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Preface
This is a textbook on Linear Algebra, designed to be compa ble with the

curriculum for the course Math at the University of Lethbridge. As this
is a first-year course taken primarily by non-majors, the focus of the text (and
the course) is primarily computa onal, and as a result, much of the theory that
common to many first courses in linear algebra is not included.

The book does, however, contain a few topics not always found in a linear
algebra course (but required forMath ), including vector geometry and com-
plex numbers.

The book is free, in every sense of the word. There is no cost to the student,
unless one wants a hard copy, in which case the only cost is that of having it
printed. The text is also free in less tangible, but equally important ways. The
book is licensed under a Crea ve Commons Public License, which allows you to
share the book with others, and even make and distribute copies, as long as this
is not done for financial gain. The book is also open source: all of the code and
figures used to generate the text (over , files in all) are available online and
can be downloaded and edited by anyone wishing to create their own version
of the book.

The book has a few quirks compared to other texts. There is an extensive
treatment of the arithme c of complex numbers, since this is required in the
Math course. The treatment of systems of equa ons also appears quite
late in the textbook. In my experience, when the course begins with systems of
equa ons, many students tune out early, either because thematerial is too easy,
or too boring, and aren’t able to get back up to speed once the level of difficulty
picks up. Having some challenging material early on provides some incen ve to
do the homework and seek help from the beginning.

Since Math does not align well with the standard linear algebra cur-
riculum found in many American universi es, it was not possible to work with
any one pre-exis ng open textbook. Instead, this book is an amalgama on of
three texts, as specified on the copyright page, along with a substan al chunk
of content that I’ve added myself. As a result, you’ll find that there are slight
differences in the format of some chapters.

The treatment of standard topics like basis and dimension is quite limited,
due to the nature of the course. Arguments are provided in support of most
theorems in the text, but there aren’t too many formal proofs. Some topics
that are some mes taught in Math also receive a limited treatment here.
Eigenvalues and eigenvectors are covered, but diagonaliza on is not. (Update
for the Spring edi on: a sec on on diagonaliza on has been added.) The
coverage of orthogonality is limited to the shortest distance applica ons in the
chapter on vector geometry. In some cases these omissions are due to me
constraints, both in the prepara on of the textbook and in the delivery of the
material in the classroom. In some cases (such as the Gram-Schmidt procedure
and orthogonal diagonaliza on), there was a concious decision to omit material
that more rightly belongs in a second course in linear algebra.

With any luck, the book will con nue to evolve as I and other instructors use
it. The book is a work in progress, and is bound to have some failings. If you
encounter any errors as you use the book (or if you don’t like how something
is presented, or if you think more exercises of a certain type are needed, etc.)
please let me know, and I’ll do my best to make the changes.



Contents

Changes in the Spring edi on
For Spring , the course is being taught by Jana Archibald, who asked

that we re-ins tute the chapter on linear transforma ons. She also contributed
a (previously missing) set of problems for the sec on on elementary matrices.

Changes in the Fall edi on
For Fall I’ve reorganized the textbook based on the input of Habiba

Kadiri, since she will be teachingMath this semester. Themain change is to
bring the material on systems of equa ons a bit earlier in the textbook, placing
it prior to the chapter onmatrices. A few adjustments in wri ng were needed to
accommodate this change. Some of the theore cal content has been omi ed
from the chapter on vectors in Rn. The material on linear transforma ons has
been moved to the end of the textbook as an op onal chapter, to be covered
if me permits. I’ve moved the material on null space and column space into
its own sec on at the end of this chapter. This move includes reloca ng or re-
producing the relevant examples from the sec on on vector solu ons to linear
systems. (Time constraints kept me from crea ng new examples, so there are
some examples in Sec on . that have been re-wri en to remove the refer-
ences to null space and column space, and the same examples reappear in their
original context at the end of the book.)

I have also wri en a new sec on, on elementary matrices. In the previous
edi on the only men on of this topic was in a marginal note.

Changes in the Spring edi on
During the inaugural Fall run for this textbook, I came across a number

of errors and typos that have been corrected. Most of these were forma ng
errors, but there were a few incorrect answers in the back, and one case in Sec-
on . where I somehow used the columns from the wrong matrix in a column
space example!

In Chapter I’ve added formal defini ons for addi on and mul plica on of
complex numbers, and the presenta on in Sec on . has been streamlined.
Since the polar coordinate representa on of a complex number never has r < 0,
I’ve removed thematerial (needed for calculus) involving polar coordinates with
r < 0, as well as thematerial (also needed for calculus) on conver ng equa ons
of curves in the plane from rectangular to polar coordinates. Replacing the “cis”
nota on with Euler’s exponen al nota on remains on the to-do list.

In Chapter , I’ve added the standard defini on of parallel vectors for linear
algebra, and changed the original defini on to a theorem. In Chapter , I’ve
added addi onal examples and exercises on span and linear independence in
Sec on . , and two addi onal examples in Sec on . on working with the
defini on of a linear transforma on.

Chapters - remain largely unchanged, aside from error correc ons. In
Chapter , I’ve added a new sec on, on diagonaliza on. This sec on introduces
the main ideas, such as similar matrices, algebraic and geometric mul plicity,
and eigenspaces. There is no treatment of orthogonal diagonaliza on, since I
s ll consider this topic to be a be er fit for Math than Math .

vi
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One thing that student evalua ons teach
us is that any given Mathema cs instruc-
tor can be simultaneously the best and
worst teacher ever, depending on who is
comple ng the evalua on.

: The Real Numbers
This first chapter is intended as a resource for those students needing a quick
review of some of the essen al high school mathema cs for this course. We
begin with some basic set theory terminology that may pop up from me to
me, followed by a reminder on the rules for arithme c with real numbers, and
a tour of the Cartesian coordinate plane. Students who are already comfortable
with these topics can feel free to jump ahead to Chapter .

. Some Basic Set Theory No ons

Defini on . . Set

A set is a well-defined collec on of objects which are called the ‘ele-
ments’ of the set. Here, ‘well-defined’ means that it is possible to deter-
mine if something belongs to the collec on or not, without prejudice.

For example, the collec on of le ers that make up the word “pronghorns”
is well-defined and is a set, but the collec on of the worst math teachers in the
world is not well-defined, and so is not a set. In general, there are three ways
to describe sets. They are

Key Idea . . Ways to Describe Sets

. The Verbal Method: Use a sentence to define a set.

. The Roster Method: Begin with a le brace ‘{’, list each element
of the set only once and then end with a right brace ‘}’.

. The Set-Builder Method: A combina on of the verbal and roster
methods using a “dummy variable” such as x.

For example, let S be the set described verbally as the set of le ers that
makeup theword “pronghorns”. A rosterdescrip onofSwould be {p, r, o, n, g, h, s}.
Note that we listed ‘r’, ‘o’, and ‘n’ only once, even though they appear twice in
“pronghorns.” Also, the order of the elements doesn’tma er, so {o, n, p, r, g, s, h}
is also a roster descrip on of S. A set-builder descrip on of S is:

{x |x is a le er in the word “pronghorns”.}

The way to read this is: ‘The set of elements x such that x is a le er in the
word “pronghorns.”’ We define to sets to be equal if they have exactly the same
elements, and denote this using the familiar equals sign ‘=’. Thus, wemay write
S = {p, r, o, n, g, h, s} or S = {x |x is a le er in the word “pronghorns”.}.
Clearly r is an element of S and q is not an element S. We express these sen -
ments mathema cally by wri ng r ∈ S and q /∈ S.

More precisely, we have the following.



The nota on x ∈ A can be read as “x
is in A”, or “x is an element of A”, or “x
belongs to A”, with similar readings for
x /∈ A.

Chapter The Real Numbers

Defini on . . Nota on for set inclusion

Let A be a set.

• If x is an element of A then we write x ∈ A which is read ‘x is in
A’.

• If x is not an element ofA then we write x /∈ Awhich is read ‘x is
not in A’.

Now let’s consider the set

C = {x |x is a consonant in the word “pronghorns”}.

A roster descrip on of C is C = {p, r, n, g, h, s}. Note that by construc on,
every element of C is also in S. We express this rela onship by sta ng that the
set C is a subset of the set S, which is wri en in symbols as C ⊆ S. The more
formal defini on is given below.

Defini on . . Subset

Given sets A and B, we say that the set A is a subset of the set B and
write ‘A ⊆ B’ if every element inA is also an element of B.

Note that in our example above C ⊆ S, but not vice-versa, since o ∈ S but
o /∈ C. Addi onally, the set of vowels V = {a, e, i, o, u}, while it does have an
element in common with S, is not a subset of S. (As an added note, S is not a
subset of V , either.) We could, however, build a set which contains both S and
V as subsets by gathering all of the elements in both S and V together into a
single set, say U = {p, r, o, n, g, h, s, a, e, i, u}. Then S ⊆ U and V ⊆ U . The
setU we have built is called the union of the setsS and V and is denoted S∪V .
Furthermore, S and V aren’t completely different sets since they both contain
the le er ‘o.’ (Since the word ‘different’ could be ambiguous, mathema cians
use the word disjoint to refer to two sets that have no elements in common.)
The intersec on of two sets is the set of elements (if any) the two sets have in
common. In this case, the intersec on of S and V is {o}, wri en S ∩ V = {o}.
We formalize these ideas below.

Defini on . . Intersec on and Union

Suppose A andB are sets.

• The intersec on of A andB is A ∩B = {x |x ∈ A and x ∈ B}

• The union ofA andB isA∪B = {x |x ∈ A or x ∈ B (or both)}

The key words in Defini on . . to focus on are the conjunc ons: ‘intersec-
on’ corresponds to ‘and’ meaning the elements have to be in both sets to be
in the intersec on, whereas ‘union’ corresponds to ‘or’ meaning the elements



The full extent of the empty set’s role will
not be explored in this text, but it is of fun-
damental importance in Set Theory. In
fact, the empty set can be used to gener-
ate numbers - mathema cians can create
something from nothing! If you’re inter-
ested, read about the von Neumann con-
struc on of the natural numbers or con-
sider signing up for Math .

p r n g h s o a e i u

S V

C

U

Figure . . : A Venn diagram forC, S, and
V

A B

U

SetsA andB.

A ∩ B

A B

U

A ∩B is shaded.

A ∪ B

A B

U

A ∪B is shaded.

Figure . . : Venn diagrams for intersec-
on and union

. Some Basic Set Theory No ons

have to be in one set, or the other set (or both). In other words, to belong to
the union of two sets an element must belong to at least one of them.

Returning to the sets C and V above, C ∪ V = {p, r, n, g, h, s, a, e, i, o, u}.
When it comes to their intersec on, however, we run into a bit of nota onal
awkwardness since C and V have no elements in common. While we could
write C ∩ V = {}, this sort of thing happens o en enough that we give the set
with no elements a name.

Defini on . . Empty set

The Empty Set ∅ is the set which contains no elements. That is,

∅ = {} = {x |x ̸= x}.

As promised, the empty set is the set containing no elements since noma er
what ‘x’ is, ‘x = x.’ Like the number ‘0,’ the empty set plays a vital role in
mathema cs. We introduce it heremore as a symbol of convenience as opposed
to a contrivance. Using this new bit of nota on, we have for the sets C and V
above that C ∩ V = ∅. A nice way to visualize rela onships between sets and
set opera ons is to draw a Venn Diagram. A Venn Diagram for the sets S,C and
V is drawn in Figure . . .

In Figure . . we have three circles - one for each of the setsC, S and V . We
visualize the area enclosed by each of these circles as the elements of each set.
Here, we’ve spelled out the elements for defini veness. No ce that the circle
represen ng the set C is completely inside the circle represen ng S. This is a
geometric way of showing thatC ⊆ S. Also, no ce that the circles represen ng
S and V overlap on the le er ‘o’. This common region is howwe visualize S∩V .
No ce that since C ∩ V = ∅, the circles which represent C and V have no
overlap whatsoever.

All of these circles lie in a rectangle labelledU (for ‘universal’ set). A universal
set contains all of the elements under discussion, so it could always be taken as
the union of all of the sets in ques on, or an even larger set. In this case, we
could takeU = S∪V orU as the set of le ers in the en re alphabet. The usual
triptych of Venn Diagrams indica ng generic setsA andB along withA∩B and
A ∪B is given in Figure . . .

(The reader may well wonder if there is an ul mate universal set which con-
tains everything. The short answer is ‘no’. Our defini on of a set turns out to
be overly simplis c, but correc ng this takes us well beyond the confines of
this course. If you want the longer answer, you can begin by reading about
Russell’s Paradox on Wikipedia.)

In the next sec on, we will review the algebraic proper es of the real num-
ber system. Other proper es of the real numbers (such as the order property
that allows us to picture the set of real numbers as a “number line”) are essen-
al to Calculus, but not that important for Linear Algebra, so we will leave it
to other courses (such as Math or Math ) to handle the discussion of
these topics.

https://en.wikipedia.org/wiki/Natural_number#von_Neumann_construction
https://en.wikipedia.org/wiki/Natural_number#von_Neumann_construction
http://en.wikipedia.org/wiki/Venn_diagram
http://en.wikipedia.org/wiki/Russell's_paradox


The set of real numbers is denoted usu-
ally denoted R. A careful defini on of
R is actually quite complicated, and even
most calculus classes choose not to in-
clude it. If you want to really understand
what the real numbers are, you’ll need
to take a course in Real Analysis, such as
Math .

While it is true that ab = ba for any pair
of real numbers a and b, there are plenty
of algebraic systems where this property
does not hold. In par cular, in Chap-
ter we’ll learn how to mul ply matri-
ces A and B, and see that in most cases,
the matrix product AB is not equal to
the product BA. (We’ll also see that
such products are not even guaranteed
to be defined!) Students are so used
to the commuta ve property for mul -
plica on of real numbers that it can be
difficult to make the adjustment to the
non-commuta ve nature matrix mul pli-
ca on, and this is the source of many
common errors in a course likeMath .

Chapter The Real Numbers

. Real Number Arithme c
In this sec on we list the proper es of real number arithme c. We will focus
on those aspects that are most needed for Math (things like the algebraic
axioms, and working with frac ons), and gloss over those that are more calcu-
lus related (exponents, roots, etc.). Students wan ng more detail than what is
provided here might want to consult the resources available on theMath Basics
page on Moodle. In par cular, since this is an algebra textbook, we will assume
that the reader has encountered the real number system before, and omit a def-
ini on, focusing instead on the algebraic proper es of real numbers. We begin
with the axioms for addi on of real numbers.

Defini on . . Proper es of Real Number Addi on

• Closure: For all real numbers a and b, a+ b is also a real number.

• Commuta vity: For all real numbers a and b, a+ b = b+ a.

• Associa vity: For all real numbers a, b and c, a+ (b+ c) = (a+
b) + c.

• Iden ty: There is a real number ‘0’ so that for all real numbers a,
a+ 0 = a.

• Inverse: For all real numbers a, there is a real number −a such
that a+ (−a) = 0.

• Defini on of Subtrac on: For all real numbers a and b, a − b =
a+ (−b).

Next, we give real number mul plica on a similar treatment. Recall that
we may denote the product of two real numbers a and b a variety of ways: ab,
a · b, a(b), (a)(b) and so on. We’ll refrain from using a × b for real number
mul plica on in this text.

Defini on . . Proper es of Real Number Mul plica on

• Closure: For all real numbers a and b, ab is also a real number.

• Commuta vity: For all real numbers a and b, ab = ba.

• Associa vity: For all real numbers a, b and c, a(bc) = (ab)c.

• Iden ty: There is a real number ‘1’ so that for all real numbers a,
a · 1 = a.

• Inverse: For all real numbers a ̸= 0, there is a real number
1

a
such

that a
(
1

a

)
= 1.

• Defini on of Division: For all real numbers a and b ̸= 0, a ÷ b =
a

b
= a

(
1

b

)
.



. Real Number Arithme c

While most students (and some faculty) tend to skip over these proper es
or give them a cursory glance at best, it is important to realize that the prop-
er es stated above are what drive the symbolic manipula on for all of Algebra.
When lis ng a tally of more than two numbers, 1+ 2+3 for example, we don’t
need to specify the order in which those numbers are added. No ce though,
try as we might, we can add only two numbers at a me and it is the associa-
ve property of addi on which assures us that we could organize this sum as

(1+2)+3 or 1+(2+3). This brings up a note about ‘grouping symbols’. Recall
that parentheses and brackets are used in order to specify which opera ons are
to be performed first. In the absence of such grouping symbols, mul plica on
(and hence division) is given priority over addi on (and hence subtrac on). For
example, 1 + 2 · 3 = 1 + 6 = 7, but (1 + 2) · 3 = 3 · 3 = 9. As you may
recall, we can ‘distribute’ the 3 across the addi on if we really wanted to do the
mul plica on first: (1 + 2) · 3 = 1 · 3 + 2 · 3 = 3 + 6 = 9. More generally, we
have the following.

Defini on . . The Distribu ve Property and Factoring

For all real numbers a, b and c:

• Distribu ve Property: a(b+ c) = ab+ac and (a+ b)c = ac+ bc.

• Factoring: ab+ ac = a(b+ c) and ac+ bc = (a+ b)c.

Warning: A common source of errors for beginning students is the misuse (that
is, lack of use) of parentheses. When in doubt, more is be er than less: re-
dundant parentheses add clu er, but do not change meaning, whereas wri ng
2x+ 1 when you meant to write 2(x+ 1) is almost guaranteed to cause you to
make a mistake. (Even if you’re able to proceed correctly in spite of your lack of
proper nota on, this is the sort of thing that will get you on your grader’s bad
side, so it’s probably best to avoid the problem in the first place.)

It is worth poin ng out thatwe didn’t really need to list the Distribu ve Prop-
erty both for a(b+ c) (distribu ng from the le ) and (a+ b)c (distribu ng from
the right), since the commuta ve property of mul plica on gives us one from
the other. Also, ‘factoring’ really is the same equa on as the distribu ve prop-
erty, just read from right to le . These are the first of many redundancies in
this sec on, and they exist in this review sec on for one reason only - in our
experience, many students see these things differently so we will list them as
such.

