x− 1, a = −3

22. f(x) = ln x, a = 5

23. f(x) = sin x, a = π

24. f(x) = cos x, a = π
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The rigorous defini on of limits is of-
ten known as the “ε, δ” defini on of the
limit. You might have a few brief encoun-
ters with this defini on as you make your
way through the calculus sequence, but a
careful treatment of limits is usually not
encountered un l a course in Analysis.

Chapter 5 Limits

5.2 Finding Limits Analy cally

In Sec on 5.1 we explored the concept of the limit without a strict defini on,
meaning we could only make approxima ons. We ended with what we called
an “informal” defini on of the limit. This defini on allows us to make intui ve
sense of limits, but it does not allow us to prove theorems about limits.

Since we will not discuss how to formally define limits in this course, we will
have to take the results in this sec on on faith. However, we will see that the
algebraic rules given below for manipula ng limits make the process of calculat-
ing limits much more straigh orward.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? Intui on tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 5.2.1 Basic Limit Proper es
Let b, c, L and K be real numbers, let n be a posi ve integer, and let f and g be
func ons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.
1. Constants: lim

x→c
b = b

2. Iden ty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar Mul ples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. Quo ents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L
(If n is even then require f(x) ≥ 0 on I.)

9. Composi ons: Adjust our previously given limit situa on to:

lim
x→c

f(x) = L, lim
x→L

g(x) = K and g(L) = K.

Then lim
x→c

g(f(x)) = K.

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example 5.2.1 Using basic limit proper es
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

178



5.2 Finding Limits Analy cally

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

S

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMul ple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar Mul ple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9

Part 3 of the previous example demonstrates how the limit of a quadra c
polynomial can be determined using the proper es of Theorem 5.2.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the func on. This holds
true for all polynomials, and also for ra onal func ons (which are quo ents of
polynomials), as stated in the following theorem.

Theorem 5.2.2 Limits of Polynomial and Ra onal Func ons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 5.2.2 Finding a limit of a ra onal func on
Using Theorem 5.2.2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

S Using Theorem 5.2.2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.
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Chapter 5 Limits

Using approxima ons (or worse – the rigorous defini on) to deal with limits
such as

lim
x→2

x2 = 4

can be frustra ng, since the result seems fairly obvious. The previous theorems
state thatmany func ons behave in such an “obvious” fashion, as demonstrated
by the ra onal func on in Example 5.2.2.

Polynomial and ra onal func ons are not the only func ons to behave in
such a predictable way. The following theorem gives a list of func ons whose
behaviour is par cularly “nice” in terms of limits. In the next sec on, we will
give a formal name to these func ons that behave “nicely.”

Theorem 5.2.3 Special Limits

Let c be a real number in the domain of the given func on and let n be a posi ve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Example 5.2.3 Evalua ng limits analy cally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

S

1. This is a straigh orward applica onof Theorem5.2.3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 5.2.3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 5.2.1 and Theorem 5.2.3 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.
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4. Again, we can approach this in two ways. First, we can use the exponen-
al/logarithmic iden ty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the limit Composi on Rule of Theorem 5.2.1. Using The-
orem 5.2.3, we have lim

x→1
ln x = ln 1 = 0. Applying the Composi on rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

5. We encountered this limit in Sec on 5.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condi on of Theorem 5.2.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are s ll unable to eval-
uate this limit with tools we currently have at hand.

The sec on could have been tled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of func ons, we can find limits involving sums,
products, powers, etc., of these func ons. We further the development of such
compara ve tools with the Squeeze Theorem, a clever and intui ve way to find
the value of some limits.

Before sta ng this theorem formally, suppose we have func ons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 5.2.4 Squeeze Theorem

Let f, g and h be func ons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate func ons bywhich to “squeeze”
the given func on of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evalua ng
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.
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Figure 5.2.1: The unit circle and related
triangles.

Chapter 5 Limits

Example 5.2.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

S We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure
5.2.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan θ), as shown. (Hereweare assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

Figure 5.2.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

Mul ply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequali es, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequali es hold for all values of θ near 0, even nega ve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth men oning. First, one
might be discouraged by this applica on, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
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Figure 5.2.2: Graphing f in Example 5.2.5
to understand a limit.

5.2 Finding Limits Analy cally

will guide you in your use of the Squeeze Theorem. As one gains mathema cal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ra o of x and sin x
approaches 1, meaning that they are approaching 0 in essen ally the same way.
Another way of viewing this is: for small x, the func ons y = x and y = sin x are
essen ally indis nguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 5.2.5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the la er three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equalling 1), and we know that 1 raised to any power
is s ll 1. At the same me, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this par cular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resul ng in a limit of 1.

Our final theorem for this sec on will be mo vated by the following exam-
ple.

Example 5.2.5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

S We begin by a emp ng to apply Theorem 5.2.2 and subs -
tu ng 1 for x in the quo ent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

an indeterminate form. We cannot apply the theorem.
By graphing the func on, as in Figure 5.2.2, we see that the func on seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quo ent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.
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The func on is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the func on at 1, only the value the func on approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2.

The key to the above example is that the func ons y = (x2− 1)/(x− 1) and
y = x+1 are iden cal except at x = 1. Since limits describe a value the func on
is approaching, not the value the func on actually a ains, the limits of the two
func ons are always equal.

Theorem 5.2.6 Limits of Func ons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

onal func on of the form g(x)/f(x) and directly evalua ng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 5.2.6. We demon-
strate this once more.

Example 5.2.6 Evalua ng a limit using Theorem 5.2.6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

S We a empt to apply Theorem 5.2.2 by subs tu ng 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x−3) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−3) from each (using
polynomial division, synthe c division, a computer algebra system, etc.). We
find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x − 3) terms as long as x ̸= 3. Using Theorem 5.2.6 we
conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.
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5.2 Finding Limits Analy cally

We end this sec on by revisi ng a limit first seen in Sec on 5.1, a limit of
a difference quo ent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Example 5.2.7 Evalua ng the limit of a difference quo ent
Let f(x) = −1.5x2 + 11.5x; find lim

h→0

f(1+ h)− f(1)
h

.

S Since f is a polynomial, our first a empt should be to em-
ploy Theorem 5.2.2 and subs tute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a ra onal func on hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 5.2.6, as h ̸= 0)

= 8.5 (using Theorem 5.2.3)

This matches our previous approxima on.

This sec on contains several valuable tools for evalua ng limits. One of the
main results of this sec on is Theorem 5.2.3; it states that many func ons that
we use regularly behave in a very nice, predictable way. In Sec on 5.5 we give
a name to this nice behaviour; we label such func ons as con nuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.
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Exercises 5.2
Terms and Concepts
1. What does the text mean when it says that certain func-

ons’ “behaviour is ‘nice’ in terms of limits”? What, in par-
cular, is “nice”?

2. Sketch a graph that visually demonstrates the Squeeze The-
orem.

3. You are given the following informa on:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the rela ve sizes of f(x) and g(x)
as x approaches 1?

4. T/F: lim
x→1

ln x = 0. Use a theorem to defend your answer.

Problems
In Exercises 5 – 12, use the following informa on to evaluate
the given limit, when possible. If it is not possible to deter-
mine the limit, state why not.

• lim
x→9

f(x) = 6, lim
x→6

f(x) = 9, f(9) = 6

• lim
x→9

g(x) = 3, lim
x→6

g(x) = 3, g(6) = 9

5. lim
x→9

(f(x) + g(x))

6. lim
x→9

(3f(x)/g(x))

7. lim
x→9

(
f(x)− 2g(x)

g(x)

)

8. lim
x→6

(
f(x)

3− g(x)

)
9. lim

x→9
g
(
f(x)
)

10. lim
x→6

f
(
g(x)

)
11. lim

x→6
g
(
f(f(x))

)
12. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

In Exercises 13 – 16, use the following informa on to eval-
uate the given limit, when possible. If it is not possible to
determine the limit, state why not.

• lim
x→1

f(x) = 2, lim
x→10

f(x) = 1, f(1) = 1/5

• lim
x→1

g(x) = 0, lim
x→10

g(x) = π, g(10) = π

13. lim
x→1

f(x)g(x)

14. lim
x→10

cos
(
g(x)

)
15. lim

x→1
f(x)g(x)

16. lim
x→1

g
(
5f(x)

)
In Exercises 17 – 32, evaluate the given limit.

17. lim
x→3

x2 − 3x+ 7

18. lim
x→π

(
x− 3
x− 5

)7

19. lim
x→π/4

cos x sin x

20. lim
x→1

2x− 2
x+ 4

21. lim
x→0

ln x

22. lim
x→3

4x
3−8x

23. lim
x→π/6

csc x

24. lim
x→0

ln(1+ x)

25. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

26. lim
x→π

3x+ 1
1− x

27. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

28. lim
x→0

x2 + 2x
x2 − 2x

29. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

30. lim
x→2

x2 − 10x+ 16
x2 − x− 2

31. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

32. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 33 – 36, where appro-
priate, to evaluate the given limit.
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33. lim
x→0

x sin
(
1
x

)

34. lim
x→0

sin x cos
(

1
x2

)
35. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

36. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.

Exercises 37 – 41 challenge your understanding of limits but
can be evaluated using the knowledge gained in this sec on.

37. lim
x→0

sin 3x
x

38. lim
x→0

sin 5x
8x

39. lim
x→0

ln(1+ x)
x

40. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

41. Let f(x) = 0 and g(x) = x
x
.

(a) Show why lim
x→2

f(x) = 0.

(b) Show why lim
x→0

g(x) = 1.

(c) Show why lim
x→2

g
(
f(x)
)
does not exist.

(d) Show why the answer to part (c) does not violate the
Composi on Rule of Theorem 5.2.1.
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Chapter 5 Limits

5.3 One Sided Limits
We introduced the concept of a limit gently, approxima ng their values graphi-
cally and numerically. Next came the rigorous defini on of the limit, along with
an admi edly tediousmethod for evalua ng them. The previous sec on gave us
tools (whichwe call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and ra onal, trigono-
metric, exponen al and logarithmic func ons (and their sums, products, etc.) all
behave “nicely.” In this sec on we rigorously define what we mean by “nicely.”

In Sec on 5.1 we saw three ways in which limits of func ons failed to exist:

1. The func on approached different values from the le and right,

2. The func on grows without bound, and

3. The func on oscillates.

In this sec onwe explore in depth the concepts behind #1 by introducing the
one-sided limit. We begin with defini ons that are very similar to the defini on
of the limit given in Sec on 5.1, but the nota on is slightly different and “x ̸= c”
is replaced with either “x < c” or “x > c.”

Defini on 5.3.1 One Sided Limits: Le - and Right-Hand Limits

Le -Hand Limit
Let f be a func on defined on (a, c) for some a < c and let L be a real
number.
We say that the limit of f(x), as x approaches c from the le , is L, or, the
le –hand limit of f at c is L, and write

lim
x→c−

f(x) = L,

if we can make f(x) arbitrarily close to L by choosing x < c sufficiently
close to c.

Right-Hand Limit
Let f be a func on defined on (c, b) for some b > c and let L be a real
number. We say that the limit of f(x), as x approaches c from the right,
is L, or, the right–hand limit of f at c is L, and write

lim
x→c+

f(x) = L,

if we can make f(x) arbitrarily close to L by choosing x > c sufficiently
close to c.

Prac cally speaking, when evalua ng a le -hand limit, we consider only val-
ues of x “to the le of c,” i.e., where x < c. The admi edly imperfect nota on
x → c− is used to imply that we look at values of x to the le of c. The nota-
on has nothing to do with posi ve or nega ve values of either x or c. A similar

statement holds for evalua ng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous sec ons
to help us evaluate these limits; we just restrict our view to one side of c.

We prac ce evalua ng le - and right-hand limits through a series of exam-
ples.
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Figure 5.3.1: A graphof f in Example 5.3.1.

5.3 One Sided Limits

Example 5.3.1 Evalua ng one sided limits
Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 5.3.1. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

S For these problems, the visual aid of the graph is likely more
effec ve in evalua ng the limits than using f itself. Therefore we will refer o en
to the graph.

1. As x goes to 1 from the le , we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not ma er that there is an “open circle” there; we are
evalua ng a limit, not the value of the func on. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
sec on. The func on does not approach one par cular value, but two
different values from the le and the right.

4. Using the defini on and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a le -hand limit at 0 as f is

not defined for values of x < 0.

6. Using the defini on and the graph, f(0) = 0.

7. As x goes to 2 from the le , we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the defini on of the func on show that f(2) is not defined.

Note how the le and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intui ve: the limit exists precisely when the le and right-hand limits are equal.

Theorem 5.3.1 Limits and One Sided Limits

Let f be a func on defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.
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Figure 5.3.2: A graph of f from Example
5.3.2

Chapter 5 Limits

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the le and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
le and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 5.3.1 – 5.3.4 is that the value of the func-
onmay/may not be equal to the value(s) of its le /right-hand limits, evenwhen

these limits agree.

Example 5.3.2 Evalua ng limits of a piecewise–defined func on
Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 . Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

S In this example, we evaluate each expression using just the
defini on of f, without using a graph as we did in the previous example.

1. As x approaches 1 from the le , we consider a limit where all x-values are
less than 1. Thismeansweuse the 2−xpiece of the piecewise func on f as
the domain for that piece is (0, 1). As the x-values near 1, 2−x approaches
1; that is, f(x) approaches 1. Therefore lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we consider a limit where all x-values
are greater than 1. Thismeanswe use the (x−2)2 piece of f as the domain
for that piece is (1, 2). As the x-values near 1, (x− 2)2 approaches 1; that
is, we see that again f(x) approaches 1. Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and le . Therefore lim

x→1
f(x) = 1.

4. Neither piece of f is defined for the x-value of 1; in other words, 1 is not
in the domain of f. Therefore f(1) is not defined.

5. As x approaches 0 from the right, we consider a limit where all x-values
are greater than 0. This means we use the 2− x piece of f. As the x-values
near 0, 2− x approaches 2; that is, f(x) approaches 2. So lim

x→0+
f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x approaches 2 from the le , we consider a limit where all x-values are
less than 2. This means we use the (x − 2)2 piece of f. As the x-values
near 2, (x− 2)2 nears 0; that is, f(x) approaches 0. So lim

x→2−
f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

We can confirm our analy c result by consul ng the graph of f shown in Figure
5.3.2. Note the open circles on the graph at x = 0, 1 and 2, where f is not de-
fined.
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Figure 5.3.3: Graphing f in Example 5.3.3
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Figure 5.3.4: Graphing f in Example 5.3.4

5.3 One Sided Limits

Example 5.3.3 Evalua ng limits of a piecewise–defined func on
Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 5.3.3. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

S It is clear by looking at the graph that both the le and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 5.3.4 Evalua ng limits of a piecewise–defined func on
Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2 , as shown in Figure 5.3.4. Evaluate the fol-

lowing.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

S It is clear from the defini on of the func on and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 5.3.1 – 5.3.4 we were asked to find both lim
x→1

f(x) and f(1). Con-
sider the following table:

lim
x→1

f(x) f(1)

Example 5.3.1 does not exist 1
Example 5.3.2 1 not defined
Example 5.3.3 0 1
Example 5.3.4 1 1

Only in Example 5.3.4 do both the func on and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situa on
which we explore in the next sec on, en tled “Con nuity.” In short, a con nu-
ous func on is one in which when a func on approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually a ains that value at c. Such func ons behave

nicely as they are very predictable.
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Exercises 5.3
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).

5.

.....
0.5

.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→2+

f(x)
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(a) lim
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f(x)

(b) lim
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f(x)
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f(x)
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(e) lim
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f(x)
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f(x)

8.

.....
0.5

.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.

y

(a) lim
x→1−

f(x)
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f(x)
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(a) lim
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f(x)

(b) lim
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f(x)
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f(x)

(d) f(0)
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(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)
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Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined func ons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1
(a) lim

x→1−
f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

26. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Figure 5.4.1: Graphing f(x) = 1/x2 for
values of x near 0.

Chapter 5 Limits

5.4 Limits Involving Infinity

In Defini on 5.1.1 we stated that in the equa on lim
x→c

f(x) = L, both c and Lwere
numbers. In this sec on we relax that defini on a bit by considering situa ons
when it makes sense to let c and/or L be “infinity.”

As a mo va ng example, consider f(x) = 1/x2, as shown in Figure 5.4.1.
Note how, as x approaches 0, f(x) grows very, very large – in fact, it growswithout
bound. It seems appropriate, and descrip ve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with nota on such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

Defini on 5.4.1 Limit of Infinity,∞

Let I be an open interval containing c, and let f be a func on defined on
I, except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x ̸=
c sufficiently close to c.

• The limit of f(x), as x approaches c, is nega ve infinity, denoted
by

lim
x→c

f(x) = −∞,

if we can obtain any arbitrarily large nega ve value for f(x) by
choosing x ̸= c sufficiently close to c.

This is once again an informal defini on, like Defini on 5.1.1: we say that if
we get close enough to c, then we can make f(x) as large as we want, without
giving precise answers to the ques ons “How close?” or “How large?”

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly sta ng
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descrip ve.

We define one-sided limits that approach infinity in a similar way.
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5.4 Limits Involving Infinity

Defini on 5.4.2 One-Sided Limits of Infinity

• Let f be a func on defined on (a, c) for some a < c.
The limit of f(x), as x approaches c from the le , is infinity, or, the
le -hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to c, where a < x < c.

• Let f be a func on defined on (c, b) for some b > c.
The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to c, where c < x < b.

• The term le - (or, right-) hand limit of f at c is nega ve infinity is
defined in a manner similar to Defini on 5.4.1.

Example 5.4.1 Evalua ng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 5.4.2.

S In Example 5.1.4 of Sec on 5.1, by inspec ng values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func-
on does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,

f(.9999) = 108. A similar thing happens on the other side of 1. In general, we
can see that as the difference |x − 1| gets smaller, the value of f(x) gets larger
and larger, so we may say lim

x→1
1/(x− 1)2 = ∞.

Example 5.4.2 Evalua ng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 5.4.3.

S It is easy to see that the func on grows without bound near
0, but it does so in differentways on different sides of 0. Since its behaviour is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.
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Figure 5.4.5: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

Chapter 5 Limits

Ver cal asymptotes
The graphs in the two previous examples demonstrate that if a func on f has a
limit (or, le - or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a ver cal line near x = c. This observa on leads to a defini on.

Defini on 5.4.3 Ver cal Asymptote

Let I be an interval that either contains c or has c as an endpoint, and let
f be a func on defined on I, except possibly at c.
If the limit of f(x) as x approaches c from either the le or right (or both)
is∞ or−∞, then the line x = c is a ver cal asymptote of f.

Example 5.4.3 Finding ver cal asymptotes
Find the ver cal asymptotes of f(x) =

3x
x2 − 4

.

S Ver cal asymptotes occurwhere the func on growswithout
bound; this can occur at values of c where the denominator is 0. When x is
near c, the denominator is small, which in turn can make the func on take on
large values. In the case of the given func on, the denominator is 0 at x = ±2.
Subs tu ng in values of x close to 2 and−2 seems to indicate that the func on
tends toward ∞ or −∞ at those points. We can graphically confirm this by
looking at Figure 5.4.4. Thus the ver cal asymptotes are at x = ±2.

When a ra onal func on has a ver cal asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a ver cal asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a ver cal asymptote at x = 1,
as shown in Figure 5.4.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Cancelling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a li le contrived. Another example demon-
stra ng this important concept is f(x) = (sin x)/x. We have considered this

func on several mes in the previous sec ons. We found that lim
x→0

sin x
x

= 1;
i.e., there is no ver cal asymptote. No simple algebraic cancella on makes this
fact obvious; we used the Squeeze Theorem in Sec on 5.2 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a ver cal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a ver cal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.
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5.4 Limits Involving Infinity

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respec vely. However, 0/0 is not a valid arithme cal expression. It gives
no indica on that the respec ve limits are 1 and 2.

With a li le cleverness, one can come up with 0/0 expressions which have
a limit of ∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respec ve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That workmay be algebraic (such as factoring and cancelling)
or it may require a tool such as the Squeeze Theorem. In a later sec on we will
learn a technique called l’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evalua ng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quan ty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞.

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathema cal expressions, either. In each, the func on is growing
without bound, indica ng that the limit will be∞,−∞, or simply not exist if the
le - and right-hand limits do not match.
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Figure 5.4.6: Using a graph and a table
to approximate a horizontal asymptote in
Example 5.4.4.

Chapter 5 Limits

Limits at Infinity and Horizontal Asymptotes

At the beginning of this sec onwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behaviour of the func on
to the “far right” of the graph. Wemake this no onmore explicit in the following
defini on.

Defini on 5.4.4 Limits at Infinity and Horizontal Asymptote

Let L be a real number.

1. Let f be a func on defined on (a,∞) for some number a. The
limit of f at infinity is L, denoted lim

x→∞
f(x) = L, if we can make the

value of f(x) arbitrarily close to L by choosing a sufficiently large
posi ve value of x.

2. Let f be a func on defined on (−∞, b) for some number b. The
limit of f at nega ve infinity is L, denoted lim

x→−∞
f(x) = L, if we

can make the value of f(x) arbitrarily close to L by choosing a
sufficiently large nega ve value of x.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the line y = L is a
horizontal asymptote of f.

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this defini on
with Defini on 5.4.1.

Example 5.4.4 Approxima ng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

S We will approximate the horizontal asymptotes by approxi-
ma ng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 5.4.6(a) shows a sketch of f, and part (b) gives values of f(x) for largemag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1. Later, we will show how to deter-
mine this analy cally.

Horizontal asymptotes can take on a variety of forms. Figure 5.4.7(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 5.4.7(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 5.4.7(c) shows that f(x) = (sin x)/x has even more interes ng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 5.4.7: Considering different types of horizontal asymptotes.

We can analy cally evaluate limits at infinity for ra onal func ons once we
understand lim

x→∞
1/x. As x gets larger and larger, 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x.

It is now not much of a jump to conclude the following: for any posi ve
integer n, we have

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence mul plying by 1), which is the largest power of x to appear
in the func on. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any ra onal func on. In fact, it gives us the follow-
ing theorem.
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Chapter 5 Limits

Theorem 5.4.1 Limits of Ra onal Func ons at Infinity

Let f(x) be a ra onal func on of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situa on like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then a er dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indica ve of some sort of infinite limit.

Intui vely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the func on behaves
like an/(bmxm−n), which tends toward 0. If n > m, the func on behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
func ons by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

, graphed in Figure 5.4.7(b). When x is very large, x2 + 1 ≈ x2.

Thus √
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posi ve and−1 when x is nega ve. Hence we get
asymptotes of y = 1 and y = −1, respec vely.

Example 5.4.5 Finding a limit of a ra onal func on

Confirm analy cally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 5.4.4.

S Before using Theorem 5.4.1, let’s use the technique of eval-
ua ng limits at infinity of ra onal func ons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
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Figure 5.4.8: Visualizing the func ons in
Example 5.4.6.

5.4 Limits Involving Infinity

take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Theorem 5.4.1 directly; in this case n = m so the limit is the
ra o of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 5.4.6 Finding limits of ra onal func ons
Use Theorem 5.4.1 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

S

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 5.4.8(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the ra o of the coefficients of x2, which
is−1/3. See Figure 5.4.8(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 5.4.8(c).
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Exercises 5.4
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly sta ng that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly sta ng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a ver cal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a func on with a ver cal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
con nuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the func on.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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.
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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.
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.

5

.

10

. −100.

−50

.

50

.

100

.

x

.

y
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

..... −1.
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.
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.

x

.

y

14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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−5
.

5
.

50

.

100

.

150

. x.

y

In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, iden fy the horizontal and ver cal
asymptotes, if any, of the given func on.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f con nuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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in Example 5.5.2.

Chapter 5 Limits

5.5 Con nuity
As we have studied limits, we have gained the intui on that limits measure
“where a func on is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problema c; func ons can tend to one
value but a ain another. This sec on focuses on func ons that do not exhibit
such behaviour.

Defini on 5.5.1 Con nuous Func on

Let f be a func on defined on an open interval I containing c.

1. f is con nuous at c if lim
x→c

f(x) = f(c).

2. f is con nuous on I if f is con nuous at c for all values of c in I. If f
is con nuous on (−∞,∞), we say f is con nuous everywhere.

A useful way to establish whether or not a func on f is con nuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 5.5.1 Finding intervals of con nuity
Let f be defined as shown in Figure 5.5.1. Give the interval(s) on which f is con-
nuous.

S We proceed by examining the three criteria for con nuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be con nuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is con nuous at every point of (0, 3) except at x = 1.
Therefore f is con nuous on (0, 1) and (1, 3).

Our defini on of con nuity (currently) only applies to open intervals. A er
Defini on 5.5.2, we’ll be able to say that f is con nuous on [0, 1) and (1, 3].

Example 5.5.2 Finding intervals of con nuity
The floor func on, f(x) = ⌊x⌋, returns the largest integer smaller than, or equal
to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 5.5.2
demonstrates why this is o en called a “step func on.”

Give the intervals on which f is con nuous.

S We examine the three criteria for con nuity.
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1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The func on is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is con nuous everywhere except at integer values of c. So
the intervals on which f is con nuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our defini on of con nuity on an interval specifies the interval is an open
interval. We can extend the defini on of con nuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

Defini on 5.5.2 Con nuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a < b.
f is con nuous on [a, b] if:

1. f is con nuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about con nuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Using this new defini on, we can adjust our answer in Example 5.5.1 by stat-
ing that f is con nuous on [0, 1) and (1, 3], as men oned in that example. We
can also revisit Example 5.5.2 and state that the floor func on is con nuous on
the following half–open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

This can tempt us to conclude that f is con nuous everywhere; a er all, if f is
con nuous on [0, 1) and [1, 2), isn’t f also con nuous on [0, 2)? Of course, the
answer is no, and the graph of the floor func on immediately confirms this.

Con nuous func ons are important as they behave in a predictable fashion:
func ons a ain the value they approach. Because con nuity is so important,
most of the func ons you have likely seen in the past are con nuous on their
domains. This is demonstrated in the following example where we examine the
intervals of con nuity of a variety of common func ons.

Example 5.5.3 Determining intervals on which a func on is con nuous
For each of the following func ons, give the domain of the func on and the
interval(s) on which it is con nuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|
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Chapter 5 Limits

S We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0) ∪ (0,∞). As it is a ra onal func-
on, we apply Theorem 5.2.2 to recognize that f is con nuous on all of its

domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 5.2.3 shows that sin x is con nuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 5.2.3 shows that

f(x) =
√
x is con nuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 5.2.1 and

5.2.3 shows that f is con nuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

func on as f(x) =
{

−x x < 0
x x ≥ 0 . Each “piece” of this piecewise defined

func on is con nuous on all of its domain, giving that f is con nuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is con nuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transi ons from one “piece” of its defini on to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is con nuous everywhere.

Con nuity is inherently ed to the proper es of limits. Because of this, the
proper es of limits found in Theorems 5.2.1 and 5.2.2 apply to con nuity aswell.
Further, now knowing the defini on of con nuity we can re–read Theorem 5.2.3
as giving a list of func ons that are con nuous on their domains. The following
theorem states how con nuous func ons can be combined to form other con-
nuous func ons, followed by a theorem which formally lists func ons that we

know are con nuous on their domains.

Theorem 5.5.1 Proper es of Con nuous Func ons

Let f and g be con nuous func ons on an interval I, let c be a real number
and let n be a posi ve integer. The following func ons are con nuous on
I.

1. Sums/Differences: f± g

2. Constant Mul ples: c · f

3. Products: f · g

4. Quo ents: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (If n is even then require f(x) ≥ 0 on I.)

7. Composi ons: Adjust the defini ons of f and g to: Let f be
con nuous on I, where the range of f on I is J,
and let g be con nuous on J. Then g ◦ f, i.e.,
g(f(x)), is con nuous on I.
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Figure 5.5.3: A graph of f in Example
5.5.4(1).

5.5 Con nuity

Theorem 5.5.2 Con nuous Func ons

Let n be a posi ve integer. The following func ons are con nuous on their domains.

1. f(x) = sin x

2. f(x) = cos x

3. f(x) = tan x

4. f(x) = csc x

5. f(x) = sec x

6. f(x) = cot x

7. f(x) = ax (a > 0)

8. f(x) = ln x

9. f(x) = n
√
x

We apply these theorems in the following Example.

Example 5.5.4 Determining intervals on which a func on is con nuous
State the interval(s) on which each of the following func ons is con nuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

S Weexamine each in turn, applying Theorems 5.5.1 and 5.5.2
as appropriate.

1. The square–root terms are con nuous on the intervals [1,∞) and (−∞, 5],
respec vely. As f is con nuous only where each term is con nuous, f is
con nuous on [1, 5], the intersec on of these two intervals. A graph of f
is given in Figure 5.5.3.

2. The func ons y = x and y = sin x are each con nuous everywhere, hence
their product is, too.

3. Theorem 5.5.2 states that f(x) = tan x is con nuous “on its domain.” Its
domain includes all real numbers except odd mul ples of π/2. Thus the
intervals on which f(x) = tan x is con nuous are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
2 , n is an odd integer}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restric ng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

Classifying discon nui es
We now know what it means for a func on to be con nuous, so of course we
can easily say what it means for a func on to be discon nuous; namely, not
con nuous. However, to be er understand con nuity it is worth our me to
discuss the different ways in which a func on can fail to be discon nuous. By
defini on, a func on f is con nuous at a point a in its domain if lim

x→a
f(x) = f(a).

If this equality fails to hold, then f is not con nuous. We note, however, that
there are a number of different things that can go wrong with this equa on.
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Figure 5.5.4: The graph of a func on with
a removable discon nuity at x = 0

Figure 5.5.5: The graph of a func on with
a jump discon nuity at x = 1

Figure 5.5.6: The graph of a func on with
an infinite discon nuity at x = 2

Chapter 5 Limits

1. lim
x→a

f(x) = L exists, but L ̸= f(a), or f(a) is undefined. Such a discon nuity
is called a removable discon nuity.
A removable discon nuity can be pictured as a “hole” in the graph of f.
The term “removable” refers to the fact that by simply redefining f(a) to
equal L (that is, changing the value of f at a single point), we can create a
new func on that is con nuous at x = a, and agrees with f at all x ̸= a.

2. lim
x→a+

f(x) = L and lim
x→a−

f(x) = M exist, but L ̸= M. In this case the le and
right hand limits both exist, but since they are not equal, the limit of f as
x → a does not exist. Such a discon nuity is called a jump discon nuity.
The phrase “jump discon nuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value x = a.

3. The func on f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and nega ve) as x approaches a. Such
a discon nuity is called an infinite discon nuity.
Infinite discon nui es are most easily understood in terms of infinite lim-
its, which we will discuss in the next sec on.

4. limx→a f(x) does not exist, for reasons other than the above. Such discon-
nui es are called essen al discon nui es . With jump and infinite dis-

con nui es, the limit fails to exist, but in ways that can s ll be described
or even quan fied. Essen al discon nui es include examples such as
f(x) = sin(1/x) as x → 0, where the func on oscillates infinitely o en, or
is otherwise so badly-behaved that the limit does not exist.

Consequences of con nuity
A common way of thinking of a con nuous func on is that “its graph can be
sketched without li ing your pencil.” That is, its graph forms a “con nuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–defini on glosses over some of the finer points of con nuity. Very
strange func ons are con nuous that one would be hard pressed to actually
sketch by hand.

This intui ve no on of con nuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is con nuous on [1, 2] (i.e., its graph can be sketched as a con nu-
ous curve from (1,−10) to (2, 5)) then we know intui vely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some me, for instance, but we are guaranteed all
values between−10 and 5.

While this no on seems intui ve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 5.5.3 Intermediate Value Theorem

Let f be a con nuous func on on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value c in (a, b) such that f(c) = y.
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Figure 5.5.7: Graphing a root of f(x) =
x− cos x.

Itera on Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 5.5.8: Itera ons of the Bisec on
Method of Root Finding

5.5 Con nuity

One important applica on of the Intermediate Value Theorem is root find-
ing. Given a func on f, we are o en interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
ons can be found through successive applica ons of this theorem. Suppose

through direct computa on we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approxima on of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibili es:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approxima on
of the root.

3. f(d) > 0: Thenwe know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
ma on of the root.

Successively applying this technique is called the Bisec on Method of root
finding. We con nue un l the interval is sufficiently small. We demonstrate this
in the following example.

Example 5.5.5 Using the Bisec on Method
Approximate the root of f(x) = x − cos x, accurate to three places a er the
decimal.

S Consider the graph of f(x) = x−cos x, shown in Figure 5.5.7.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
Bisec onMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Itera on 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Itera on 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
nue to check the endpoints, just the midpoint. Thus we put the rest of

the itera ons in Figure 5.5.8.

No ce that in the 12th itera on we have the endpoints of the interval each
star ng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places a er the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approxima on of where f is 0. The
IntermediateValue Theoremstates that the actual zero is s ll within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places a er the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a 209
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second for the program to run the necessary 35 itera ons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 itera ons).

It is a simplema er to extend theBisec onMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new func on gwhere g(x) = f(x)−1. Then
use the Bisec on Method to solve g(x) = 0.

Similarly, given two func ons f and g, we can use the Bisec on Method to
solve f(x) = g(x). Once again, create a new func on hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

This sec on formally defined what it means to be a con nuous func on.
“Most” func ons that we deal with are con nuous, so o en it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed anot–so–easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined con nuity and explored proper es of con nuous func ons, and

• considered limits that involved infinity.

Why? Mathema cs is famous for building on itself and calculus proves to be
no excep on. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quan ty by a smaller and smaller number and see
what value the quo ent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posi on informa on.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum o en is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over me an
apprecia on is o en formed based on the scope of its applicability.
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Exercises 5.5
Terms and Concepts
1. In your own words, describe what it means for a func on

to be con nuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a func on?

4. Given func ons f and g on an interval I, how can the Bisec-
on Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is con nuous at c.

6. T/F: If f is con nuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is con nuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is con nuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is con nuous on [0, 1) and [1, 2), then f is con nu-
ous on [0, 2).

10. T/F: The sum of con nuous func ons is also con nuous.

Problems
In Exercises 11 – 18, a graph of a func on f is given along with
a value a. Determine if f is con nuous at a; if it is not, state
why it is not.
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16. a = 4
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17. (a) a = −2

(b) a = 0

(c) a = 2
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18. a = 3π/2

0.5

1

1.5

2

π/2 π 3π/2 2π
x

y

In Exercises 19 – 22, determine if f is con nuous at the indi-
cated values. If not, explain why.

19. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

20. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

21. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

22. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 23 – 34, give the intervals on which the given
func on is con nuous.

23. f(x) = x2 − 3x+ 9

24. g(x) =
√
x2 − 4

25. g(x) =
√
4− x2

26. h(k) =
√
1− k+

√
k+ 1

27. f(t) =
√
5t2 − 30

28. g(t) = 1√
1− t2

29. g(x) = 1
1+ x2

30. f(x) = ex

31. g(s) = ln s

32. h(t) = cos t

33. f(k) =
√

1− ek

34. f(x) = sin(ex + x2)

Exercises 35 – 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be con nuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

36. Let g be con nuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be con nuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a func on on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 – 42, use the Bisec on Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given func on in the given interval.

39. f(x) = x2 + 2x− 4 on [1, 1.5].

40. f(x) = sin x− 1/2 on [0.5, 0.55]

41. f(x) = ex − 2 on [0.65, 0.7].

42. f(x) = cos x− sin x on [0.7, 0.8].

Review

43. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

44. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

45. Give an example of func on f(x) forwhich lim
x→0

f(x) does not
exist.
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6: D
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the deriva ve. Limits describe where a func on is going; deriva ves describe
how fast the func on is going.

6.1 Instantaneous Rates of Change: The Deriva ve
A common amusement park ride li s riders to a height then allows them to free-
fall a certain distance before safely stopping them. Suppose such a ride drops
riders from a height of 150 feet. Students of physics may recall that the height
(in feet) of the riders, t seconds a er free-fall (and ignoring air resistance, etc.)
can be accurately modelled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without interven on, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall a er 2 seconds (corresponding
to a height of 86 .). How fast will the riders be travelling at that me?

We have been given a posi on func on, but what we want to compute is a
velocity at a specific point in me, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Sec on 5.1 when we introduced the
difference quo ent. We have

change in distance
change in me

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some me period containing t = 2. If we make the me
interval small, we will get a good approxima on. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approxima on of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 /s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a be er approxima on of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 /s.

We can do this for smaller and smaller intervals of me. For instance, over
a me span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 /s.



h
Average Velocity

/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 6.1.2: Approxima ng the instan-
taneous velocity with average veloci es
over a small me period h.

Chapter 6 Deriva ves

Over a me span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 /s.

Whatwe are really compu ng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compu ng

f(2+ h)− f(2)
h

where h is small.

We really want to use h = 0, but this, of course, returns the familiar “0/0”
indeterminate form. So we employ a limit, as we did in Sec on 5.1.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 6.1.2. It looks as though the velocity is approaching−64 /s.
Compu ng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
(−64− 16h)

= −64.

Graphically, we can view the average veloci es we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2+ h, f(2+ h)). In Figure 6.1.1, the secant line corresponding to h = 1 is
shown in three contexts. Figure 6.1.1(a) shows a “zoomed out” version of fwith
its secant line. In (b), we zoom in around the points of intersec on between
f and the secant line. No ce how well this secant line approximates f between
those twopoints – it is a commonprac ce to approximate func onswith straight
lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 6.1.1, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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Figure 6.1.1: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this sec on. First, we formally define two of them.

Defini on 6.1.1 Deriva ve at a Point

Let f be a con nuous func on on an open interval I and let c be in I. The
deriva ve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differen able
at c; if the limit does not exist, then f is not differen able at c. If f is
differen able at every point in I, then f is differen able on I.

Defini on 6.1.2 Tangent Line

Let f be con nuous on an open interval I and differen able at c, for some
c in I. The line with equa on ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the deriva ve of f at c.

Some examples will help us understand these defini ons.
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Example 6.1.1 Finding deriva ves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equa on of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equa on of the tangent line
to the graph f at x = 3.

S

1. We compute this directly using Defini on 6.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

(3h+ 11) = 11.

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equa on, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the defini on,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

(3h+ 23)

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equa on y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 6.1.3 along with the tangent lines at x = 1 and
x = 3.

Another important line that canbe createdusing informa on from thederiva-
ve is the normal line. It is perpendicular to the tangent line, hence its slope is

the opposite–reciprocal of the tangent line’s slope.
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6.1 Instantaneous Rates of Change: The Deriva ve

Defini on 6.1.3 Normal Line

Let f be con nuous on an open interval I and differen able at c, for some
c in I. The normal line to the graph of f at c is the line with equa on

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the ver cal line
through

(
c, f(c)

)
; that is, x = c.

Example 6.1.2 Finding equa ons of normal lines
Let f(x) = 3x2 + 5x − 7, as in Example 6.1.1. Find the equa ons of the normal
lines to the graph of f at x = 1 and x = 3.

S In Example 6.1.1, we found that f ′(1) = 11. Hence at x = 1,
the normal line will have slope−1/11. An equa on for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is plo ed with y = f(x) in Figure 6.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” Mathema cally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect ra o of the picture of the graph plays
a big role in this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equa on for the normal line is

n(x) =
−1
23

(x− 3) + 35.

Linear func ons are easy to work with; many func ons that arise in the
course of solving real problems are not easy to work with. A common prac ce
in mathema cal problem solving is to approximate difficult func ons with not–
so–difficult func ons. Lines are a common choice. It turns out that at any given
point on the graph of a differen able func on f, the best linear approxima on
to f is its tangent line. That is one reason we’ll spend considerable me finding
tangent lines to func ons.

One type of func on that does not benefit from a tangent–line approxima-
on is a line; it is rather simple to recognize that the tangent line to a line is the

line itself. We look at this in the following example.

Example 6.1.3 Finding the deriva ve of a linear func on
Consider f(x) = 3x + 5. Find the equa on of the tangent line to f at x = 1 and
x = 7.

S We find the slope of the tangent line by using Defini on
6.1.1.
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f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only func ons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the deriva ve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We o en desire to find the tangent line to the graph of a func on without
knowing the actual deriva ve of the func on. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 6.1.4 Numerical approxima on of the tangent line
Approximate the equa on of the tangent line to the graph of f(x) = sin x at
x = 0.

S In order to find the equa on of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the deriva ve. This is where we will make an approxima on.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approxima on of the equa on of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 6.1.5. The graph seems to imply the
approxima on is rather good.

Recall from Sec on 5.2 that lim
x→0

sin x
x

= 1, meaning for values of x near 0,
sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem rea-
sonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 6.1.1. To find the deriva ve of f at x = 1, we needed
to evaluate a limit. To find the deriva ve of f at x = 3, we needed to again
evaluate a limit. We have this process:

input specific
number c

do something
to f and c

return
number f ′(c)
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6.1 Instantaneous Rates of Change: The Deriva ve

This process describes a func on; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this func on occurs.

Instead of applying this func on repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
func on f ′(x)

The output is the “deriva ve func on,” f ′(x). The f ′(x) func on will take a
number c as input and return the deriva ve of f at c. This calls for a defini on.

Defini on 6.1.4 Deriva ve Func on

Let f be a differen able func on on an open interval I. The func on

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the deriva ve of f.

Nota on:
Let y = f(x). The following nota ons all represent the deriva ve of f:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The nota on
dy
dx

is one symbol; it is not the frac on “dy/dx”. The
nota on, while somewhat confusing at first, was chosen with care. A frac on–
looking symbol was chosen because the deriva ve has many frac on–like prop-
er es. Among other places, we see these proper es atworkwhenwe talk about
the units of the deriva ve, when we discuss the Chain Rule, and when we learn
about integra on (topics that appear in later sec ons and chapters).

Examples will help us understand this defini on.

Example 6.1.5 Finding the deriva ve of a func on
Let f(x) = 3x2 + 5x− 7 as in Example 6.1.1. Find f ′(x).

S We apply Defini on 6.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computa on of f ′(x) affirm these facts.
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Example 6.1.6 Finding the deriva ve of a func on
Let f(x) =

1
x+ 1

. Find f ′(x).

S We apply Defini on 6.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

So f ′(x) =
−1

(x+ 1)2
. To prac ce using our nota on, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 6.1.7 Finding the deriva ve of a func on
Find the deriva ve of f(x) = sin x.

S Before applyingDefini on 6.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we se led
for an approxima on in Example 6.1.4.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig iden ty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two frac ons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine func on is a nice
func on. Then again, perhaps this is not en rely surprising. The sine func on
is periodic – it repeats itself on regular intervals. Therefore its rate of change
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also repeats itself on the same regular intervals. We should have known the
deriva ve would be periodic; we now know exactly which periodic func on it is.

Thinking back to Example 6.1.4, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our deriva ve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 6.1.8 Finding the deriva ve of a piecewise defined func on
Find the deriva ve of the absolute value func on,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 6.1.6.

S We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computa on shows that
d
dx
(
x
)
= 1.

We need to also find the deriva ve at x = 0. By the defini on of the deriva-
ve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our func on’s defini on switches from one piece
to other, we need to consider le and right-hand limits. Consider the following,
where we compute the le and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the le and right hand limits are
not equal. Therefore the limit does not exist at 0, and f is not differen able at 0.
So we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump discon nuity at 0; see Figure 6.1.7.
So f(x) = |x| is differen able everywhere except at 0.

The point of non-differen ability came where the piecewise defined func-
on switched from one piece to the other. Our next example shows that this
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does not always cause trouble.

Example 6.1.9 Finding the deriva ve of a piecewise defined func on
Find the deriva ve of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2 . See Figure 6.1.8.

S Using Example 6.1.7, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We s ll need to find f ′(π/2). No ce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quo ent limit at
x = π/2, u lizing again le and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0.

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0.

Since both the le and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 6.1.9 for a graph of this func on.

Recall we pseudo–defined a con nuous func on as one in which we could
sketch its graph without li ing our pencil. We can give a pseudo–defini on for
differen ability as well: it is a con nuous func on that does not have any “sharp
corners.” One such sharp corner is shown in Figure 6.1.6. Even though the func-
on f in Example 6.1.9 is piecewise–defined, the transi on is “smooth” hence it

is differen able. Note how in the graph of f in Figure 6.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

This sec on defined the deriva ve; in some sense, it answers the ques on of
“What is the deriva ve?” The next sec on addresses the ques on “What does
the deriva vemean?”
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Exercises 6.1
Terms and Concepts
1. T/F: Let f be a posi on func on. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The defini on of the deriva ve of a func on at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
ons 6.1.1 and 6.1.4.

5. Let y = f(x). Give three different nota ons equivalent to
“f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems
In Exercises 7 – 14, use the defini on of the deriva ve to com-
pute the deriva ve of the given func on.

7. f(x) = 6

8. f(x) = 2x

9. f(t) = 4− 3t

10. g(x) = x2

11. h(x) = x3

12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x

14. r(s) = 1
s− 2

In Exercises 15 – 22, a func on and an x–value c are given.
(Note: these func ons are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equa on of the tangent line at x = c.
(b) Give the equa on of the normal line at x = c.

15. f(x) = 6, at x = −2.

16. f(x) = 2x, at x = 3.

17. f(x) = 4− 3x, at x = 7.

18. g(x) = x2, at x = 2.

19. h(x) = x3, at x = 4.

20. f(x) = 3x2 − x+ 4, at x = −1.

21. r(x) = 1
x
, at x = −2.

22. r(x) = 1
x− 2

, at x = 3.

In Exercises 23 – 26, a func on f and an x–value a are given.
Approximate the equa on of the tangent line to the graph of
f at x = a by numerically approxima ng f ′(a), using h = 0.1.

23. f(x) = x2 + 2x+ 1, x = 3

24. f(x) = 10
x+ 1

, x = 9

25. f(x) = ex, x = 2

26. f(x) = cos x, x = 0

27. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the defini on, find f ′(x).
(c) Find the slope of the tangent line at the points

(−1, 0), (0,−1) and (2, 3).
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28. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the defini on, find f ′(x).
(c) Find the slope of the tangent line at the points (0, 1)

and (1, 0.5).

.....−1. 1. 2. 3.

1

.

2

.

3

.

4

.

5

.
x

.

y

223



In Exercises 29 – 32, a graph of a func on f(x) is given. Using
the graph, sketch f ′(x).

29.

.....

−2

.

−1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

30.

.....

−6

.

−4

.

−2

.

2

.

−2

.

2

.

x

.

y

31.

...

..

−2

.

−1

.

1

.

2

.

−5

.

5

.

x

.

y

32.

..... −1.

−0.5

.

0.5

.

1

.

−2π

.

−π

.

π

.

2π

.

x

.

y

In Exercises 33 – 34, a graph of a func on g(x) is given. Using
the graph, answer the following ques ons.

1. Where is g(x) > 0?
2. Where is g(x) < 0?
3. Where is g(x) = 0?

1. Where is g′(x) < 0?
2. Where is g′(x) > 0?
3. Where is g′(x) = 0?
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In Exercises 35 – 36, a func on f(x) is given, along with its do-
main and deriva ve. Determine if f(x) is differen able on its
domain.

35. f(x) =
√

x5(1− x), domain = [0, 1], f ′(x) = (5− 6x)x3/2

2
√
1− x

36. f(x) = cos
(√

x
)
, domain = [0,∞), f ′(x) = −

sin
(√

x
)

2
√
x

Review

37. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

38. Use the Bisec on Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

39. Give intervals on which each of the following func ons are
con nuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

40. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f con nu-
ous?
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Note: The original textbook, having been
wri en in the USA, used primarily impe-
rial units. We considered conver ng ev-
erything to metric, including the amuse-
ment park example, but this would have
involved a fair amount of work, including
replacing several of the diagrams in the
previous sec on. We feel confident that
the typical Canadian student is capable
of working in either system of measure-
ment.

6.2 Interpreta ons of the Deriva ve

6.2 Interpreta ons of the Deriva ve
The previous sec on defined the deriva ve of a func on and gave examples of
how to compute it using its defini on (i.e., using limits). The sec on also started
with a brief mo va on for this defini on, that is, finding the instantaneous ve-
locity of a falling object given its posi on func on. The next sec on will give us
more accessible tools for compu ng the deriva ve, tools that are easier to use
than repeated use of limits.

This sec on falls in between the “What is the defini on of the deriva ve?”
and “How do I compute the deriva ve?” sec ons. Here we are concerned with
“What does the deriva ve mean?”, or perhaps, when read with the right em-
phasis, “What is the deriva ve?” We offer two interconnected interpreta ons
of the deriva ve, hopefully explaining why we care about it and why it is worthy
of study.

Interpreta onof theDeriva ve #1: Instantaneous Rate of Change

The previous sec on started with an example of using the posi on of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is o en used when introducing the deriva ve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posi on. In general, if f is a func on of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
ve answers “When x changes, at what rate does f change?” Thinking back to

the amusement–park ride, we asked “When me changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “90
km/h.” Fiveminutes later, youwonder how far you have travelled. Certainly, lots
of things could have happened in those 5 minutes; you could have inten onally
sped up significantly, you might have come to a complete stop, you might have
slowed to 30 km/h as you passed through construc on. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approxima on of
the distance travelled?

One could argue the only good approxima on, given the informa on pro-
vided, would be based on “distance = rate × me.” In this case, we assume a
constant rate of 90 km/h with a me of 5/60 hours. Hence we would approxi-
mate the distance travelled as 7.5 km.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 /s, we could reasonably assume that 1 second later the rid-
ers’ height would have dropped by about 64 feet. Knowing that the riders were
accelera ng as they fell would inform us that this is an under–approxima on. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the Deriva ve

It is useful to recognize the units of the deriva ve func on. If y is a func on
of x, i.e., y = f(x) for some func on f, and y is measured in metres and x in
seconds, then the units of y′ = f ′ are “metres per second,” commonly wri en
as “m/s.” In general, if y is measured in units P and x is measured in unitsQ, then
y′ will be measured in units “P per Q”, or “P/Q.” Here we see the frac on–like
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Chapter 6 Deriva ves

behaviour of the deriva ve in the nota on:

the units of
dy
dx

are
units of y
units of x

.

Example 6.2.1 The meaning of the deriva ve: World Popula on
Let P(t) represent the world popula on t minutes a er 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P ′(0) = 156; that is, at midnight on January 1,
2012, the popula on of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the popula on grew by about 28, 800 ·156 = 4, 492, 800 people.

Example 6.2.2 The meaning of the deriva ve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
i ve) profit making just one widget; the start–up costs will likely exceed $10.
Mathema cally, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

S The equa on P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other informa on to use, our best approxima on
for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

The previous examples made use of an important approxima on tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this sec on. Five minutes a er looking at the speedometer, our best
approxima on for distance travelled assumed the rate of change was constant.
In Examples 6.2.1 and 6.2.2 we made similar approxima ons. We were given
rate of change informa on which we used to approximate total change. Nota-
onally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approxima on is best when h is “small.” “Small” is a rela ve term; when
dealing with the world popula on, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Deriva ve and Mo on

One of the most fundamental applica ons of the deriva ve is the study of
mo on. Let s(t) be a posi on func on, where t is me and s(t) is distance. For
instance, s couldmeasure the height of a projec le or the distance an object has
travelled.

Let’s let s(t)measure the distance travelled, in feet, of an object a er t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity func on. That is, at me t, v(t) gives the ve-
locity of an object. The deriva ve of v, v ′(t), gives the instantaneous rate of226
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Figure 6.2.1: A graph of f(x) = x2.

6.2 Interpreta ons of the Deriva ve

velocity change – accelera on. (We o en think of accelera on in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average accelera on, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and me is measured in seconds, then the units of accelera on
(i.e., the units of v ′(t)) are “feet per second per second,” or ( /s)/s. We o en
shorten this to “feet per second squared,” or /s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known accelera on is that of gravity. In this text, we
use g = 32 /s2 or g = 9.8 m/s2. What do these numbers mean?

A constant accelera on of 32( /s)/s means that the velocity changes by 32
/s each second. For instance, let v(t) measures the velocity of a ball thrown

straight up into the air, where v has units /s and t is measured in seconds. The
ball will have a posi ve velocity while travelling upwards and a nega ve velocity
while falling down. The accelera on is thus −32 /s2. If v(1) = 20 /s, then
when t = 2, the velocity will have decreased by 32 /s; that is, v(2) = −12 /s.
We can con nue: v(3) = −44 /s, and we can also figure that v(0) = 42 /s.

These ideas are so important we write them out as a Key Idea.

Key Idea 6.2.1 The Deriva ve and Mo on

1. Let s(t) be the posi on func on of an object. Then s ′(t) is the
velocity func on of the object.

2. Let v(t) be the velocity func on of an object. Then v ′(t) is the
accelera on func on of the object.

We now consider the second interpreta on of the deriva ve given in this
sec on. This interpreta on is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
spec ve.