It is hard to overstate the importance of the Distribu ve Property. For ex-
ample, in the expression 5(2 + x), without knowing the value of x, we cannot
perform the addi on inside the parentheses first; we must rely on the distribu-
ve property here to get 5(2 + x) = 5 · 2 + 5 · x = 10 + 5x. The Distribu ve
Property is also responsible for combining ‘like terms’. Why is 3x + 2x = 5x?
Because 3x+ 2x = (3 + 2)x = 5x.

We con nue our review with summaries of other proper es of arithme c,
each of which can be derived from the proper es listed above. First up are prop-
er es of the addi ve iden ty 0.



The Zero Product Property drives most of
the equa on solving algorithms in Alge-
bra because it allows us to take compli-
cated equa ons and reduce them to sim-
pler ones. For example, you may recall
that one way to solve x2+x−6 = 0 is by
factoring the le hand side of this equa-
on to get (x−2)(x+3) = 0. Fromhere,
we apply the Zero Product Property and
set each factor equal to zero. This yields
x − 2 = 0 or x + 3 = 0 so x = 2 or
x = −3. This type of calcula on is key
to finding the eigenvalues of a matrix, as
we’ll see in Sec on . .

Note: A common denominator is not re-
quired tomul ply or divide frac ons!

It’s always worth remembering that divi-
sion is the same as mul plica on by the
reciprocal. You’d be surprised how o en
this comes in handy.

Note: A common denominator is re-
quired to add or subtract frac ons!

Note: The onlyway to change the denom-
inator is to mul ply both it and the nu-
merator by the same nonzero value be-
cause we are, in essence, mul plying the
frac on by 1.

We reduce frac ons by ‘cancelling’ com-
mon factors - this is really just reading the
previous property ‘from right to le ’.
Cau on: We may only cancel common
factors from both numerator and denom-
inator: we can cancel the twos in

3(2)

5(2)
,

but not in
3 + 2

5 + 2
.
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Theorem . . Proper es of Zero

Suppose a and b are real numbers.

• Zero Product Property: ab = 0 if and only if a = 0 or b = 0 (or
both)

Note: This not only says that 0 ·a = 0 for any real number a, it also
says that the onlyway to get an answer of ‘0’ whenmul plying two
real numbers is to have one (or both) of the numbers be ‘0’ in the
first place.

• Zeros in Frac ons: If a ̸= 0,
0

a
= 0 ·

(
1

a

)
= 0.

Note: The quan ty
a

0
is undefined.

We now con nue with a review of arithme c with frac ons.

Key Idea . . Proper es of Frac ons

Suppose a, b, c and d are real numbers. Assume them to be nonzero
whenever necessary; for example, when they appear in a denominator.

• Iden ty Proper es: a =
a

1
and

a

a
= 1.

• Frac on Equality:
a

b
=

c

d
if and only if ad = bc.

• Mul plica on of Frac ons:
a

b
· c
d

=
ac

bd
. In par cular:

a

b
· c =

a

b
· c
1
=

ac

b

• Division of Frac ons:
a

b

/ c

d
=

a

b
· d
c
=

ad

bc
.

In par cular: 1
/a

b
=

b

a
and

a

b

/
c =

a

b

/ c

1
=

a

b
· 1
c
=

a

bc

• Addi on and Subtrac on of Frac ons:
a

b
± c

b
=

a± c

b
.

• Equivalent Frac ons:
a

b
=

ad

bd
, since

a

b
=

a

b
· 1 =

a

b
· d
d
=

ad

bd

• ‘Reducing’ Frac ons:
a�d
b�d

=
a

b
, since

ad

bd
=

a

b
· d
d
=

a

b
· 1 =

a

b
.

In par cular,
ab

b
= a since

ab

b
=

ab

1 · b
=

a�b
1 · �b

=
a

1
= a and

b− a

a− b
=

(−1)����(a− b)

����(a− b)
= −1.

Next up is a review of the arithme c of ‘nega ves’. On page we first in-
troduced the dash which we all recognize as the ‘nega ve’ symbol in terms of
the addi ve inverse. For example, the number−3 (read ‘nega ve 3’) is defined



In this text we do not dis nguish typo-
graphically between the dashes in the ex-
pressions ‘5 − 3’ and ‘−3’ even though
they are mathema cally quite different.
In the expression ‘5− 3,’ the dash is a bi-
nary opera on (that is, an opera on re-
quiring two numbers) whereas in ‘−3’,
the dash is a unary opera on (that is,
an opera on requiring only one number).
You might ask, ‘Who cares?’ Your calcula-
tor does - that’s who! In the text we can
write−3−3 = −6 but that will not work
in your calculator. Instead you’d need to
type−3−3 to get−6where the first dash
comes from the ‘+/−’ key.

It might be junior high (elementary?)
school material, but arithme c with frac-
ons is one of the most common sources
of errors among university students. If
you’re not comfortable workingwith frac-
ons, we strongly recommend seeing
your instructor (or a tutor) to go over
this material un l you’re completely con-
fident that you understand it. Experience
(and even formal educa onal studies)
suggest that your success handling frac-
ons corresponds pre y well with your
overall success in passing your Mathe-
ma cs courses.
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so that 3 + (−3) = 0. We then defined subtrac on using the concept of the
addi ve inverse again so that, for example, 5− 3 = 5 + (−3).

Key Idea . . Proper es of Nega ves

Given real numbers a and b we have the following.

• Addi ve Inverse Proper es: −a = (−1)a and−(−a) = a

• Products of Nega ves: (−a)(−b) = ab.

• Nega ves and Products: −ab = −(ab) = (−a)b = a(−b).

• Nega ves and Frac ons: If b is nonzero, −a

b
=

−a

b
=

a

−b
and

−a

−b
=

a

b
.

• ‘Distribu ng’ Nega ves: −(a + b) = −a − b and −(a − b) =
−a+ b = b− a.

• ‘Factoring’ Nega ves: −a− b = −(a+ b) and b− a = −(a− b).

An important point here is that when we ‘distribute’ nega ves, we do so
across addi on or subtrac on only. This is because we are really distribu ng a
factor of−1 across each of these terms: −(a+ b) = (−1)(a+ b) = (−1)(a) +
(−1)(b) = (−a)+(−b) = −a−b. Nega ves do not ‘distribute’ across mul pli-
ca on: −(2 ·3) ̸= (−2) ·(−3). Instead,−(2 ·3) = (−2) ·(3) = (2) ·(−3) = −6.
The same sort of thing goes for frac ons: − 3

5 can be wri en as
−3
5 or 3

−5 , but
not −3

−5 . It’s about mewe did a few examples to see how these proper es work
in prac ce.

Example . . Arithme c with frac ons
Perform the indicated opera ons and simplify. By ‘simplify’ here, we mean to
have the final answer wri en in the form a

b where a and b are integers which
have no common factors. Said another way, we want a

b in ‘lowest terms’.

.
1

4
+

6

7
.

5

12
−
(
47

30
− 7

3

)
.

12

5
− 7

24

1 +

(
12

5

)(
7

24

)

.
(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)
.
(
3

5

)(
5

13

)
−
(
4

5

)(
−12

13

)

Solu on

. It may seem silly to start with an example this basic but experience has
taught us not to take much for granted. We start by finding the lowest
common denominator and then we rewrite the frac ons using that new
denominator. Since 4 and 7 are rela vely prime, meaning they have no

http://home.isr.umich.edu/releases/fractions-are-the-key-to-math-success-new-study-shows/


We could have used 12 · 30 · 3 = 1080 as
our common denominator but then the
numerators would become unnecessarily
large. It’s best to use the lowest common
denominator.
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factors in common, the lowest common denominator is 4 · 7 = 28.

1

4
+

6

7
=

1

4
· 7
7
+

6

7
· 4
4

Equivalent Frac ons

=
7

28
+

24

28
Mul plica on of Frac ons

=
31

28
Addi on of Frac ons

The result is in lowest terms because 31 and 28 are rela vely prime so
we’re done.

. We could begin with the subtrac on in parentheses, namely 47
30 − 7

3 , and
then subtract that result from 5

12 . It’s easier, however, to first distribute
the nega ve across the quan ty in parentheses and then use the Associa-
ve Property to perform all of the addi on and subtrac on in one step.
The lowest common denominator for all three frac ons is 60.

5

12
−
(
47

30
− 7

3

)
=

5

12
− 47

30
+

7

3
Distribute the Nega ve

=
5

12
· 5
5
− 47

30
· 2
2
+

7

3
· 20
20

Equivalent Frac ons

=
25

60
− 94

60
+

140

60
Mul plica on of Frac ons

=
71

60
Addi on and Subtrac on of Frac ons

The numerator and denominator are rela vely prime so the frac on is in
lowest terms and we have our final answer.

. What we are asked to simplify in this problem is known as a ‘complex’ or
‘compound’ frac on. Simply put, we have frac ons within a frac on. The
longest division line (also called a ‘vinculum’) performs the same sort of
grouping func on as parentheses:

12

5
− 7

24

1 +

(
12

5

)(
7

24

) =

(
12

5
− 7

24

)
(
1 +

(
12

5

)(
7

24

)) .

The first step to simplifying a compound frac on like this one is to see if
you can simplify the li le frac ons inside it. There are two ways to pro-
ceed. One is to simplify the numerator and denominator separately, and
then use the fact that division is the same thing as mul plica on by the
reciprocal, as follows:
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(
12

5
− 7

24

)
(
1 +

(
12

5

)(
7

24

)) =

(
12

5
· 24
24

− 7

24
· 5
5

)
(
1 · 120

120
+

(
12

5

)(
7

24

)) Equivalent Frac ons

=
288/120− 35/120

120/120 + 84/120
Mul plica on of frac ons

=
253/120

204/120
Addi on and subtrac on of frac ons

=
253

��120
·�

�120
204

Division of frac ons and cancella on

=
253

204

Since 253 = 11 · 23 and 204 = 2 · 2 · 3 · 17 have no common factors our
result is in lowest terms which means we are done.
While there is nothing wrong with the above approach, we can also use
our Equivalent Frac ons property to rid ourselves of the ‘compound’ na-
ture of this frac on straight away. The idea is to mul ply both the numer-
ator and denominator by the lowest common denominator of each of the
‘smaller’ frac ons - in this case, 24 · 5 = 120.

(
12

5
− 7

24

)
(
1 +

(
12

5

)(
7

24

)) =

(
12

5
− 7

24

)
· 120(

1 +

(
12

5

)(
7

24

))
· 120

Equivalent Frac ons

=

(
12

5

)
(120)−

(
7

24

)
(120)

(1)(120) +

(
12

5

)(
7

24

)
(120)

Distribu ve Property

=

12 · 120
5

− 7 · 120
24

120 +
12 · 7 · 120

5 · 24

Mul ply frac ons

=

12 · 24 · �5
�5

− 7 · 5 ·��24
��24

120 +
12 · 7 · �5 ·��24

�5 ·��24

Factor and cancel

=
(12 · 24)− (7 · 5)
120 + (12 · 7)

=
288− 35

120 + 84
=

253

204
,

which is the same as we obtained above.

. This frac on may look simpler than the one before it, but the nega ve
signs and parentheses mean that we shouldn’t get complacent. Again we
note that the division line here acts as a grouping symbol. That is,
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(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)
=

((2(2) + 1)(−3− (−3))− 5(4− 7))

(4− 2(3))

This means that we should simplify the numerator and denominator first,
then perform the division last. We tend to what’s in parentheses first,
giving mul plica on priority over addi on and subtrac on.

(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)
=

(4 + 1)(−3 + 3)− 5(−3)

4− 6

=
(5)(0) + 15

−2
=

15

−2

= −15

2
Proper es of Nega ves

Since 15 = 3 · 5 and 2 have no common factors, we are done.

. In this problem, we have mul plica on and subtrac on. Mul plica on
takes precedence so we perform it first. Recall that to mul ply frac ons,
we do not need to obtain common denominators; rather, we mul ply
the corresponding numerators together along with the corresponding de-
nominators. However, when we perform the subtrac on, we do need a
common denominator, so we will resist the tempta on to cancel the fives
in the first term straight away.(

3

5

)(
5

13

)
−
(
4

5

)(
−12

13

)
=

3 · 5
5 · 13

− 4 · (−12)

5 · 13
Mul ply frac ons

=
15

65
− −48

65

=
15

65
+

48

65
Proper es of Nega ves

=
15 + 48

65
Add numerators

=
63

65

Since 64 = 3 · 3 · 7 and 65 = 5 · 13 have no common factors, our answer
63

65
is in lowest terms and we are done.

Of the issues discussed in the previous set of examples none causes students
more trouble than simplifying compound frac ons. We presented two different
methods for simplifying them: one in which we simplified the overall numerator
anddenominator and then performed the division andone inwhichwe removed
the compound nature of the frac on at the very beginning. We encourage the
reader to go back and use both methods on each of the compound frac ons
presented. Keep in mind that when a compound frac on is encountered in the
rest of the text it will usually be simplified using only one method and we may
not choose your favourite method. Feel free to use the other one in your notes.



Exercises .
Problems
In Exercises – , perform the indicated opera ons and sim-
plify.

. 5− 2 + 3

. 5− (2 + 3)

.
2

3
− 4

7

.
3

8
+

5

12

.
5− 3

−2− 4

.
2(−3)

3− (−3)

.
2(3)− (4− 1)

22 + 1

.
4− 5.8

2− 2.1

.
1− 2(−3)

5(−3) + 7

.
5(3)− 7

2(3)2 − 3(3)− 9

.
2((−1)2 − 1)

((−1)2 + 1)2

.
(−2)2 − (−2)− 6

(−2)2 − 4

.
3− 4

9

−2− (−3)

.
2
3
− 4

5

4− 7
10

.
2
(
4
3

)
1−

(
4
3

)2
.
1−

(
5
3

) (
3
5

)
1 +

(
5
3

) (
3
5

)
.
(
2

3

)−5

. 3−1 − 4−2

.
1 + 2−3

3− 4−1

.
3 · 5100

12 · 598



The Cartesian Plane is named in hon-
our of René Descartes.

x

y

−4 −3 −2 −1 1 2 3 4
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1
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Figure . . : The Cartesian coordinate
plane

Usually extending off towards infinity
is indicated by arrows, but here, the
arrows are used to indicate the direc-
tion of increasing values of x and y.

The names of the coordinates can
vary depending on the context of the
application. If, for example, the hori-
zontal axis represented time we might
choose to call it the t-axis. The first
number in the ordered pair would
then be the t-coordinate.
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. The Cartesian Coordinate Plane

As a warm-up for the discussions of vectors and three-dimensional geom-
etry yet to come, we will make a quick review of the Cartesian Coordi-
nate Plane. Imagine two real number lines crossing at a right angle at 0
as shown in Figure 1.3.1.

The horizontal number line is usually called the x-axis while the ver-
tical number line is usually called the y-axis. As with the usual number
line, we imagine these axes extending off indefinitely in both directions.
Having two number lines allows us to locate the positions of points off of
the number lines as well as points on the lines themselves.

For example, consider the point P on the next page. To use the num-
bers on the axes to label this point, we imagine dropping a vertical line
from the x-axis to P and extending a horizontal line from the y-axis to
P . This process is sometimes called ‘projecting’ the point P to the x-
(respectively y-) axis. We then describe the point P using the ordered
pair (2,−4). The first number in the ordered pair is called the abscissa
or x-coordinate and the second is called the ordinate or y-coordinate.
Taken together, the ordered pair (2,−4) comprise the Cartesian coordi-
nates of the point P . In practice, the distinction between a point and its
coordinates is blurred; for example, we often speak of ‘the point (2,−4).’
We can think of (2,−4) as instructions on how to reach P from the origin
(0, 0) by moving 2 units to the right and 4 units downwards. Notice that
the order in the ordered pair is important − if we wish to plot the point
(−4, 2), we would move to the left 4 units from the origin and then move
upwards 2 units, as below on the right.

x

y

P

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

P (2,−4)

(−4, 2)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

When we speak of the Cartesian Coordinate Plane, we mean the set of
all possible ordered pairs (x, y) as x and y take values from the real num-
bers. Below is a summary of important facts about Cartesian coordinates.

http://en.wikipedia.org/wiki/Descartes


Cartesian coordinates are sometimes
referred to as rectangular coordinates,
to distinguish them from other coor-
dinate systems such as polar coordi-
nates: see Section 2.2.

We will also see in Chapter 2 that
the best way to visualize the set of
complex numbers is by identifying
complex numbers with points in the
Cartesian plane.

The letter O is almost always reserved
for the origin.

. The Cartesian Coordinate Plane

Key Idea 1.3.1 Important Facts about the Cartesian
Coordinate Plane

• (a, b) and (c, d) represent the same point in the plane if and
only if a = c and b = d.

• (x, y) lies on the x-axis if and only if y = 0.

• (x, y) lies on the y-axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to
both axes.

Example . . Plotting points in the Cartesian Plane
Plot the following points: A(5, 8), B

(
− 5

2 , 3
)
, C(−5.8,−3), D(4.5,−1),

E(5, 0), F (0, 5), G(−7, 0), H(0,−9), O(0, 0).

Solution To plot these points, we start at the origin and move to
the right if the x-coordinate is positive; to the left if it is negative. Next,
we move up if the y-coordinate is positive or down if it is negative. If the
x-coordinate is 0, we start at the origin and move along the y-axis only.
If the y-coordinate is 0 we move along the x-axis only.

x

y

A(5, 8)

B
(
− 5

2 , 3
)

C(−5.8,−3)

D(4.5,−1)

E(5, 0)

F (0, 5)

G(−7, 0)

H(0,−9)

O(0, 0)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9



x

y

Quadrant I
x > 0, y > 0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x > 0, y < 0

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

Figure . . : The four quadrants of the
Cartesian plane

P (x0, y0)

Q (x1, y1)

d

(a)

P (x0, y0)

Q (x1, y1)

d

(x1, y0)

(b)

Figure . . : Distance between P andQ

Recall that the absolute value of a
real number a, denoted by |a|, mea-
sures the distance of a from the ori-
gin. Since we never want a negative
distance, this means |a| = a if a ≥ 0,
while if a < 0, |a| = −a. For exam-
ple, |4| = 4, and |−7| = −(−7) =
7. Given two real numbers a and b,
|a− b| measures the distance between
them.
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The axes divide the plane into four regions called quadrants. They
are labelled with Roman numerals and proceed counterclockwise around
the plane: see Figure 1.3.2.

For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2)
in Quadrant III and (1,−2) in Quadrant IV. If a point other than the origin
happens to lie on the axes, we typically refer to that point as lying on the
positive or negative x-axis (if y = 0) or on the positive or negative y-axis
(if x = 0). For example, (0, 4) lies on the positive y-axis whereas (−117, 0)
lies on the negative x-axis. Such points do not belong to any of the four
quadrants.

Distance in the Plane

Another important concept in Geometry is the notion of length. If we
are going to unite Algebra and Geometry using the Cartesian Plane, then
we need to develop an algebraic understanding of what distance in the
plane means. Suppose we have two points, P (x0, y0) and Q (x1, y1) , in
the plane. By the distance d between P and Q, we mean the length of the
line segment joining P with Q. (Remember, given any two distinct points
in the plane, there is a unique line containing both points.) Our goal now
is to create an algebraic formula to compute the distance between these
two points. Consider the generic situation in Figure 1.3.3(a).

With a little more imagination, we can envision a right triangle whose
hypotenuse has length d as drawn in Figure 1.3.3(b). From the latter
figure, we see that the lengths of the legs of the triangle are |x1 − x0| and
|y1 − y0| so the Pythagorean Theorem gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)
2
+ (y1 − y0)

2
= d2

(Since the square of a number is always positive, we can drop the
absolute value signs.) By extracting the square root of both sides of the
second equation and using the fact that distance is never negative, we get

Key Idea 1.3.2 The Distance Formula

The distance d between the points P (x0, y0) and Q (x1, y1) is:

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

It is not always the case that the points P and Q lend themselves to
constructing such a triangle. If the points P and Q are arranged vertically
or horizontally, or describe the exact same point, we cannot use the above
geometric argument to derive the distance formula. It is left to the reader
in Exercise 15 to verify Equation 1.3.2 for these cases.

http://en.wikipedia.org/wiki/Pythagorean_Theorem
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Figure . . : Diagram for Example . .

P (x0, y0)

Q (x1, y1)

M

Figure . . : The midpoint of a line seg-
ment

. The Cartesian Coordinate Plane

Example . . Distance between two points
Find and simplify the distance between P (−2, 3) and Q(1,−3).

Solution

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

=
√
(1− (−2))2 + (−3− 3)2

=
√
9 + 36

= 3
√
5

So the distance is 3
√
5.

Example . . Finding points at a given distance
Find all of the points with x-coordinate 1 which are 4 units from the point
(3, 2).

Solution We shall soon see that the points we wish to find are
on the line x = 1, but for now we’ll just view them as points of the form
(1, y).

We require that the distance from (3, 2) to (1, y) be 4. The Distance
Formula, Equation 1.3.2, yields

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

4 =
√
(1− 3)2 + (y − 2)2

4 =
√
4 + (y − 2)2

42 =
(√

4 + (y − 2)2
)2

squaring both sides

16 = 4 + (y − 2)2

12 = (y − 2)2

(y − 2)2 = 12

y − 2 = ±
√
12 extrac ng the square root

y − 2 = ±2
√
3

y = 2± 2
√
3

We obtain two answers: (1, 2 + 2
√
3) and (1, 2 − 2

√
3). The reader is

encouraged to think about why there are two answers.

Related to finding the distance between two points is the problem of
finding the midpoint of the line segment connecting two points. Given
two points, P (x0, y0) and Q (x1, y1), the midpoint M of P and Q is
defined to be the point on the line segment connecting P and Q whose
distance from P is equal to its distance from Q.

If we think of reaching M by going ‘halfway over’ and ‘halfway up’ we
get the following formula.
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Key Idea 1.3.3 The Midpoint Formula

The midpoint M of the line segment connecting P (x0, y0) and
Q (x1, y1) is:

M =

(
x0 + x1

2
,
y0 + y1

2

)

If we let d denote the distance between P and Q, we leave it as Exercise
16 to show that the distance between P and M is d/2 which is the same
as the distance between M and Q. This suffices to show that Key Idea
1.3.3 gives the coordinates of the midpoint.

Example . . Finding the midpoint of a line segment
Find the midpoint of the line segment connecting P (−2, 3) and Q(1,−3).

Solution

M =

(
x0 + x1

2
,
y0 + y1

2

)
=

(
(−2) + 1

2
,
3 + (−3)

2

)
=

(
−1

2
,
0

2

)
=

(
−1

2
, 0

)
The midpoint is

(
− 1

2 , 0
)
.

We close with a more abstract application of the Midpoint Formula.

Example . . An abstract midpoint problem
If a ̸= b, prove that the line y = x equally divides the line segment with
endpoints (a, b) and (b, a).

Solution To prove the claim, we use Equation 1.3.3 to find the
midpoint

M =

(
a+ b

2
,
b+ a

2

)
=

(
a+ b

2
,
a+ b

2

)
Since the x and y coordinates of this point are the same, we find that

the midpoint lies on the line y = x, as required.



Exercises 1.3
Problems
. Plot and label the points A(−3,−7), B(1.3,−2),
C(π,

√
10), D(0, 8), E(−5.5, 0), F (−8, 4),

G(9.2,−7.8) and H(7, 5) in the Cartesian Coordinate
Plane given below.

x

y

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

In Exercises – , find the distance d between the points and
the midpointM of the line segment which connects them.

. (1, 2), (−3, 5)

. (3,−10), (−1, 2)

.
(
1

2
, 4

)
,
(
3

2
,−1

)

.
(
−2

3
,
3

2

)
,
(
7

3
, 2

)

.
(
24

5
,
6

5

)
,
(
−11

5
,−19

5

)
.

.
(√

2,
√
3
)
,
(
−
√
8,−

√
12

)
.
(
2
√
45,

√
12

)
,
(√

20,
√
27

)
.

. (0, 0), (x, y)

. Find all of the points of the form (x,−1) which are 4 units
from the point (3, 2).

. Find all of the points on the y-axis which are 5 units from
the point (−5, 3).

. Find all of the points on the x-axis which are 2 units from
the point (−1, 1).

. Find all of the points of the form (x,−x) which are 1 unit
from the origin.

. Let’s assume for a moment that we are standing at the ori-
gin and the posi ve y-axis points due North while the pos-
i ve x-axis points due East. Our Sasquatch-o-meter tells
us that Sasquatch is miles West and miles South of our
current posi on. What are the coordinates of his posi on?
How far away is he from us? If he runs miles due East
what would his new posi on be?

. Verify the Distance Formula . . for the cases when:

(a) The points are arranged ver cally. (Hint: Use
P (a, y0) andQ(a, y1).)

(b) The points are arranged horizontally. (Hint: Use
P (x0, b) andQ(x1, b).)

(c) The points are actually the same point. (You
shouldn’t need a hint for this one.)

. Verify the Midpoint Formula by showing the distance be-
tween P (x1, y1) andM and the distance betweenM and
Q(x2, y2) are both half of the distance between P andQ.

. Show that the points A, B and C below are the ver ces
of a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8)

(b) A(−3, 1), B(4, 0) and C(0,−3)

. Find a point D(x, y) such that the points A(−3, 1),
B(4, 0), C(0,−3) andD are the corners of a square. Jus-
fy your answer.

. Discuss with your classmates howmany numbers are in the
interval (0, 1).

. The world is not flat. (There are those who disagree with
this statement. Look them up on the Internet some me
when you’re bored.) Thus the Cartesian Plane cannot pos-
sibly be the end of the story. Discuss with your classmates
how you would extend Cartesian Coordinates to represent
the three dimensional world. What would the Distance
and Midpoint formulas look like, assuming those concepts
make sense at all?





Historically, the lack of solutions to
the equation x2 = −1 had nothing
to do with the development of the
complex numbers. Until the 19th
century, equations such as x2 = −1
would have been considered in the
context of the analytic geometry of
Descartes. The lack of solutions sim-
ply indicated that the graph y = x2

did not intersect the line y = −1. The
more remarkable case was that of cu-
bic equations, of the form x3 = ax+b.
In this case a real solution is guaran-
teed, but there are cases where one
needs complex numbers to find it!
For details, see the excellent book
Visual Complex Analysis, by Tristan
Needham.
Note the use of the indefinite article
‘a’. Whatever beast is chosen to be i,
−i is the other square root of −1.

Some Technical Mathematics text-
books label the imaginary unit ‘j’,
usually to avoid confusion with the
use of the letter i to denote electric
current. While it carries the adjec-
tive ‘imaginary’, these numbers have
essential real-world implications. For
example, every electronic device owes
its existence to the study of ‘imagi-
nary’ numbers.

: The Complex Numbers
. Complex Numbers

We now move on to the study of the set of complex numbers. As
you may recall, the complex numbers fill an algebraic gap left by the
real numbers. There is no real number x with x2 = −1, since for any
real number x2 ≥ 0. However, we could formally extract square roots
and write x = ±

√
−1. We build the complex numbers by relabelling the

quantity
√
−1 as i, the unfortunately misnamed imaginary unit. The

number i, while not a real number, is defined so that it plays along well
with real numbers and acts very much like any other radical expression.
For instance, 3(2i) = 6i, 7i− 3i = 4i, (2− 7i) + (3 + 4i) = 5− 3i, and so
forth. The key properties which distinguish i from the real numbers are
listed below.

Definition 2.1.1 The imaginary unit

The imaginary unit i satisfies the two following properties:

1. i2 = −1

2. If c is a real number with c ≥ 0 then
√
−c = i

√
c

Property 1 in Definition 2.1.1 establishes that i does act as a square
root of −1, and property 2 establishes what we mean by the ‘principal
square root’ of a negative real number. In property 2, it is important to
remember the restriction on c. For example, it is perfectly acceptable to
say

√
−4 = i

√
4 = i(2) = 2i. However,

√
−(−4) ̸= i

√
−4, otherwise, we’d

get
2 =

√
4 =

√
−(−4) = i

√
−4 = i(2i) = 2i2 = 2(−1) = −2,

which is unacceptable. The moral of this story is that the general prop-
erties of radicals do not apply for even roots of negative quantities. With
Definition 2.1.1 in place, we are now in position to define the complex
numbers.

Definition 2.1.2 Complex number

A complex number is a number of the form a+ bi, where a and
b are real numbers and i is the imaginary unit. The set of complex
numbers is denoted C.

Complex numbers include things you’d normally expect, like 3 + 2i
and 2

5 − i
√
3. However, don’t forget that a or b could be zero, which

means numbers like 3i and 6 are also complex numbers. In other words,
don’t forget that the complex numbers include the real numbers, so 0 and
π −

√
21 are both considered complex numbers. We want to study the

arithmetic of complex numbers, but before we can do so, we first need to



Chapter The Complex Numbers

make sure we understand what it means for two complex numbers to be
equal.

Definition 2.1.3 Equality of complex numbers

Let z = a + ib and w = c + id be two complex numbers. We say
that z and w are equal, and write z = w, if and only if a = c and
b = d.

The arithmetic of complex numbers is as you would expect. The defi-
nitions of addition and multiplication are as follows:

Definition 2.1.4 Addition of complex numbers

Given two complex numbers z = a + ib and w = c + id, we define
their sum to be the complex number given by

z + w = (a+ c) + i(b+ d).

Definition 2.1.5 Multiplication of complex numbers

Give two complex numbers z = a + ib and w = c + id, we define
their product to be the complex number

zw = (ac− bd) + i(ad+ bc).

Addition of complex numbers is defined by simply adding the corre-
sponding parts. The definition of multiplication looks complicated, but
it’s simply an application of the “F.O.I.L.” rule for multiplying binomials,
where we have to account for the fact that i2 = −1. As long as we re-
member the two properties in Definition 2.1.1, we can treat expressions
involving i =

√
−1 as we would with any other radical. Let’s work through

an example to see how this works.

Example . . Arithmetic with complex numbers
Perform the indicated operations.

1. (1− 2i)− (3 + 4i)

2. (1− 2i)(3 + 4i)

3. 1− 2i

3− 4i

4.
√
−3

√
−12

5.
√
(−3)(−12)

6. (x− [1 + 2i])(x− [1− 2i])

Solution

1. Subtraction is simply a variation on addition: We distribute the mi-
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nus sign across the second complex number and combine like terms:

(1− 2i)− (3 + 4i) = 1− 2i− 3− 4i Distribute
= −2− 6i Gather like terms

Technically, we’d have to rewrite our answer −2−6i as (−2)+(−6)i
to be (in the strictest sense) ‘in the form a+bi’. That being said, even
pedants have their limits, and we’ll consider −2− 6i good enough.

2. The key to multiplying complex numbers is to forget about Defini-
tion 2.1.5 above, and simply treat this as a product of two binomials.
Using the Distributive Property (a.k.a. F.O.I.L.), we get

(1− 2i)(3 + 4i) = (1)(3) + (1)(4i)− (2i)(3)− (2i)(4i) F.O.I.L.

= 3 + 4i− 6i− 8i2

= 3− 2i− 8(−1) i2 = −1

= 3− 2i+ 8

= 11− 2i

3. How in the world are we supposed to simplify 1−2i
3−4i? Well, we deal

with the denominator 3 − 4i as we would any other denominator
containing two terms, one of which is a square root: we then multiply
both numerator and denominator by 3+4i, the (complex) conjugate
of 3− 4i. Doing so produces

1− 2i

3− 4i
=

(1− 2i)(3 + 4i)

(3− 4i)(3 + 4i)
Equivalent Frac ons

=
3 + 4i− 6i− 8i2

9− 16i2
F.O.I.L.

=
3− 2i− 8(−1)

9− 16(−1)
i2 = −1

=
11− 2i

25
=

11

25
− 2

25
i

4. We use property 2 of Definition 2.1.1 first, then apply the rules of
radicals applicable to real numbers to get

√
−3

√
−12 =

(
i
√
3
) (

i
√
12
)
=

i2
√
3 · 12 = −

√
36 = −6.

5. We adhere to the order of operations here and perform the multipli-
cation before the radical to get

√
(−3)(−12) =

√
36 = 6.

6. We can brute force multiply using the distributive property and see
that

(x− [1 + 2i])(x− [1− 2i]) = x2 − x[1− 2i]− x[1 + 2i] + [1− 2i][1 + 2i]

= x2 − x+ 2ix− x− 2ix+ 1− 2i+ 2i− 4i2

= x2 − 2x+ 1− 4(−1)

= x2 − 2x+ 5

In the previous example, we used the idea of a ‘conjugate’ to divide two
complex numbers. More generally, the complex conjugate of a complex



You may recall using conjugates to ra-
tionalize expressions involving square
roots. For example, we have

3√
2 + 1

=
3(
√
2− 1)

(
√
2 + 1)(

√
2− 1)

= 3
√
3− 3.

The key observation is that multiply-
ing by the conjugate sets up a differ-
ence of squares: the terms involving
the radical cancel out. In some ways,
multiplication by a complex conju-
gate is even more convenient than
with real radicals: since

(a+ ib)(a− ib) = a2 − iab+ iab− i2b2

= a2 + b2,

the product zz is never negative, and
only vanishes if z = 0.
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number a + bi is the number a − bi. The notation commonly used for
complex conjugation is a ‘bar’: a+ bi = a− bi. For example,

3 + 2i = 3− 2i and 3− 2i = 3 + 2i.

To find 6, we note that 6 = 6 + 0i = 6 − 0i = 6, so 6 = 6. Similarly,
4i = −4i, since 4i = 0 + 4i = 0 − 4i = −4i. The properties of the
conjugate are summarized in the following theorem.

Theorem 2.1.1 Properties of the Complex Conjugate

Let z and w be complex numbers.

• z = z

• z + w = z + w

• zw = z w

• zn = (z)
n, for any natural number n

• z is a real number if and only if z = z.

Essentially, Theorem 2.1.1 says that complex conjugation works well
with addition, multiplication and powers. The proofs of these properties
can best be achieved by writing out z = a + bi and w = c + di for real
numbers a, b, c and d. Next, we compute the left and right sides of each
equation and verify that they are the same.

Verifying the first property is a very quick exercise. To prove the second
property, we compare z + w with z+w. We have z+w = a+ bi+c+ di =
a− bi+ c− di. To find z + w, we first compute

z + w = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i

so

z + w = (a+ c) + (b+ d)i

= (a+ c)− (b+ d)i

= a− bi+ c− di

= z + w

As such, we have established z + w = z+w. The proof for multiplica-
tion works similarly: we have

zw = (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (ac− (−b)(−d)) + i(a(−d) + b(−c))

= (a− ib)(c− id)

= z w.

The proof that the conjugate works well with powers can be viewed as a
repeated application of the product rule. The last property is a character-
ization of real numbers. If z is real, then z = a+0i, so z = a−0i = a = z.
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On the other hand, if z = z, then a+ bi = a− bi which means b = −b so
b = 0. Hence, z = a+ 0i = a and is real.

It is worth noting that although the arithmetic of complex numbers
seems, at first impression, to be very different and strange compared to
the arithmetic of real numbers, it actually satisfies all the same properties,
as outlined in the following theorem.

Theorem 2.1.2 Properties of Complex Arithmetic

The addition and multiplication of complex numbers satisfy the
following properties:

• Closure under addition: For any complex numbers z and
w, z + w is a complex number.

• Commutativity of addition: For any complex numbers z
and w, z + w = w + z.

• Associativity of addition: For any complex numbers
z1, z2, z3, z1 + (z2 + z3) = (z1 + z2) + z3.

• Additive identity: There exists a complex number 0 such
that z + 0 = 0 + z = z for every complex number z.

• Additive inverses: For every complex number z there exists
a complex number −z such that z + (−z) = −z + z = 0.

• Closure under multiplication: For any complex numbers
z and w, zw is a complex number.