Interpreta on of the Deriva ve #2: The Slope of the Tangent Line

Given a func on y = f(x), the difference quo ent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear func ons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compu ng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example 6.2.3 Understanding the deriva ve: the rate of change
Consider f(x) = x2 as shown in Figure 6.2.1. It is clear that at x = 3 the func on
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?

S Wecananswer this directly a er the following sec on, where
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Figure 6.2.2: A graph of f(x) = x2 and tan-
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Figure 6.2.3: Graphs of f and f ′ in Example
6.2.4, along with tangent lines in (b).
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Figure 6.2.4: Zooming in on f and its tan-
gent line at x = 3 for the func on given
in Examples 6.2.4 and 6.2.5.

Chapter 6 Deriva ves

we learn to quickly compute deriva ves. For now, we will answer graphically,
by considering the slopes of the respec ve tangent lines.

With prac ce, one can fairly effec vely sketch tangent lines to a curve at a
par cular point. In Figure 6.2.2, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three mes as fast.

Example 6.2.4 Understanding the graph of the deriva ve
Consider the graph of f(x) and its deriva ve, f ′(x), in Figure 6.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

S To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 6.2.3(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help be er visualize the y value of f ′ at those points.

Example 6.2.5 Approxima on with the deriva ve
Consider again the graph of f(x) and its deriva ve f ′(x) in Example 6.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

S Figure 6.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. No ce that near x = 3, the tangent line makes an excellent
approxima on of f. Since lines are easy to deal with, o en it works well to ap-
proximate a func onwith its tangent line. (This is especially truewhen you don’t
actually know much about the func on at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 6.2.4, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is o en useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approxima on, we now
state that in Example 6.2.5, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computa on. In reality, we o en only know two things:

1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the loca on of an object and its instan-
taneous velocity at a par cular point in me. We do not have a “func on f ”
for the loca on, just an observa on. This is enough to create an approxima ng
func on for f.
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6.2 Interpreta ons of the Deriva ve

This last example has a direct connec on to our approxima on method ex-
plained above a er Example 6.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compu ng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 6.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approxima onmethod used above! Not only does itmake
intui ve sense, as explained above, it makes analy cal sense, as this approxima-
on method is simply using a tangent line to approximate a func on’s value.

The importanceof understanding thederiva ve cannot beunderstated. When
f is a func on of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

229



Exercises 6.2
Terms and Concepts

1. What is the instantaneous rate of change of posi on
called?

2. Given a func on y = f(x), in your own words describe how
to find the units of f ′(x).

3. What func ons have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this sec on, which approxima on is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in /s, of a car moving in a
straight line t seconds a er star ng. What are the units of
v ′(t)?

12. The heightH, in feet, of a river is recorded t hours a ermid-
night, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours a er
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of func ons f(x) and g(x) are
given. Iden fy which func on is the deriva ve of the other.
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Review
In Exercises 19 – 20, use the defini on to compute the deriva-
ves of the following func ons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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6.3 Basic Differen a on Rules

6.3 Basic Differen a on Rules
The deriva ve is a powerful tool but is admi edly awkward given its reliance on
limits. Fortunately, one thing mathema cians are good at is abstrac on. For
instance, instead of con nually finding deriva ves at a point, we abstracted and
found the deriva ve func on.

Let’s prac ce abstrac on on linear func ons, y = mx+b. What is y ′? With-
out limits, recognize that linear func on are characterized by being func ons
with a constant rate of change (the slope). The deriva ve, y ′, gives the instan-
taneous rate of change; with a linear func on, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the deriva ve of the general quadra c
func on, f(x) = ax2 + bx+ c. Using the defini on of the deriva ve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

(ah+ 2ax+ b)

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this sec on (and in some sec ons to follow) we will learn some of what
mathema cians have already discovered about the deriva ves of certain func-
ons and how deriva ves interact with arithme c opera ons. We start with a

theorem.

Theorem 6.3.1 Deriva ves of Common Func ons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

2. Power Rule:
d
dx
(
xn
)
= nxn−1, where n is an

integer, n > 0.

5.
d
dx

(sin x) = cos x

6.
d
dx

(cos x) = − sin x

7.
d
dx

(ex) = ex

8.
d
dx

(ln x) =
1
x

This theorem starts by sta ng an intui ve fact: constant func ons have no
rate of change as they are constant. Therefore their deriva ve is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the deriva ves of Power Func ons (of the form y = xn) are very
straigh orward: mul ply by the power, then subtract 1 from the power. We see
something incredible about the func on y = ex: it is its own deriva ve. We also
see a new connec on between the sine and cosine func ons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.
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Figure 6.3.1: A graph of f(x) = x3, along
with its deriva ve f ′(x) = 3x2 and its tan-
gent line at x = −1.

You may recall from high school that the
binomial coefficients are the numbers
that appear in Pascal’s Triange. Ifwenum-
ber the rows of Pascal’s triangle begin-
ning from the top at row zero, then the
numbers in row n are given by

(n
k

)
, for

k = 0, 1, 2, . . . , n.
In par cular, note that:(

n
0

)
= 1,

(
n
1

)
= n,

(
n
2

)
=

n(n− 1)
2

,

· · · ,

(
n

n− 1

)
= n,

(
n
n

)
= 1.

Chapter 6 Deriva ves

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s prac ce using this theorem.

Example 6.3.1 Using Theorem 6.3.1 to find, and use, deriva ves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equa on of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

S

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equa on of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equa on y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 6.3.1.

It is easy to use Defini on 6.1.4 to verify the Constant Rule, and with a bit of
work we can confirm the Power Rule for small values of n. But how do we know
that the Power Rule holds in general? One way to tackle this problem relies on
a famous result from Algebra: the Binomial Theorem.

Theorem 6.3.2 Binomial Theorem

For any real numbers a and b, and any posi ve integer n, we have

(a+ b)n = an +
(
n
1

)
an−1b+

(
n
2

)
an−2b2 + · · ·+

(
n

n− 1

)
abn−1 + bn,

where
(n
k

)
(read, “n choose k”) is the binomial coefficient given by(

n
k

)
=

n!
k!(n− k)!

=
n(n− 1) · · · (n− k+ 1)

1 · 2 · · · k
.

With Theorem 6.3.2 in hand, we can quickly establish the Power Rule using
the defini on of the deriva ve. Given f(x) = xn, where n is a posi ve integer,232
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Figure 6.3.2: The graph y = ax, for three
values of a > 1

6.3 Basic Differen a on Rules

we have:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)n − xn

h

= lim
h→0

(xn + nxn−1h+ · · ·+ hn)− xn

h
(Using Theorem 6.3.2)

= lim
h→0

nxn−1h
(n
2
)
xn−2h2 + · · ·+ hn

h
(Cancelling the xn terms)

= lim
h→0

(nxn−1 +

(
n
2

)
xn−2h+ · · ·+ nxhn−2 + hn−1) (Dividing by h)

= nxn−1 (Se ng h = 0)

The fact that the deriva ve of sin(x) is cos(x) was established in Example
6.1.7; the fact that the deriva ve of cos(x) is − sin(x) is established similarly,
and le as an exercise. We aren’t yet in a posi on to rigorously establish the
deriva ve formulas for ex and ln(x), but we can show that it’s at least plausible
that the exponen al func on is its own deriva ve. For f(x) = ex, Defini on 6.1.4
tells us:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ex+h − ex

h

= lim
h→0

ex · eh − ex

h
(Laws of exponents)

= lim
h→0

ex(eh − 1)
h

(Factoring)

= ex lim
h→0

eh − 1
h

.

It seems we are stuck on this last limit. But no ce that

lim
h→0

eh − 1
h

= lim
h→0

e0+h − e0

h
= f′(0),

so f ′(x) = f ′(0)ex, where f ′(0) is simply the slope of the tangent line to the
graph y = ex at x = 0. Looking at the graph of y = ax for several values of
a > 1, we see that this slope depends on the value of a. One way of defining
the number e used as the base of the natural exponen al is that this is the value
of a such that the slope of the tangent line at x = 0 is exactly one; that is, such
that f′(0) = 1. With this defini on, we immediately find that f ′(x) = ex, as
expected.

The deriva ve of ln(x) can be obtained using the Chain Rule (Sec on 6.5,
and the fact that eln(x) = x. We will state the result here without proof.

Theorem 6.3.1 gives useful informa on, but we will need much more. For
instance, using the theorem, we can easily find the deriva ve of y = x3, but
it does not tell how to compute the deriva ve of y = 2x3, y = x3 + sin x nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next sec on).
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Chapter 6 Deriva ves

Theorem 6.3.3 Proper es of the Deriva ve

Let f and g be differen able on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant Mul ple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 6.3.3 allows us to find the deriva ves of awide variety of func ons.
It can be used in conjunc on with the Power Rule to find the deriva ves of any
polynomial. Recall in Example 6.1.5 that we found, using the limit defini on,
the deriva ve of f(x) = 3x2 + 5x − 7. We can now find its deriva ve without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedan c here, showing every step. Normally we would do all
the arithme c and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Both rules in Theorem 6.3.3 are easily established using the defini on of the
deriva ve. We will leave the Constant Mul ple Rule as an exercise, and demon-
strate that the Sum Rule is true. Suppose that we are given two differen able
func ons f and g. Recalling how the sum f + g is defined, and using Defini on
6.1.4, we have:

(f+ g)′(x) = lim
h→0

(f+ g)(x+ h)− (f+ g)(x)
h

= lim
h→0

(f(x+ h) + g(x+ h))− (f(x) + g(x))
h

= lim
h→0

(f(x+ h)− f(x)) + (g(x+ h)− g(x))
h

= lim
h→0

f(x+ h)− f(x)
h

+ lim
h→0

g(x+ h)− g(x)
h

= f′(x) + g′(x).

Example 6.3.2 Using the tangent line to approximate a func on value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

S This problem is inten onally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approxima on are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all me.
One must make a judgment using whatever seems reasonable. In this example,
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Note: Defini on 6.3.1 comes with the
caveat “Where the corresponding limits
exist.” With f differen able on I, it is pos-
sible that f ′ is not differen able on all of
I, and so on.

6.3 Basic Differen a on Rules

the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do be er? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 6.3.1 we find f ′(x) = cos x+2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approxima on is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places a er the decimal:
f(3) = 7.1411. Our ini al guesswas 7; our tangent line approxima onwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy some me, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approxima ng, and many scien sts, engineers and mathema cians o en face
problems too hard to solve directly. So they approximate.

Higher Order Deriva ves

The deriva ve of a func on f is itself a func on, therefore we can take its
deriva ve. The following defini on gives a name to this concept and introduces
its nota on.

Defini on 6.3.1 Higher Order Deriva ves

Let y = f(x) be a differen able func on on I. The following are defined,
provided the corresponding limits exist.

1. The second deriva ve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third deriva ve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth deriva ve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

In general, when finding the fourth deriva ve and on, we resort to the f (4)(x)
nota on, not f ′′′′(x); a er a while, too many cks is confusing.

Let’s prac ce using this new concept.

Example 6.3.3 Finding higher order deriva ves
Find the first four deriva ves of the following func ons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex
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S

1. Using the Power and Constant Mul ple Rules, we have: f ′(x) = 8x. Con-
nuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

No ce how all successive deriva ves will also be 0.

2. We employ Theorem 6.3.1 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 6.3.1 and the ConstantMul ple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

Interpre ng Higher Order Deriva ves

What do higher order deriva ves mean? What is the prac cal interpreta-
on?
Our first answer is a bit wordy, but is technically correct and beneficial to

understand. That is,

The second deriva ve of a func on f is the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a posi on func on. Then,
as stated in Key Idea 6.2.1, f ′ describes the rate of posi on change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the accelera on of the car.

We started this chapter with amusement–park riders free–falling with posi-
on func on f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t /s and

f ′′(t) = −32 ( /s)/s. We may recognize this la er constant; it is the accelera-
on due to gravity. In keeping with the unit nota on introduced in the previous

sec on, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wri en as “ /s2.”

It can be difficult to consider the meaning of the third, and higher order,
deriva ves. The third deriva ve is “the rate of change of the rate of change of
the rate of change of f.” That is essen ally meaningless to the unini ated. In
the context of our posi on/velocity/accelera on example, the third deriva ve
is the “rate of change of accelera on,” commonly referred to as “jerk.”

Make no mistake: higher order deriva ves have great importance even if
their prac cal interpreta ons are hard (or “impossible”) to understand. The
mathema cal topic of seriesmakes extensive use of higher order deriva ves.
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Exercises 6.3
Terms and Concepts

1. What is the name of the rule which states that d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx
(
ln x
)
?

3. Give an example of a func on f(x) where f ′(x) = f(x).

4. Give an example of a func on f(x) where f ′(x) = 0.

5. The deriva ve rules introduced in this sec on explain how
to compute the deriva ve of which of the following func-
ons?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17
• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third deriva ve
of a func on f(x).

7. Give an example of a func onwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second deriva ve
“means.”

9. If f(x) describes a posi on func on, then f ′(x) describes
what kind of func on? What kind of func on is f ′′(x)?

10. Let f(x) be a func on measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 26, compute the deriva ve of the given func-
on.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0, ̸= 1.

(a) Rewrite this iden ty when b = e, i.e., using loge x =
ln x, with a = 10.

(b) Use part (a) to find the deriva ve of y = log10 x.
(c) Use part (b) to find the deriva ve of y = loga x, for

any a > 0, ̸= 1.

In Exercises 27 – 32, compute the first four deriva ves of the
given func on.

27. f(x) = x6

28. g(x) = 2 cos x

29. h(t) = t2 − et

30. p(θ) = θ4 − θ3

31. f(θ) = sin θ − cos θ

32. f(x) = 1, 100

In Exercises 33 – 38, find the equa ons of the tangent and
normal lines to the graph of the func on at the given point.

33. f(x) = x3 − x at x = 1

34. f(t) = et + 3 at t = 0

35. g(x) = ln x at x = 1

36. f(x) = 4 sin x at x = π/2

37. f(x) = −2 cos x at x = π/4

38. f(x) = 2x+ 3 at x = 5

Review
39. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
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Important: d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x)!

While this answer is simpler than the
Product Rule, it is wrong. If it were true,
then we’d have

d
dx

(x2) = d
dx

(x) · d
dx

(x) = 1 · 1 = 1!

In fact, we’d have d
dx

(xn) = 1 for ev-
ery posi ve integer n, contradic ng the
Power Rule.
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Figure 6.4.1: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

Chapter 6 Deriva ves

6.4 The Product and Quo ent Rules
The previous sec on showed that, in some ways, deriva ves behave nicely. The
Constant Mul ple and Sum/Difference Rules established that the deriva ve of
f(x) = 5x2+ sin xwas not complicated. We neglected compu ng the deriva ve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their deriva ves are
not as straigh orward. (If you had to guesswhat their respec ve deriva ves are,
youwould probably guess wrong.) For these, we need the Product andQuo ent
Rules, respec vely, which are defined in this sec on.

We begin with the Product Rule.

Theorem 6.4.1 Product Rule

Let f and g be differen able func ons on an open interval I. Then fg is a
differen able func on on I, and

(fg) ′(x) = f ′(x)g(x) + f(x)g ′(x).

In the Leibniz nota on, the Product Rule is wri en

d
dx

(
f(x)g(x)

)
=

(
d
dx

f(x)
)
g(x) + f(x)

(
d
dx

g(x)
)
.

We prac ce using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example 6.4.1 Using the Product Rule
Use the Product Rule to compute the deriva ve of y = 5x2 sin x. Evaluate the
deriva ve at x = π/2.

S To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 10x sin x+ 5x2 cos x.

At x = π/2, we have

y ′(π/2) = 10
π

2
sin
(π
2

)
+ 5

(π
2

)2
cos
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
6.4.1. While this does not prove that the Produce Rule is the correct way to han-
dle deriva ves of products, it helps validate its truth.

We now inves gate why the Product Rule is true.

Example 6.4.2 A proof of the Product Rule
Use the defini on of the deriva ve to prove Theorem 6.4.1.

S By the limit defini on, we have

(fg) ′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.
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6.4 The Product and Quo ent Rules

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x)g(x+h)+f(x)g(x+h), then do some regrouping
as shown.

(fg) ′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x)g(x+ h)

)
+
(
f(x)g(x+ h)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)
h

+ lim
h→0

f(x)g(x+ h)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)− f(x)
h

g(x+ h) + lim
h→0

f(x)g(x+ h)− g(x)
h

(apply limits)

= f ′(x)g(x) + f(x)g ′(x)

No ce that when we applied the limit in the last step, we relied on the fact that
since g is assumed to be differen able at x, it is con nuous at x, and therefore,
lim
h→0

g(x+ h) = g(x).

It is o en true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the deriva ve of a product of func ons in two ways to verify that
the Product Rule is indeed “right.”

Example 6.4.3 Exploring alternate deriva ve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the deriva ve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

S We first expand the expression for y; a li le algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′:

y ′ = 8x3 + 9x2 − 12x.

Now apply the Product Rule.

y ′ = (2x+ 3)(2x2 − 3x+ 1) + (x2 + 3x+ 1)(4x− 3)
=
(
4x3 − 7x+ 3

)
+
(
4x3 + 9x2 − 5x− 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the deriva ve of the product is the prod-
uct of the deriva ves.” Thus we are tempted to say that y ′ = (2x+3)(4x−3) =
8x2 + 6x− 9. Obviously this is not correct.

Example 6.4.4 Using the Product Rule with a product of three func ons
Let y = x3 ln x cos x. Find y ′.

S Wehave a product of three func onswhile the Product Rule
only specifies how to handle a product of two func ons. Ourmethod of handling
this problem is to simply group the la er two func ons together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = 3x2
(
ln x cos x

)
+ (x3)

d
dx
(
ln x cos x

)
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The Quo ent Rule is not hard to use, al-
though it might be a bit tricky to remem-
ber. A useful mnemonic works as follows.
Consider a frac on’s numerator and de-
nominator as “HI” and “LO”, respec vely.
Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low,
over low low.” Said fast, that phrase
can roll off the tongue, making it easy to
memorize. The “dee high” and “dee low”
parts refer to the deriva ves of the nu-
merator and denominator, respec vely.
As an unexpected side benefit, you will
also have an opportunity to prac ce your
yodelling.

Chapter 6 Deriva ves

To evaluate
(
ln x cos x

)′, we apply the Product Rule again:
= 3x2

(
ln x cos x

)
+ (x3)

(1
x
cos x+ ln x(− sin x)

)
= 3x2 ln x cos x+ x3

1
x
cos x+ x3 ln x(− sin x)

Recognize the pa ern in our answer above: when applying the Product Rule to
a product of three func ons, there are three terms added together in the final
deriva ve. Each term contains only one deriva ve of one of the original func-
ons, and each func on’s deriva ve shows up in only one term. It is straigh or-

ward to extend this pa ern to finding the deriva ve of a product of 4 or more
func ons.

We consider one more example before discussing another deriva ve rule.

Example 6.4.5 Using the Product Rule
Find the deriva ves of the following func ons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

S Recalling that the deriva ve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= 1 · ln x+ x · 1/x = ln x+ 1.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= ln x+ 1− 1 = ln x.

This seems significant; if the natural log func on ln x is an important func on (it
is), it seems worthwhile to know a func on whose deriva ve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the deriva ves of sums, differences, and
products of func ons. We now learn how to find the deriva ve of a quo ent of
func ons.

Theorem 6.4.2 Quo ent Rule

Let f and g be differen able func ons defined on an open interval I,
where g(x) ̸= 0 on I. Then f/g is differen able on I, and(

f
g

)
′(x) =

f ′(x)g(x)− f(x)g ′(x)
g(x)2

.

Let’s prac ce using the Quo ent Rule.
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Figure 6.4.2: A graph of y = tan x along
with its tangent line at x = π/4.

6.4 The Product and Quo ent Rules

Example 6.4.6 Using the Quo ent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

S Directly applying the Quo ent Rule gives:

d
dx

(
5x2

sin x

)
=

10x · sin x− 5x2 · cos x
sin2 x

.

TheQuo ent Rule allows us to fill in holes in our understanding of deriva ves
of the common trigonometric func ons. We start with finding the deriva ve of
the tangent func on.

Example 6.4.7 Using the Quo ent Rule to find d
dx

(
tan x

)
.

Find the deriva ve of y = tan x.

S At first, one might feel unequipped to answer this ques on.
But recall that tan x = sin x/ cos x, so we can apply the Quo ent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is a beau ful result. To confirm its truth, we can find the equa on of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 6.4.2.

We include this result in the following theorem about the deriva ves of the
trigonometric func ons. Recall we found the deriva ve of y = sin x in Example
6.1.7 and stated the deriva ve of the cosine func on in Theorem 6.3.1. The
deriva ves of the cotangent, cosecant and secant func ons can all be computed
directly using Theorem 6.3.1 and the Quo ent Rule.

Theorem 6.4.3 Deriva ves of Trigonometric Func ons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
ves of the trigonometric func ons that start with “c” have aminus sign in them.
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The only mes it is really necessary – that
is, worthwhile – to simplify a product or
quo ent rule deriva ve on a test is if you
are trying to determine the values of x
at which the deriva ve is zero (there will
be plenty of that to come!) or in some
cases, if a second deriva ve is required,
and simplifying first makes that computa-
on easier. (Also keep in mind that the

person grading your test will be looking
for the product or quo ent rule pa ern,
so the unsimplified answer is some mes
the easiest to iden fy as the correct one.)
However, for wri en assignments where
you have the luxury of taking your me
to perfect your presenta on, a simplified
answer is usually preferable.

Chapter 6 Deriva ves

Example 6.4.8 Exploring alternate deriva ve methods

In Example 6.4.6 the deriva ve of f(x) =
5x2

sin x
was found using the Quo ent

Rule. Rewri ng f as f(x) = 5x2 csc x, find f ′ using Theorem 6.4.3 and verify the
two answers are the same.

S We found in Example 6.4.6 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 10x csc x+ 5x2(− csc x cot x) (now rewrite trig func ons)

=
10x
sin x

+ 5x2 · −1
sin x

· cos x
sin x

=
10x
sin x

+
−5x2 cos x

sin2 x
(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. It is up to you if you wish to work to “simplify” your results into a form
that is most readable and useful to you.

The Quo ent Rule gives other useful results, as shown in the next example.

Example 6.4.9 Using the Quo ent Rule to expand the Power Rule
Find the deriva ves of the following func ons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

S We employ the Quo ent Rule.

1. f ′(x) =
0 · x− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
0 · xn − 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The deriva ve of y =
1
xn

turned out to be rather nice. It gets be er. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 6.4.9)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.
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6.4 The Product and Quo ent Rules

This is reminiscent of the Power Rule: mul ply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stric on of n > 0.

Theorem 6.4.4 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the deriva ve of many func ons is rela vely straigh orward. It is
clear (with prac ce) what rules apply and in what order they should be applied.
Other func ons present mul ple paths; different rules may be applied depend-
ing on how the func on is treated. One of the beau ful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the deriva ve. We demonstrate this concept in an example.

Example 6.4.10 Exploring alternate deriva ve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the Quo ent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

S

1. Applying the Quo ent Rule gives:

f ′(x) =
(
2x− 3

)
· x−

(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

2. By rewri ng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
2x− 3

)
· x−1 +

(
x2 − 3x+ 1

)
· (−1)x−2

=
2x− 3

x
− x2 − 3x+ 1

x2

=
2x2 − 3x

x2
− x2 − 3x+ 1

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.

f ′(x) = 1− 1
x2
,

the same result as before.
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Chapter 6 Deriva ves

Example 6.4.10 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
Ul mately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=

(
2x− 3

)
· x−

(
x2 − 3x+ 1

)
· 1

x2
=
(
2x− 3

)
· x−1 +

(
x2 − 3x+ 1

)
· (−1)x−2.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next sec on we con nue to learn rules that allow us to more easily
compute deriva ves than using the limit defini on directly. We have to memo-
rize the deriva ves of a certain set of func ons, such as “the deriva ve of sin x
is cos x.” The Sum/Difference, Constant Mul ple, Power, Product and Quo ent
Rules show us how to find the deriva ves of certain combina ons of these func-
ons. The next sec on shows how to find the deriva ves when we compose

these func ons together.
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Exercises 6.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The Quo ent Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The deriva ves of the trigonometric func ons that
start with “c” have minus signs in them.

4. What deriva ve rule is used to extend the Power Rule to
include nega ve integer exponents?

5. T/F: Regardless of the func on, there is always exactly one
right way of compu ng its deriva ve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differen ate the func on.

(b) Manipulate the func on algebraically and differen -
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the Quo ent Rule to differen ate the func on.

(b) Manipulate the func on algebraically and differen -
ate without the Quo ent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 36, compute the deriva ve of the given func-
on.

15. f(x) = x sin x

16. f(x) = x2 cos x

17. f(x) = ex ln x

18. f(t) = 1
t2
(csc t− 4)

19. g(x) = x+ 7
x− 5

20. g(t) = t5

cos t− 2t2

21. h(x) = cot x− ex

22. f(x) =
(
tan x

)
ln x

23. h(t) = 7t2 + 6t− 2

24. f(x) = x4 + 2x3

x+ 2

25. f(x) =
(
3x2 + 8x+ 7

)
ex

26. g(t) = t5 − t3

et

27. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

28. f(t) = t5(sec t+ et)

29. f(x) = sin x
cos x+ 3

30. f(θ) = θ3 sin θ + sin θ
θ3

31. f(x) = cos x
x

+
x

tan x

32. g(x) = e2
(
sin(π/4)− 1

)
33. g(t) = 4t3et − sin t cos t

34. h(t) = t2 sin t+ 3
t2 cos t+ 2

35. f(x) = x2ex tan x

36. g(x) = 2x sin x sec x
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In Exercises 37 – 40, find the equa ons of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = es(s2 + 2) at (0, 2).

38. g(t) = t sin t at ( 3π2 ,−
3π
2 )

39. g(x) = x2

x− 1
at (2, 4)

40. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 41 – 44, find the x–values where the graph of the
func on has a horizontal tangent line.

41. f(x) = 6x2 − 18x− 24

42. f(x) = x sin x on [−1, 1]

43. f(x) = x
x+ 1

44. f(x) = x2

x+ 1

In Exercises 45 – 48, find the requested deriva ve.

45. f(x) = x sin x; find f ′′(x).

46. f(x) = x sin x; find f (4)(x).

47. f(x) = csc x; find f ′′(x).

48. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

Review
In Exercises 49 – 52, use the graph of f(x) to sketch f ′(x).
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6.5 The Chain Rule

6.5 The Chain Rule
We have covered almost all of the deriva ve rules that deal with combina ons
of two (or more) func ons. The opera ons of addi on, subtrac on, mul plica-
on (including by a constant) and division led to the Sum and Difference rules,

the Constant Mul ple Rule, the Power Rule, the Product Rule and the Quo ent
Rule. To complete the list of differen a on rules, we look at the last way two (or
more) func ons can be combined: the process of composi on (i.e. one func on
“inside” another).

One example of a composi on of func ons is f(x) = cos(x2). We currently
do not know how to compute this deriva ve. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the deriva ve of cos x
and 2x as the deriva ve of x2. However, this is not the case; f ′(x) ̸= − sin(2x).
In Example 6.5.4 we’ll see the correct answer, which employs the new rule this
sec on introduces, the Chain Rule.

Before we define this new rule, recall the nota on for composi on of func-
ons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f

with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differen a on rule, we note that the rule extends to
mul ple composi ons like f(g(h(x))) or f(g(h(j(x)))), etc.

To mo vate the rule, let’s look at three deriva ves we can already compute.

Example 6.5.1 Exploring similar deriva ves
Find the deriva ves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different func ons and an
uppercase F.)

S In order to use the rules we already have, we must first ex-
pand each func on as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interes ng fact is that these can be rewri en as

F′1(x) = −2(1− x), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A pa ernmight jump out at you; note how the we end upmul plying by the old
power and the new power is reduced by 1. We also always mul ply by (−1).

Recognize that each of these func ons is a composi on, le ng g(x) = 1−x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example a er giving the formal statements of the
Chain Rule; for now, we are just illustra ng a pa ern.

When composing func ons, we need to make sure that the new func on is
actually defined. For instance, consider f(x) =

√
x and g(x) = −x2 − 1. The

domain of f excludes all nega ve numbers, but the range of g is only nega ve
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numbers. Therefore the composi on f
(
g(x)

)
=

√
−x2 − 1 is not defined for

any x, and hence is not differen able.
The following defini on takes care to ensure this problem does not arise.

We’ll focus more on the deriva ve result than on the domain/range condi ons.

Theorem 6.5.1 The Chain Rule

Let g be a differen able func on on an interval I, let the range of g be a
subset of the interval J, and let f be a differen able func on on J. Then
y = f(g(x)) is a differen able func on on I, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example 6.5.1.

Example 6.5.2 Using the Chain Rule
Use the Chain Rule to find the deriva ves of the following func ons, as given in
Example 6.5.1.

S Example 6.5.1 ended with the recogni on that each of the
given func ons was actually a composi on of func ons. To avoid confusion, we
ignore most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means subs tute g(x) for x in the

equa on for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 6.5.2 demonstrated a par cular pa ern: when f(x) = xn, then
y ′ = n · (g(x))n−1 · g ′(x). This is called the Generalized Power Rule.
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Figure 6.5.1: f(x) = cos x2 sketched along
with its tangent line at x = 1.

6.5 The Chain Rule

Theorem 6.5.2 Generalized Power Rule

Let g(x) be a differen able func on and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the deriva ve of func ons like y = (3x2− 5x+
7 + sin x)20. While it may look in mida ng, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the deriva ve–taking process step–by–step. In the example just given,
first mul ply by 20, the rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the deriva ve of the expression inside the
parentheses, and mul ply by that.

We now consider more examples that employ the Chain Rule.

Example 6.5.3 Using the Chain Rule
Find the deriva ves of the following func ons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

S

1. Consider y = sin 2x. Recognize that this is a composi on of func ons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composi on of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composi on of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .

Example 6.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equa on of the line tangent to the graph of f at x = 1.

S The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equa on of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 6.5.1.
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Chapter 6 Deriva ves

The Chain Rule is used o en in taking deriva ves. Because of this, one can
become familiar with the basic process and learn pa erns that facilitate finding
deriva ves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the deriva ve may look in mida ng at first, look for the pa ern. The
denominator is the same as what was inside the natural log func on; the nu-
merator is simply its deriva ve.

This pa ern recogni on process can be applied to lots of func ons. In gen-
eral, instead of wri ng “anything”, we use u as a generic func on of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar func ons.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjunc onwith any of the other
rules we have already learned. We prac ce this next.

Example 6.5.5 Using the Product, Quo ent and Chain Rules
Find the deriva ves of the following func ons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

S

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the Quo ent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(10x4 + 15x2
)

e−2x2

= ex
2(
10x4 + 15x2

)
.
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6.5 The Chain Rule

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t a empt to figure out both parts at once.

Likewise, using the Quo ent Rule, approach the numerator in two steps and
handle the denominator a er comple ng that. Only simplify a erward.

We can also employ the Chain Rule itself several mes, as shown in the next
example.

Example 6.5.6 Using the Chain Rule mul ple mes
Find the deriva ve of y = tan5(6x3 − 7x).

S Recognize that we have the g(x) = tan(6x3 − 7x) func on
“inside” the f(x) = x5 func on; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
deriva ve. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This func on is frankly a ridiculous func on, possessing no real prac cal
value. It is very difficult to graph, as the tangent func on has many ver cal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the deriva ve can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

It is a tradi onal mathema cal exercise to find the deriva ves of arbitrarily
complicated func ons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 6.5.7 Using the Product, Quo ent and Chain Rules

Find the deriva ve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

S This func on likely has no prac cal use outside of demon-
stra ng deriva ve skills. The answer is given below without simplifica on. It
employs the Quo ent Rule, the Product Rule, and the Chain Rule three mes.

f ′(x) =
ln(x2 + 5x4)·

[(
x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)

)
−2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2)− sin2(e4x)

)
· 2x+ 20x3

x2 + 5x4


(
ln(x2 + 5x4)

)2 .
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Chapter 6 Deriva ves

The reader is highly encouraged to look at each term and recognize why it is
there. This example demonstrates that deriva ves can be computed systema -
cally, no ma er how arbitrarily complicated the func on is.

The Chain Rule also has theore c value. That is, it can be used to find the
deriva ves of func ons that we have not yet learned as we do in the following
example.

Example 6.5.8 The Chain Rule and exponen al func ons
Use the Chain Rule to find the deriva ve of y = 2x.

S We only know how to find the deriva ve of one exponen al
func on, y = ex. We can accomplish our goal by rewri ng 2 in terms of e.
Recalling that ex and ln x are inverse func ons, we can write

2 = eln 2 and so y = 2x =
(
eln 2
)x

= ex(ln 2).

The func on is now the composi on y = f(g(x)), with f(x) = ex and g(x) =
x(ln 2). Since f ′(x) = ex and g ′(x) = ln 2, the Chain Rule gives

y ′ = ex(ln 2) · ln 2.

Recall that the ex(ln 2) term on the right hand side is just 2x, our original func on.
Thus, the deriva ve contains the original func on itself. We have

y ′ = y · ln 2 = 2x · ln 2.

We can extend this process to use any base a, where a > 0 and a ̸= 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the deriva ve rule of ex, allows us to find the deriva ves of all exponen al
func ons.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 6.5.3 Deriva ves of Exponen al Func ons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differen able for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule Nota on

It is instruc ve to understand what the Chain Rule “looks like” using “ dydx” no-
ta on instead of y ′ nota on. Suppose that y = f(u) is a func on of u, where
u = g(x) is a func on of x, as stated in Theorem 6.5.1. Then, through the com-
posi on f ◦ g, we can think of y as a func on of x, as y = f(g(x)). Thus the
deriva ve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interes ng progression of nota on:
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Figure 6.5.2: A series of gears to demon-
strate the Chain Rule. Note how dy
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6.5 The Chain Rule

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “frac onal” nota on for the deriva ve)

Here the “frac onal” aspect of the deriva ve nota on stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not cancelling these terms; the deriva ve
nota on of dy

du is one symbol. It is equally important to realize that this nota on
was chosen precisely because of this behaviour. It makes applying the Chain
Rule easy with mul ple variables. For instance,

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider

a set of gears, as shown in Figure 6.5.2. The gears have 36, 18, and 6 teeth,
respec vely. That means for every revolu on of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolu on is twice as fast
as the rate at which the x gear makes a revolu on. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revolu on of u causes 3 revolu ons of y: dy

du = 3. How does
y change with respect to x? For each revolu on of x, y revolves 6 mes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So o en the
func ons that we deal with are composi ons of two or more func ons, requir-
ing us to use this rule to compute deriva ves. It is also o en used in real life
when actual func ons are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the Chain Rule, we can find

dy
dx .

In the next sec on, we use the Chain Rule to jus fy another differen a on
technique. There are many curves that we can draw in the plane that fail the
“ver cal line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay s ll be interested in finding slopes of tangent lines to the circle at
various points. The next sec on shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situa ons, implicit differen a on is indispensable.
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Exercises 6.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

ve of a composi on of func ons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. f(x) =
(
ln x+ x2

)3
Problems
In Exercises 7 – 36, compute the deriva ve of the given func-
on.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
ln x+ x2

)3
12. f(x) = 2x

3+3x

13. f(x) =
(
x+ 1

x

)4
14. f(x) = cos(3x)

15. g(x) = tan(5x)

16. h(θ) = tan
(
θ2 + 4θ

)
17. g(t) = sin

(
t5 + 1

t

)
18. h(t) = sin4(2t)

19. p(t) = cos3(t2 + 3t+ 1)

20. f(x) = ln(cos x)

21. f(x) = ln(x2)

22. f(x) = 2 ln(x)

23. g(r) = 4r

24. g(t) = 5cos t

25. g(t) = 152

26. m(w) = 3w

2w

27. h(t) = 2t + 3
3t + 2

28. m(w) = 3w + 1
2w

29. f(x) = 3x
2
+ x

2x2

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. f(x) = sin(3x+ 4) cos(5− 2x)

34. g(t) = cos( 1t )e
5t2

35. f(x) =
sin
(
4x+ 1

)
(5x− 9)3

36. f(x) = (4x+ 1)2

tan(5x)

In Exercises 37 – 40, find the equa ons of tangent and normal
lines to the graph of the func on at the given point. Note: the
func ons here are the same as in Exercises 7 through 10.

37. f(x) = (4x3 − x)10 at x = 0

38. f(t) = (3t− 2)5 at t = 1

39. g(θ) = (sin θ + cos θ)3 at θ = π/2

40. h(t) = e3t
2+t−1 at t = −1

41. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the deriva ve.
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42. Compute d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ap) = p ln a, then

taking the deriva ve.

Review
43. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW ′(w)?

(b) What would you expect the sign ofW ′(10) to be?

44. Find the deriva ves of the following func ons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Note: The extreme values of a func on
are “y” values, values the func on a ains,
not the input values.

Note: While Theorem 7.1.1 is intui vely
plausible, a rigorous proof is actually
quite technical, and beyond the scope of
this text.
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Figure 7.1.1: Graphs of func onswith and
without extreme values.

7: T G B
F

Our study of limits led to con nuous func ons, a certain class of func ons that
behave in a par cularly nice way. Limits then gave us an even nicer class of
func ons, func ons that are differen able.

This chapter explores many of the ways we can take advantage of the infor-
ma on that con nuous and differen able func ons provide.

7.1 Extreme Values
Given any quan ty described by a func on, we are o en interested in the largest
and/or smallest values that quan ty a ains. For instance, if a func on describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object travelled. If a func on describes the value of a stock, we might want
to know the highest/lowest values the stock a ained over the past year. We call
such values extreme values.

Defini on 7.1.1 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 7.1.1. The func on displayed in (a) has a maximum, but
no minimum, as the interval over which the func on is defined is open. In (b),
the func on has a minimum, but no maximum; there is a discon nuity in the
“natural” place for the maximum to occur. Finally, the func on shown in (c) has
both a maximum and a minimum; note that the func on is con nuous and the
interval on which it is defined is closed.

It is possible for discon nuous func ons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, con nuous func ons on a closed interval al-
ways have a maximum and minimum value.

Theorem 7.1.1 The Extreme Value Theorem

Let f be a con nuous func on defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. A er the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.



.....

−1

.

5

.

−20

.

20

.

(5, 25)

.

(3,−27)

.

(−1,−11)

.

(0, 0)

.

x

.

y
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Note: The terms local minimum and local
maximum are o en used as synonyms for
rela ve minimum and rela ve maximum.

As it makes intui ve sense that an ab-
solute maximum is also a rela ve max-
imum, Defini on 7.1.2 allows a rela ve
maximum to occur at an interval’s end-
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Chapter 7 The Graphical Behaviour of Func ons

Example 7.1.1 Approxima ng extreme values
Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 7.1.2. Approxi-
mate the extreme values of f.

S The graph is drawn in such away to draw a en on to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approxima on, we
approximate the extreme values to be 25 and−27.

No ce how theminimum value came at “the bo om of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the loca on of an extreme value for some interval is important, leading us to
a defini on of a rela ve maximum. In short, a “rela ve max” is a y-value that’s
the largest y-value “nearby.”

Defini on 7.1.2 Rela ve Minimum and Rela ve Maximum

Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the mini-
mum value, then f(c) is a rela ve minimum of f. We also say that
f has a rela ve minimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maxi-
mum value, then f(c) is a rela ve maximum of f. We also say that
f has a rela ve maximum at (c, f(c)).

The rela ve maximum and minimum values comprise the rela ve ex-
trema of f.

We briefly prac ce using these defini ons.

Example 7.1.2 Approxima ng rela ve extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 7.1.3. Approximate
the rela ve extrema of f. At each of these points, evaluate f ′.

S We s ll do not have the tools to exactly find the rela ve
extrema, but the graph does allow us to make reasonable approxima ons. It
seems f has rela ve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a rela ve maximum at the point (0, 1).

We approximate the rela ve minima to be 0 and−5.4; we approximate the
rela ve maximum to be 1.

It is straigh orward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

Example 7.1.3 Approxima ng rela ve extrema
Approximate the rela ve extrema of f(x) = (x−1)2/3+2, shown in Figure 7.1.4.
At each of these points, evaluate f ′.

S The figure implies that f does not have any rela ve maxima,
but has a rela ve minimum at (1, 2). In fact, the graph suggests that not only
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Figure 7.1.5: A graph of f(x) = x3 which
has a cri cal value of x = 0, but no rela-
ve extrema.

7.1 Extreme Values

is this point a rela ve minimum, y = f(1) = 2 is the minimum value of the
func on.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate rela ve extrema, and at each such point, the deriva ve was
either 0 or it was not defined. This observa on holds for all func ons, leading
to a defini on and a theorem.

Defini on 7.1.3 Cri cal Numbers and Cri cal Points

Let f be defined at c. The value c is a cri cal number of f if f ′(c) = 0 or
f ′(c) is not defined. The value f(c) is then referred to as a cri cal value
of f.

If c is a cri cal number of f, then the point (c, f(c)) is a cri cal point of f.

Theorem 7.1.2 Rela ve Extrema and Cri cal Points

Let a func on f be defined on an open interval I containing c, and let f
have a rela ve extremumat the point (c, f(c)). Then c is a cri cal number
of f.

Be careful to understand that this theorem states “Rela ve extrema on open
intervals occur at cri cal points.” It does not say “All cri cal numbers produce
rela ve extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straigh orward to determine that x = 0 is a cri cal number of f. However, f has
no rela ve extrema, as illustrated in Figure 7.1.5.

Let us pause briefly to try to understand why Theorem 7.1.2 is true. To be-
gin, suppose that our func on f has a rela ve maximum at the point (c, f(c)).
(The argument for a rela ve minimum is similar.) If f′(c) is undefined, then c is a
cri cal number, and there is nothing to prove, so we suppose that f is differen-
able at c, and try to see why it must be that f′(c) = 0. Consider the difference

quo ent

f′(c) = lim
h→0

f(c+ h)− f(c)
h

.

Since f has a rela ve maximum at c, we know that f(c) ≥ f(c+h) for sufficiently
small values of h, so f(c + h) − f(c) ≤ 0. Since f′(c) exists, we know that the
above limitmust exist; in par cular, the le -hand limitmust equal the right hand
limit. On the other hand, since f(c+ h)− f(c) ≤ 0, we have

lim
h→0−

f(c+ h)− f(c)
h

≥ 0,

since h < 0 in the le -hand limit, while

lim
h→0+

f(c+ h)− f(c)
h

≤ 0,

since h > 0 for the right-hand limit. The only way these two limits can agree is
if both limits are equal to zero which proves that f′(c) = 0.
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Chapter 7 The Graphical Behaviour of Func ons

Theorem7.1.1 states that a con nuous func onon a closed intervalwill have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at cri cal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Key Idea 7.1.1 Finding Extrema on a Closed Interval

Let f be a con nuous func on defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the cri cal numbers of f in [a, b].

3. Evaluate f at each cri cal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We prac ce these ideas in the next examples.

Example 7.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
7.1.6(a).

S We follow the steps outlined in Key Idea 7.1.1. We first eval-
uate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the cri cal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 =
6(x + 2)(x − 1); therefore the cri cal values of f are x = −2 and x = 1. Since
x = −2 does not lie in the interval [0, 3], we ignore it. Evalua ng f at the only
cri cal number in our interval gives: f(1) = −7.

The table in Figure 7.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analy c algorithm and did not depend on any visualiza on. Figure 7.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We prac ce again.

Example 7.1.5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 .

S Here f is piecewise–defined, but we can s ll apply Key Idea
7.1.1. Evalua ng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.
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Figure 7.1.9: Finding the extrema of the
half–circle in Example 7.1.7.

7.1 Extreme Values

We now find the cri cal numbers of f. We have to define f ′ in a piecewise man-
ner; it is

f ′(x) =

{
2(x− 1) x < 0
1 x > 0

.

Note that while f is defined for all of [−4, 2], f ′ is not, as the deriva ve of f does
not exist when x = 0. (From the le , the deriva ve approaches −2; from the
right the deriva ve is 1.) Thus one cri cal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0, so we find no cri cal values from se ng f ′(x) = 0.

So we have three important x values to consider: x = −4, 2 and 0. Evaluat-
ing f at each gives, respec vely, 25, 3 and 1, shown in Figure 7.1.7(b). Thus the
absolute minimum of f is 1, the absolute maximum of f is 25, confirmed by the
graph of f.

Example 7.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2], graphed in Figure 7.1.8(a).

S We again use Key Idea 7.1.1. Evalua ng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the cri cal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the cri cal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posi ve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π, . . ..

The only values to fall in the given interval of [−2, 2] are−
√
π and

√
π, approx-

imately±1.77.
We again construct a table of important values in Figure 7.1.8(b). In this

example we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 7.1.8 confirms our results.

We consider one more example.

Example 7.1.7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2, graphed in Figure 7.1.9(a).

S A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. Evalua ng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The cri cal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straigh orward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 7.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that con nuous func ons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next sec on, we further our study of the informa onwe can
glean from “nice” func ons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a func on (as we did at the beginning
of Chapter 2). We will see that differen able func ons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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Exercises 7.1
Terms and Concepts

1. Describe what an “extreme value” of a func on is in your
own words.

2. Sketch the graph of a func on f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and rela ve
maxima in your own words.

4. Sketch the graph of a func on f where f has a rela ve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a cri cal value of a func on f, then f has either a
rela ve maximum or rela ve minimum at x = c.

6. Fill in the blanks: The cri cal points of a func on f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7 – 8, iden fy each of the marked points as being
an absolute maximum or minimum, a rela ve maximum or
minimum, or none of the above.
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In Exercises 9 – 16, evaluate f ′(x) at the points indicated in
the graph.

9. f(x) = 2
x2 + 1
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√
6− x2

..... −2. 2.

2

.

4

.

6

. (0, 0).

(2, 4
√

2)

.
x

.

y

11. f(x) = sin x
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√
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13. f(x) = 1+ (x− 2)2/3
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14. f(x) = 3√x4 − 2x+ 1
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15. f(x) =
{

x2 x ≤ 0
x5 x > 0
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16. f(x) =
{

x2 x ≤ 0
x x > 0
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In Exercises 17 – 26, find the extreme values of the func on
on the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].

20. f(x) = x2
√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

Review
27. Find dy

dx , where x
2y− y2x = 1.

28. Find the equa on of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

29. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Figure 7.2.1: A graph of a func on f used
to illustrate the concepts of increasing
and decreasing.

Note: Some authors define a func on to
be increasing if f(a) ≤ f(b) whenever
a < b (with a similar defini on for de-
creasing), and say that a func on f sat-
isfying our defini on is strictly increasing
(similarly, strictly decreasing). This is a
perfectly reasonable defini on, although
it does have the odd consequence that,
with this defini on, a constant func on
would be simultaneously increasing and
decreasing.
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Figure 7.2.2: Examining the secant line of
an increasing func on.

Chapter 7 The Graphical Behaviour of Func ons

7.2 Increasing and Decreasing Func ons
Our study of “nice” func ons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this sec on we begin to study how func ons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intui ve concept. Given the graph in Figure 7.2.1, where
would you say the func on is increasing? Decreasing? Even though we have
not defined these terms mathema cally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Defini on 7.2.1 Increasing and Decreasing Func ons

Let f be a func on defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) < f(b).

2. f is decreasing on I if for every a < b in I, f(a) > f(b).

A func on is nonincreasing when a < b in I implies f(a) ≥ f(b), with a
similar defini on holding for nondecreasing.

Informally, a func on is increasing if as x gets larger (i.e., looking le to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informa on should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelera ng vs. decelerat-
ing). If f describes the popula on of a city, we should be interested in when the
popula on is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differen able func on on an open interval I, such as the one shown in Figure
7.2.2, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathema cally whatmay have already been obvious: when
f is increasing, its secant lines will have a posi ve slope. Now recall the Mean
Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we strongly imply that f ′(x) > 0 on I. A
similar statement can be made for decreasing func ons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posi ve.” Theorem 7.2.1 below turns this around by sta ng “If f ′ is posi ve,
then f is increasing.” This leads us to a method for finding when func ons are
increasing and decreasing.
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Note: Parts 1 & 2 of Theorem 7.2.1 also
hold if f ′(c) = 0 for a finite number of
values of c in I.

Note: Recall that not all points c where
f ′(c) is undefined are cri cal points. It
could be that f ′(c) is undefined because
c is not in the domain of f; for example, at
a ver cal asymptote. Even though these
points are not cri cal points, we s ll in-
clude them in our sign diagram, since it’s
possible that f ′ changes sign at such a
point.

7.2 Increasing and Decreasing Func ons

Theorem 7.2.1 Test For Increasing/Decreasing Func ons

Let f be a con nuous func on on [a, b] and differen able on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let f be differen able on an interval I and let a and b be in Iwhere f ′(a) > 0
and f ′(b) < 0. If f ′ is con nuous on [a, b], it follows from the Intermediate Value
Theorem that theremust be some value c between a and bwhere f ′(c) = 0. If f ′
is not con nuous on [a, b], it can happen that f ′ changes sign at a point cwhere
f ′(c) is undefined, so we should account for these points as well. This leads us
to the following method for finding intervals on which a func on is increasing or
decreasing.

Key Idea 7.2.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differen able func on on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the cri cal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the cri cal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

To implement Key Idea 7.2.1, we use a visual aid called a sign diagram for f ′.
A sign diagram for a func on g consists of the following:

• A number line represen ng the domain of the func on g.

• A solid dot marking each point x where g(x) = 0.

• A hollow dot marking each point where g(x) is undefined.

• Between each pair of dots, either a + sign or − sign to indicate whether
the func on is posi ve or nega ve on that interval.

We demonstrate using this process in the following example.

Example 7.2.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

S Using Key Idea 7.2.1, we first find the cri cal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
re domain of f which is (−∞,∞). We thus break the whole real line into
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Chapter 7 The Graphical Behaviour of Func ons

three subintervals based on the two cri cal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 7.2.3.

−1 1
3f ′ > 0 incr f ′ < 0 decr f ′ > 0 incr

+ − +

Figure 7.2.3: Sign diagram for f ′ in Example 7.2.1.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computa on. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posi ve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calcula ons by considering Figure 7.2.4, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jus fied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding cri cal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the rela onship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the cri cal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straigh orward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has op ons for finding needed informa on.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solu ons are tractable only through the use of computers to do many
calcula ons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a func on to a computer and have it return maximum and
minimum values, intervals on which the func on is increasing and decreasing,
the loca ons of rela ve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”266



7.2 Increasing and Decreasing Func ons

In Sec on 7.1 we learned the defini on of rela ve maxima and minima and
found that they occur at cri cal points. We are now learning that func ons can
switch from increasing to decreasing (and vice–versa) at cri cal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a cri cal point corresponds to a maximum, minimum, or neither.
Imagine a func on increasing un l a cri cal point at x = c, a er which it de-
creases. A quick sketch helps confirm that f(c) must be a rela ve maximum. A
similar statement can be made for rela ve minimums. We formalize this con-
cept in a theorem.

Theorem 7.2.2 First Deriva ve Test

Let f be differen able on an interval I and let c be a cri cal number in I.

1. If the sign of f ′ switches from posi ve to nega ve at c, then f(c) is
a rela ve maximum of f.

2. If the sign of f ′ switches from nega ve to posi ve at c, then f(c) is
a rela ve minimum of f.

3. If f ′ is posi ve (or, nega ve) before and a er c, then f(c) is not a
rela ve extrema of f.

Example 7.2.2 Using the First Deriva ve Test
Find the intervals on which f is increasing and decreasing, and use the First
Deriva ve Test to determine the rela ve extrema of f, where

f(x) =
x2 + 3
x− 1

.

S We start by no ng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 7.2.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 7.2.1 to both
intervals of the domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a cri cal value of
f, but we will include it in our list of cri cal values that we find next.

Using the Quo ent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the cri cal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That la er is straigh orward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two cri cal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).
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Figure 7.2.6: A graph of f(x) in Example
7.2.2, showing where f is increasing and
decreasing.

Note: with a bit of prac ce, you might
find that you can fill out sign diagrams
quickly, without needing to use test val-
ues in each interval. One strategy is the
following: start on the far le (or far
right). Determine the sign in the first in-
terval, and work le -to-right (or right-to-
le ). Each me you pass a point where f ′
is zero or undefined, check the factored
expression for f ′. Did this point come
from an even power, or an odd power?
If the power is even, leave the sign un-
changed. If the power is odd, change
the sign. In Example 7.2.2, the cri cal
numbers −1 and 3 come from odd pow-
ers. (Recall (x + 1) = (x + 1)1.) The
ver cal asymptote contributes the even
power (x−1)2 in the denominator. Thus,
we see sign changes at−1 and 3, but the
sign is the same on either side of 1.