• Commutativity of multiplication: For any complex num-
bers z and w, zw = wz.

• Assiciativity of multiplication: For any complex numbers
z1, z2, z3, z1(z2z3) = (z1z2)z3

• Multiplicative identity: There exists a complex number 1
such that 1 · z = z · 1 = z for every complex number z.

• Multiplicative inverses: For every complex number z ̸= 0,
there exists a complex number z−1 such that zz−1 = z−1z =
1.

• Distributive property: For all complex numbers z1, z2, z3,
we have z1(z2 + z3) = z1z2 + z1z3.

We leave the proof of Theorem 2.1.2 as a long (but straightforward)
exercises. Working through the proof is a good way to confirm for yourself
that you understand the corresponding rules for real number arithmetic
from Section 1.2, and how the properties for complex arithmetic are in-
herited from their real counterparts.

We now consider the problem of solving quadratic equations. Consider
x2 − 2x + 5 = 0. The discriminant b2 − 4ac = −16 is negative, so we
know from the quadratic formula that there are no real solutions, since
the Quadratic Formula would involve the term

√
−16. Complex numbers,

however, are built just for such situations, so we can go ahead and apply



We’re assuming some prior familiar-
ity on the part of the reader where
quadratic equations are concerned.
If you’re a bit rusty when it comes
to finding real solutions to quadratic
equations (and in particular, the
quadratic formula), you may want to
check out the review materials avail-
able on the “Math Basics” Moodle
page.
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the Quadratic Formula to get:

x =
−(−2)±

√
(−2)2 − 4(1)(5)

2(1)
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

Example . . Finding complex solutions
Find the complex solutions to the following equations.

1. 2x

x+ 1
= x+ 3 2. 2t4 = 9t2 + 5 3. z3 + 1 = 0

Solution

1. Clearing fractions yields a quadratic equation so we collect all terms
on one side and apply the Quadratic Formula.

2x

x+ 1
= x+ 3

2x = (x+ 3)(x+ 1) Clear denominators

2x = x2 + x+ 3x+ 3 F.O.I.L.

2x = x2 + 4x+ 3 Gather like terms

0 = x2 + 2x+ 3 Subtract 2x

From here, we apply the Quadratic Formula

x =
−2±

√
22 − 4(1)(3)

2(1)
Quadra c Formula

=
−2±

√
−8

2
Simplify

=
−2± i

√
8

2
Defini on of i

=
−2± i2

√
2

2
Product Rule for Radicals

= �2(−1± i
√
2)

�2
Factor and reduce

= −1± i
√
2

We get two answers: x = −1+ i
√
2 and its conjugate x = −1− i

√
2.

Checking both of these answers reviews all of the salient points about
complex number arithmetic and is therefore strongly encouraged.

2. Since we have three terms, and the exponent on one term (‘4’ on
t4) is exactly twice the exponent on the other (‘2’ on t2), we have a
Quadratic in Disguise. We proceed accordingly.

2t4 = 9t2 + 5

2t4 − 9t2 − 5 = 0 Subtract 9t2 and 5

(2t2 + 1)(t2 − 5) = 0 Factor

2t2 + 1 = 0 or t2 = 5 Zero Product Property

From 2t2 + 1 = 0 we get 2t2 = −1, or t2 = − 1
2 . We extract square

roots as follows:

t = ±
√
−1

2
= ±i

√
1

2
= ±i

√
1√
2
= ±i

1√
2
= ± i

√
2

2
,



Remember, all real numbers are com-
plex numbers, so ‘complex solutions’
means both real and non-real an-
swers.

In Section 2.3 we will develop a much
easier method for solving the equa-
tion z3 + 1 = 0 using polar coordi-
nates.
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where we have rationalized the denominator per convention. From
t2 = 5, we get t = ±

√
5. In total, we have four complex solutions -

two real: t = ±
√
5 and two non-real: t = ± i

√
2

2 .

3. To find the real solutions to z3 + 1 = 0, we can subtract the 1 from
both sides and extract cube roots: z3 = −1, so z = 3

√
−1 = −1. It

turns out there are two more non-real complex number solutions to
this equation. To get at these, we factor:

z3 + 1 = 0

(z + 1)(z2 − z + 1) = 0 Factor (Sum of Two Cubes)

z + 1 = 0 or z2 − z + 1 = 0

From z+1 = 0, we get our real solution z = −1. From z2−z+1 = 0,
we apply the Quadratic Formula to get:

z =
−(−1)±

√
(−1)2 − 4(1)(1)

2(1)
=

1±
√
−3

2
=

1± i
√
3

2

Thus we get three solutions to z3+1 = 0 - one real: z = −1 and two
non-real: z = 1±i

√
3

2 . As always, the reader is encouraged to test
their algebraic mettle and check these solutions.

It is no coincidence that the non-real solutions to the equations in
Example 2.1.2 appear in complex conjugate pairs. Any time we use the
Quadratic Formula to solve an equation with real coefficients, the answers
will form a complex conjugate pair owing to the ± in the Quadratic For-
mula. This is stated formally in the following theorem.

Theorem 2.1.3 Discriminant Theorem

Given a Quadratic Equation AX2 +BX +C = 0, where A, B and
C are real numbers, let D = B2 − 4AC be the discriminant.

• If D > 0, there are two distinct real number solutions to the
equation.

• If D = 0, there is one (repeated) real number solution.
Note: ‘Repeated’ here comes from the fact that ‘both’ solu-
tions −B±0

2A reduce to − B
2A .

• If D < 0, there are two non-real solutions which form a com-
plex conjugate pair.



The Fundamental Theorem of Al-
gebra has since been proved many
times, using many different methods,
by many mathematicians. There are
probably very few, if any, results
in mathematics with the variety of
proofs this result has. Unfortunately,
none of the proofs can be understood
within the realm of this text, but if
the reader is sufficiently interested, a
collection of proofs can be found at
www.cut-the-knot.org/fta/analytic.shtml.
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Theorem 2.1.3 tells us that if ever we obtain non-real zeros to a quadratic
function with real coefficients, the zeros will be a complex conjugate pair.
(Do you see why?) Next, we note that in Example 2.1.1, part 6, we found
(x − [1 + 2i])(x − [1 − 2i]) = x2 − 2x + 5. This demonstrates that the
factor theorem holds even for non-real zeros, i.e, x = 1 + 2i is a zero of
f(x) = x2 − 2x + 5, and, sure enough, (x − [1 + 2i]) is a factor of f(x).
It turns out that polynomial division works the same way for all complex
numbers, real and non-real alike, so the Factor and Remainder Theorems
hold as well. But how do we know if a general polynomial has any complex
zeros at all? We have many examples of polynomials with no real zeros.
Can there be polynomials with no zeros whatsoever? The answer to that
last question is “No.” and the theorem which provides that answer is The
Fundamental Theorem of Algebra.

Theorem 2.1.4 The Fundamental Theorem of Algebra

Suppose f is a polynomial function with complex number coeffi-
cients of degree n ≥ 1, then f has at least one complex zero.

The Fundamental Theorem of Algebra is an example of an ‘existence’
theorem in Mathematics. It guarantees the existence of at least one zero,
but gives us no algorithm to use in finding it. The authors are fully aware
that the full impact and profound nature of the Fundamental Theorem of
Algebra is lost on most students, and that’s fine. It took mathematicians
literally hundreds of years to prove the theorem in its full generality, and
some of that history can be found by looking up the Fundamental Theorem
on Wikipedia. Note that the Fundamental Theorem of Algebra applies to
not only polynomial functions with real coefficients, but to those with
complex number coefficients as well.

Suppose f is a polynomial of degree n ≥ 1. The Fundamental Theorem
of Algebra guarantees us at least one complex zero, z1, and as such, the
Factor Theorem guarantees that f(x) factors as f(x) = (x− z1) q1(x) for
a polynomial function q1, of degree exactly n − 1. If n − 1 ≥ 1, then the
Fundamental Theorem of Algebra guarantees a complex zero of q1 as well,
say z2, so then the Factor Theorem gives us q1(x) = (x− z2) q2(x), and
hence f(x) = (x− z1) (x− z2) q2(x). We can continue this process exactly
n times, at which point our quotient polynomial qn has degree 0 so it’s a
constant. This argument gives us the following factorization theorem.

Theorem 2.1.5 Complex Factorization Theorem

Suppose f is a polynomial function with complex number coeffi-
cients. If the degree of f is n and n ≥ 1, then f has exactly n
complex zeros, counting multiplicity. If z1, z2, …, zk are the dis-
tinct zeros of f , with multiplicities m1, m2, …, mk, respectively,
then f(x) = a (x− z1)

m1 (x− z2)
m2 · · · (x− zk)

mk .

To complete our study of the arithmetic of complex numbers, we should
discuss powers and roots. Computing powers can be done using the form
z = x + iy, but it quickly becomes unpleasant (try computing (4 + 3i)7,
for example). Roots, on the other hand, are nearly impossible. Luckily
for us, there is a better way: using the polar form of complex numbers.

http://www.cut-the-knot.org/fta/analytic.shtml
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
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Before we get to this discussion, however, we need to pause to introduce
the polar coordinate system for the Cartesian coordinate system.



Exercises 2.1
Problems
In Exercises – , use the given complex numbers z and w
to find and simplify the following:

• z + w

• zw

• z2

•
1

z

•
z

w

•
w

z

• z

• zz

• (z)2

. z = 2 + 3i, w = 4i

. z = 1 + i, w = −i

. z = i, w = −1 + 2i

. z = 4i, w = 2− 2i

. z = 3− 5i, w = 2 + 7i

. z = −5 + i, w = 4 + 2i

. z =
√
2− i

√
2, w =

√
2 + i

√
2

. z = 1− i
√
3, w = −1− i

√
3

. z =
1

2
+

√
3

2
i, w = −1

2
+

√
3

2
i

. z = −
√
2

2
+

√
2

2
i, w = −

√
2

2
−

√
2

2
i

In Exercises – , simplify the quan ty.

.
√
−49

.
√
−9

.
√
−25

√
−4

.
√

(−25)(−4)

.
√
−9

√
−16

.
√

(−9)(−16)

.
√

−(−9)

. −
√

(−9)

We know that i2 = −1which means i3 = i2 · i = (−1) · i =
−i and i4 = i2 · i2 = (−1)(−1) = 1. In Exercises – ,
use this informa on to simplify the given power of i.

. i5

. i6

. i7

. i8

. i15

. i26

. i117

. i304

In Exercises – , find all complex solu ons.

. 3x2 + 6 = 4x

. 15t2 + 2t+ 5 = 3t(t2 + 1)

. 3y2 + 4 = y4

.
2

1− w
= w

.
y

3
− 3

y
= y

.
x3

2x− 1
=

x

3

. x =
2√
5− x

.
5y4 + 1

y2 − 1
= 3y2

. z4 = 16

. Mul ply and simplify:
(
x− [3− i

√
23]

) (
x− [3 + i

√
23]

)



The treatment of polar coordinates
given here is a simplified version that
takes into account the fact that when
we introduce the polar form of a com-
plex number in the next section, the
coordinate r will always satisfy r ≥
0. A general treatment (such as the
one you’ll encounter in the Calcu-
lus sequence) treats r as a directed
distance, allowing for the possibility
that r < 0. This possibility be-
comes necessary when one wants to
discuss curves defined by polar equa-
tions, where solutions with r < 0 are
possible.

. Polar Coordinates

. Polar Coordinates
In Section 1.3, we introduced the Cartesian coordinates of a point in the
plane as a means of assigning ordered pairs of numbers to points in the
plane. We defined the Cartesian coordinate plane using two number lines –
one horizontal and one vertical – which intersect at right angles at a point
we called the ‘origin’. To plot a point, say P (−3, 4), we start at the origin,
travel horizontally to the left 3 units, then up 4 units. Alternatively,
we could start at the origin, travel up 4 units, then to the left 3 units
and arrive at the same location. For the most part, the ‘motions’ of the
Cartesian system (over and up) describe a rectangle, and most points
can be thought of as the corner diagonally across the rectangle from the
origin.(Excluding, of course, the points in which one or both coordinates
are 0.) For this reason, the Cartesian coordinates of a point are often called
‘rectangular’ coordinates. In this section, we introduce a new system for

assigning coordinates to points in the plane – polar coordinates. We
start with an origin point, called the pole, and a ray called the polar
axis. We then locate a point P using two coordinates, (r, θ), where r
represents the distance from the pole and θ is a measure of rotation from
the polar axis. Roughly speaking, the polar coordinates (r, θ) of a point
measure ‘how far out’ the point is from the pole (that’s r), and ‘how far
to rotate’ from the polar axis, (that’s θ).

x

y

P (−3, 4)

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

3

2

r

r
θ

Pole
Polar Axis

P (r, θ)

Figure . . : Rectangular vs. Polar Coordinates

For example, if we wished to plot the point P with polar coordinates(
4, 5π

6

)
, we’d start at the pole, move out along the polar axis 4 units, then

rotate 5π
6 radians counter-clockwise, as shown in Figure 2.2.2.

Pole

r = 4

Pole

θ = 5π
6

Pole

P
(
4, 5π

6

)

Figure . . : Loca ng a point using polar coordinates

We may also visualize this process by thinking of the rotation first.(As
with anything in Mathematics, the more ways you have to look at some-
thing, the better. The authors encourage the reader to take time to think



Chapter The Complex Numbers

about both approaches to plotting points given in polar coordinates.) To
plot P

(
4, 5π

6

)
this way, we rotate 5π

6 counter-clockwise from the polar
axis, then move outwards from the pole 4 units, as shown in Figure 2.2.3.
Essentially we are locating a point on the terminal side of 5π

6 which is 4
units away from the pole.

Pole

θ = 5π
6

Pole

θ = 5π
6

Pole

P
(
4, 5π

6

)

Figure . . : Performing the rota on first

As you may have guessed, θ < 0 means the rotation away from the po-
lar axis is clockwise instead of counter-clockwise. Hence, to plot R

(
3.5,− 3π

4

)
we have the following.

Pole

r = 3.5

Pole

θ = − 3π
4

Pole

R
(
3.5,− 3π

4

)

Figure . . : θ = − 3π
4

< 0 produces a clockwise rota on

From an ‘angles first’ approach, we rotate − 3π
4 then move out 3.5 units

from the pole. We see that R is the point on the terminal side of θ = − 3π
4

which is 3.5 units from the pole.

Pole

θ = − 3π
4

Pole

θ = − 3π
4

Pole

R
(
3.5,− 3π

4

)

Figure . . : Rota ng first with θ < 0

The points Q and R above are, in fact, the same point despite the fact
that their polar coordinate representations are different. Unlike Cartesian
coordinates where (a, b) and (c, d) represent the same point if and only
if a = c and b = d, a point can be represented by infinitely many polar
coordinate pairs. We explore this notion more in the following example.

Example . . Plotting points in polar coordinates
For each of the points given below in polar coordinates, plot the point and
then give an additional expression for the point.

1. P (2, 240◦) 2. P
(
117,− 5π

2

)
Solution

1. Whether we move 2 units along the polar axis and then rotate 240◦ or
rotate 240◦ then move out 2 units from the pole, we plot P (2, 240◦)
in Figure 2.2.6 below.



Again, we remind the reader that in
a calculus course, for a point that is
2 units from the pole, we could have
r = 2 or r = −2. We are sticking to
r > 0 for simplicity.

We say that two angles α and β are
coterminal if they correspond to the
same point on the unit circle; that is,
if (1, α) = (1, β) in polar coordinates.
The reader may recall that coterminal
angles differ by an integer multiple of
2π (or 360◦). For example, the angles
π
3

and 7π
3

are coterminal, since 7π
3

=
π
3
+ 2π.

P (2,−120◦)

Pole

θ = −120◦

Figure . . : Alternate polar representa-
on of P (2, 240◦)

Pole

θ = 3π
2

P
(
117, 3π

2

)
Figure . . : Alternate polar representa-
ons of P (117,− 5π

2
)

. Polar Coordinates

Pole

θ = 240◦

Pole

P (2, 240◦)

Figure . . : Plo ng P (2, 240◦)

We now set about finding an alternate description (r, θ) for the point
P . Since P is 2 units from the pole, r = 2. Next, we choose an angle
θ. The given representation for P is (2, 240◦) so the angle θ we
choose for the r = 2 case must be coterminal with 240◦. One such
angle is θ = −120◦ so one possible answer for this point is (2,−120◦).
We check our answer by plotting it in Figure 2.2.8.

2. To plot P
(
117,− 5π

2

)
, we move along the polar axis 117 units from

the pole and rotate clockwise 5π
2 radians as illustrated in Figure 2.2.7

below.

Pole

θ = − 5π
2

Pole

P
(
117,− 5π

2

)

Figure . . : Plo ng P (117,− 5π
2
)

Since P is 117 units from the pole, any representation (r, θ) for P
(with r > 0) satisfies r = 117. We can take θ to be any angle
coterminal with − 5π

2 ; we choose θ = 3π
2 , and get

(
117, 3π

2

)
as one

possible answer.

Now that we have had some practice with plotting points in polar
coordinates, it should come as no surprise that any given point expressed
in polar coordinates has infinitely many other representations in polar
coordinates. Since we are restricting ourselves to polar coordinates with
r > 0, we see that every alternate description of a point (r, θ) in polar
coordinates is of the form (r, θ + 2πk) for some integer k.

Next, we marry the polar coordinate system with the Cartesian (rect-
angular) coordinate system. To do so, we identify the pole and polar axis
in the polar system to the origin and positive x-axis, respectively, in the
rectangular system. We get the following result, which is illustrated in
Figure 2.2.10.