Chapter 7 The Graphical Behaviour of Func ons

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computa ons; no ce that the denominator of f ′ is always posi ve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a nega ve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posi ve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.
Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posi ve numerator and (of course) a posi ve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the set (−∞,−1) ∪ (3,∞) and is decreasing
on the set (−1, 1)∪(1, 3). Since at x = −1, the sign of f ′ switched from posi ve
to nega ve, Theorem 7.2.2 states that f(−1) is a rela ve maximum of f. At x =
3, the sign of f ′ switched from nega ve to posi ve, meaning f(3) is a rela ve
minimum. At x = 1, f is not defined, so there is no rela ve extrema at x = 1.

−1 31

f ′ > 0 incr

+

f ′ < 0 decr

−

f ′ < 0 decr

−

f ′ > 0 incr

+

rel.
max

rel.
min

Figure 7.2.5: Sign diagram for f ′ in Example 7.2.2.

This is summarized in the number line shown in Figure 7.2.5. Also, Figure
7.2.6 shows a graph of f, confirming our calcula ons. This figure also shows
f ′, again demonstra ng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is o en tempted to think that func ons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around cri cal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a cri cal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 7.2.3 Using the First Deriva ve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
iden fy the rela ve extrema.

S We again start with taking a deriva ve. Since we know we
want to solve f ′(x) = 0, we will do some algebra a er taking the deriva ve.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).
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Figure 7.2.8: A graph of f(x) in Example
7.2.3, showing where f is increasing and
decreasing.

7.2 Increasing and Decreasing Func ons

This deriva on of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 cri cal values, breaking the number line into
4 subintervals as shown in Figure 7.2.7.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we prac ce finding the sign
of f ′(p) without compu ng an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “nega ve × nega ve × posi ve” giving a posi ve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posi ve factors and one nega ve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.

−1 10

f ′ < 0 incr

−

f ′ > 0 decr

+

f ′ < 0 decr

−

f ′ > 0 incr

+

rel.
min

rel.
min

rel.
max

Figure 7.2.7: Sign diagram for f′ in Example 7.2.3.

Weconclude by sta ng that f is increasing on (−1, 0)∪(1,∞) anddecreasing
on (−∞,−1) ∪ (0, 1). The sign of f ′ changes from nega ve to posi ve around
x = −1 and x = 1, meaning by Theorem 7.2.2 that f(−1) and f(1) are rela ve
minima of f. As the sign of f ′ changes from posi ve to nega ve at x = 0, we
have a rela ve maximum at f(0). Figure 7.2.8 shows a graph of f, confirming our
result. We also graph f ′, highligh ng once more that f is increasing when f ′ > 0
and is decreasing when f ′ < 0.

We have seen how the first deriva ve of a func on helps determine when
the func on is going “up” or “down.” In the next sec on, we will see how the
second deriva ve helps determine how the graph of a func on curves.
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Exercises 7.2
Terms and Concepts

1. In your own words describe what it means for a func on to
be increasing.

2. What does a decreasing func on “look like”?

3. Sketch a graph of a func on on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a func on describing a situa on where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: Func ons always switch from increasing to decreasing,
or decreasing to increasing, at cri cal points.

6. A func on f has deriva ve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informa on?

Problems
In Exercises 7 – 14, a func on f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permi ed) and verify Theorem 7.2.1.

7. f(x) = 2x+ 3

8. f(x) = x2 − 3x+ 5

9. f(x) = cos x

10. f(x) = tan x

11. f(x) = x3 − 5x2 + 7x− 1

12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4

14. f(x) = 1
x2 + 1

In Exercises 15 – 24, a func on f(x) is given.
(a) Give the domain of f.
(b) Find the cri cal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First Deriva ve Test to determine whether

each cri cal point is a rela ve maximum, minimum,
or neither.

15. f(x) = x2 + 2x− 3

16. f(x) = x3 + 3x2 + 3

17. f(x) = 2x3 + x2 − x+ 3

18. f(x) = x3 − 3x2 + 3x− 1

19. f(x) = 1
x2 − 2x+ 2

20. f(x) = x2 − 4
x2 − 1

21. f(x) = x
x2 − 2x− 8

22. f(x) = (x− 2)2/3

x

23. f(x) = sin x cos x on (−π, π).

24. f(x) = x5 − 5x

Review
25. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

26. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We o en state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 7.3.1: A func on f with a concave
up graph. No ce how the slopes of the
tangent lines, when looking from le to
right, are increasing.
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Figure 7.3.2: A func on f with a concave
down graph. No ce how the slopes of the
tangent lines, when looking from le to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admi edly terrible, but it
works.

Note: Geometrically speaking, a func on
is concave up if its graph lies above its tan-
gent lines. A func on is concave down if
its graph lies below its tangent lines.

7.3 Concavity and the Second Deriva ve

7.3 Concavity and the Second Deriva ve
Our study of “nice” func ons con nues. The previous sec on showed how the
first deriva ve of a func on, f ′, can relay important informa on about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its deriva ve, namely f ′′, which is the
second deriva ve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has rela ve maxima and minima where f ′′ = 0 or is undefined.

This sec on explores how knowing informa on about f ′′ gives informa on
about f.

Concavity

We begin with a defini on, then explore its meaning.

Defini on 7.3.1 Concave Up and Concave Down

Let f be differen able on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a func on f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from le to right, the slopes of the tangent lines
will be increasing. Consider Figure 7.3.1, where a concave up graph is shown
along with some tangent lines. No ce how the tangent line on the le is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a func on is decreasing and concave up, then its rate of decrease is slow-
ing; it is “levelling off.” If the func on is increasing and concave up, then the rate
of increase is increasing. The func on is increasing at a faster and faster rate.

Now consider a func on which is concave down. We essen ally repeat the
above paragraphs with slight varia on.

The graph of a func on f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from le to right, the slopes of the tangent
lines will be decreasing. Consider Figure 7.3.2, where a concave down graph is
shown along with some tangent lines. No ce how the tangent line on the le
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a func on is increasing and concave down, then its rate of increase is slow-
ing; it is “levelling off.” If the func on is decreasing and concave down, then the
rate of decrease is decreasing. The func on is decreasing at a faster and faster
rate.

Our defini on of concave up and concave down is given in terms of when
the first deriva ve is increasing or decreasing. We can apply the results of the
previous sec on and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 7.3.1 Test for Concavity

Let f be twice differen able on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.
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Figure 7.3.3: Demonstra ng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the rela on-
ships with the first and second deriva-
ves.

..... 1. 2. 3. 4.

5

.

10

.

15

.

f ′′ > 0

c. up

.

f ′′ > 0

c. up

.

f ′′ < 0

c. down

. x.

y

Figure 7.3.4: A graph of a func on with
its inflec on points marked. The inter-
vals where concave up/down are also in-
dicated.
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Figure 7.3.5: A sign diagram for f ′′ deter-
mining the concavity of f in Example 7.3.1.
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Figure 7.3.6: A graph of f(x) used in Ex-
ample 7.3.1.

Chapter 7 The Graphical Behaviour of Func ons

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a defini on.

Defini on 7.3.2 Point of Inflec on

A point of inflec on is a point on the graph of f at which the concavity
of f changes.

Figure 7.3.4 shows a graph of a func on with inflec on points labelled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posi ve to nega ve (or, nega ve to posi ve) at
x = c. This leads to the following theorem.

Theorem 7.3.2 Points of Inflec on

If (c, f(c)) is a point of inflec on on the graph of f, then either f ′′(c) = 0
or f ′′ is not defined at c.

We have iden fied the concepts of concavity and points of inflec on. It is
now me to prac ce using these concepts; given a func on, we should be able
to find its points of inflec on and iden fy intervals on which it is concave up or
down. We do so in the following examples.

Example 7.3.1 Finding intervals of concave up/down, inflec on points
Let f(x) = x3 − 3x+ 1. Find the inflec on points of f and the intervals on which
it is concave up/down.

S We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflec on points, we use Theorem 7.3.2 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflec on.

This possible inflec on point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous sec on to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflec on point.

The number line in Figure 7.3.5 illustrates the process of determining con-
cavity; Figure 7.3.6 shows a graph of f and f ′′, confirming our results. No ce how
f is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 7.3.2 Finding intervals of concave up/down, inflec on points
Let f(x) = x/(x2 − 1). Find the inflec on points of f and the intervals on which
it is concave up/down.

S We need to find f ′ and f ′′. Using the Quo ent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.
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Figure 7.3.8: A graph of f(x) and f ′′(x) in
Example 7.3.2.
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Figure 7.3.9: A graph of S(t) in Example
7.3.3,modelling the sale of a product over
me.

7.3 Concavity and the Second Deriva ve

To find the possible points of inflec on, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflec on at x = ±1 as
they are not part of the domain, but we must s ll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
7.3.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posi ve. In the
numerator, the (c2 + 3) will be posi ve and the 2c term will be nega ve. Thus
the numerator is nega ve and f ′′(c) is nega ve. We conclude f is concave down
on (−∞,−1).
Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be nega ve, the term (c2 + 3) in the numerator will be posi ve, and
the term (c2 − 1)3 in the denominator will be nega ve. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be posi ve and “small.” Thus
the numerator is posi ve while the denominator is nega ve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).

−1 10

f ′′ < 0 c. down

−

f ′′ > 0 c. up

+

f ′′ < 0 c. down

−

f ′′ > 0 c. up

+

Figure 7.3.7: Sign diagram for f ′′ in Example 7.3.2.

We conclude that f is concave up on (−1, 0)∪ (1,∞) and concave down on
(−∞,−1)∪(0, 1). There is only one point of inflec on, (0, 0), as f is not defined
at x = ±1. Our work is confirmed by the graph of f in Figure 7.3.8. No ce how
f is concave upwhenever f ′′ is posi ve, and concave downwhen f ′′ is nega ve.

Recall that rela ve maxima and minima of f are found at cri cal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the rela ve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflec on points of f.

What does a “rela ve maximum of f ′ ”mean? The deriva ve measures the
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest nega vely–sloped tangent
line.

We u lize this concept in the next example.

Example 7.3.3 Understanding inflec on points
The sales of a certain product over a three-year span are modelled by S(t) =
t4 − 8t2 + 20, where t is the me in years, shown in Figure 7.3.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.
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Figure 7.3.10: A graph of S(t) in Example
7.3.3 along with S ′(t).
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Figure 7.3.11: A graph of f(x) = x4.
Clearly f is always concave up, despite the
fact that f ′′(x) = 0 when x = 0. It this
example, the possible point of inflec on
(0, 0) is not a point of inflec on.
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Figure 7.3.12: Demonstra ng the fact
that rela ve maxima occur when the
graph is concave down and rela ve min-
ima occur when the graph is concave up.

Chapter 7 The Graphical Behaviour of Func ons

S We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Se ng S ′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the nega ve value of t since it does not lie in

the domain of our func on S).
This is both the inflec on point and the point of maximum decrease. This

is the point at which things first start looking up for the company. A er the
inflec on point, it will s ll take some me before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 7.3.10. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “levelling off.”

Not every cri cal point corresponds to a rela ve extrema; f(x) = x3 has a
cri cal point at (0, 0) but no rela ve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflec on” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 7.3.11.

The Second Deriva ve Test

The first deriva ve of a func on gave us a test to find if a cri cal value cor-
responded to a rela ve maximum, minimum, or neither. The second deriva ve
gives us another way to test if a cri cal point is a local maximum or minimum.
The following theorem officially states something that is intui ve: if a cri cal
value occurs in a region where a func on f is concave up, then that cri cal value
must correspond to a rela ve minimum of f, etc. See Figure 7.3.12 for a visual-
iza on of this.

Theorem 7.3.3 The Second Deriva ve Test

Let c be a cri cal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second Deriva ve Test relates to the First Deriva ve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a cri cal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from nega ve
to posi ve at c. This means the func on goes from decreasing to increasing, in-
dica ng a local minimum at c.

Example 7.3.4 Using the Second Deriva ve Test
Let f(x) = 100/x+ x. Find the cri cal points of f and use the Second Deriva ve
Test to label them as rela ve maxima or minima.

S We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the cri cal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a cri cal value.) We find the cri cal values
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Figure 7.3.13: A graph of f(x) in Example
7.3.4. The second deriva ve is evaluated
at each cri cal point. When the graph is
concave up, the cri cal point represents
a local minimum; when the graph is con-
cave down, the cri cal point represents a
local maximum.

7.3 Concavity and the Second Deriva ve

are x = ±10. Evalua ng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evalua ng f ′′(−10) = −0.1 < 0, determining a rela ve maximum
at x = −10. These results are confirmed in Figure 7.3.13.

We have been learning how the first and second deriva ves of a func on
relate informa on about the graph of that func on. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the loca ons of rela ve extrema and inflec on points. In Chapter
5 we saw how limits explained asympto c behaviour. In the next sec on we
combine all of this informa on to produce accurate sketches of func ons.
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Exercises 7.3
Terms and Concepts

1. Sketch a graph of a func on f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a func on f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a func on to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a func on.

4. Is is possible for a func on to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a func on.

Problems

In Exercises 5 – 14, a func on f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permi ed) and verify Theorem 7.3.1.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = sin x

11. f(x) = tan x

12. f(x) = 1
x2 + 1

13. f(x) = 1
x

14. f(x) = 1
x2

In Exercises 15 – 28, a func on f(x) is given.
(a) Find the possible points of inflec on of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

15. f(x) = x2 − 2x+ 1

16. f(x) = −x2 − 5x+ 7

17. f(x) = x3 − x+ 1

18. f(x) = 2x3 − 3x2 + 9x+ 5

19. f(x) = x4

4
+

x3

3
− 2x+ 3

20. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

21. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

22. f(x) = sec x on (−3π/2, 3π/2)

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 42, a func on f(x) is given. Find the cri cal
points of f and use the Second Deriva ve Test, when possi-
ble, to determine the rela ve extrema. (Note: these are the
same func ons as in Exercises 15 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = sec x on (−3π/2, 3π/2)

276



37. f(x) = 1
x2 + 1

38. f(x) = x
x2 − 1

39. f(x) = sin x+ cos x on (−π, π)

40. f(x) = x2ex

41. f(x) = x2 ln x

42. f(x) = e−x2

In Exercises 43 – 56, a func on f(x) is given. Find the x val-
ues where f ′(x) has a rela ve maximum or minimum. (Note:
these are the same func ons as in Exercises 15 – 28.)

43. f(x) = x2 − 2x+ 1

44. f(x) = −x2 − 5x+ 7

45. f(x) = x3 − x+ 1

46. f(x) = 2x3 − 3x2 + 9x+ 5

47. f(x) = x4

4
+

x3

3
− 2x+ 3

48. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

49. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

50. f(x) = sec x on (−3π/2, 3π/2)

51. f(x) = 1
x2 + 1

52. f(x) = x
x2 − 1

53. f(x) = sin x+ cos x on (−π, π)

54. f(x) = x2ex

55. f(x) = x2 ln x

56. f(x) = e−x2
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Chapter 7 The Graphical Behaviour of Func ons

7.4 Curve Sketching

We have been learning how we can understand the behaviour of a func on
based on its first and second deriva ves. While we have been trea ng the prop-
er es of a func on separately (increasing and decreasing, concave up and con-
cave down, etc.), we combine them here to produce an accurate graph of the
func on without plo ng lots of extraneous points.

Why bother? Graphing u li es are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not par cularly fast – it will require
me (but it is not hard). So again: why bother?

We are a emp ng to understand the behaviour of a func on f based on the
informa on given by its deriva ves. While all of a func on’s deriva ves relay
informa on about it, it turns out that “most” of the behaviour we care about is
explained by f ′ and f ′′. Understanding the interac ons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to sta ng that one understands howan engineworks a er looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of func ons and gives a framework for pu ng that
informa on together. It is followed by several examples.

Key Idea 7.4.1 Curve Sketching

To produce an accurate sketch a given func on f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
en re real line then find restric ons, such aswhere a denominator
is 0 or where nega ves appear under the radical.

2. Find the x- and y-intercepts of f, if possible; construct a sign dia-
gram for f.

3. Find the loca on of any ver cal asymptotes of f (usually done in
conjunc on with item 2 above). Use your sign diagram to deter-
mine whether f(x) is approaching∞ or infty on either side of each
ver cal asymptote.

4. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behaviour of the func on.

5. Compute f ′, and find the cri cal points of f.

(con nued)
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7.4 Curve Sketching

Key Idea 7.4.1 Curve Sketching – Con nued

6. Construct a sign diagram for f ′; classify the cri cal points using the
first deriva ve test. Determine the intervals on which f is increas-
ing or decreasing.

7. Compute f ′′ and find the possible points of inflec on of f.

8. Construct a sign diagram for f ′′, and determine the intervals on
which the graph of f is concave up or concave down.

9. Plot the intercepts and asymptotes of f on a set of coordinate axes.
Roughly sketch the behaviour of f near the asymptotes. Then plot
the cri cal points and inflec on points.

10. Sketch the graph of f by connec ng the points plo ed so far with
curves exhibi ng the proper concavity. Sketch asymptotes and x
and y intercepts where applicable.

Example 7.4.1 Curve sketching
Use Key Idea 7.4.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

S We follow the steps outlined in the Key Idea.

1. The domain of f is the en re real line; there are no values x for which f(x)
is not defined.

2. The y-intercept is given by f(0) = 5. Determining the x-intercepts would
involve finding the (quite likely irra onal) zeros of a cubic polynomial, so
we skip this step for now. (We may have to se le for approximate ze-
ros later.) Since we don’t know the zeros of f, we can’t construct a sign
diagram for f.

3. There are no ver cal asymptotes, since the domain of f is R.

4. We determine the end behaviour using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes. (But it is s ll useful to know
the direc on in which the graph is headed at either end.)

5. Find the cri cal points of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
Quadra c Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

6. Construct a sign diagram for f ′. We found that the cri cal points of f are

c1 =
10−

√
37

9
<

10+
√
37

9
= c2.

With f ′(x) = 9(x− c1)(x− c2)we quickly see that f ′(x) > 0 for x < c1 or
x > c2, and f ′(x) < 0 for c1 < x < c2.
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Figure 7.4.4: Sketching f in Example 7.4.1.

Chapter 7 The Graphical Behaviour of Func ons

The sign diagram for f ′ is given by:

c1 c2

+

f ′ > 0 incr

−

f ′ < 0 decr

+

f ′ > 0 incr

Figure 7.4.1: Sign diagram for f ′ in Example 7.4.1.

From the sign diagram, we see that f is increasing on (−∞, c1) ∪ (c2,∞)
(where f ′(x) > 0, and f is decreasing on (c1, c2) (where f ′(x) < 0).
Since f ′ changes from posi ve to nega ve at c1, we know that (c1, f(c1))
is a local maximum, and since f ′ changes from nega ve to posi ve at c2,
we know that (c2, f(c2)) is a local minimum.

7. Find the possible points of inflec on of f. We compute f ′′(x) = 18x− 20.
We have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

8. Construct a sign diagram for f ′′. We have only one zero for f ′′, and we
easily see that f ′′(x) > 0 for x > 10/9, and f ′′(x) < 0 for x < 10/9. The
sign diagram for f ′′ is given below, with the cri cal points also indicated
for reference:

c1c2 10
9

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 7.4.2: Sign diagram for f ′′ in Example 7.4.1.

9. We plot the appropriate points on axes as shown in Figure 7.4.4(a) and
connect the points with straight lines. In Figure 7.4.4(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 7.4.4(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

Example 7.4.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

S We again follow the steps outlined in Key Idea 7.4.1.

1. In determining the domain, we assume it is all real numbers and look for
restric ons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. The numerator of f factors as (x − 2)(x + 1), so f(x) = 0 for x = −1
and x = 2; these are the x-intercepts of f. The y-intercept is given by
f(0) = 1/3.
Our func on has two zeros and two points at which it is undefined. Note
that f(x) changes sign at each of these points, so we need to indicate each
of them in our sign diagram. We use hollow dots to indicate the points at
which f is undefined, giving us the following sign diagram:
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7.4 Curve Sketching

−2 3−1 2

+

f > 0

+

f > 0

+

f > 0

−

f < 0

−

f < 0

Figure 7.4.3: Sign diagram for f in Example 7.4.2.

3. We see from the sign diagram for f in Figure 7.4.3 that f has ver cal asymp-
totes at x = −2 and x = 3; moreover, we can deduce the following
asympto c behaviour: at x = −2

lim
x→−2−

f(x) = +∞ and lim
x→−2+

f(x) = −∞,

and at x = 3

lim
x→3−

f(x) = −∞ and lim
x→3+

f(x) = +∞.

4. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

5. To find the cri cal values of f, we first find f ′(x). Using the Quo ent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

,

so f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not cri cal values. The only cri cal
value is x = 1/2. The sign diagram for f ′ is given as follows:

−2 1
2

3

+

f ′ > 0 incr

+

f ′ > 0 incr

−

f ′ < 0 decr

−

f ′ < 0 decr

Figure 7.4.5: Sign diagram for f ′ in Example 7.4.2.

From the sign diagram for f ′, we see that f ′(x) changes from posi ve to
nega ve at x = 1/2, so we have a local maximum at (1/2, f(1/2)). We
also see that f is increasing on (−∞,−2) ∪ (−2, 1/2) and decreasing on
(1/2, 3) ∪ (3,∞).

6. To find the possible points of inflec on, we find f ′′(x), again employing
the Quo ent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

7. We find that f ′′(x) is never 0 (se ng the numerator equal to 0 and solving
for x, we find the only roots to this quadra c are imaginary) and f ′′ is
undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3. The sign diagram is given by:

−2 3

+

f ′′ > 0 c. up

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 7.4.6: Sign diagram for f ′′ in Example 7.4.2.
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Figure 7.4.9: Sketching f in Example 7.4.2.

Chapter 7 The Graphical Behaviour of Func ons

From the sign diagramwe see that the graphof f is concaveupon (−∞,−2)∪
(3,∞) and concave down on (−2, 3)

8. In Figure 7.4.9(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the func on looks like (these lines effec vely only convey increas-
ing/decreasing informa on). In Figure 7.4.9(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 7.4.9(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 7.4.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

S We again follow Key Idea 7.4.1.

1. We assume that the domain of f is all real numbers and consider restric-
ons. The only restric ons come when the denominator is 0, but this

never occurs. Therefore the domain of f is all real numbers, R.

2. The x-intercepts of f are (−1, 0), and (2, 0), and the y-intercept is (0,−5/2).
The sign diagram of f is given below:

−1 2

+

f > 0

−

f < 0

+

f > 0

Figure 7.4.7: Sign diagram for f in Example 7.4.3.

3. Since the domain of f is R, there are no ver cal asymptotes.

4. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

5. We find the cri cal values of f by se ng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

6. The sign diagram for f ′ is given by:

−4 0

+

f ′ > 0 incr

−

f ′ < 0 decr

+

f ′ > 0 incr

Figure 7.4.8: Sign diagram for f ′ in Example 7.4.3.

From the sign diagram,we see that f ′(x) changes fromposi ve to nega ve
at x = −4, so (−4, f(−4)) is a rela ve maximum, and f ′(x) changes from
nega ve to posi ve at x = 0, so (0, f(0)) is a rela ve minimum. We also
see that f is increasing on (−∞,−4)∪ (0,∞), and decreasing on (−4, 0).
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Figure 7.4.12: Sketching f in Example
7.4.3.

7.4 Curve Sketching

7. We find the possible points of inflec on by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead
approximate the roots (with the help of a computer) at c1 = −5.759,
c2 = −1.305 and c3 = 1.064. The sign diagram for f ′′ is given by:

c1 c2 c3

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 7.4.10: Sign diagram for f ′′ in Example 7.4.3.

8. In Figure 7.4.12(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
7.4.12(b), we add concavity. Figure 7.4.12(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
pu ng than we are. In general, computers graph func ons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connec ng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate no ceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as
Mathema ca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 7.4.11, a graph of y = sin x is given, generated by Mathema ca.
The small points represent each of the places Mathema ca sampled the func-
on. No ce how at the “bends” of sin x, lots of points are used; where sin x

is rela vely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behaviour” is accurate.) In fact, in the interval of
length 0.2 centered around π/2, Mathema ca plots 72 of the 431 points plot-
ted; that is, it plots about 17% of its points in a subinterval that accounts for
about 3% of the total interval length.
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1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 7.4.11: A graph of y = sin x generated byMathema ca.

How doesMathema ca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
deriva ves of a func on work together to provide a measurement of “curvi-
ness.” Mathema ca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this sec on is not “How to graph a func on when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a func on is largely determined by understanding the behaviour of the
func on at a fewkey places.” In Example 7.4.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There aremany applica ons of our understanding of deriva ves beyond curve
sketching. The next chapter explores some of these applica ons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differen a on.
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Exercises 7.4
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of func ons, it is useful to find
the cri cal points.

4. T/F: When sketching graphs of func ons, it is useful to find
the possible points of inflec on.

5. T/F: When sketching graphs of func ons, it is useful to find
the horizontal and ver cal asymptotes.

6. T/F: When sketching graphs of func ons, one need not plot
any points at all.

Problems
In Exercises 7 – 12, prac ce using Key Idea 7.4.1 by applying
the principles to the given func ons with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13 – 26, sketch a graph of the given func on us-
ing Key Idea 7.4.1. Show all work; check your answer with
technology.

13. f(x) = x3 − 2x2 + 4x+ 1

14. f(x) = −x3 + 5x2 − 3x+ 2

15. f(x) = x3 + 3x2 + 3x+ 1

16. f(x) = x3 − x2 − x+ 1

17. f(x) = (x− 2) ln(x− 2)

18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

22. f(x) = x
√
x+ 1

23. f(x) = x2ex

24. f(x) = sin x cos x on [−π, π]

25. f(x) = (x− 3)2/3 + 2

26. f(x) = (x− 1)2/3

x

In Exercises 27 – 30, a func on with the parameters a and b
are given. Describe the cri cal points and possible points of
inflec on of f in terms of a and b.

27. f(x) = a
x2 + b2

28. f(x) = ax2 + bx+ 1

29. f(x) = sin(ax+ b)

30. f(x) = (x− a)(x− b)

31. Given x2 + y2 = 1, use implicit differen a on to find dy
dx

and d2y
dx2 . Use this informa on to jus fy the sketch of the

unit circle.
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We have spent considerable me considering the deriva ves of a func on
and their applica ons. In this sec on, we are going to star ng thinking in “the
other direc on.” That is, given a func on f(x), we are going to consider func ons
F(x) such that F ′(x) = f(x). Here, wewill only consider very basic examples, and
leave most of the heavy li ing to later courses. The importance of an deriva-
ves becomes apparent in Math 1560, once integra on and the Fundamental

Theorem of Calculus have been introduced. More advanced techniques for find-
ing an deriva ves are taught in Math 2560.

7.5 An deriva ves and Indefinite Integra on
Given a func on y = f(x), a differen al equa on is one that incorporates y, x,
and the deriva ves of y. For instance, a simple differen al equa on is:

y ′ = 2x.

Solving a differen al equa on amounts to finding a func on y that sa sfies
the given equa on. Take a moment and consider that equa on; can you find a
func on y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one solu on: y = x2. “Find-

ing another” may have seemed impossible un l one realizes that a func on like
y = x2 + 1 also has a deriva ve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the func on y = x2 + 123, 456, 789 also has a deriva-
ve of 2x. The differen al equa on y ′ = 2x has many solu ons. This leads us

to some defini ons.

Defini on 7.5.1 An deriva ves and Indefinite Integrals

Let a func on f(x) be given. An an deriva ve of f(x) is a func on F(x)
such that F ′(x) = f(x).

The set of all an deriva ves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our defini on: we refer to an an deriva ve of f, as op-
posed to the an deriva ve of f, since there is always an infinite number of them.
We o en use upper-case le ers to denote an deriva ves.

Knowing one an deriva ve of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore an deriva ves, it gives us all
of them.

Theorem 7.5.1 An deriva ve Forms

Let F(x) and G(x) be an deriva ves of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.
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7.5 An deriva ves and Indefinite Integra on

Given a func on f defined on an interval I and one of its an deriva ves F,
we know all an deriva ves of f on I have the form F(x) + C for some constant
C. Using Defini on 7.5.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral nota on.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

Integra on
symbol

.

Differen al
of x

.

One
an deriva ve

.

Constant of
integra on

Figure 7.5.1: Understanding the indefinite integral nota on.

Figure 7.5.1 shows the typical nota on of the indefinite integral. The inte-
gra on symbol,

∫
, is in reality an “elongated S,” represen ng “take the sum.”

We will later see how sums and an deriva ves are related.
The func on we want to find an an deriva ve of is called the integrand. It

contains the differen al of the variable we are integra ngwith respect to. The
∫

symbol and the differen al dx are not “bookends” with a func on sandwiched in
between; rather, the symbol

∫
means “find all an deriva ves of what follows,”

and the func on f(x) and dx are mul plied together; the dx does not “just sit
there.”

Let’s prac ce using this nota on.

Example 7.5.1 Evalua ng indefinite integrals
Evaluate

∫
sin x dx.

S We are asked to find all func ons F(x) such that F ′(x) =
sin x. Some thoughtwill leadus to one solu on: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integra on.
So: ∫

sin x dx = − cos x+ C.

A commonly asked ques on is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of an differen a on is really solving a differen al ques on. The
integral ∫

sin x dx

presents us with a differen al, dy = sin x dx. It is asking: “What is y?” We found
lots of solu ons, all of the form y = − cos x+ C.

Le ng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What func ons have a differen al of the form dy?” The answer
is “Func ons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.
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Understanding all of this is more important later as we try to find an deriva-
ves of more complicated func ons. In this sec on, we will simply explore the

rules of indefinite integra on, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s prac ce once more before sta ng integra on rules.

Example 7.5.2 Evalua ng indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

S We seek a func on F(x) whose deriva ve is 3x2 + 4x + 5.
When taking deriva ves, we can consider func ons term–by–term, so we can
likely do that here.

What func ons have a deriva ve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

What func ons have a deriva ve of 4x? Here the x term is raised to the first
power, so we likely seek a quadra c. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what func ons have a deriva ve of 5? Func ons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integra on; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the deriva ve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both prac cally and
theore cally. In general, taking deriva ves is easier than finding an deriva ves
so checking our work is easy and vital as we learn.

We also see that taking the deriva ve of our answer returns the func on in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

Differen a on “undoes” the work done by an differen a on.

For ease of reference, and to stress the rela onship between deriva ves and
an deriva ves, we include below a list of many of the common differen a on
rules we have learned, along with the corresponding an differen a on rules.
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7.5 An deriva ves and Indefinite Integra on

Theorem 7.5.2 Deriva ves and An deriva ves

Common Differen a on Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 7.5.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant Mul ple

Rule: we can temporarily ignore constants when finding an deriva ves,
just as we did when compu ng deriva ves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mul plied by
5, but “5 mes a constant” is s ll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
7.5.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C
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In prac ce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integra on. There are two impor-
tant things to keep in mind:

1. No ce the restric on that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presen ng an differen a on as the “inverse opera on” of

differen a on. Here is a useful quote to remember:
“Inverse opera ons do the opposite things in the opposite
order.”

When taking a deriva ve using the Power Rule, we first mul ply by
the power, then second subtract 1 from the power. To find the an-
deriva ve, do the opposite things in the opposite order: first add

one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Ini al Value Problems

In Sec on 6.3we saw that the deriva ve of a posi on func on gave a velocity
func on, and the deriva ve of a velocity func on describes accelera on. We
can now go “the other way:” the an deriva ve of an accelera on func on gives
a velocity func on, etc. While there is just one deriva ve of a given func on,
there are infinitely many an deriva ves. Therefore we cannot ask “What is the
velocity of an object whose accelera on is−32 /s2?”, since there is more than
one answer.

We can find the answer if we provide more informa on with the ques on,
as done in the following example. O en the addi onal informa on comes in the
form of an ini al value, a value of the func on that one knows beforehand.

Example 7.5.3 Solving ini al value problems
The accelera on due to gravity of a falling object is −32 /s2. At me t = 3,
a falling object had a velocity of −10 /s. Find the equa on of the object’s
velocity.

S We want to know a velocity func on, v(t). We know two
things:

• The accelera on, i.e., v ′(t) = −32, and

• the velocity at a specific me, i.e., v(3) = −10.

Using the first piece of informa on, we know that v(t) is an an deriva ve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86
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7.5 An deriva ves and Indefinite Integra on

Thus v(t) = −32t+ 86. We can use this equa on to understand the mo on
of the object: when t = 0, the object had a velocity of v(0) = 86 /s. Since the
velocity is posi ve, the object was moving upward.

When did the object begin moving down? Immediately a er v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its accelera on and its velocity at a single point in me.

Example 7.5.4 Solving ini al value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

S We start by finding f ′(t), which is an an deriva ve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the ini al value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integra ng again.

f(t) =
∫

f ′(t) dt =
∫
(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This sec on introduced an deriva ves and the indefinite integral. We found
they are needed when finding a func on given informa on about its deriva-
ve(s). For instance, we found a velocity func on given an accelera on func-
on.
If you con nue on to Math 1560, you will see how posi on and velocity are

unexpectedly related by the areas of certain regions on a graph of the velocity
func on, and how the Fundamental Theoremof Calculus es together areas and
an deriva ves.
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Exercises 7.5
Terms and Concepts
1. Define the term “an deriva ve” in your own words.

2. Is it more accurate to refer to “the” an deriva ve of f(x) or
“an” an deriva ve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse opera ons do the
things in the order.”

5. What is an “ini al value problem”?

6. The deriva ve of a posi on func on is a func-
on.

7. The an deriva ve of an accelera on func on is a
func on.

8. If F(x) is an an deriva ve of f(x), and G(x) is an an deriva-
ve of g(x), give an an deriva ve of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem inves gates why Theorem 7.5.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of an deriva-
ves, depending on whether x > 0 or x < 0. In

one expression, give a formula for
∫

1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given ini al
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10
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36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use informa on gained from the first and second deriva-
ves to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.
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A: A T S P
Chapter 1

Sec on 1.1

1.

Set of Real Interval Region on the
Numbers Nota on Real Number Line

{x | − 1 ≤ x < 5} [−1, 5) −1 5

{x | 0 ≤ x < 3} [0, 3) 0 3

{x | 2 < x ≤ 7} (2, 7] 2 7

{x | − 5 < x ≤ 0} (−5, 0] −5 0

{x | − 3 < x < 3} (−3, 3) −3 3

{x | 5 ≤ x ≤ 7} [5, 7] 5 7

{x | x ≤ 3} (−∞, 3] 3

{x | x < 9} (−∞, 9) 9

{x | x > 4} (4,∞) 4

{x | x ≥ −3} [−3,∞) −3

3. (−1, 1) ∪ [0, 6] = (−1, 6]

5. (−∞, 0) ∩ [1, 5] = ∅

7. (−∞, 5] ∩ [5, 8) = {5}

9. (−∞,−1) ∪ (−1,∞)

11. (−∞, 0) ∪ (0, 2) ∪ (2,∞)

13. (−∞,−4) ∪ (−4, 0) ∪ (0, 4) ∪ (4,∞)

15. (−∞,∞)

17. (−∞, 5] ∪ {6}

19. (−3, 3) ∪ {4}

Sec on 1.2

1. The required points A(−3,−7), B(1.3,−2), C(π,
√
10),

D(0, 8), E(−5.5, 0), F(−8, 4), G(9.2,−7.8), and H(7, 5) are
plo ed in the Cartesian Coordinate Plane below.

x

y

A(−3,−7)

B(1.3,−2)

C(π,
√
10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

3. d = 5,M =
(
−1, 7

2
)

5. d =
√
26,M =

(
1, 3

2
)

7. d =
√
74,M =

( 13
10 ,−

13
10
)

9. d =
√
83,M =

(
4
√
5, 5

√
3

2

)
11. (3+

√
7,−1), (3−

√
7,−1)

13. (−1+
√
3, 0), (−1−

√
3, 0)

15. (−3,−4), 5 miles, (4,−4)

17.

19.

21.

Chapter 2
Sec on 2.1

1. For f(x) = 2x+ 1

• f(3) = 7
• f(−1) = −1
• f
( 3
2
)
= 4

• f(4x) = 8x+ 1
• 4f(x) = 8x+ 4

• f(−x) = −2x+ 1

• f(x− 4) = 2x− 7

• f(x)− 4 = 2x− 3

• f
(
x2
)
= 2x2 + 1

3. For f(x) = 2− x2

• f(3) = −7
• f(−1) = 1
• f
( 3
2
)
= − 1

4

• f(4x) = 2− 16x2

• 4f(x) = 8− 4x2

• f(−x) = 2− x2

• f(x− 4) =
−x2 + 8x− 14

• f(x)− 4 = −x2 − 2

• f
(
x2
)
= 2− x4

5. For f(x) =
x

x− 1



• f(3) =
3
2

• f(−1) =
1
2

• f
(
3
2

)
= 3

• f(4x) =
4x

4x− 1

• 4f(x) =
4x

x− 1

• f(−x) =
x

x+ 1

• f(x− 4) =
x− 4
x− 5

• f(x)− 4 =
x

x− 1
− 4 = 4−3x

x−1

• f
(
x2
)
=

x2

x2 − 1

7. For f(x) = 6

• f(3) = 6
• f(−1) = 6
• f
( 3
2
)
= 6

• f(4x) = 6
• 4f(x) = 24

• f(−x) = 6

• f(x− 4) = 6

• f(x)− 4 = 2

• f
(
x2
)
= 6

9. For f(x) = 2x− 5

• f(2) = −1
• f(−2) = −9
• f(2a) = 4a− 5
• 2f(a) = 4a− 10
• f(a+ 2) = 2a− 1
• f(a) + f(2) = 2a− 6
• f
( 2
a
)
= 4

a − 5 = 4−5a
a

• f(a)
2 = 2a−5

2

• f(a+ h) = 2a+ 2h− 5

11. For f(x) = 2x2 − 1

• f(2) = 7
• f(−2) = 7
• f(2a) = 8a2 − 1
• 2f(a) = 4a2 − 2
• f(a+ 2) = 2a2 + 8a+ 7
• f(a) + f(2) = 2a2 + 6

• f
( 2
a
)
= 8

a2 − 1 = 8−a2
a2

• f(a)
2 = 2a2−1

2

• f(a+ h) = 2a2 + 4ah+ 2h2 − 1

13. For f(x) =
√
2x+ 1

• f(2) =
√
5

• f(−2) is not real
• f(2a) =

√
4a+ 1

• 2f(a) = 2
√
2a+ 1

• f(a+ 2) =
√
2a+ 5

• f(a) + f(2) =
√
2a+ 1+

√
5

• f
( 2
a
)
=
√

4
a + 1 =

√
a+4
a

• f(a)
2 =

√
2a+1
2

• f(a+ h) =
√
2a+ 2h+ 1

15. For f(x) = x
2

• f(2) = 1

• f(−2) = −1
• f(2a) = a
• 2f(a) = a
• f(a+ 2) = a+2

2

• f(a) + f(2) = a
2 + 1 = a+2

2

• f
( 2
a
)
= 1

a

• f(a)
2 = a

4

• f(a+ h) = a+h
2

17. For f(x) = 2x− 1, f(0) = −1 and f(x) = 0 when x = 1
2

19. For f(x) = 2x2 − 6, f(0) = −6 and f(x) = 0 when x = ±
√
3

21. For f(x) =
√
x+ 4, f(0) = 2 and f(x) = 0 when x = −4

23. For f(x) = 3
4−x , f(0) =

3
4 and f(x) is never equal to 0

25. (a) f(−4) = 1
(b) f(−3) = 2
(c) f(3) = 0
(d) f(3.001) = 1.999
(e) f(−3.001) = 1.999
(f) f(2) =

√
5

27. (−∞,∞)

29. (−∞,−1) ∪ (−1,∞)

31. (−∞,∞)

33. (−∞,−6) ∪ (−6, 6) ∪ (6,∞)

35. (−∞, 3]

37. [−3,∞)

39.
[ 1
3 ,∞

)
41. (−∞,∞)

43.
[ 1
3 , 6
)
∪ (6,∞)

45. (−∞, 8) ∪ (8,∞)

47. (8,∞)

49. (−∞, 8) ∪ (8,∞)

51. [0, 5) ∪ (5,∞)

Sec on 2.2

1. For f(x) = 3x+ 1 and g(x) = 4− x

• (f+ g)(2) = 9
• (f− g)(−1) = −7
• (g− f)(1) = −1
• (fg)

( 1
2
)
= 35

4

•
(

f
g

)
(0) = 1

4

•
(

g
f

)
(−2) = − 6

5

3. For f(x) = x2 − x and g(x) = 12− x2

• (f+ g)(2) = 10
• (f− g)(−1) = −9
• (g− f)(1) = 11
• (fg)

( 1
2
)
= − 47

16

•
(

f
g

)
(0) = 0

•
(

g
f

)
(−2) = 4

3

5. For f(x) =
√
x+ 3 and g(x) = 2x− 1

• (f+ g)(2) = 3+
√
5

• (f−g)(−1) = 3+
√
2

• (g− f)(1) = −1
• (fg)

( 1
2
)
= 0

•
(

f
g

)
(0) = −

√
3

•
(

g
f

)
(−2) = −5

A.2



7. For f(x) = 2x and g(x) =
1

2x+ 1

• (f+ g)(2) = 21
5

• (f− g)(−1) = −1
• (g− f)(1) = − 5

3

• (fg)
( 1
2
)
= 1

2

•
(

f
g

)
(0) = 0

•
(

g
f

)
(−2) = 1

12

9. For f(x) = x2 and g(x) =
1
x2

• (f+ g)(2) = 17
4

• (f− g)(−1) = 0
• (g− f)(1) = 0
• (fg)

( 1
2
)
= 1

•
(

f
g

)
(0) is undefined.

•
(

g
f

)
(−2) = 1

16

11. For f(x) = 2x+ 1 and g(x) = x− 2

• (f+ g)(x) = 3x− 1 Domain: (−∞,∞)

• (f− g)(x) = x+ 3 Domain: (−∞,∞)

• (fg)(x) = 2x2 − 3x− 2 Domain: (−∞,∞)

•
(

f
g

)
(x) = 2x+1

x−2 Domain: (−∞, 2) ∪ (2,∞)

13. For f(x) = x2 and g(x) = 3x− 1

• (f+ g)(x) = x2 + 3x− 1 Domain: (−∞,∞)

• (f− g)(x) = x2 − 3x+ 1 Domain: (−∞,∞)

• (fg)(x) = 3x3 − x2 Domain: (−∞,∞)

•
(

f
g

)
(x) = x2

3x−1 Domain:
(
−∞, 1

3
)
∪
( 1
3 ,∞

)
15. For f(x) = x2 − 4 and g(x) = 3x+ 6

• (f+ g)(x) = x2 + 3x+ 2 Domain: (−∞,∞)

• (f− g)(x) = x2 − 3x− 10 Domain: (−∞,∞)

• (fg)(x) = 3x3 + 6x2 − 12x− 24 Domain: (−∞,∞)

•
(

f
g

)
(x) = x−2

3 Domain: (−∞,−2) ∪ (−2,∞)

17. For f(x) = x
2 and g(x) = 2

x

• (f+ g)(x) = x2+4
2x Domain: (−∞, 0) ∪ (0,∞)

• (f− g)(x) = x2−4
2x Domain: (−∞, 0) ∪ (0,∞)

• (fg)(x) = 1 Domain: (−∞, 0) ∪ (0,∞)

•
(

f
g

)
(x) = x2

4 Domain: (−∞, 0) ∪ (0,∞)

19. For f(x) = x and g(x) =
√
x+ 1

• (f+ g)(x) = x+
√
x+ 1 Domain: [−1,∞)

• (f− g)(x) = x−
√
x+ 1 Domain: [−1,∞)

• (fg)(x) = x
√
x+ 1 Domain: [−1,∞)

•
(

f
g

)
(x) = x√

x+1 Domain: (−1,∞)

21. (f+ g)(−3) = 2

23. (fg)(−1) = 0

25. (g− f)(3) = 3

27.
(

f
g

)
(−2) does not exist

29.
(

f
g

)
(2) = 4

31.
(
g
f

)
(3) = −2

33. For f(x) = x2 and g(x) = 2x+ 1,

• (g ◦ f)(0) = 1

• (f ◦ g)(−1) = 1

• (f ◦ f)(2) = 16

• (g ◦ f)(−3) = 19

• (f ◦ g)
( 1
2
)
= 4

• (f ◦ f)(−2) = 16

35. For f(x) = 4− 3x and g(x) = |x|,

• (g ◦ f)(0) = 4

• (f ◦ g)(−1) = 1

• (f ◦ f)(2) = 10

• (g ◦ f)(−3) = 13

• (f ◦ g)
( 1
2
)
= 5

2

• (f ◦ f)(−2) = −26

37. For f(x) = 4x+ 5 and g(x) =
√
x,

• (g ◦ f)(0) =
√
5

• (f ◦ g)(−1) is not real

• (f ◦ f)(2) = 57

• (g ◦ f)(−3) is not real

• (f ◦ g)
( 1
2
)
= 5+ 2

√
2

• (f ◦ f)(−2) = −7

39. For f(x) = 6− x− x2 and g(x) = x
√
x+ 10,

• (g ◦ f)(0) = 24

• (f ◦ g)(−1) = 0

• (f ◦ f)(2) = 6

• (g ◦ f)(−3) = 0

• (f◦g)
( 1
2
)
= 27−2

√
42

8

• (f ◦ f)(−2) = −14

41. For f(x) = 3
1−x and g(x) = 4x

x2+1 ,

• (g ◦ f)(0) = 6
5

• (f ◦ g)(−1) = 1
• (f ◦ f)(2) = 3

4

• (g ◦ f)(−3) = 48
25

• (f ◦ g)
( 1
2
)
= −5

• (f ◦ f)(−2) is
undefined

43. For f(x) = 2x
5−x2 and g(x) =

√
4x+ 1,

• (g ◦ f)(0) = 1

• (f ◦ g)(−1) is not real

• (f ◦ f)(2) = − 8
11

• (g ◦ f)(−3) =
√
7

• (f ◦ g)
( 1
2
)
=

√
3

• (f ◦ f)(−2) = 8
11

45. For f(x) = 2x+ 3 and g(x) = x2 − 9

• (g ◦ f)(x) = 4x2 + 12x, domain: (−∞,∞)

• (f ◦ g)(x) = 2x2 − 15, domain: (−∞,∞)

• (f ◦ f)(x) = 4x+ 9, domain: (−∞,∞)

47. For f(x) = x2 − 4 and g(x) = |x|

• (g ◦ f)(x) = |x2 − 4|, domain: (−∞,∞)

• (f ◦ g)(x) = |x|2 − 4 = x2 − 4, domain: (−∞,∞)

• (f ◦ f)(x) = x4 − 8x2 + 12, domain: (−∞,∞)

49. For f(x) = |x+ 1| and g(x) =
√
x

• (g ◦ f)(x) =
√

|x+ 1|, domain: (−∞,∞)

• (f ◦ g)(x) = |
√
x+ 1| =

√
x+ 1, domain: [0,∞)

• (f ◦ f)(x) = ||x+ 1|+ 1| = |x+ 1|+ 1, domain: (−∞,∞)

51. For f(x) = |x| and g(x) =
√
4− x

• (g ◦ f)(x) =
√

4− |x|, domain: [−4, 4]
• (f ◦ g)(x) = |

√
4− x| =

√
4− x, domain: (−∞, 4]
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• (f ◦ f)(x) = ||x|| = |x|, domain: (−∞,∞)

53. For f(x) = 3x− 1 and g(x) = 1
x+3

• (g ◦ f)(x) = 1
3x+2 , domain:

(
−∞,− 2

3
)
∪
(
− 2

3 ,∞
)

• (f ◦ g)(x) = − x
x+3 , domain: (−∞,−3) ∪ (−3,∞)

• (f ◦ f)(x) = 9x− 4, domain: (−∞,∞)

55. For f(x) = x
2x+1 and g(x) = 2x+1

x

• (g ◦ f)(x) = 4x+1
x , domain:(

−∞,− 1
2
)
∪
(
− 1

2 , 0),∪(0,∞
)

• (f ◦ g)(x) = 2x+1
5x+2 , domain:(

−∞,− 2
5
)
∪
(
− 2

5 , 0
)
∪ (0,∞)

• (f ◦ f)(x) = x
4x+1 , domain:(

−∞,− 1
2
)
∪
(
− 1

2 ,−
1
4
)
∪
(
− 1

4 ,∞
)

57. (h ◦ g ◦ f)(x) = |
√
−2x| =

√
−2x, domain: (−∞, 0]

59. (g ◦ f ◦ h)(x) =
√

−2|x|, domain: {0}

61. (f ◦ h ◦ g)(x) = −2|
√
x| = −2

√
x, domain: [0,∞)

63. Let f(x) = 2x+ 3 and g(x) = x3, then p(x) = (g ◦ f)(x).

65. Let f(x) = 2x− 1 and g(x) =
√
x, then h(x) = (g ◦ f)(x).

67. Let f(x) = 5x+ 1 and g(x) = 2
x , then r(x) = (g ◦ f)(x).

69. Let f(x) = |x| and g(x) = x+1
x−1 , then q(x) = (g ◦ f)(x).

71. Let f(x) = 2x and g(x) = x+1
3−2x , then v(x) = (g ◦ f)(x).

73. f−1(x) =
x+ 2
6

75. f−1(x) = 3x− 10

77. f−1(x) = 1
3 (x− 5)2 + 1

3 , x ≥ 5

79. f−1(x) = 1
9 (x+ 4)2 + 1, x ≥ −4

81. f−1(x) = 1
3 x

5 + 1
3

83. f−1(x) = 5+
√
x+ 25

85. f−1(x) = 3−
√
x+ 4

87. f−1(x) =
4x− 3

x

89. f−1(x) =
4x+ 1
2− 3x

91. f−1(x) =
−3x− 2
x+ 3

Chapter 3
Sec on 3.1

1. y+ 1 = 3(x− 3)
y = 3x− 10

3. y+ 1 = −(x+ 7)
y = −x− 8

5. y− 4 = − 1
5 (x− 10)

y = − 1
5 x+ 6

7. y− 117 = 0
y = 117

9. y− 2
√
3 = −5(x−

√
3)

y = −5x+ 7
√
3

11. y = − 5
3 x

13. y = 8
5 x− 8

15. y = 5

17. y = − 5
4 x+

11
8

19. y = −x

21. f(x) = 2x− 1
slope: m = 2
y-intercept: (0,−1)
x-intercept:

( 1
2 , 0
)

x

y

−2−1 1 2

−3

−2

−1

1

2

3

23. f(x) = 3
slope: m = 0
y-intercept: (0, 3)
x-intercept: none

x

y

−2−1 1 2

1

2

3

4

25. f(x) = 2
3 x+

1
3

slope: m = 2
3

y-intercept:
(
0, 1

3
)

x-intercept:
(
− 1

2 , 0
)

x

y

−2 1 2
−1

1

2

27. x = −6 or x = 6

29. x = −3 or x = 11

31. x = − 1
2 or x = 1

10

33. x = −3 or x = 3

35. x = − 3
2

37. x = 1

39. x = −1, x = 0 or x = 1

41. x = −2 or x = 2

43. x = − 1
7 or x = 1

45. x = 1

47. x = 1
5 or x = 5
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49. f(x) = |x|+ 4
No zeros
No x-intercepts
y-intercept (0, 4)
Domain (−∞,∞)
Range [4,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Rela ve and absolute minimum at (0, 4)
No rela ve or absolute maximum

x

y

−4−3−2−1 1 2 3 4

1

2

3

4

5

6

7

8

51. f(x) = −3|x|
f(0) = 0
x-intercept (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range (−∞, 0]
Increasing on (−∞, 0]
Decreasing on [0,∞)
Rela ve and absolute maximum at (0, 0)
No rela ve or absolute minimum

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

53. f(x) = 1
3 |2x− 1|

f
( 1
2
)
= 0

x-intercepts
( 1
2 , 0
)

y-intercept
(
0, 1

3
)

Domain (−∞,∞)
Range [0,∞)
Decreasing on

(
−∞, 1

2
]

Increasing on
[ 1
2 ,∞

)
Rela ve and absolute min. at

( 1
2 , 0
)

No rela ve or absolute maximum

x

y

−3−2−1 1 2 3 4

1

2

55. f(x) =
|2− x|
2− x

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞, 2) ∪ (2,∞)
Range {−1, 1}
Constant on (−∞, 2)
Constant on (2,∞)
Absolute minimum at every point (x,−1) where x > 2
Absolute maximum at every point (x, 1) where x < 2
Rela ve maximum AND minimum at every point on the graph

x

y

−3−2−1 1 2 3 4 5−1

1

57. Re-write f(x) = |x+ 2| − x as

f(x) =
{

−2x− 2 if x < −2
2 if x ≥ −2

No zeros
No x-intercepts
y-intercept (0, 2)
Domain (−∞,∞)
Range [2,∞)
Decreasing on (−∞,−2]
Constant on [−2,∞)
Absolute minimum at every point (x, 2) where x ≥ −2
No absolute maximum
Rela ve minimum at every point (x, 2) where x ≥ −2
Rela ve maximum at every point (x, 2) where x > −2

x

y

−3−2−1 1 2

1

2

3

59. Re-write f(x) = |x+ 4|+ |x− 2| as

f(x) =

 −2x− 2 if x < −4
6 if −4 ≤ x < 2

2x+ 2 if x ≥ 2
No zeros
No x-intercept
y-intercept (0, 6)
Domain (−∞,∞)
Range [6,∞)
Decreasing on (−∞,−4]
Constant on [−4, 2]
Increasing on [2,∞)
Absolute minimum at every point (x, 6) where−4 ≤ x ≤ 2
No absolute maximum
Rela ve minimum at every point (x, 6) where−4 ≤ x ≤ 2
Rela ve maximum at every point (x, 6) where−4 < x < 2
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x

y

−5−4−3−2−1 1 2 3

1

2

3

4

5

6

7

8

61. f(x) = −(x+ 2)2 = −x2 − 4x− 4
x-intercept (−2, 0)
y-intercept (0,−4)
Domain: (−∞,∞)
Range: (−∞, 0]
Increasing on (−∞,−2]
Decreasing on [−2,∞)
Vertex (−2, 0) is a maximum
Axis of symmetry x = −2

x

y

−4−3−2−1

−8
−7
−6
−5
−4
−3
−2
−1

63. f(x) = −2(x+ 1)2 + 4 = −2x2 − 4x+ 2
x-intercepts (−1−

√
2, 0) and (−1+

√
2, 0)

y-intercept (0, 2)
Domain: (−∞,∞)
Range: (−∞, 4]
Increasing on (−∞,−1]
Decreasing on [−1,∞)
Vertex (−1, 4) is a maximum
Axis of symmetry x = −1

x

y

−3 −2 −1 1

−4
−3
−2
−1

1
2
3
4

65. f(x) = −3x2 + 4x− 7 = −3
(
x− 2

3
)2 − 17

3
No x-intercepts
y-intercept (0,−7)
Domain: (−∞,∞)
Range:

(
−∞,− 17

3
]

Increasing on
(
−∞, 2

3
]

Decreasing on
[ 2
3 ,∞

)
Vertex

( 2
3 ,−

17
3
)
is a maximum

Axis of symmetry x = 2
3

x

y

1 2

−14
−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

67. f(x) = −3x2 + 5x+ 4 = −3
(
x− 5

6
)2

+ 73
12

x-intercepts
(

5−
√
73

6 , 0
)
and

(
5+

√
73

6 , 0
)

y-intercept (0, 4)
Domain: (−∞,∞)
Range:

(
−∞, 73

12
]

Increasing on
(
−∞, 5

6
]

Decreasing on
[ 5
6 ,∞

)
Vertex

( 5
6 ,

73
12
)
is a maximum

Axis of symmetry x = 5
6

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

5

6

69.
(
−∞,− 12

7
)
∪
( 8
7 ,∞

)
71. (−∞, 1] ∪ [3,∞)

73. (−∞,∞)

75. [3, 4) ∪ (5, 6]
77. (−∞,−4) ∪

( 2
3 ,∞

)
79. (−∞,−5)
81.