Figure . . : Conver ng between rect-
angular and polar coordinates

x

y

P

θ = 5π
3

Figure . . : P has rectangular coordi-
nates (2,−2

√
3) and polar coordinates

(4, 5π
3
)

x

y

Q

θ = 5π
4

Figure . . : Q has rectangular coor-
dinates (−3,−3) and polar coordinates
(3
√
2, 5π

4
)
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Theorem 2.2.1 Conversion Between Rectangular and
Polar Coordinates

Suppose P is represented in rectangular coordinates as (x, y) and
in polar coordinates as (r, θ). Then

• x = r cos(θ) and y = r sin(θ)

• x2 + y2 = r2 and tan(θ) = y

x
(provided x ̸= 0)

Example . . Converting from rectangular to polar coordinates
Convert each point in rectangular coordinates given below into polar co-
ordinates with r ≥ 0 and 0 ≤ θ < 2π. Use exact values if possible and
round any approximate values to two decimal places. Check your answer
by converting them back to rectangular coordinates.

1. P
(
2,−2

√
3
)

2. Q(−3,−3)

3. R(0,−3)

4. S(−3, 4)

Solution

1. Even though we are not explicitly told to do so, we can avoid many
common mistakes by taking the time to plot the points before we do
any calculations. Plotting P

(
2,−2

√
3
)

shows that it lies in Quad-
rant IV. With x = 2 and y = −2

√
3, we get r2 = x2 + y2 = (2)2 +(

−2
√
3
)2

= 4+12 = 16 so r = ±4. Since we are asked for r ≥ 0, we
choose r = 4. To find θ, we have that tan(θ) = y

x = −2
√
3

2 = −
√
3.

This tells us θ has a reference angle of π
3 , and since P lies in Quad-

rant IV, we know θ is a Quadrant IV angle. We are asked to have
0 ≤ θ < 2π, so we choose θ = 5π

3 . Hence, our answer is
(
4, 5π

3

)
.

To check, we convert (r, θ) =
(
4, 5π

3

)
back to rectangular coor-

dinates and we find x = r cos(θ) = 4 cos
(
5π
3

)
= 4

(
1
2

)
= 2 and

y = r sin(θ) = 4 sin
(
5π
3

)
= 4

(
−

√
3
2

)
= −2

√
3, as required.

2. The point Q(−3,−3) lies in Quadrant III. Using x = y = −3, we
get r2 = (−3)2 + (−3)2 = 18 so r = ±

√
18 = ±3

√
2. Since we are

asked for r ≥ 0, we choose r = 3
√
2. We find tan(θ) = −3

−3 = 1,
which means θ has a reference angle of π

4 . Since Q lies in Quadrant
III, we choose θ = 5π

4 , which satisfies the requirement that 0 ≤
θ < 2π. Our final answer is (r, θ) =

(
3
√
2, 5π

4

)
. To check, we

find x = r cos(θ) = (3
√
2) cos

(
5π
4

)
= (3

√
2)
(
−

√
2
2

)
= −3 and y =

r sin(θ) = (3
√
2) sin

(
5π
4

)
= (3

√
2)
(
−

√
2
2

)
= −3, so we are done.

3. The point R(0,−3) lies along the negative y-axis. While we could go
through the usual computations to find the polar form of R (since
x = 0, we would have to determine θ geometrically), in this case
we can find the polar coordinates of R using the definition. Since
the pole is identified with the origin, we can easily tell the point R
is 3 units from the pole, which means in the polar representation



x

y

R

θ = 3π
2

Figure . . : R has rectangular coor-
dinates (0,−3) and polar coordinates
(−3, 3π

2
)

x

y

S

θ = π − arctan
(
4
3

)

Figure . . : S has rectangular coor-
dinates (−3, 4) and polar coordinates
(5, π − arctan( 4

3
))

. Polar Coordinates

(r, θ) of R we know r = ±3. Since we require r ≥ 0, we choose
r = 3. Concerning θ, the angle θ = 3π

2 satisfies 0 ≤ θ < 2π with
its terminal side along the negative y-axis, so our answer is

(
3, 3π

2

)
.

To check, we note x = r cos(θ) = 3 cos
(
3π
2

)
= (3)(0) = 0 and

y = r sin(θ) = 3 sin
(
3π
2

)
= 3(−1) = −3.

4. The point S(−3, 4) lies in Quadrant II. With x = −3 and y = 4, we
get r2 = (−3)2+(4)2 = 25 so r = ±5. As usual, we choose r = 5 ≥ 0
and proceed to determine θ. We have tan(θ) = y

x = 4
−3 = − 4

3 , and
since this isn’t the tangent of one the common angles, we resort to
using the arctangent function. Since θ lies in Quadrant II and must
satisfy 0 ≤ θ < 2π, we choose θ = π−arctan

(
4
3

)
radians. Hence, our

answer is (r, θ) =
(
5, π − arctan

(
4
3

))
≈ (5, 2.21). To check our an-

swers requires a bit of tenacity since we need to simplify expressions
of the form: cos

(
π − arctan

(
4
3

))
and sin

(
π − arctan

(
4
3

))
. These

are good review exercises and are hence left to the reader. We find
cos
(
π − arctan

(
4
3

))
= − 3

5 and sin
(
π − arctan

(
4
3

))
= 4

5 , so that
x = r cos(θ) = (5)

(
− 3

5

)
= −3 and y = r sin(θ) = (5)

(
4
5

)
= 4 which

confirms our answer.

Now that we have a basic familiarity with the polar coordinate system,
we’re ready to see what complex numbers look like when we switch from
rectangular coordinates to polar.



Exercises 2.2
Problems
In Exercises – , plot the point given in polar coordinates
and then give two different expressions for the point: one
such that θ ≤ 0, and one such that θ ≥ 2π.

.
(
2,

π

3

)
.
(
5,

7π

4

)

.
(
1

3
,
3π

2

)

.
(
5

2
,
5π

6

)

.
(
12,−7π

6

)

.
(
3,−5π

4

)
.
(
2
√
2,−π

)
.
(
7

2
,−13π

6

)
In Exercises – , convert the point from polar coordinates
into rectangular coordinates.

.
(
5,

7π

4

)

.
(
2,

π

3

)
.
(
11,−7π

6

)

.
(
3

5
,
π

2

)

.
(
9,

7π

2

)

.
(
42,

13π

6

)
. (6, arctan(2))

. (10, arctan(3))

.
(
5, arctan

(
−4

3

))

.
(
2, π − arctan

(
1

2

))

.
(
2

3
, π + arctan

(
2
√
2
))

. (π, arctan(π))

.
(
13, arctan

(
12

5

))
In Exercises – , convert the point from rectangular coor-
dinates into polar coordinates with r ≥ 0 and 0 ≤ θ < 2π.

. (0, 5)

. (3,
√
3)

. (7,−7)

. (−3,−
√
3)

. (−3, 0)

.
(
−
√
2,
√
2
)

.
(
−4,−4

√
3
)

.
(√

3

4
,−1

4

)

.
(
− 3

10
,−3

√
3

10

)

.
(
−
√
5,−

√
5
)

. (6, 8)

. (
√
5, 2

√
5)

. (−8, 1)

. (−2
√
10, 6

√
10)

. (−5,−12)

.
(
−
√
5

15
,−2

√
5

15

)
. (24,−7)

. (12,−9)

.
(√

2

4
,

√
6

4

)

.
(
−
√
65

5
,
2
√
65

5

)
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. The Polar Form of Complex Numbers
In this section, we return to our study of complex numbers begun in
Section 2.1. Recall that a complex number is a number of the form
z = a + bi where a and b are real numbers and i is the imaginary unit
defined by i =

√
−1. The number a is called the real part of z, denoted

Re(z), while the real number b is called the imaginary part of z, denoted
Im(z).

To start off this section, we associate each complex number z = a+ bi
with the point (a, b) on the coordinate plane. In this case, the x-axis is
relabelled as the real axis, which corresponds to the real number line
as usual, and the y-axis is relabelled as the imaginary axis, which is
demarcated in increments of the imaginary unit i. The plane determined
by these two axes is called the complex plane.

Real Axis

Imaginary Axis

(−4, 2)←→ z = −4 + 2i

(0,−3)←→ z = −3i

(3, 0)←→ z = 3

0−4−3−2−1 1 2 3 4

−4i

−3i

−2i

−i

i

2i

3i

4i

Figure . . : The complex plane

Since the ordered pair (a, b) gives the rectangular coordinates associ-
ated with the complex number z = a + bi, the expression z = a + bi is
called the rectangular form of z. Of course, we could just as easily
associate z with a pair of polar coordinates (r, θ). Although it is not as
straightforward as the definitions of Re(z) and Im(z), we can still give r
and θ special names in relation to z.

Definition 2.3.1 The Modulus and Argument of Com-
plex Numbers

Let z = a+bi be a complex number with a = Re(z) and b = Im(z).
Let (r, θ) be a polar representation of the point with rectangular
coordinates (a, b) where r ≥ 0.

• The modulus of z, denoted |z|, is defined by |z| = r.

• The angle θ is an argument of z. The set of all arguments
of z is denoted arg(z).

• If z ̸= 0 and −π < θ ≤ π, then θ is the principal argument
of z, written θ = Arg(z).



For the purposes of Math 1410, it suf-
fices to speak of “an” argument of z,
and choose whatever interval is con-
venient for a given problem. The one
exception to this is online home-
work: the easiest way to program a
computer to grade the answer for a
problem on the polar form of a com-
plex number is to specify an interval
for the argument, so be sure to read
any online homework problems care-
fully, and choose θ to lie in the ap-
propriate interval.

While we can always use the relation-
ship tan θ = y

x
to determine a value

for the argument of z = x + iy, it is
much easier in practice to “factor out”
the modulus, and then try to iden-
tify what’s left over as a point on the
unit circle. For z =

√
3 − i we found

|z| = 2, so

z = 2

(√
3

2
+ i

(
−1

2

))
.

If we know our unit circle (or have
a copy of it handy), we can immedi-
ately spot that the point

(√
3

2
,− 1

2

)
corresponds to the angle θ = −π

6
.
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Some remarks about Definition 2.3.1 are in order. We know from Sec-
tion 2.2 that every point in the plane has infinitely many polar coordinate
representations (r, θ). Thus, if we want to speak of “the” argument, we
can’t simply choose one value of θ that works: there are infinitely many
other possible answers.

One option, as given above, is to simply include all possible answers.
This idea becomes important if one wants to do calculus with complex
numbers, but doesn’t play a role in the algebraic considerations we’re
interested in. The other, also seen above, is to specify an interval of
length 2π in which the argument must lie. The interval (−π, π], as given
above, is a common choice; another is to use the interval [0, 2π).

For this course we won’t worry much about distinguishing between
“argument” and “principal argument”: any value of θ that gives the correct
complex number will do. While this ambiguity may be annoying at times,
we’ll see at the end of this section that being able to add an integer
multiple of 2π to the argument without changing the value of z gives us
an ingenious method for computing roots of complex numbers.

Let us explore this new terminology with an example.

Example . . Components of a complex number
For each of the following complex numbers find Re(z), Im(z), |z|, arg(z)
and Arg(z). Plot z in the complex plane.

1. z =
√
3− i

2. z = −2 + 4i

3. z = 3i

4. z = −117

Solution

1. For z =
√
3− i =

√
3+(−1)i, we have Re(z) =

√
3 and Im(z) = −1.

To find |z|, arg(z) and Arg(z), we need to find a polar representation
(r, θ) with r ≥ 0 for the point P (

√
3,−1) associated with z. We

know r2 = (
√
3)2 + (−1)2 = 4, so r = ±2. Since we require r ≥ 0,

we choose r = 2, so |z| = 2. Next, we find a corresponding angle
θ. Since r > 0 and P lies in Quadrant IV, θ is a Quadrant IV
angle. We know tan(θ) = −1√

3
= −

√
3
3 , so θ = −π

6 + 2πk for integers
k. Hence, arg(z) =

{
−π

6 + 2πk | k is an integer
}

. Of these values,
only θ = −π

6 satisfies the requirement that −π < θ ≤ π, hence
Arg(z) = −π

6 .

2. The complex number z = −2 + 4i has Re(z) = −2, Im(z) = 4,
and is associated with the point P (−2, 4). Our next task is to find
a polar representation (r, θ) for P where r ≥ 0. Running through
the usual calculations gives r = 2

√
5, so |z| = 2

√
5. To find θ,

we get tan(θ) = −2, and since r > 0 and P lies in Quadrant II,
we know θ is a Quadrant II angle. We find θ = π + arctan(−2) +
2πk, or, more succinctly θ = π − arctan(2) + 2πk for integers k.
Hence arg(z) = {π − arctan(2) + 2πk | k is an integer}. Only θ =
π − arctan(2) satisfies the requirement −π < θ ≤ π, so Arg(z) =
π − arctan(2).

3. We rewrite z = 3i as z = 0 + 3i to find Re(z) = 0 and Im(z) = 3.
The point in the plane which corresponds to z is (0, 3) and while we
could go through the usual calculations to find the required polar
form of this point, we can almost ‘see’ the answer. The point (0, 3)



Since the absolute value |x| of a real
number x can be viewed as the dis-
tance from x to 0 on the number line,
the first property in Theorem 2.3.1
justifies the notation |z| for modulus.
We leave it to the reader to show that
if z is real, then the definition of mod-
ulus coincides with absolute value so
the notation |z| is unambiguous.

. The Polar Form of Complex Numbers

lies 3 units away from the origin on the positive y-axis. Hence,
r = |z| = 3 and θ = π

2 + 2πk for integers k. We get arg(z) ={
π
2 + 2πk | k is an integer

}
and Arg(z) = π

2 .

4. As in the previous problem, we write z = −117 = −117 + 0i so
Re(z) = −117 and Im(z) = 0. The number z = −117 corresponds
to the point (−117, 0), and this is another instance where we can
determine the polar form ‘by eye’. The point (−117, 0) is 117 units
away from the origin along the negative x-axis. Hence, r = |z| = 117
and θ = π + 2π = (2k + 1)πk for integers k. We have arg(z) =
{(2k + 1)π | k is an integer}. Only one of these values, θ = π, just
barely lies in the interval (−π, π] which means and Arg(z) = π. We
plot z along with the other numbers in this example in Figure 2.3.2
below.

Real Axis

Imaginary Axis

z =
√
3− i

z = −2 + 4i

z = 3i

z = −117

−117 −2−1 1 2 3 4−i

i

2i

3i

4i

Figure . . : Plots of the four complex numbers in Example . .

Now that we’ve had some practice computing the modulus and argu-
ment of some complex numbers, it is time to explore their properties. We
have the following theorem.

Theorem 2.3.1 Properties of the Modulus

Let z and w be complex numbers.

• |z| is the distance from z to 0 in the complex plane

• |z| ≥ 0 and |z| = 0 if and only if z = 0

• |z| =
√

Re(z)2 + Im(z)2

• Product Rule: |zw| = |z| |w|

• Power Rule: |zn| = |z|n for all natural numbers, n

• Quotient Rule:
∣∣∣ z
w

∣∣∣ = |z|
|w|

, provided w ̸= 0

The first property is simply a consequence of the distance formula:
|a+ ib| =

√
a2 + b2 is precisely the distance from the point (a, b) to the

origin. For the second property, note that since |z| is a distance, |z| ≥ 0.
Furthermore, |z| = 0 if and only if the distance from z to 0 is 0, and the
latter happens if and only if z = 0, which is what we were asked to show.



In case you were not convinced by the
argument for the second property in
Theorem 2.3.1, we can work through
the underlying Algebra to see this is
true. We know |z| = 0 if and only
if

√
a2 + b2 = 0 if and only if a2 +

b2 = 0, which is true if and only if
a = b = 0. The latter happens if and
only if z = a+ bi = 0. There.
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For the third property, we note that since a = Re(z) and b = Im(z),
z =

√
a2 + b2 =

√
Re(z)2 + Im(z)2.

To prove the product rule, suppose z = a+ bi and w = c+ di for real
numbers a, b, c and d. By Definition 2.1.5, we have zw = (ac−bd)+(ad+
bc)i. Therefore,

|zw| =
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2 Expand

=
√

a2c2 + a2d2 + b2c2 + b2d2 Rearrange terms

=
√

a2 (c2 + d2) + b2 (c2 + d2) Factor

=
√

(a2 + b2) (c2 + d2) Factor

=
√

a2 + b2
√
c2 + d2 Product Rule for Radicals

= |z| |w| Defini on of |z| and |w|

Hence |zw| = |z| |w| as required.

The Power Rule essentially follows from repeated application of the
Product Rule. Like the Power Rule, the Quotient Rule can also be estab-
lished with the help of the Product Rule. We assume w ̸= 0 (so |w| ̸= 0)
and we get

∣∣∣ z
w

∣∣∣ = ∣∣∣∣(z)( 1

w

)∣∣∣∣
= |z|

∣∣∣∣ 1w
∣∣∣∣ Product Rule.

Hence, the proof really boils down to showing
∣∣∣∣ 1w
∣∣∣∣ = 1

|w|
. This is left as

an exercise.

By restating Theorem 2.2.1 in terms of complex numbers, we get the
following characterization of the argument of a complex number in terms
of its real and imaginary parts.

Theorem 2.3.2 Properties of the Argument

Let z be a complex number.

• If Re(z) ̸= 0 and θ ∈ arg(z), then tan(θ) = Im(z)
Re(z) .

• If Re(z) = 0 and Im(z) > 0, then arg(z) ={
π
2 + 2πk | k is an integer

}
.

• If Re(z) = 0 and Im(z) < 0, then arg(z) ={
−π

2 + 2πk | k is an integer
}

.

• If Re(z) = Im(z) = 0, then z = 0 and arg(z) = (−∞,∞).



. The Polar Form of Complex Numbers

Our next goal is to completely marry the Geometry and the Algebra
of the complex numbers. To that end, consider Figure 2.3.3 below.

Real Axis

Imaginary Axis

(a, b)←→ z = a+ bi←→ (r, θ)

0

θ ∈ arg(z)

a

bi

|z| =
√ a

2 +
b2

=
r

Figure . . : Polar coordinates, (r, θ) associated with z = a+ bi with r ≥ 0.

We know from Theorem 2.2.1 that a = r cos(θ) and b = r sin(θ). Mak-
ing these substitutions for a and b gives z = a+ bi = r cos(θ)+ r sin(θ)i =
r [cos(θ) + i sin(θ)]. The expression ‘cos(θ)+ i sin(θ)’ is abbreviated cis(θ)
so we can write z = r cis(θ). Since r = |z| and θ ∈ arg(z), we get

Definition 2.3.2 A Polar Form of a Complex Number

Suppose z is a complex number and θ ∈ arg(z). The expression:

|z| cis(θ) = |z| [cos(θ) + i sin(θ)]

is called a polar form for z.