[
−7, 5

3
]

83. (−∞,∞)

85.
(
−∞,− 1

4
)
∪
(
− 1

4 ,∞
)

87. (−∞,∞)

89. No solu on
91. (0, 1)

93.
(
−∞, 5−

√
73

6

]
∪
[
5+

√
73

6 ,∞
)

95.
[
−2−

√
7,−2+

√
7
]
∪ [1, 3]

97. (−∞,−1] ∪ {0} ∪ [1,∞)

99. (−∞, 1) ∪
(
2, 3+

√
17

2

)
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Sec on 3.2

1. f(x) = 4− x− 3x2
Degree 2
Leading term−3x2
Leading coefficient−3
Constant term 4
As x → −∞, f(x) → −∞
As x → ∞, f(x) → −∞

3. q(r) = 1− 16r4
Degree 4
Leading term−16r4
Leading coefficient−16
Constant term 1
As r → −∞, q(r) → −∞
As r → ∞, q(r) → −∞

5. f(x) =
√
3x17 + 22.5x10 − πx7 + 1

3
Degree 17
Leading term

√
3x17

Leading coefficient
√
3

Constant term 1
3

As x → −∞, f(x) → −∞
As x → ∞, f(x) → ∞

7. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)
Degree 4
Leading term x4
Leading coefficient 1
Constant term 24
As x → −∞, P(x) → ∞
As x → ∞, P(x) → ∞

9. f(x) = −2x3(x+ 1)(x+ 2)2
Degree 6
Leading term−2x6
Leading coefficient−2
Constant term 0
As x → −∞, f(x) → −∞
As x → ∞, f(x) → −∞

11. a(x) = x(x+ 2)2
x = 0 mul plicity 1
x = −2 mul plicity 2

x

y

−2 −1

13. f(x) = −2(x− 2)2(x+ 1)
x = 2 mul plicity 2
x = −1 mul plicity 1

x

y

−2 −1 1 2

15. F(x) = x3(x+ 2)2
x = 0 mul plicity 3
x = −2 mul plicity 2

x

y

−2 −1

17. Q(x) = (x+ 5)2(x− 3)4
x = −5 mul plicity 2
x = 3 mul plicity 4

x

y

−5−4−3−2−1 1 2 3 4 5

19. H(t) = (3− t)
(
t2 + 1

)
x = 3 mul plicity 1

t

y

1 2 3

21.

23. t2 + 6t− 6

25. 6y2 + y− 1

27. −4t3 − 3t2 + 8t+ 6

29. 125a6 − 27

31. 7− z2

33. x3 − 5

35. h2 + 2xh− 2h

37. quo ent: 5x− 8, remainder: 9

39. quo ent: 3, remainder: 18

41. quo ent:
t
2
−

1
4
, remainder: −

15
4

43. quo ent:
2
3
, remainder: −x+

1
3

45. quo ent: w, remainder: 2w

47. quo ent:1 t2 + t 3√4+ 2 3√2, remainder: 0

49.

51.

53.

Sec on 3.3
1Note: 3√16 = 2 3√2.
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1. f(x) =
x

3x− 6
Domain: (−∞, 2) ∪ (2,∞)
Ver cal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 1

3
As x → −∞, f(x) → 1

3
−

As x → ∞, f(x) → 1
3
+

3. f(x) =
x

x2 + x− 12
=

x
(x+ 4)(x− 3)

Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
Ver cal asymptotes: x = −4, x = 3
As x → −4−, f(x) → −∞
As x → −4+, f(x) → ∞
As x → 3−, f(x) → −∞
As x → 3+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

5. f(x) =
x+ 7

(x+ 3)2
Domain: (−∞,−3) ∪ (−3,∞)
Ver cal asymptote: x = −3
As x → −3−, f(x) → ∞
As x → −3+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

7. f(x) =
4x

x2 + 4
Domain: (−∞,∞)
No ver cal asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

9. f(x) =
x2 − x− 12
x2 + x− 6

=
x− 4
x− 2

Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
Ver cal asymptote: x = 2
As x → 2−, f(x) → ∞
As x → 2+, f(x) → −∞
Hole at

(
−3, 7

5
)

Horizontal asymptote: y = 1
As x → −∞, f(x) → 1+
As x → ∞, f(x) → 1−

11. f(x) =
x3 + 2x2 + x
x2 − x− 2

=
x(x+ 1)
x− 2

Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
Ver cal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x → −∞, the graph is below y = x+ 3
As x → ∞, the graph is above y = x+ 3

13. f(x) =
2x2 + 5x− 3

3x+ 2
Domain:

(
−∞,− 2

3
)
∪
(
− 2

3 ,∞
)

Ver cal asymptote: x = − 2
3

As x → − 2
3
−
, f(x) → ∞

As x → − 2
3
+
, f(x) → −∞

No holes in the graph
Slant asymptote: y = 2

3 x+
11
9

As x → −∞, the graph is above y = 2
3 x+

11
9

As x → ∞, the graph is below y = 2
3 x+

11
9

15. f(x) =
−5x4 − 3x3 + x2 − 10
x3 − 3x2 + 3x− 1

=
−5x4 − 3x3 + x2 − 10

(x− 1)3
Domain: (−∞, 1) ∪ (1,∞)
Ver cal asymptotes: x = 1
As x → 1−, f(x) → ∞
As x → 1+, f(x) → −∞
No holes in the graph
Slant asymptote: y = −5x− 18
As x → −∞, the graph is above y = −5x− 18
As x → ∞, the graph is below y = −5x− 18

17. f(x) =
18− 2x2

x2 − 9
= −2

Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
No ver cal asymptotes
Holes in the graph at (−3,−2) and (3,−2)
Horizontal asymptote y = −2
As x → ±∞, f(x) = −2

19. x = − 6
7

21. x = −1

23. No solu on

25. (−2,∞)

27. (−1, 0) ∪ (1,∞)

29. (−∞,−3) ∪ (−3, 2) ∪ (4,∞)

31. (−1, 0] ∪ (2,∞)

33. (−∞, 1] ∪ [2,∞)

35. (−∞,−3) ∪
[
−2

√
2, 0
]
∪
[
2
√
2, 3
)

37. [−3, 0) ∪ (0, 4) ∪ [5,∞)

Sec on 3.4

1. log2(8) = 3

3. log4(32) = 5
2

5. log 4
25

( 5
2
)
= − 1

2

7. ln(1) = 0

9. (25)
1
2 = 5

11.
( 4
3
)−1

= 3
4

13. 10−1 = 0.1

15. e−
1
2 = 1√

e

17. log6(216) = 3

19. log6
( 1
36
)
= −2

21. log36(216) = 3
2

23. log 1
6
(216) = −3

25. log 1
1000000 = −6

27. ln
(
e3
)
= 3

29. log6(1) = 0

31. log36
( 4√36

)
= 1

4

33. 36log36(216) = 216

35. ln(e5) = 5
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37. log
(

3√105
)
= 5

3

39. log5
(
3log3 5

)
= 1

41. log2
(
3− log3(2)

)
= −1

43. (−∞,∞)

45. (5,∞)

47. (−2,−1) ∪ (1,∞)

49. (4, 7)

51. (−∞,∞)

53. (−∞,−7) ∪ (1,∞)

55. (0, 125) ∪ (125,∞)

57. (−∞,−3) ∪
( 1
2 , 2
)

59. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

61. Domain of g: (−∞,∞)
Range of g: (−20,∞)

x

y

H.A. y = −20

−3−2 1 2 3
−10

10

20

30

40

50

60

70

80

63. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−10 10 20 30

10

20

30

40

50

60

70

80

65. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9

67. Domain of g: (−20,∞)
Range of g: (−∞,∞)

y

x

V.A.x = −20−3

−2

1

2

3

−10 10 20 30 40 50 60 70 80 90 100

69. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x
−10

10

20

30

10 20 30 40 50 60 70 80

71. 7− log2(x2 + 4)

73. log(1.23) + 37

75. log5(x− 5) + log5(x+ 5)

77. l−2+ log 1
3
(x) + log 1

3
(y− 2) + log 1

3
(y2 + 2y+ 4)

79. 2 log3(x)− 4− 4 log3(y)

81. 12− 12 log6(x)− 4 log6(y)

83. −2+ 2
3 log 1

2
(x)− log 1

2
(y)− 1

2 log 1
2
(z)

85. ln(x4y2)

87. log3
(

x
y2

)
89. ln

(
x2
y3z4

)
91. ln

(
3
√

z
xy

)
93. log

( 1000
x
)

95. ln
(
x
√
e
)

97. log2
(
x
√
x− 1

)
99. 7x−1 = e(x−1) ln(7)

101.
( 2
3
)x

= ex ln(
2
3 )

103. log3(12) ≈ 2.26186

105. log6(72) ≈ 2.38685

107. log 3
5
(1000) ≈ −13.52273

Chapter 4
Sec on 4.1
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1. cos(0) = 1, sin(0) = 0

3. cos
(
π

3

)
=

1
2
, sin

(
π

3

)
=

√
3
2

5. cos
(
2π
3

)
= −

1
2
, sin

(
2π
3

)
=

√
3
2

7. cos(π) = −1, sin(π) = 0

9. cos
(
5π
4

)
= −

√
2
2

, sin
(
5π
4

)
= −

√
2
2

11. cos
(
3π
2

)
= 0, sin

(
3π
2

)
= −1

13. cos
(
7π
4

)
=

√
2
2

, sin
(
7π
4

)
= −

√
2
2

15. cos
(
−
13π
2

)
= 0, sin

(
−
13π
2

)
= −1

17. cos
(
−
3π
4

)
= −

√
2
2

, sin
(
−
3π
4

)
= −

√
2
2

19. cos
(
10π
3

)
= −

1
2
, sin

(
10π
3

)
= −

√
3
2

21. If sin(θ) = −
7
25

with θ in Quadrant IV, then cos(θ) =
24
25

.

23. If sin(θ) =
5
13

with θ in Quadrant II, then cos(θ) = −
12
13

.

25. If sin(θ) = −
2
3
with θ in Quadrant III, then cos(θ) = −

√
5
3

.

27. If sin(θ) =
2
√
5

5
and

π

2
< θ < π, then cos(θ) = −

√
5
5

.

29. If sin(θ) = −0.42 and π < θ <
3π
2
, then

cos(θ) = −
√
0.8236 ≈ −0.9075.

31. sin(θ) =
1
2
when θ =

π

6
+ 2πk or θ =

5π
6

+ 2πk for any integer
k.

33. sin(θ) = 0 when θ = πk for any integer k.

35. sin(θ) =
√
3
2

when θ =
π

3
+ 2πk or θ =

2π
3

+ 2πk for any
integer k.

37. sin(θ) = −1 when θ =
3π
2

+ 2πk for any integer k.

39. cos(θ) = −1.001 never happens

Sec on 4.2

1. cos(0) = 1, sin(0) = 0

3. cos
(
π

3

)
=

1
2
, sin

(
π

3

)
=

√
3
2

5. cos
(
2π
3

)
= −

1
2
, sin

(
2π
3

)
=

√
3
2

7. cos(π) = −1, sin(π) = 0

9. cos
(
5π
4

)
= −

√
2
2

, sin
(
5π
4

)
= −

√
2
2

11. cos
(
3π
2

)
= 0, sin

(
3π
2

)
= −1

13. cos
(
7π
4

)
=

√
2
2

, sin
(
7π
4

)
= −

√
2
2

15. cos
(
−
13π
2

)
= 0, sin

(
−
13π
2

)
= −1

17. cos
(
−
3π
4

)
= −

√
2
2

, sin
(
−
3π
4

)
= −

√
2
2

19. cos
(
10π
3

)
= −

1
2
, sin

(
10π
3

)
= −

√
3
2
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21. sin(θ) = 3
5 , cos(θ) = − 4

5 , tan(θ) = − 3
4 , csc(θ) =

5
3 , sec(θ) =

− 5
4 , cot(θ) = − 4

3

23. sin(θ) = 24
25 , cos(θ) =

7
25 , tan(θ) =

24
7 , csc(θ) = 25

24 , sec(θ) =
25
7 , cot(θ) = 7

24

25. sin(θ) = −
√
91
10 , cos(θ) = − 3

10 , tan(θ) =
√
91
3 , csc(θ) =

− 10
√
91

91 , sec(θ) = − 10
3 , cot(θ) = 3

√
91

91

27. sin(θ) = − 2
√
5

5 , cos(θ) =
√
5
5 , tan(θ) = −2, csc(θ) =

−
√
5
2 , sec(θ) =

√
5, cot(θ) = − 1

2

29. sin(θ) = −
√
6
6 , cos(θ) = −

√
30
6 , tan(θ) =

√
5
5 , csc(θ) =

−
√
6, sec(θ) = −

√
30
5 , cot(θ) =

√
5

31. sin(θ) =
√
5
5 , cos(θ) = 2

√
5

5 , tan(θ) = 1
2 , csc(θ) =√

5, sec(θ) =
√
5
2 , cot(θ) = 2

33. sin(θ) = −
√
110
11 , cos(θ) = −

√
11
11 , tan(θ) =

√
10, csc(θ) =

−
√
110
10 , sec(θ) = −

√
11, cot(θ) =

√
10
10

35. tan(θ) =
√
3 when θ =

π

3
+ πk for any integer k

37. csc(θ) = −1 when θ =
3π
2

+ 2πk for any integer k.

39. tan(θ) = 0 when θ = πk for any integer k

41. csc(θ) = 2 when θ =
π

6
+ 2πk or θ =

5π
6

+ 2πk for any integer
k.

43. tan(θ) = −1 when θ =
3π
4

+ πk for any integer k

45. csc(θ) = −
1
2
never happens

47. tan(θ) = −
√
3 when θ =

2π
3

+ πk for any integer k

49. cot(θ) = −1 when θ =
3π
4

+ πk for any integer k

51. tan(t) =
√
3
3

when t =
π

6
+ πk for any integer k

53. csc(t) = 0 never happens

55. tan(t) = −
√
3
3

when t =
5π
6

+ πk for any integer k

57. csc(t) =
2
√
3

3
when t =

π

3
+ 2πk or t =

2π
3

+ 2πk for any
integer k

59.

61.

63.

65.

67.

69.

71.

73.

75.

77.

79.

81.

83.

85.

87.

89.

91.

93.

95.

97.

99.

101.

103.

Sec on 4.3

1.

3.

5.

7. cos(75◦) =
√
6−

√
2

4

9. sin(105◦) =
√
6+

√
2

4

11. cot(255◦) =
√
3− 1

√
3+ 1

= 2−
√
3

13. cos
(
13π
12

)
= −

√
6+

√
2

4

15. tan
(
13π
12

)
=

3−
√
3

3+
√
3
= 2−

√
3

17. tan
(
17π
12

)
= 2+

√
3

19. cot
(
11π
12

)
= −(2+

√
3)

21. sec
(
−

π

12

)
=

√
6−

√
2

23. (a) cos(α+ β) = −
4+ 7

√
2

30

(b) sin(α+ β) =
28−

√
2

30

(c) tan(α+ β) =
−28+

√
2

4+ 7
√
2

=
63− 100

√
2

41

(d) cos(α− β) =
−4+ 7

√
2

30

(e) sin(α− β) = −
28+

√
2

30

(f) tan(α− β) =
28+

√
2

4− 7
√
2
= −

63+ 100
√
2

41

25. (a) csc(α− β) = −
5
4

(b) sec(α+ β) =
125
117

(c) cot(α+ β) =
117
44

27.

29.

31.

33.

35.

37.
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39. cos(75◦) =

√
2−

√
3

2

41. cos(67.5◦) =

√
2−

√
2

2

43. tan(112.5◦) = −

√
2+

√
2

2−
√
2
= −1−

√
2

45. sin
( π

12

)
=

√
2−

√
3

2

47. sin
(
5π
8

)
=

√
2+

√
2

2

49. • sin(2θ) = −
336
625

• sin
(

θ
2

)
=

√
2

10

• cos(2θ) =
527
625

• cos
(

θ
2

)
= −

7
√
2

10

• tan(2θ) = −
336
527

• tan
(

θ
2

)
= −

1
7

51. • sin(2θ) =
120
169

• sin
(

θ
2

)
=

3
√
13

13

• cos(2θ) = −
119
169

• cos
(

θ
2

)
= −

2
√
13

13

• tan(2θ) = −
120
119

• tan
(

θ
2

)
= −

3
2

53. • sin(2θ) =
24
25

• sin
(

θ
2

)
=

√
5
5

• cos(2θ) = −
7
25

• cos
(

θ
2

)
=

2
√
5

5

• tan(2θ) = −
24
7

• tan
(

θ
2

)
=

1
2

55. • sin(2θ) = −
120
169

• sin
(

θ
2

)
=

√
26
26

• cos(2θ) =
119
169

• cos
(

θ
2

)
= −

5
√
26

26

• tan(2θ) = −
120
119

• tan
(

θ
2

)
= −

1
5

57. • sin(2θ) = −
4
5

• sin
(

θ
2

)
=

√
50− 10

√
5

10

• cos(2θ) = −
3
5

• cos
(

θ
2

)
= −

√
50+ 10

√
5

10

• tan(2θ) =
4
3

• tan
(

θ
2

)
= −

√
5−

√
5

5+
√
5
=

5− 5
√
5

10
59.

61.

63.

65.

67.

69.

71.

73.

75.
cos(5θ)− cos(9θ)

2

77.
cos(4θ) + cos(8θ)

2

79.
sin(2θ) + sin(4θ)

2

81. −2 cos
(
9
2
θ

)
sin
(
5
2
θ

)
83. 2 cos(4θ) sin(5θ)

85. −
√
2 sin

(
θ −

π

4

)
87.

89.

91.
14x

x2 + 49
93.

95.

97.

99.

101.

Sec on 4.4

1. y = 3 sin(x)
Period: 2π
Amplitude: 3
Phase Shi : 0
Ver cal Shi : 0

x

y

π
2

π 3π
2

2π

−3

3
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3. y = −2 cos(x)
Period: 2π
Amplitude: 2
Phase Shi : 0
Ver cal Shi : 0

x

y

π
2

π 3π
2

2π

−2

2

5. y = − sin
(
x+

π

3

)
Period: 2π
Amplitude: 1
Phase Shi : −

π

3
Ver cal Shi : 0

x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

7. y = −
1
3
cos
(
1
2
x+

π

3

)
Period: 4π
Amplitude:

1
3

Phase Shi : −
2π
3

Ver cal Shi : 0

x

y

− 2π
3

π
3

4π
3

7π
3

10π
3

− 1
3

1
3

9. y = sin
(
−x−

π

4

)
− 2

Period: 2π
Amplitude: 1
Phase Shi : −

π

4
(You need to use

y = − sin
(
x+

π

4

)
− 2 to find this.)

Ver cal Shi : −2

x

y

− 9π
4 − 7π

4 − 5π
4 − 3π

4
−π

4
π
4

3π
4

5π
4

7π
4

−3

−2

−1

11. y = −
3
2
cos
(
2x+

π

3

)
−

1
2

Period: π
Amplitude:

3
2

Phase Shi : −
π

6
Ver cal Shi : −

1
2

x

y

−π
6

π
12

π
3

7π
12

5π
6

−2

− 1
2

1

13. y = tan
(
x−

π

3

)
Period: π

x

y

−π
6

π
12

π
3

7π
12

5π
6−1

1

15. y =
1
3
tan(−2x− π) + 1

is equivalent to
y = −

1
3
tan(2x+ π) + 1

via the Even / Odd iden ty for tangent.
Period:

π

2
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x

y

− 3π
4 − 5π

8
−π

2 − 3π
8

−π
4

4
3

1
2
3

17. y = − csc
(
x+

π

3

)
Start with y = − sin

(
x+

π

3

)
Period: 2π

x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

19. y = csc(2x− π)
Start with y = sin(2x− π)
Period: π

x

y

π
2

3π
4

π 5π
4

3π
2

−1

1

21. y = csc
(
−x−

π

4

)
− 2

Start with y = sin
(
−x−

π

4

)
− 2

Period: 2π

x

y

−π
4

π
4

3π
4

5π
4

7π
4

−3

−2

−1

23. y = −11 cot
(
1
5
x
)

Period: 5π

x

y

5π
4

5π
2

15π
4

5π
−11

11

25. f(x) =
√
2 sin(x) +

√
2 cos(x) + 1 = 2 sin

(
x+

π

4

)
+ 1 =

2 cos
(
x+

7π
4

)
+ 1

27. f(x) = − sin(x) + cos(x)− 2 =
√
2 sin

(
x+

3π
4

)
− 2 =

√
2 cos

(
x+

π

4

)
− 2

29. f(x) = 2
√
3 cos(x)− 2 sin(x) = 4 sin

(
x+

2π
3

)
=

4 cos
(
x+

π

6

)
31. f(x) = −

1
2
cos(5x)−

√
3
2

sin(5x) = sin
(
5x+

7π
6

)
=

cos
(
5x+

2π
3

)
33. f(x) =

5
√
2

2
sin(x)−

5
√
2

2
cos(x) = 5 sin

(
x+

7π
4

)
=

5 cos
(
x+

5π
4

)
35.
37.
39.
41.
43.

A.14



45.

47.

49.

Sec on 4.5

1. arcsin (−1) = −
π

2

3. arcsin

(
−
√
2
2

)
= −

π

4

5. arcsin (0) = 0

7. arcsin

(√
2
2

)
=

π

4

9. arcsin (1) =
π

2

11. arccos

(
−
√
3
2

)
=

5π
6

13. arccos
(
−
1
2

)
=

2π
3

15. arccos
(
1
2

)
=

π

3

17. arccos

(√
3
2

)
=

π

6

19. arctan
(
−
√
3
)
= −

π

3

21. arctan

(
−
√
3
3

)
= −

π

6

23. arctan

(√
3
3

)
=

π

6

25. arctan
(√

3
)
=

π

3

27. arccot (−1) =
3π
4

29. arccot (0) =
π

2

31. arccot (1) =
π

4

33. arcsec (2) =
π

3

35. arcsec
(√

2
)
=

π

4

37. arcsec

(
2
√
3

3

)
=

π

6

39. arcsec (1) = 0

41. arcsec (−2) =
4π
3

43. arcsec

(
−
2
√
3

3

)
=

7π
6

45. arccsc (−2) =
7π
6

47. arccsc

(
−
2
√
3

3

)
=

4π
3

49. arcsec (−2) =
2π
3

51. arcsec

(
−
2
√
3

3

)
=

5π
6

53. arccsc (−2) = −
π

6

55. arccsc

(
−
2
√
3

3

)
= −

π

3

57. sin
(
arcsin

(
1
2

))
=

1
2

59. sin
(
arcsin

(
3
5

))
=

3
5

61. sin
(
arcsin

(
5
4

))
is undefined.

63. cos
(
arccos

(
−
1
2

))
= −

1
2

65. cos (arccos (−0.998)) = −0.998

67. tan (arctan (−1)) = −1

69. tan
(
arctan

(
5
12

))
=

5
12

71. tan (arctan (3π)) = 3π

73. cot
(
arccot

(
−
√
3
))

= −
√
3

75. cot (arccot (−0.001)) = −0.001

77. sec (arcsec (2)) = 2

79. sec
(
arcsec

(
1
2

))
is undefined.

81. sec (arcsec (117π)) = 117π

83. csc

(
arccsc

(
−
2
√
3

3

))
= −

2
√
3

3

85. csc (arccsc (1.0001)) = 1.0001

87. arcsin
(
sin
(
π

6

))
=

π

6

89. arcsin
(
sin
(
3π
4

))
=

π

4

91. arcsin
(
sin
(
4π
3

))
= −

π

3

93. arccos
(
cos
(
2π
3

))
=

2π
3

95. arccos
(
cos
(
−
π

6

))
=

π

6

97. arctan
(
tan
(
π

3

))
=

π

3
99. arctan (tan (π)) = 0

101. arctan
(
tan
(
2π
3

))
= −

π

3

103. arccot
(
cot
(
−
π

4

))
=

3π
4

105. arccot
(
cot
(
3π
2

))
=

π

2

107. arcsec
(
sec
(
π

4

))
=

π

4

109. arcsec
(
sec
(
5π
6

))
=

7π
6

111. arcsec
(
sec
(
5π
3

))
=

π

3
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113. arccsc
(
csc
(
5π
4

))
=

5π
4

115. arccsc
(
csc
(
−
π

2

))
=

3π
2

117. arcsec
(
sec
(
11π
12

))
=

13π
12

119. arcsec
(
sec
(
π

4

))
=

π

4

121. arcsec
(
sec
(
5π
6

))
=

5π
6

123. arcsec
(
sec
(
5π
3

))
=

π

3

125. arccsc
(
csc
(
5π
4

))
= −

π

4

127. arccsc
(
csc
(
−
π

2

))
= −

π

2

129. arcsec
(
sec
(
11π
12

))
=

11π
12

131. sin
(
arccos

(
−
1
2

))
=

√
3
2

133. sin (arctan (−2)) = −
2
√
5

5

135. sin (arccsc (−3)) = −
1
3

137. cos
(
arctan

(√
7
))

=

√
2
4

139. cos (arcsec (5)) =
1
5

141. tan
(
arccos

(
−
1
2

))
= −

√
3

143. tan (arccot (12)) =
1
12

145. cot

(
arccos

(√
3
2

))
=

√
3

147. cot (arctan (0.25)) = 4

149. sec
(
arcsin

(
−
12
13

))
=

13
5

151. sec

(
arccot

(
−
√
10
10

))
= −

√
11

153. csc
(
arcsin

(
3
5

))
=

5
3

155. sin
(
arcsin

(
5
13

)
+

π

4

)
=

17
√
2

26

157. tan
(
arctan(3) + arccos

(
−
3
5

))
=

1
3

159. sin
(
2 arccsc

(
13
5

))
=

120
169

161. cos
(
2 arcsin

(
3
5

))
=

7
25

163. cos
(
2 arccot

(
−
√
5
))

=
2
3

165. sin (arccos (x)) =
√
1− x2 for−1 ≤ x ≤ 1

167. tan (arcsin (x)) =
x

√
1− x2

for−1 < x < 1

169. csc (arccos (x)) =
1

√
1− x2

for−1 < x < 1

171. sin (2 arccos (x)) = 2x
√
1− x2 for−1 ≤ x ≤ 1

173. sin(arccos(2x)) =
√
1− 4x2 for− 1

2 ≤ x ≤ 1
2

175. cos
(
arcsin

( x
2

))
=

√
4− x2

2
for−2 ≤ x ≤ 2

177. sin(2 arcsin(7x)) = 14x
√
1− 49x2 for−

1
7
≤ x ≤

1
7

179. cos(2 arcsin(4x)) = 1− 32x2 for−
1
4
≤ x ≤

1
4

181. sin (arcsin(x) + arccos(x)) = 1 for−1 ≤ x ≤ 1

183. tan (2 arcsin(x)) =
2x
√
1− x2

1− 2x2
for x in(

−1,−
√
2
2

)
∪
(
−
√
2
2

,

√
2
2

)
∪
(√

2
2

, 1

)
2

Chapter 5
Sec on 5.1

1. Answers will vary.

3. F

5. Answers will vary.

7. −1

9. Limit does not exist

11. 1.5

13. Limit does not exist.

15. 1

17.

h f(a+h)−f(a)
h

−0.1 −7
−0.01 −7
0.01 −7
0.1 −7

The limit seems to be exactly 7.

19.

h f(a+h)−f(a)
h

−0.1 4.9
−0.01 4.99
0.01 5.01
0.1 5.1

The limit is approx. 5.

21.

h f(a+h)−f(a)
h

−0.1 29.4
−0.01 29.04
0.01 28.96
0.1 28.6

The limit is approx. 29.

23.

h f(a+h)−f(a)
h

−0.1 −0.998334
−0.01 −0.999983
0.01 −0.999983
0.1 −0.998334

The limit is approx. −1.

Sec on 5.2

1. Answers will vary.
2The equivalence for x = ±1 can be verified independently of the deriva on of the formula, but Calculus is required to fully understand what is

happening at those x values. You’ll see what we mean when you work through the details of the iden ty for tan(2t). For now, we exclude x = ±1
from our answer.
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3. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

5. 9

7. 0

9. 3

11. 3

13. 1

15. 0

17. 7

19. 1/2

21. Limit does not exist

23. 2

25. π2+3π+5
5π2−2π−3 ≈ 0.6064

27. −8

29. 10

31. −3/2

33. 0

35. 1

37. 3

39. 1

41. (a) Apply Part 1 of Theorem 5.2.1.
(b) Apply Theorem 5.2.6; g(x) = x

x is the same as g(x) = 1
everywhere except at x = 0. Thus lim

x→0
g(x) = lim

x→0
1 = 1.

(c) The func on f(x) is always 0, so g
(
f(x)
)
is never defined as

g(x) is not defined at x = 0. Therefore the limit does not
exist.

(d) The Composi on Rule requires that lim
x→0

g(x) be equal to
g(0). They are not equal, so the condi ons of the
Composi on Rule are not sa sfied, and hence the rule is
not violated.

Sec on 5.3

1. The func on approaches different values from the le and right;
the func on grows without bound; the func on oscillates.

3. F

5. (a) 2
(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e) 0
(f) 0

9. (a) 2
(b) 2
(c) 2
(d) 2

11. (a) 2

(b) 2

(c) 2

(d) 0

(e) 2

(f) 2

(g) 2

(h) Not defined

13. (a) 2

(b) −4

(c) Does not exist.

(d) 2

15. (a) 0

(b) 0

(c) 0

(d) 0

(e) 2

(f) 2

(g) 2

(h) 2

17. (a) 1− cos2 a = sin2 a

(b) sin2 a

(c) sin2 a

(d) sin2 a

19. (a) 4

(b) 4

(c) 4

(d) 3

21. (a) −1

(b) 1

(c) Does not exist

(d) 0

23. 2/3

25. −9

Sec on 5.4

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞
(b) ∞

11. (a) 1

(b) 0

(c) 1/2

(d) 1/2

13. (a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.
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(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; ver cal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; ver cal asymptotes at x = −1, 0.

23. No horizontal or ver cal asymptotes.

25. ∞

27. −∞

29. Solu on omi ed.

31. Yes. The only “ques onable” place is at x = 3, but the le and
right limits agree.

Sec on 5.5

1. Answers will vary.

3. A root of a func on f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes
(c) No; f(2) is not defined.

19. (a) Yes
(b) Yes

21. (a) Yes
(b) Yes

23. (−∞,∞)

25. [−2, 2]

27. (−∞,−
√
6] and [

√
6,∞)

29. (−∞,∞)

31. (0,∞)

33. (−∞, 0]

35. Yes, by the Intermediate Value Theorem.

37. We cannot say; the Intermediate Value Theorem only applies to
func on values between−10 and 10; as 11 is outside this range,
we do not know.

39. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

41. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

43. (a) 20
(b) 25
(c) Limit does not exist
(d) 25

45. Answers will vary.

Chapter 6
Sec on 6.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 0

9. f ′(t) = −3

11. h′(x) = 3x2

13. r ′(x) = −1
x2

15. (a) y = 6
(b) x = −2

17. (a) y = −3x+ 4
(b) y = 1/3(x− 7)− 17

19. (a) y = 48(x− 4) + 64
(b) y = − 1

48 (x− 4) + 64

21. (a) y = −1/4(x+ 2)− 1/2
(b) y = 4(x+ 2)− 1/2

23. y = 8.1(x− 3) + 16

25. y = 7.77(x− 2) + e2, or y = 7.77(x− 2) + 7.39.

27. (a) Approxima ons will vary; they should match (c) closely.
(b) f ′(x) = 2x
(c) At (−1, 0), slope is−2. At (0,−1), slope is 0. At (2, 3),

slope is 4.
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33. (a) Approximately on (−2, 0) and (2,∞).
(b) Approximately on (−∞,−2) and (0, 2).
(c) Approximately at x = 0, ±2.
(d) Approximately on (−∞,−1) and (1,∞).
(e) Approximately on (−1, 1).
(f) Approximately at x = ±1.

35. limh→0+
f(0+h)−f(0)

h = 0; note also that limx→0+ f ′(x) = 0. So f
is differen able at x = 0.
limh→0−

f(1+h)−f(1)
h = −∞; note also that

limx→1− f ′(x) = −∞. So f is not differen able at x = 1.
f is differen able on [0, 1), not its en re domain.

37. Approximately 24.

39. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]
(d) [−

√
5,
√
5]

Sec on 6.2

1. Velocity

3. Linear func ons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. /s2

13. (a) thousands of dollars per car
(b) It is likely that P(0) < 0. That is, nega ve profit for not

producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

Sec on 6.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity func on, and f ′′(x) is accelera on.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

29. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

31. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

33. Tangent line: y = 2(x− 1)
Normal line: y = −1/2(x− 1)

35. Tangent line: y = x− 1
Normal line: y = −x+ 1

37. Tangent line: y =
√
2(x− π

4 )−
√
2

Normal line: y = −1√
2
(x− π

4 )−
√
2

39. The tangent line to f(x) = ex at x = 0 is y = x+ 1; thus
e0.1 ≈ y(0.1) = 1.1.

Sec on 6.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. f ′(x) = sin x+ x cos x

17. f ′(x) = ex ln x+ ex 1x

19. g′(x) = −12
(x−5)2

21. h′(x) = − csc2 x− ex

23. h′(t) = 14t+ 6

25. f ′(x) =
(
6x+ 8

)
ex +

(
3x2 + 8x+ 7

)
ex

27. f ′(x) = 7

29. f ′(x) = sin2(x)+cos2(x)+3 cos(x)
(cos(x)+3)2

31. f ′(x) = −x sin x−cos x
x2 + tan x−x sec2 x

tan2 x

33. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t

35. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x

37. Tangent line: y = 2x+ 2
Normal line: y = −1/2x+ 2

39. Tangent line: y = 4
Normal line: x = 2

41. x = 3/2

43. f ′(x) is never 0.

45. f ′′(x) = 2 cos x− x sin x

47. f ′′(x) = cot2 x csc x+ csc3 x
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Sec on 6.5

1. T

3. F

5. T

7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)

11. f ′(x) = 3
(
ln x+ x2

)
2( 1x + 2x)

13. f ′(x) = 4
(
x+ 1

x
)3(1− 1

x2
)

15. g′(x) = 5 sec2(5x)

17. g ′(t) = cos
(
t5 + 1

t
) (

5t4 − 1
t3

)
19. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)

21. f ′(x) = 2/x

23. g′(r) = ln 4 · 4r

25. g′(t) = 0

27. f ′(x) =
(3t+2)

(
(ln 2)2t

)
−(2t+3)

(
(ln 3)3t

)
(3t+2)2

29. f ′(x) = 2x
2
(ln 3·3x

2
2x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

31. f ′(x) =
5(x2+ x)4(2x+1)(3x4+2x)3+3(x2+ x)5(3x4+2x)2(12x3+2)

33. f ′(x) = 3 cos(3x+ 4) cos(5− 2x) + 2 sin(3x+ 4) sin(5− 2x)

35. f ′(x) = 4(5x−9)3 cos(4x+1)−15 sin(4x+1)(5x−9)2
(5x−9)6

37. Tangent line: y = 0
Normal line: x = 0

39. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

41. In both cases the deriva ve is the same: 1/x.

43. (a) ◦ F/mph
(b) The sign would be nega ve; when the wind is blowing at

10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Chapter 7
Sec on 7.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: none; the func on isn’t defined here. B: abs. max & rel. max C:
rel. min D: none; the func on isn’t defined here. E: none F: rel.
min G: rel. max

9. f ′(0) = 0

11. f ′(π/2) = 0 f ′(3π/2) = 0

13. f ′(2) is not defined f ′(6) = 0

15. f ′(0) = 0

17. min: (−0.5, 3.75)
max: (2, 10)

19. min: (π/4, 3
√
2/2)

max: (π/2, 3)

21. min: (
√
3, 2

√
3)

max: (5, 28/5)

23. min: (π,−eπ)

max: (π/4,
√
2eπ/4
2 )

25. min: (1, 0)
max: (e, 1/e)

27. dy
dx =

y(y−2x)
x(x−2y)

29. 3x2 + 1

Sec on 7.2

1. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
x = 2.

5. False; for instance, y = x3 is always increasing though it has a
cri cal point at x = 0.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. domain: (−∞,∞)

c.p. at c = −1;
decreasing on (−∞,−1);
increasing on (−1,∞);
rel. min at x = −1.

17. domain=(−∞,∞)

c.p. at c = 1
6 (−1±

√
7);

decreasing on ( 16 (−1−
√
7), 1

6 (−1+
√
7)));

increasing on (−∞, 1
6 (−1−

√
7)) ∪ ( 16 (−1+

√
7),∞);

rel. min at x = 1
6 (−1+

√
7);

rel. max at x = 1
6 (−1−

√
7).

19. domain=(−∞,∞)

c.p. at c = 1;
decreasing on (1,∞)

increasing on (−∞, 1);
rel. max at x = 1.

21. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞)

no c.p.;
decreasing on en re domain, (−∞,−2) ∪ (−2, 4) ∪ (4,∞)
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23. domain=(−∞,∞)

c.p. at c = −3π/4,−π/4, π/4, 3π/4;
decreasing on (−3π/4,−π/4) ∪ (π/4, 3π/4);
increasing on (−π,−3π/4) ∪ (−π/4, π/4) ∪ (3π/4, π);
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

25. c = 1/2

Sec on 7.3

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Possible points of inflec on: none; concave up on (−∞,∞)

17. Possible points of inflec on: x = 0; concave down on (−∞, 0);
concave up on (0,∞)

19. Possible points of inflec on: x = −2/3, 0; concave down on
(−2/3, 0); concave up on (−∞,−2/3) ∪ (0,∞)

21. Possible points of inflec on: x = 1; concave up on (−∞,∞)

23. Possible points of inflec on: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) ∪ (1/

√
3,∞)

25. Possible points of inflec on: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) ∪ (3π/4, π)

27. Possible points of inflec on: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. max: x = 0

39. max: x = π/4; min: x = −3π/4

41. min: x = 1/
√
e

43. f ′ has no maximal or minimal value.

45. f ′ has a minimal value at x = 0

47. Possible points of inflec on: x = −2/3, 0; f ′ has a rela ve min
at: x = 0 ; rela ve max at: x = −2/3

49. f ′ has no rela ve extrema

51. f ′ has a rela ve max at x = −1/
√
3; rela ve min at x = 1/

√
3

53. f ′ has a rela ve min at x = 3π/4; rela ve max at x = −π/4

55. f ′ has a rela ve min at x = 1/
√
e3 = e−3/2

Sec on 7.4

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts and draw the
appropriate line.

9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. Cri cal point: x = 0 Points of inflec on: ±b/
√
3

29. Cri cal points: x = nπ/2−b
a , where n is an odd integer Points of

inflec on: (nπ − b)/a, where n is an integer.

31. dy
dx = −x/y, so the func on is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posi ve when y < 0 and is
nega ve when y > 0. Hence the func on is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Sec on 7.5

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3/4x4 + C

11. 10/3x3 − 2x+ C

13. s+ C

15. −3/(t) + C

17. tan θ + C

19. sec x− csc x+ C

21. 3t/ ln 3+ C

23. 4/3t3 + 6t2 + 9t+ C

25. x6/6+ C

27. ax+ C

29. − cos x+ 3

31. x4 − x3 + 7

33. 7x/ ln 7+ 1− 49/ ln 7

35. 7x3
6 − 9x

2 + 40
3

37. θ − sin(θ)− π + 4

39. 3x− 2

41. dy = (2xex cos x+ x2ex cos x− x2ex sin x)dx
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Index

∈, 2
/∈, 2
x-axis, 10
x-coordinate, 10
y-axis, 10
y-coordinate, 10

abscissa, 10
absolute maximum, 257
absolute minimum, 257
absolute value

defini on of, 46
proper es of, 47

accelera on, 227
amplitude, 141
angle

reference, 108
an deriva ve, 286
arccosecant

calculus friendly
defini on of, 162
graph of, 162
proper es of, 162

trigonometry friendly
defini on of, 160
graph of, 159
proper es of, 160

arccosine
defini on of, 154
graph of, 153
proper es of, 154

arccotangent
defini on of, 157
graph of, 156
proper es of, 157

arcsecant
calculus friendly
defini on of, 162
graph of, 162
proper es of, 162

trigonometry friendly
defini on of, 160
graph of, 159
proper es of, 160

arcsine
defini on of, 154
graph of, 153
proper es of, 154

arctangent
defini on of, 157
graph of, 156

proper es of, 157
argument

of a func on, 17
of a logarithm, 92
of a trigonometric func on, 139

asymptote
horizontal, 198
ver cal, 196

asymptote
horizontal
formal defini on of, 75
intui ve defini on of, 75
loca on of, 77

slant
determina on of, 79
formal defini on of, 79

slant (oblique), 79
ver cal
formal defini on of, 75
intui ve defini on of, 75
loca on of, 76

Bisec on Method, 209

Cartesian coordinate plane, 10
Cartesian coordinates, 10
Chain Rule, 248

nota on, 252
change of base formulas, 99
circular func on, 115
codomain, 17
Cofunc on Iden es, 125
common base, 87
common logarithm, 89
complex number

defini on of, 4
set of, 4

composite func on
defini on of, 26

concave down, 271
concave up, 271
concavity, 271

inflec on point, 271
test for, 271

constant func on
as a horizontal line, 44

Constant Mul ple Rule
of deriva ves, 234
of integra on, 289

constant term of a polynomial, 57
con nuous, 60
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con nuous func on, 204
proper es, 207

coordinates
Cartesian, 10

cosecant
graph of, 143
of an angle, 115
proper es of, 145

cosine
graph of, 139
of an angle, 105, 115
proper es of, 138

cotangent
graph of, 147
of an angle, 115
proper es of, 149

cri cal number, 259
cri cal point, 259
curve sketching, 278

decreasing func on, 264
finding intervals, 265

degree of a polynomial, 57
dependent variable, 17
deprecia on, 87
deriva ve

accelera on, 227
as a func on, 219
at a point, 215
basic rules, 231
Chain Rule, 248, 252
Constant Mul ple Rule, 234
Constant Rule, 231
exponen al func ons, 252
First Deriv. Test, 267
Generalized Power Rule, 249
higher order, 235
interpreta on, 236

interpreta on, 225
mo on, 227
normal line, 217
nota on, 219, 235
Power Rule, 231, 243
Product Rule, 238
Quo ent Rule, 240
second, 235
Second Deriv. Test, 274
Sum/Difference Rule, 234
tangent line, 215
third, 235
trigonometric func ons, 241
velocity, 227

diagram
Venn Diagram, 3

Difference Iden ty
for cosine, 123, 128
for sine, 126, 128
for tangent, 128

differen able, 215
discon nuity, 207

discon nuity
essen al, 208
infinite, 208
jump, 208
removable, 208

discriminant
of a quadra c equa on, 52
trichotomy, 52

distance
defini on, 13
distance formula, 14

domain, 17
domain

implied, 19
Double Angle Iden es, 128

empty set, 3, 4
end behaviour

of f(x) = axn, n even, 59
of f(x) = axn, n odd, 60
of a func on graph, 58
polynomial, 62

Even/Odd Iden es, 123
exponen al func on

algebraic proper es of, 95
change of base formula, 99
common base, 87
defini on of, 86
graphical proper es of, 87
inverse proper es of, 95
natural base, 87
one-to-one proper es of, 95

extrema
absolute, 257
and First Deriv. Test, 267
and Second Deriv. Test, 274
finding, 260
rela ve, 258

Extreme Value Theorem, 257
extreme values, 257

First Deriva ve Test, 267
floor func on, 204
frequency

of a sinusoid, 141
func on

absolute value, 46
argument, 17
arithme c, 23
as a process, 17, 30
circular, 115
composite
defini on of, 26

constant, 44
con nuous, 60
defini on, 17
dependent variable of, 17
difference, 23
exponen al, 86
independent variable of, 17



inverse
defini on of, 30
proper es of, 31
solving for, 34
uniqueness of, 31

linear, 43
logarithmic, 89
nota on, 17
one-to-one, 32
periodic, 138
piecewise, 46
polynomial, 56
product, 23
quadra c, 49
quo ent, 23
ra onal, 73
smooth, 60
sum, 23

fundamental cycle
of y = cos(x), 139

Generalized Power Rule, 249
graph

hole in, 76

Half-Angle Formulas, 131
hole

in a graph, 76
loca on of, 76

horizontal asymptote
formal defini on of, 75
intui ve defini on of, 75
loca on of, 77

Horizontal Line Test (HLT), 32

implied domain of a func on, 19
increasing func on, 264

finding intervals, 265
indefinite integral, 286
independent variable, 17
indeterminate form, 171, 197
inflec on point, 272
ini al value problem, 290
integer

defini on of, 4
set of, 4

integra on
indefinite, 286
nota on, 287
Power Rule, 290
Sum/Difference Rule, 289

Intermediate Value Theorem, 208
Intermediate Value Theorem

polynomial zero version, 60
intersec on of two sets, 2
interval

defini on of, 6
nota on for, 6

inverse
of a func on
defini on of, 30

proper es of, 31
solving for, 34
uniqueness of, 31

inver bility
func on, 32

inver ble
func on, 30

irra onal number
defini on of, 4
set of, 4

leading coefficient of a polynomial, 57
leading term of a polynomial, 57
limit

at infinity, 198
defini on, 176
difference quo ent, 175
does not exist, 174, 189
indeterminate form, 171, 197
informal defini on, 176
le handed, 188
of infinity, 194
one sided, 188
proper es, 178
pseudo-defini on, 172
right handed, 188
Squeeze Theorem, 181

line
linear func on, 43
point-slope form, 43
slope of, 41
slope-intercept form, 43

linear func on, 43
logarithm

algebraic proper es of, 96
change of base formula, 99
common, 89
general, “base b”, 89
graphical proper es of, 90
inverse proper es of, 95
natural, 89
one-to-one proper es of, 95

maximum
absolute, 257
and First Deriv. Test, 267
and Second Deriv. Test, 274
rela ve/local, 258

midpoint
defini on of, 15
midpoint formula, 15

minimum
absolute, 257
and First Deriv. Test, 267, 274
rela ve/local, 258

mul plicity
effect on the graph of a polynomial, 63
of a zero, 63

natural base, 87
natural logarithm, 89



natural number
defini on of, 4
set of, 4

Newton’s Law of Cooling, 88
normal line, 217

oblique asymptote, 79
one-to-one func on, 32
ordered pair, 10
ordinate, 10
origin, 10

parabola
graph of a quadra c func on, 49
vertex, 49

period
of a func on, 138

periodic func on, 138
phase, 141
phase shi , 141
point of inflec on, 272
point-slope form of a line, 43
polynomial func on

constant term, 57
defini on of, 56
degree, 57
end behaviour, 58
leading coefficient, 57
leading term, 57
zero
mul plicity, 63

Power Reduc on Formulas, 130
Power Rule

differen a on, 231, 238, 243
integra on, 290

power rule
for absolute value, 47
for exponen al func ons, 95
for logarithms, 96

product rule
for absolute value, 47
for exponen al func ons, 95
for logarithms, 96

Product to Sum Formulas, 133
Pythagorean Iden es, 117

quadrants, 12
quadra c formula, 51
quadra c func on

defini on of, 49
general form, 50
standard form, 50

Quo ent Iden es, 116
Quo ent Rule, 240
quo ent rule

for absolute value, 47
for exponen al func ons, 95
for logarithms, 96

rate of change
slope of a line, 42

ra onal func ons, 73
ra onal number

defini on of, 4
set of, 4

real number
defini on of, 3, 4
set of, 3, 4

Reciprocal Iden es, 116
reference angle, 108
Reference Angle Theorem

for cosine and sine, 109
reflec on

of a point, 13

secant
graph of, 143
of an angle, 115
proper es of, 145

Second Deriva ve Test, 274
set

defini on of, 1
empty, 3, 4
exclusion, 2
inclusion, 2
intersec on, 2
roster method, 1
set-builder nota on, 1
sets of numbers, 4
union, 2
verbal descrip on, 1

set-builder nota on, 1
sign diagram, 265
sign diagram

polynomial func on, 61
sine

graph of, 139
of an angle, 105, 115
proper es of, 138

sinusoid
amplitude, 141
graph of, 141
phase shi , 141

slant asymptote, 79
slant asymptote

determina on of, 79
formal defini on of, 79

slope
defini on, 41
of a line, 41
rate of change, 42

slope-intercept form of a line, 43
smooth, 60
Squeeze Theorem, 181
subset

defini on of, 2
Sum Iden ty

for cosine, 123, 128
for sine, 126, 128
for tangent, 128

Sum to Product Formulas, 133



Sum/Difference Rule
of deriva ves, 234
of integra on, 289

symmetry
about the x-axis, 12
about the y-axis, 12
about the origin, 12

tangent
graph of, 146
of an angle, 115
proper es of, 149

tangent line, 215
trichotomy, 5

union of two sets, 2
Unit Circle

important points, 110

variable
dependent, 17
independent, 17

velocity, 226
Venn Diagram, 3
vertex

of a parabola, 49
ver cal asymptote

formal defini on of, 75
intui ve defini on of, 75
loca on of, 76

zero
mul plicity of, 63



Differen a on Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
x
√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
x
√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

Integra on Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫ 1

x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
∫ 1

√
a2 − x2

dx = sin−1
(
x
a

)
+ C

23.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
x
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫ 1

a2 − x2
dx =

1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C



The Unit Circle
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√
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Defini ons of the Trigonometric Func ons

Unit Circle Defini on

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle Defini on

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Iden es

Pythagorean Iden es
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

Cofunc on Iden es
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd Iden es
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solu on of
the equa on p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily dis nct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

Quadra c Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

Ra onal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithme c Opera ons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Addi onal Formulas

Summa on Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of Revolu on:

S = 2π
∫ b

a
f(x)
√
1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√
1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series Condi on(s) of
Convergence

Condi on(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
con nuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

Ra o Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posi ve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posi ve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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