Since there are infinitely many choices for θ ∈ arg(z), there infinitely
many polar forms for z, so we used the indefinite article ‘a’ in Definition
2.3.2. It is time for an example.

Example . . Converting between rectangular and polar form

1. Find the rectangular form of the following complex numbers. Find
Re(z) and Im(z).

(a) z = 4 cis
(
2π
3

)
(b) z = 2 cis

(
− 3π

4

) (c) z = 3 cis(0)
(d) z = cis

(
π
2

)
2. Use the results from Example 2.3.1 to find a polar form of the fol-

lowing complex numbers.

(a) z =
√
3− i

(b) z = −2 + 4i

(c) z = 3i

(d) z = −117



While the notation cis(θ) = cos(θ) +
i sin(θ) is not uncommon, most au-
thors prefer to use Euler’s exponen-
tial notation. In light of Theorem
2.3.3, one can make sense of the polar
form using Euler’s formula

eiθ = cos(θ) + i sin(θ).

The appearance of the exponential
function in this context might seem
strange, but note that the three prop-
erties in Theorem 2.3.3 can then be
understood in terms of laws of expo-
nents. If z = reiα and w = seiβ , we
have

zw = (rs)
(
eiαeiβ

)
= (rs)ei(α+β),

zn = rn(eiα)n = rneinα,

and so on. For more details, see Ex-
ercise 82.
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Solution

1. The key to this problem is to write out cis(θ) as cos(θ) + i sin(θ).

(a) By definition, z = 4 cis
(
2π
3

)
= 4

[
cos
(
2π
3

)
+ i sin

(
2π
3

)]
. After

some simplifying, we get z = −2 + 2i
√
3, so that Re(z) = −2

and Im(z) = 2
√
3.

(b) Expanding, we get z = 2 cis
(
− 3π

4

)
= 2

[
cos
(
− 3π

4

)
+ i sin

(
− 3π

4

)]
.

From this, we find z = −
√
2− i

√
2, so Re(z) = −

√
2 = Im(z).

(c) We get z = 3 cis(0) = 3 [cos(0) + i sin(0)] = 3. Writing 3 =
3 + 0i, we get Re(z) = 3 and Im(z) = 0, which makes sense
seeing as 3 is a real number.

(d) Lastly, we have z = cis
(
π
2

)
= cos

(
π
2

)
+ i sin

(
π
2

)
= i. Since

i = 0 + 1i, we get Re(z) = 0 and Im(z) = 1. Since i is called
the ‘imaginary unit,’ these answers make perfect sense.

2. To write a polar form of a complex number z, we need two pieces
of information: the modulus |z| and an argument (not necessarily
the principal argument) of z. We shamelessly mine our solution to
Example 2.3.1 to find what we need.

(a) For z =
√
3− i, |z| = 2 and θ = −π

6 , so z = 2 cis
(
−π

6

)
. We can

check our answer by converting it back to rectangular form to
see that it simplifies to z =

√
3− i.

(b) For z = −2 + 4i, |z| = 2
√
5 and θ = π − arctan(2). Hence,

z = 2
√
5 cis(π − arctan(2)). It is a good exercise to actually

show that this polar form reduces to z = −2 + 4i.
(c) For z = 3i, |z| = 3 and θ = π

2 . In this case, z = 3 cis
(
π
2

)
. This

can be checked geometrically. Head out 3 units from 0 along the
positive real axis. Rotating π

2 radians counter-clockwise lands
you exactly 3 units above 0 on the imaginary axis at z = 3i.

(d) Last but not least, for z = −117, |z| = 117 and θ = π. We get
z = 117 cis(π). As with the previous problem, our answer is
easily checked geometrically.

The following theorem summarizes the advantages of working with
complex numbers in polar form.

Theorem 2.3.3 Products, Powers and Quotients Com-
plex Numbers in Polar Form

Suppose z and w are complex numbers with polar forms z =
|z| cis(α) and w = |w| cis(β). Then

• Product Rule: zw = |z| |w| cis(α+ β)

• Power Rule (DeMoivre’s Theorem) : zn = |z|n cis(nθ)
for every natural number n

• Quotient Rule: z

w
=

|z|
|w|

cis(α− β), provided |w| ̸= 0

http://en.wikipedia.org/wiki/Abraham_de_Moivre
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The proof of Theorem 2.3.3 requires a healthy mix of definition, arith-
metic and identities. We first start with the product rule.

zw = [|z| cis(α)] [|w| cis(β)]

= |z||w| [cos(α) + i sin(α)] [cos(β) + i sin(β)]

We now focus on the quantity in brackets on the right hand side of the
equation.

[cos(α) + i sin(α)] [cos(β) + i sin(β)]
= cos(α) cos(β) + i cos(α) sin(β)

+ i sin(α) cos(β) + i2 sin(α) sin(β)
= cos(α) cos(β) + i2 sin(α) sin(β) Rearranging terms

+ i sin(α) cos(β) + i cos(α) sin(β)
= (cos(α) cos(β)− sin(α) sin(β)) Since i2 = −1

+ i (sin(α) cos(β) + cos(α) sin(β)) Factor out i
= cos(α+ β) + i sin(α+ β) Sum iden es
= cis(α+ β) Defini on of ‘cis’

Putting this together with our earlier work, we get zw = |z| |w| cis(α+
β), as required.

As with with the proof of the Power Rule in Theorem 2.3.1, the proof
of the Power Rule (better known as DeMoivre’s Theorem) amounts to
repeated application of the product rule. A formal proof requires the
technique of mathematical induction (usually first encountered in Math
2000), and is therefore omitted.

The last property in Theorem 2.3.3 to prove is the quotient rule. As-
suming |w| ̸= 0 we have

z

w
=

|z| cis(α)
|w| cis(β)

=

(
|z|
|w|

)
cos(α) + i sin(α)
cos(β) + i sin(β)

Next, we multiply both the numerator and denominator of the right
hand side by (cos(β)−i sin(β)) which is the complex conjugate of (cos(β)+
i sin(β)) to get

z

w
=

(
|z|
|w|

)
cos(α) + i sin(α)
cos(β) + i sin(β) · cos(β)− i sin(β)

cos(β)− i sin(β)

If we let the numerator be N = [cos(α) + i sin(α)] [cos(β)− i sin(β)]
and simplify we get
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N = [cos(α) + i sin(α)] [cos(β)− i sin(β)]
= cos(α) cos(β)− i cos(α) sin(β)

+ i sin(α) cos(β)− i2 sin(α) sin(β) Expand
= [cos(α) cos(β) + sin(α) sin(β)]

+ i [sin(α) cos(β)− cos(α) sin(β)] Rearrange and Factor
= cos(α− β) + i sin(α− β) Difference Iden es
= cis(α− β) Defini on of ‘cis’

If we call the denominator D then we get

D = [cos(β) + i sin(β)] [cos(β)− i sin(β)]
= cos2(β)− i cos(β) sin(β)

+ i cos(β) sin(β)− i2 sin2(β) Expand

= cos2(β)− i2 sin2(β) Simplify

= cos2(β) + sin2(β) Again, i2 = −1

= 1 Pythagorean Iden ty

Putting it all together, we get

z

w
=

(
|z|
|w|

)
cos(α) + i sin(α)
cos(β) + i sin(β) · cos(β)− i sin(β)

cos(β)− i sin(β)

=

(
|z|
|w|

)
cis(α− β)

1

=
|z|
|w|

cis(α− β)

and we are done. The next example makes good use of Theorem 2.3.3.

Example . . Complex arithmetic using the polar form
Let z = 2

√
3 + 2i and w = −1 + i

√
3. Use Theorem 2.3.3 to find the

following.

1. zw 2. w5 3. z

w

Write your final answers in rectangular form.

Solution In order to use Theorem 2.3.3, we need to write z and
w in polar form. For z = 2

√
3 + 2i, we find

|z| =
√
(2
√
3)2 + (2)2 =

√
16 = 4.

We then have

z = 4

(
1

4
(2
√
3 + 2i)

)
= 4

(√
3

2
+ i

1

2

)
= 4 cis

(π
6

)
,



. The Polar Form of Complex Numbers

using the fact that the point
(√

3
2 , 1

2

)
on the unit circle corresponds to the

angle θ = π
6 . For w = −1+ i

√
3, we have |w| =

√
(−1)2 + (

√
3)2 = 2, and

thus, using the same method that we did for z, we have

w = 2

(
1

2
(−1 + i

√
3)

)
= 2

(
−1

2
+ i

√
3

2

)
= 2 cis

(
2π

3

)
.

We can now proceed.

1. We get zw =
(
4 cis

(
π
6

)) (
2 cis

(
2π
3

))
= 8 cis

(
π
6 + 2π

3

)
= 8 cis

(
5π
6

)
=

8
[
cos
(
5π
6

)
+ i sin

(
5π
6

)]
. After simplifying, we get zw = −4

√
3+ 4i.

2. We use DeMoivre’s Theorem which yields

w5 =

[
2 cis

(
2π

3

)]5
= 25 cis

(
5 · 2π

3

)
= 32 cis

(
10π

3

)
.

Since 10π
3 is coterminal with 4π

3 , we get

w5 = 32

[
cos
(
4π

3

)
+ i sin

(
4π

3

)]
= −16− 16i

√
3.

3. Last, but not least, we have z

w
=

4 cis(π
6 )

2 cis( 2π
3 )

= 4
2 cis

(
π
6 − 2π

3

)
=

2 cis
(
−π

2

)
. Since the angle −π

2 lies along the negative y-axis, we
can ‘see’ the rectangular form by moving out 2 units along the posi-
tive real axis, then rotating π

2 radians clockwise to arrive at the point
2 units below 0 on the imaginary axis. The long and short of it is
that z

w = −2i.

Some remarks are in order. First, the reader may not be sold on
using the polar form of complex numbers to multiply complex numbers
– especially if they aren’t given in polar form to begin with. Indeed, a
lot of work was needed to convert the numbers z and w in Example 2.3.3
into polar form, compute their product, and convert back to rectangular
form – certainly more work than is required to multiply out zw = (2

√
3+

2i)(−1 + i
√
3) the old-fashioned way. However, Theorem 2.3.3 pays huge

dividends when computing powers of complex numbers. Consider how we
computed w5 above and compare that to using the Binomial Theorem to
accomplish the same feat by expanding (−1+ i

√
3)5. Division is tricky in

the best of times, and we saved ourselves a lot of time and effort using
Theorem 2.3.3 to find and simplify z

w using their polar forms as opposed
to starting with 2

√
3+2i

−1+i
√
3
, rationalizing the denominator, and so forth.

There is geometric reason for studying these polar forms and we would
be derelict in our duties if we did not mention the Geometry hidden in
Theorem 2.3.3. Take the product rule, for instance. If z = |z| cis(α)
and w = |w| cis(β), the formula zw = |z| |w| cis(α + β) can be viewed
geometrically as a two step process. The multiplication of |z| by |w| can
be interpreted as magnifying the distance |z| from z to 0, by the factor |w|.
(Assuming |w| > 1.) Adding the argument of w to the argument of z can
be interpreted geometrically as a rotation of β radians counter-clockwise.
(Assuming β > 0.) Focusing on z and w from Example 2.3.3, we can arrive



Recall that when taking an even root
of a positive real number, there are
two possible values: a positive root
and a negative root. The principal
root is taken to be the positive value.
On the other hand, for odd roots of
real numbers, there is only ever one
possible value.
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at the product zw by plotting z, doubling its distance from 0 (since |w| =
2), and rotating 2π

3 radians counter-clockwise. The sequence of diagrams
in Figure 2.3.4 below attempts to describe this process geometrically.

Real Axis

Imaginary Axis

0

z = 4cis
(
π
6

)
z|w| = 8cis

(
π
6

)

1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Real Axis

Imaginary Axis

0

zw = 8cis
(
π
6 + 2π

3

)
z|w| = 8cis

(
π
6

)

−7−6−5−4−3−2−1 1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Multiplying z by |w| = 2. Rotating counter-clockwise by Arg(w) = 2π
3 radians.

Figure . . : Visualizing zw for z = 4 cis
(
π
6

)
and w = 2 cis

(
2π
3

)
.

We may also visualize division similarly. Here, the formula z
w =

|z|
|w| cis(α − β) may be interpreted as shrinking (again, assuming |w| > 1)
the distance from 0 to z by the factor |w|, followed up by a clockwise ro-
tation (again, assuming β > 0) of β radians. In the case of z and w from
Example 2.3.3, we arrive at z

w by first halving the distance from 0 to z,
then rotating clockwise 2π

3 radians.

Real Axis

Imaginary Axis

0

(
1

|w|

)
z = 2cis

(
π
6

)
z = 4cis

(
π
6

)

1 2 3

i

2i

3i

Real Axis

Imaginary Axis

0

zw = 2cis
(
π
6

2π
3

)

(
1

|w|

)
z = 2cis

(
π
6

)

1 2 3

−2i

−i

i

Dividing z by |w| = 2. Rotating clockwise by Arg(w) = 2π
3 radians.

Figure . . : Visualizing
z

w
for z = 4 cis

(
π
6

)
and w = 2 cis

(
2π
3

)
.

Our last goal of the section is to reverse DeMoivre’s Theorem to extract
roots of complex numbers.

Definition 2.3.3 Complex nth roots

Let z and w be complex numbers. If there is a natural number n
such that wn = z, then w is an nth root of z.

Unlike with real numbers, we do not specify one particular prinicpal
nth root, hence the use of the indefinite article ‘an’ as in ‘an nth root of
z’. Using this definition, both 4 and −4 are square roots of 16, while

√
16

means the principal square root of 16 as in
√
16 = 4. Suppose we wish

to find all complex third (cube) roots of 8. Algebraically, we are trying
to solve w3 = 8. We know that there is only one real solution to this
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equation, namely w = 3
√
8 = 2, but if we take the time to rewrite this

equation as w3 − 8 = 0 and factor, we get (w − 2)
(
w2 + 2w + 4

)
= 0.

The quadratic factor gives two more cube roots w = −1± i
√
3, for a total

of three cube roots of 8. In accordance with Theorem 2.1.5, since the
degree of p(w) = w3 − 8 is three, there are three complex zeros, counting
multiplicity. Since we have found three distinct zeros, we know these are
all of the zeros, so there are exactly three distinct cube roots of 8. Let
us now solve this same problem using the machinery developed in this
section. To do so, we express z = 8 in polar form. Since z = 8 lies 8 units
away on the positive real axis, we get z = 8 cis(0). If we let w = |w| cis(α)
be a polar form of w, the equation w3 = 8 becomes

w3 = 8

(|w| cis(α))3 = 8 cis(0)
|w|3 cis(3α) = 8 cis(0) DeMoivre’s Theorem

The complex number on the left hand side of the equation corresponds
to the point with polar coordinates

(
|w|3 , 3α

)
, while the complex number

on the right hand side corresponds to the point with polar coordinates
(8, 0). Since |w| ≥ 0, so is |w|3, which means

(
|w|3 , 3α

)
and (8, 0) are

two polar representations corresponding to the same complex number,
both with positive r values. From Section 2.2, we know |w|3 = 8 and
3α = 0+ 2πk for integers k. Since |w| is a real number, we solve |w|3 = 8
by extracting the principal cube root to get |w| = 3

√
8 = 2. As for α, we

get α = 2πk
3 for integers k. This produces three distinct points with polar

coordinates corresponding to k = 0, 1 and 2: specifically (2, 0),
(
2, 2π

3

)
and

(
2, 4π

3

)
. These correspond to the complex numbers w0 = 2 cis(0),

w1 = 2 cis
(
2π
3

)
and w2 = 2 cis

(
4π
3

)
, respectively. Writing these out in

rectangular form yields w0 = 2, w1 = −1 + i
√
3 and w2 = −1 − i

√
3.

While this process seems a tad more involved than our previous factoring
approach, this procedure can be generalized to find, for example, all of the
fifth roots of 32. If we start with a generic complex number in polar form
z = |z| cis(θ) and solve wn = z in the same manner as above, we arrive at
the following theorem.

Theorem 2.3.4 The nth roots of a complex number

Let z ̸= 0 be a complex number with polar form z = r cis(θ). For
each natural number n, z has n distinct nth roots, which we denote
by w0, w1, …, wn−1, and they are given by the formula

wk = n
√
r cis

(
θ

n
+

2π

n
k

)

The proof of Theorem 2.3.4 breaks into to two parts: first, showing that
each wk is an nth root, and second, showing that the set {wk | k = 0, 1, . . . , (n− 1)}
consists of n different complex numbers. To show wk is an nth root of z,
we use DeMoivre’s Theorem to show (wk)

n
= z.



Figure . . : The two square roots of z =
−2 + 2

√
3i
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(wk)
n
=

(
n
√
r cis

(
θ

n
+

2π

n
k

))n

=
(

n
√
r
)n cis

(
n ·
[
θ

n
+

2π

n
k

])
DeMoivre’s Theorem

= r cis (θ + 2πk)

Since k is a whole number, cos(θ + 2πk) = cos(θ) and sin(θ + 2πk) =
sin(θ). Hence, it follows that cis(θ + 2πk) = cis(θ), so (wk)

n
= r cis(θ) =

z, as required. To show that the formula in Theorem 2.3.4 generates n
distinct numbers, we assume n ≥ 2 (or else there is nothing to prove)
and note that the modulus of each of the wk is the same, namely n

√
r.

Therefore, the only way any two of these polar forms correspond to the
same number is if their arguments are coterminal – that is, if the arguments
differ by an integer multiple of 2π. Suppose k and j are whole numbers
between 0 and (n− 1), inclusive, with k ̸= j. Since k and j are different,
let’s assume for the sake of argument that k > j. Then

(
θ
n + 2π

n k
)
−(

θ
n + 2π

n j
)
= 2π

(
k−j
n

)
. For this to be an integer multiple of 2π, (k − j)

must be a multiple of n. But because of the restrictions on k and j,
0 < k − j ≤ n − 1. (Think this through.) Hence, (k − j) is a positive
number less than n, so it cannot be a multiple of n. As a result, wk and
wj are different complex numbers, and we are done. By Theorem 2.1.5,
we know there at most n distinct solutions to wn = z, and we have just
found all of them. We illustrate Theorem 2.3.4 in the next example.

Example . . Finding complex roots
Use Theorem 2.3.4 to find the following:

1. both square roots of z = −2 + 2i
√
3

2. the four fourth roots of z = −16

3. the three cube roots of z =
√
2 + i

√
2

4. the five fifth roots of z = 1.

Solution

1. We start by writing z = −2 + 2i
√
3 = 4 cis

(
2π
3

)
. To use Theorem

2.3.4, we identify r = 4, θ = 2π
3 and n = 2. We know that z has two

square roots, and in keeping with the notation in Theorem 2.3.4,
we’ll call them w0 and w1. We get w0 =

√
4 cis

(
(2π/3)

2 + 2π
2 (0)

)
=

2 cis
(
π
3

)
and w1 =

√
4 cis

(
(2π/3)

2 + 2π
2 (1)

)
= 2 cis

(
4π
3

)
. In rect-

angular form, the two square roots of z are w0 = 1 + i
√
3 and

w1 = −1 − i
√
3. We can check our answers by squaring them and

showing that we get z = −2 + 2i
√
3. We’ve plotted the position of

the two square roots along the circle r = 2 in Figure 2.3.6.

2. Proceeding as above, we get z = −16 = 16 cis(π). With r = 16,



Figure . . : The four fourth roots of z =
−16

Figure . . : The three third roots of z =√
2 + i

√
2

Figure . . : The five fi h roots of 1

. The Polar Form of Complex Numbers

θ = π and n = 4, we get the four fourth roots of z to be

w0 =
4
√
16 cis

(
π

4
+

2π

4
(0)

)
= 2 cis

(π
4

)
w1 =

4
√
16 cis

(
π

4
+

2π

4
(1)

)
= 2 cis

(
3π

4

)
w2 =

4
√
16 cis

(
π

4
+

2π

4
(2)

)
= 2 cis

(
5π

4

)
w3 =

4
√
16 cis

(
π

4
+

2π

4
(3)

)
= 2 cis

(
7π

4

)
.

Converting these to rectangular form gives w0 =
√
2 + i

√
2, w1 =

−
√
2 + i

√
2, w2 = −

√
2 − i

√
2 and w3 =

√
2 − i

√
2. We’ve plot-

ted the four roots in Figure 2.3.7. Note how the roots are placed
symmetrically about the circle r = 2.

3. For z =
√
2 + i

√
2, we have z = 2 cis

(
π
4

)
. With r = 2, θ = π

4

and n = 3 the usual computations yield w0 = 3
√
2 cis

(
π
12

)
, w1 =

3
√
2 cis

(
9π
12

)
= 3

√
2 cis

(
3π
4

)
and w2 = 3

√
2 cis

(
17π
12

)
. If we were to

convert these to rectangular form, we would need to use either the
Sum and Difference Identities or the Half-Angle Identities to evaluate
w0 and w2. Since we are not explicitly told to do so, we leave this
as a good, but messy, exercise, and plot the points in Figure 2.3.8.

4. To find the five fifth roots of 1, we write 1 = 1 cis(0). We have r = 1,
θ = 0 and n = 5. Since 5

√
1 = 1, the roots are w0 = cis(0) = 1,

w1 = cis
(
2π
5

)
, w2 = cis

(
4π
5

)
, w3 = cis

(
6π
5

)
and w4 = cis

(
8π
5

)
. The

situation here is even graver than in the previous example, since we
have not developed any identities to help us determine the cosine or
sine of 2π

5 . At this stage, we could approximate our answers using a
calculator, and we leave this as an exercise. Once more, we plot the
roots, which in this case all lie on the unit circle.

Notice the geometric interpretation given in Figures 2.3.6-2.3.9. Essen-
tially, Theorem 2.3.4 says that to find the nth roots of a complex number,
we first take the nth root of the modulus and divide the argument by n.
This gives the first root w0. Each successive root is found by adding 2π

n to
the argument, which amounts to rotating w0 by 2π

n radians. This results
in n roots, spaced equally around the complex plane.

We have only glimpsed at the beauty of the complex numbers in this
section. The complex plane is without a doubt one of the most important
mathematical constructs ever devised. Coupled with Calculus, it is the
venue for incredibly important Science and Engineering applications. For
now, the following exercises will have to suffice.



Exercises 2.3
Problems
In Exercises – , find a polar representa on for the com-
plex number z and then iden fy Re(z), Im(z), |z|, arg(z) and
Arg(z).

. z = 9 + 9i

. z = 5 + 5i
√
3

. z = 6i

. z = −3
√
2 + 3i

√
2

. z = −6
√
3 + 6i

. z = −2

. z = −
√
3

2
− 1

2
i

. z = −3− 3i

. z = −5i

. z = 2
√
2− 2i

√
2

. z = 6

. z = i 3
√
7

. z = 3 + 4i

. z =
√
2 + i

. z = −7 + 24i

. z = −2 + 6i

. z = −12− 5i

. z = −5− 2i

. z = 4− 2i

. z = 1− 3i

In Exercises – , find the rectangular form of the given
complex number. Use whatever iden es are necessary to
find the exact values.

. z = 6 cis(0)

. z = 2 cis
(π
6

)
. z = 7

√
2 cis

(π
4

)

. z = 3 cis
(π
2

)
. z = 4 cis

(
2π

3

)

. z =
√
6 cis

(
3π

4

)
. z = 9 cis (π)

. z = 3 cis
(
4π

3

)

. z = 7 cis
(
−3π

4

)

. z =
√
13 cis

(
3π

2

)

. z =
1

2
cis

(
7π

4

)

. z = 12 cis
(
−π

3

)
. z = 8 cis

( π

12

)
. z = 2 cis

(
7π

8

)

. z = 5 cis
(

arctan
(
4

3

))

. z =
√
10 cis

(
arctan

(
1

3

))
. z = 15 cis (arctan (−2))

. z =
√
3
(
arctan

(
−
√
2
))

. z = 50 cis
(
π − arctan

(
7

24

))

. z =
1

2
cis

(
π + arctan

(
5

12

))

In Exercises – , use z = −3
√
3

2
+

3

2
i and w = 3

√
2 −

3i
√
2 to compute the quan ty. Express your answers in polar

form using the principal argument.

. zw

.
z

w

.
w

z



. z4

. w3

. z5w2

. z3w2

.
z2

w

.
w

z2

.
z3

w2

.
w2

z3

.
(w
z

)6

In Exercises – , use DeMoivre’s Theorem to find the indi-
cated power of the given complex number. Express your final
answers in rectangular form.

.
(
−2 + 2i

√
3
)3

. (−
√
3− i)3

. (−3 + 3i)4

. (
√
3 + i)4

.
(
5

2
+

5

2
i

)3

.
(
−1

2
−

√
3

2
i

)6

.
(
3

2
− 3

2
i

)3

.
(√

3

3
− 1

3
i

)4

.
(√

2

2
+

√
2

2
i

)4

. (2 + 2i)5

. (
√
3− i)5

. (1− i)8

In Exercises – , find the indicated complex roots. Express
your answers in polar form and then convert them into rect-
angular form.

. the two square roots of z = 4i

. the two square roots of z = −25i

. the two square roots of z = 1 + i
√
3

. the two square roots of 5
2
− 5

√
3

2
i

. the three cube roots of z = 64

. the three cube roots of z = −125

. the three cube roots of z = i

. the three cube roots of z = −8i

. the four fourth roots of z = 16

. the four fourth roots of z = −81

. the six sixth roots of z = 64

. the six sixth roots of z = −729

. Use trigonometric iden es to express the three cube roots
of z =

√
2+ i

√
2 in rectangular form. (See Example . . ,

number .)

. Use a calculator or computer to approximate the five fi h
roots of 1. (See Example . . , number .)

. Complete the proof of Theorem . . by showing that if
w ̸= 0 than

∣∣ 1
w

∣∣ = 1
|w| .

. Recall from Sec on . that given a complex number z =
a + bi its complex conjugate, denoted z, is given by z =
a− bi.

(a) Prove that |z| = |z|.
(b) Prove that |z| =

√
zz

(c) Show that Re(z) =
z + z

2
and Im(z) =

z − z

2i

(d) Show that if θ ∈ arg(z) then−θ ∈ arg (z). Interpret
this result geometrically.

(e) Is it always true that Arg (z) = −Arg(z)?

. Given any natural number n ≥ 2, the n complex nth roots
of the number z = 1 are called the nth Roots of Unity.
In the following exercises, assume that n is a fixed, but
arbitrary, natural number such that n ≥ 2.

(a) Show that w = 1 is an nth root of unity.

(b) Show that if both wj and wk are nth roots of unity
then so is their product wjwk.

(c) Show that ifwj is annth root of unity then there exists
another nth root of unity wj′ such that wjwj′ = 1.
Hint: If wj = cis(θ) let wj′ = cis(2π − θ). You’ll
need to verify that wj′ = cis(2π − θ) is indeed an
nth root of unity.



. Another way to express the polar form of a complex num-
ber is to use the exponen al func on. For real numbers t,
Euler’s Formula defines eit = cos(t) + i sin(t).

(a) Use Theorem . . to show that eixeiy = ei(x+y) for
all real numbers x and y.

(b) Use Theorem . . to show that
(
eix

)n
= ei(nx) for

any real number x and any natural number n.

(c) Use Theorem . . to show that
eix

eiy
= ei(x−y) for

all real numbers x and y.

(d) If z = r cis(θ) is the polar form of z, show that
z = reit where θ = t radians.

(e) Show that eiπ + 1 = 0. (This famous equa on re-
lates the fivemost important constants in all ofMath-
ema cs with the threemost fundamental opera ons
in Mathema cs.)

(f) Show that cos(t) =
eit + e−it

2
and that sin(t) =

eit − e−it

2i
for all real numbers t.

http://en.wikipedia.org/wiki/Leonhard_Euler


Until the last section of this chap-
ter we’ll restrict ourselves to vectors
in two and three dimensions so that
we’re able to understand things vi-
sually. However, we’ll also see that
the algebraic behaviour of vectors is
the same in any dimension, including
dimension four or greater. The only
thing that changes is the number of
coordinates involved. This is one of
the great powers of mathematics: we
are aided by our visual imagination,
but not limited by it.

Figure . . : Plo ng the point P =
(2, 1, 3) in space.

: Vectors
This chapter introduces a new mathematical object, the vector. Defined
in Section 3.2, we will see that vectors provide a powerful language for
describing quantities that have magnitude and direction aspects. A simple
example of such a quantity is force: when applying a force, one is generally
interested in how much force is applied (i.e., the magnitude of the force)
and the direction in which the force was applied. Vectors will play an
important role in many of the subsequent chapters in this text.

This chapter begins with moving our mathematics out of the plane and
into “space.” That is, we begin to think mathematically not only in two
dimensions, but in three. With this foundation, we can explore vectors
both in the plane and in space.

. Introduc on to Cartesian Coordinates in Space

We reviewed the two-dimensional Cartesian Plane in Section 1.3. This is
the familiar background on which much of your high school mathematics
played out, and it provides the setting for the Calculus of one variable
encountered in courses like Math 1010 and Math 1560.

While there is wonderful mathematics to explore in “2D,” we live in a
“3D” world and eventually we will want to apply mathematics involving
this third dimension. In this section we introduce Cartesian coordinates
in space and explore basic surfaces. This will lay a foundation for much
of what we do in the remainder of the text.

Each point P in space can be represented with an ordered triple, P =
(a, b, c), where a, b and c represent the relative position of P along the x-,
y- and z-axes, respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are
trying to represent a 3-dimensional concept on a 2–dimensional medium.
We cannot draw three lines representing the three axes in which each line
is perpendicular to the other two. Despite this issue, standard conventions
exist for plotting shapes in space that we will discuss that are more than
adequate.

One convention is that the axes must conform to the right hand rule.
This rule states that when the index finger of the right hand is extended in
the direction of the positive x-axis, and the middle finger (bent “inward” so
it is perpendicular to the palm) points along the positive y-axis, then the
extended thumb will point in the direction of the positive z-axis. (It may
take some thought to verify this, but this system is inherently different
from the one created by using the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this
rule, it does not matter how the axes are drawn on paper. There are two
popular methods that we briefly discuss.

In Figure 3.1.1 we see the point P = (2, 1, 3) plotted on a set of axes.
The basic convention here is that the x-y plane is drawn in its standard
way, with the z-axis down to the left. The perspective is that the paper
represents the x-y plane and the positive z axis is coming up, off the page.
This method is preferred by many engineers. Because it can be hard to
tell where a single point lies in relation to all the axes, dashed lines have
been added to let one see how far along each axis the point lies.


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





Figure . . : Plo ng the point P =
(2, 1, 3) in space with a perspec ve used
in this text.

Figure . . : Plo ng points P and Q in
Example . . .

Chapter Vectors

One can also consider the x-y plane as being a horizontal plane in, say,
a room, where the positive z-axis is pointing up. When one steps back
and looks at this room, one might draw the axes as shown in Figure 3.1.2.
The same point P is drawn, again with dashed lines. This point of view is
preferred by most mathematicians, and is the convention adopted by this
text.

Measuring Distances

It is of critical importance to know how to measure distances between
points in space. The formula for doing so is based on measuring distance in
the plane (see Key Idea 1.3.2 on Page 14), and is known (in both contexts)
as the Euclidean measure of distance.

Definition 3.1.1 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The
distance D between P and Q is

D =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as
PQ, and refer to the length of this segment as

∥∥PQ
∥∥. The above distance

formula allows us to compute the length of this segment.

Example . . Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and
find its length.

Solution The points P and Q are plotted in Figure 3.1.3; no
special consideration need be made to draw the line segment connecting
these two points; simply connect them with a straight line. One cannot
actually measure this line on the page and deduce anything meaningful;
its true length must be measured analytically. Applying Definition 3.1.1,
we have

∥∥PQ
∥∥ =

√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

Introduction to Planes in Space

The coordinate axes naturally define three planes (shown in Figure
3.1.4), the coordinate planes: the x-y plane, the y-z plane and the x-z
plane. The x-y plane is characterized as the set of all points in space
where the z-value is 0. This, in fact, gives us an equation that describes
this plane: z = 0. Likewise, the x-z plane is all points where the y-value
is 0, characterized by y = 0.





Figure . . : The plane x = 2.

Figure . . : Sketching the boundaries of
a region in Example . . .
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the x-y plane the y-z plane the x-z plane

Figure . . : The coordinate planes.

The equation x = 2 describes all points in space where the x-value is 2.
This is a plane, parallel to the y-z coordinate plane, shown in Figure 3.1.5.

Example . . Regions defined by planes
Sketch the region defined by the inequalities −1 ≤ y ≤ 2.

Solution The region is all points between the planes y = −1 and
y = 2. These planes are sketched in Figure 3.1.6, which are parallel to the
x-z plane. Thus the region extends infinitely in the x and z directions,
and is bounded by planes in the y direction.

This section has introduced points and distance in space and intro-
duced equations of basic planes in space. We’ll reconsider planes in more
detail in Section 3.6, but first, we need to introduce the language of vec-
tors.








Exercises 3.1
Terms and Concepts
. Axes drawn in space must conform to the

rule.

. In the plane, the equa on x = 2 defines a ; in
space, x = 2 defines a .

. In the plane, the equa on y = x2 defines a ; in
space, y = x2 defines a .

. Which quadric surface looks like a Pringles® chip?

. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is
this a parallelogram?

. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y + z2 + 8 = 0.

. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y − 4z + 4 = 0.

In Exercises – , describe the region in space defined by
the inequali es.

. x2 + y2 + z2 < 1

. 0 ≤ x ≤ 3

. x ≥ 0, y ≥ 0, z ≥ 0

. y ≥ 3
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Figure . . : Illustra ng how equal vec-
tors have the same displacement.
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Many quantities we think about daily can be described by a single num-
ber: temperature, speed, cost, weight and height. There are also many
other concepts we encounter daily that cannot be described with just one
number. For instance, a weather forecaster often describes wind with its
speed and its direction (“. . . with winds from the south-east gusting up
to 30 mph . . .”). When applying a force, we are concerned with both the
magnitude and direction of that force. In both of these examples, direc-
tion is important. Because of this, we study vectors, mathematical objects
that convey both magnitude and direction information.

One “bare–bones” definition of a vector is based on what we wrote
above: “a vector is a mathematical object with magnitude and direction
parameters.” This definition leaves much to be desired, as it gives no
indication as to how such an object is to be used. Several other definitions
exist; we choose here a definition rooted in a geometric visualization of
vectors. (In later chapters we will instead focus on algebraic aspects of
vectors.) It is very simplistic but readily permits further investigation.

Definition 3.2.1 Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote
with −−→

PQ the vector from P to Q. The point P is said to be the
initial point of the vector, and the point Q is the terminal point.

The magnitude, length or norm of −−→PQ is the length of the line
segment PQ: ∥

−−→
PQ ∥ = ∥ PQ ∥.

Two vectors are equal if they have the same magnitude and direc-
tion.

Figure 3.2.1 shows multiple instances of the same vector. Each directed
line segment has the same direction and length (magnitude), hence each
is the same vector.

Following typical (but potentially confusing) mathematical convention,
we use R2 (pronounced “r two”) to represent all the vectors in the plane
(as well as the plane itself), and use R3 (pronounced “r three”) to represent
all the vectors in space, as well as three-dimensional space itself.

Consider the vectors −−→PQ and −→
RS as shown in Figure 3.2.2. The vectors

look to be equal; that is, they seem to have the same length and direction.
Indeed, they are. Both vectors move 2 units to the right and 1 unit up
from the initial point to reach the terminal point. One can analyze this
movement to measure the magnitude of the vector, and the movement
itself gives direction information (one could also measure the slope of the
line passing through P and Q or R and S). Since they have the same
length and direction, these two vectors are equal.

This demonstrates that inherently all we care about is displacement;
that is, how far in the x, y and possibly z directions the terminal point is
from the initial point. Both the vectors −−→

PQ and −→
RS in Figure 3.2.2 have



The component form of a vector al-
lows us to identify a point (a, b) (or
(a, b, c)) with the corresponding vec-
tor ⟨a, b⟩ (or ⟨a, b, c⟩), so that vec-
tors and points contain essentially the
same information, presented in differ-
ent contexts. This is why mathemati-
cians don’t mind using the notation
Rn to refer to both a set of vectors
and the set of points containing those
vectors.

Caution: The notation ⟨a, b, c⟩ used
in this chapter for a vector is com-
mon in geometry, physics, and calcu-
lus, but in later chapters we will use

column vector notation

ab
c

 to repre-

sent the same vector: see Section 3.7.
This notation is more natural in the
context of matrix algebra.
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Figure . . : Graphing vectors in Example
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an x-displacement of 2 and a y-displacement of 1. This suggests a standard
way of describing vectors in the plane. A vector whose x-displacement is
a and whose y-displacement is b will have terminal point (a, b) when the
initial point is the origin, (0, 0). This leads us to a definition of a standard
and concise way of referring to vectors.

Definition 3.2.2 Component Form of a Vector

1. The component form of a vector v⃗ in R2, whose terminal
point is (a, b) when its initial point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ in R3, whose terminal
point is (a, b, c) when its initial point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respectively) are the components of v⃗.

It follows from the definition that the component form of the vector−−→
PQ, where P = (x1, y1) and Q = (x2, y2) is

−−→
PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form
of −−→PQ is −−→

PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .
We practice using this notation in the following example.

Example . . Using component form notation for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ starting at P = (3, 2) and find its
magnitude.

2. Find the component form of the vector w⃗ whose initial point is R =
(−3,−2) and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starting at the point Q = (1, 1, 1)
and find its magnitude.

Solution

1. Using P as the initial point, we move 2 units in the positive x-
direction and −1 units in the positive y-direction to arrive at the
terminal point P ′ = (5, 1), as drawn in Figure 3.2.3(a).
The magnitude of v⃗ is determined directly from the component form:

∥ v⃗ ∥ =
√
22 + (−1)2 =

√
5.

2. Using the note following Definition 3.2.2, we have
−→
RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 3.2.3(a) that the x- and y-displacement
of −→RS is 2 and 4, respectively, as the component form suggests.




In this section we restrict ourselves to
vectors in two and three dimensions,
since our ability to visualize is lim-
ited to these dimensions. However,
our ability to work with vectors al-
gebraically extends to any number of
dimensions. For a general treatment
of vectors in Rn, see Section 3.7.
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Figure . . : Graphing the sum of vectors
in Example . . .
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3. Using Q as the initial point, we move 2 units in the positive x-
direction, −1 unit in the positive y-direction, and 3 units in the
positive z-direction to arrive at the terminal point Q′ = (3, 0, 4),
illustrated in Figure 3.2.3(b).
The magnitude of u⃗ is:

∥ u⃗ ∥ =
√
22 + (−1)2 + 32 =

√
14.

Now that we have defined vectors, and have created a nice notation
by which to describe them, we start considering how vectors interact with
each other. That is, we define an algebra on vectors.

Definition 3.2.3 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c
be a scalar.

(a) The sum of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar multiplication of v⃗ by c is the vector

cv⃗ = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and
let c be a scalar.

(a) The sum of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar multiplication of v⃗ by c is the vector

cv⃗ = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addition and scalar multiplication are computed “component–
wise.”

Example . . Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗+ v⃗ all with initial point at
the origin.

Solution We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 3.2.4.

As vectors convey magnitude and direction information, the sum of
vectors also convey length and magnitude information. Adding u⃗ + v⃗
suggests the following idea:

“Starting at an initial point, go out u⃗, then go out v⃗.”
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tors using the Head to Tail Rule and Paral-
lelogram Law.
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This idea is sketched in Figure 3.2.5, where the initial point of v⃗ is the
terminal point of u⃗. This is known as the “Head to Tail Rule” of adding
vectors. Vector addition is very important. For instance, if the vectors u⃗
and v⃗ represent forces acting on a body, the sum u⃗+ v⃗ gives the resulting
force. Because of various physical applications of vector addition, the sum
u⃗+ v⃗ is often referred to as the resultant vector, or just the “resultant.”

Analytically, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 3.2.5 also
gives a graphical representation of this, using gray vectors. Note that the
vectors u⃗ and v⃗, when arranged as in the figure, form a parallelogram.
Because of this, the Head to Tail Rule is also known as the Parallelogram
Law: the vector u⃗+ v⃗ is defined by forming the parallelogram defined by
the vectors u⃗ and v⃗; the initial point of u⃗+ v⃗ is the common initial point of
parallelogram, and the terminal point of the sum is the common terminal
point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram
Law hold for vectors in R3 as well.

It follows from the properties of the real numbers and Definition 3.2.3
that

u⃗− v⃗ = u⃗+ (−1)v⃗.

The Parallelogram Law gives us a good way to visualize this subtraction.
We demonstrate this in the following example.

Example . . Vector Subtraction
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

Solution The computation of u⃗ − v⃗ is straightforward, and we
show all steps below. Usually the formal step of multiplying by (−1) is
omitted and we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)v⃗

= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 3.2.6 illustrates, using the Head to Tail Rule, how the subtraction
can be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how u⃗− v⃗
can be obtained by looking only at the terminal points of u⃗ and v⃗ (when
their initial points are the same).

Example . . Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2v⃗ with initial point at the origin.

2. Compute the magnitudes of v⃗ and 2v⃗.

Solution

1. We compute 2v⃗:

2v⃗ = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

Both v⃗ and 2v⃗ are sketched in Figure 3.2.7. Make note that 2v⃗ does
not start at the terminal point of v⃗; rather, its initial point is also
the origin.



To prove Theorem 3.2.1, let v⃗ = ⟨a, b⟩
be any vector in R2 (the proof for R3

is similar), and let c be any scalar.
Then

∥cv⃗∥ = ∥c ⟨a, b⟩∥
= ∥⟨ca, cb⟩∥

=
√

(ca)2 + (cb)2

=
√

c2a2 + c2b2

=
√

c2(a2 + b2)

=
√
c2
√

a2 + b2

= |c| ∥v⃗∥ ,

as required.
(Recall that

√
c2 = |c|, the absolute

value of c, since c might be negative,
but the square root is always posi-
tive.)
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2. The figure suggests that 2v⃗ is twice as long as v⃗. We compute their
magnitudes to confirm this.

∥ v⃗ ∥ =
√
22 + 12

=
√
5.

∥ 2v⃗ ∥ =
√
42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2v⃗ is twice as long as v⃗.

In Example 3.2.4 above, we saw that ∥2v⃗∥ = 2 ∥v⃗∥, which makes sense
geometrically: 2v⃗ = v⃗ + v⃗, and adding a vector to itself should produce a
vector twice as long with the same direction. The following theorem tells
us that this is true in general.

Theorem 3.2.1 Magnitude and scalar multiplication

For any vector v⃗ in R2 or R3, and any real number c, we have

∥cv⃗∥ = |c| ∥v⃗∥ .

In particular, Theorem 3.2.1 tells us that if c > 0, then ∥cv⃗∥ = c ∥v⃗∥,
so that cv⃗ is a vector in the same direction as v⃗ whose magnitude has been
stretched (if c > 1) or shrunk (if c < 1) by a factor of c relative to that of
v⃗. On the other hand, if c < 0, then we have ∥cv⃗∥ = −c ∥v⃗∥, so that cv⃗
points in the opposite direction to that of v⃗. With this in mind, we make
the following definition:

Definition 3.2.4 Parallel Vectors

We say that a vector w⃗ is parallel to a vector v⃗ if there exists a
scalar c such that w⃗ = cv⃗.

The zero vector is the vector whose initial point is also its terminal
point. It is denoted by 0⃗. Its component form, in R2, is ⟨0, 0⟩; in R3, it
is ⟨0, 0, 0⟩. Usually the context makes is clear whether 0⃗ is referring to a
vector in the plane or in space.

Our examples have illustrated key principles in vector algebra: how to
add and subtract vectors and how to multiply vectors by a scalar. The
following theorem states formally the properties of these operations.
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Theorem 3.2.2 Properties of Vector Operations

The following are true for all scalars c and d, and for all vectors u⃗,
v⃗ and w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are
all in R3:

1. u⃗+ v⃗ = v⃗ + u⃗ Commutative Property

2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) Associative Property

3. v⃗ + 0⃗ = v⃗ Additive Identity

4. (cd)v⃗ = c(dv⃗)

5. c(u⃗+ v⃗) = cu⃗+ cv⃗ Distributive Property

6. (c+ d)v⃗ = cv⃗ + dv⃗ Distributive Property

7. 0v⃗ = 0⃗

8. ∥ cv⃗ ∥ = |c| · ∥ v⃗ ∥

9. ∥ u⃗ ∥ = 0 if, and only if, u⃗ = 0⃗.

The verification of each of the properties in Theorem 3.2.2 is straight-
forward, and left as an exercise for the reader.

As stated before, each vector v⃗ conveys magnitude and direction infor-
mation. We have a method of extracting the magnitude, which we write as
∥ v⃗ ∥. Unit vectors are a way of extracting just the direction information
from a vector.

Definition 3.2.5 Unit Vector

A unit vector is a vector v⃗ with a magnitude of 1; that is,

∥ v⃗ ∥ = 1.

Consider this scenario: you are given a vector v⃗ and are told to create
a vector of length 10 in the direction of v⃗. How does one do that? If we
knew that u⃗ was the unit vector in the direction of v⃗, the answer would
be easy: 10u⃗. So how do we find u⃗ ?

Property 8 of Theorem 3.2.2 holds the key. If we divide v⃗ by its
magnitude, it becomes a vector of length 1. Consider:∥∥∥∥ 1

∥ v⃗ ∥
v⃗

∥∥∥∥ =
1

∥ v⃗ ∥
∥ v⃗ ∥ (we can pull out 1

∥ v⃗ ∥ as it is a scalar)

= 1.

So the vector of length 10 in the direction of v⃗ is 10
1

∥ v⃗ ∥
v⃗. An example

will make this more clear.

Example . . Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direction of v⃗.
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Figure . . : Graphing vectors in Example
. . . All vectors shown have their ini al
point at the origin.

Note: 0⃗ is directionless; because
∥ 0⃗ ∥ = 0, there is no unit vector
in the “direction” of 0⃗. Note however
that according to Definition 3.2.4, the
zero vector is technically parallel to
every other vector! (See also the
marginal note on page 81.)
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2. Find the unit vector in the direction of w⃗.

3. Find the vector in the direction of v⃗ with magnitude 5.

Solution

1. We find ∥ v⃗ ∥ =
√
10. So the unit vector u⃗ in the direction of v⃗ is

u⃗ =
1√
10

v⃗ =

⟨
3√
10

,
1√
10

⟩
.

2. We find ∥ w⃗ ∥ = 3, so the unit vector z⃗ in the direction of w⃗ is

u⃗ =
1

3
w⃗ =

⟨
1

3
,
2

3
,
2

3

⟩
.

3. To create a vector with magnitude 5 in the direction of v⃗, we multiply
the unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/

√
10, 5/

√
10
⟩

is the vector
we seek. This is sketched in Figure 3.2.8.

The basic formation of the unit vector u⃗ in the direction of a vector v⃗
leads to a interesting equation. It is:

v⃗ = ∥ v⃗ ∥ 1

∥ v⃗ ∥
v⃗.

We rewrite the equation with parentheses to make a point:

v⃗ = ∥ v⃗ ∥︸ ︷︷ ︸
magnitude

·
(

1

∥ v⃗ ∥
v⃗

)
︸ ︷︷ ︸

direction

.

This equation illustrates the fact that a vector has both magnitude
and direction, where we view a unit vector as supplying only direction
information. Identifying unit vectors with direction gives us another way
to characterize parallel vectors.

Theorem 3.2.3 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respective unit
vectors are parallel.

If one graphed all unit vectors in R2 with the initial point at the origin,
then the terminal points would all lie on the unit circle x2+y2 = 1. Based
on what we know from trigonometry, we can then say that the component
form of all unit vectors in R2 is ⟨cos θ, sin θ⟩ for some angle θ.

A similar construction in R3 shows that the terminal points all lie on
the unit sphere x2 + y2 + z2 = 1. These vectors also have a particular
component form, but its derivation is not as straightforward as the one
for unit vectors in R2. Important concepts about unit vectors are given
in the following Key Idea.



Note: the component form given
in Key Idea 3.2.1 for a unit vec-
tor in R3 is derived from the
spherical coordinate system for R3.
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Key Idea 3.2.1 Unit Vectors

1. The unit vector in the direction of v⃗ is

u⃗ =
1

∥ v⃗ ∥
v⃗.

2. A vector u⃗ in R2 is a unit vector if, and only if, its component
form is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ in R3 is a unit vector if, and only if, its component
form is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situations, especially
the formula for unit vectors in the plane.

Example . . Finding Component Forces
Consider a weight of 50lb hanging from two chains, as shown in Figure
3.2.9. One chain makes an angle of 30◦ with the vertical, and the other
an angle of 45◦. Find the force applied to each chain.

Solution Knowing that gravity is pulling the 50lb weight straight
down, we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” the weight up, preventing it from
falling. We can represent the force from each chain with a vector. Let
F⃗1 represent the force from the chain making an angle of 30◦ with the
vertical, and let F⃗2 represent the force form the other chain. Convert all
angles to be measured from the horizontal (as shown in Figure 3.2.10),
and apply Key Idea 3.2.1. As we do not yet know the magnitudes of these
vectors, (that is the problem at hand), we use m1 and m2 to represent
them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩

F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This
gives:

0⃗ = F⃗ + F⃗1 + F⃗2

= ⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩

The sum of the entries in the first component is 0, and the sum of the
entries in the second component is also 0. This leads us to the following
two equations:

m1 cos 120◦ +m2 cos 45◦ = 0

m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equation, 2-unknown system of linear equations. We
leave it to the reader to verify that the solution is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1 +
√
3
≈ 25.88.

https://en.wikipedia.org/wiki/Spherical_coordinate_system
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It might seem odd that the sum of the forces applied to the chains is
more than 50lb. We leave it to a physics class to discuss the full details,
but offer this short explanation. Our equations were established so that
the vertical components of each force sums to 50lb, thus supporting the
weight. Since the chains are at an angle, they also pull against each other,
creating an “additional” horizontal force while holding the weight in place.

Unit vectors were very important in the previous calculation; they al-
lowed us to define a vector in the proper direction but with an unknown
magnitude. Our computations were then computed component–wise. Be-
cause such calculations are often necessary, the standard unit vectors can
be useful.

Definition 3.2.6 Standard Unit Vectors

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example . . Using standard unit vectors

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j + 2k⃗ in component form.

Solution

1. v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2. w⃗ = 4⃗i− 5⃗j + 2k⃗

= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These two examples demonstrate that converting between component form
and the standard unit vectors is rather straightforward. Many mathemati-
cians prefer component form, and it is the preferred notation in this text.
Many engineers prefer using the standard unit vectors, and many engi-
neering texts use that notation.

Example . . Finding Component Force
A weight of 25lb is suspended from a chain of length 2ft while a wind
pushes the weight to the right with constant force of 5lb as shown in
Figure 3.2.11. What angle will the chain make with the vertical as a
result of the wind’s pushing? How much higher will the weight be?
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Figure . . : A figure of a weight being
pushed by the wind in Example . . .
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Solution The force of the wind is represented by the vector F⃗w =
5⃗i. The force of gravity on the weight is represented by F⃗g = −25⃗j. The
direction and magnitude of the vector representing the force on the chain
are both unknown. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ
is the angle the chain makes with the vertical; φ is the angle with the
horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ i⃗+m sinφ j⃗ + 5⃗i− 25⃗j = 0⃗

Thus the sum of the i⃗ and j⃗ components are 0, leading us to the
following system of equations:

5 +m cosφ = 0

−25 +m sinφ = 0
( . )

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√

(−5)2 + 252 = 5
√
26 ≈ 25.5lb.

We can then use either equality from Equation ( . ) to solve for φ. We
choose the first equality as using arccosine will return an angle in the 2nd

quadrant:

5 + 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

Subtracting 90◦ from this angle gives us an angle of 11.31◦ with the
vertical.

We can now use trigonometry to find out how high the weight is lifted.
The diagram shows that a right triangle is formed with the 2ft chain as
the hypotenuse with an interior angle of 11.31◦. The length of the adja-
cent side (in the diagram, the dashed vertical line) is 2 cos 11.31◦ ≈ 1.96ft.
Thus the weight is lifted by about 0.04ft, almost 1/2in.

The algebra we have applied to vectors is already demonstrating itself
to be very useful. There are two more fundamental operations we can
perform with vectors, the dot product and the cross product. The next
two sections explore each in turn.



Exercises 3.2
Terms and Concepts

. Name two different things that cannot be described with
just one number, but rather need or more numbers to
fully describe them.

. What is the difference between (1, 2) and ⟨1, 2⟩?

. What is a unit vector?

. What does it mean for two vectors to be parallel?

. What effect does mul plying a vector by−2 have?

Problems
In Exercises – , points P andQ are given. Write the vector−−→
PQ in component form and using the standard unit vectors.

. P = (2,−1), Q = (3, 5)

. P = (3, 2), Q = (7,−2)

. P = (0, 3,−1), Q = (6, 2, 5)

. P = (2, 1, 2), Q = (4, 3, 2)

. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, 2u⃗− 3v⃗.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2v⃗ − x⃗.

. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−
√
2v⃗.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗ + 2x⃗.

In Exercises – , sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

.

.....

u⃗

. v⃗.

x

.

y

.

.....

u⃗

.

v⃗

.

x

.

y

.

...

..
u⃗

.v⃗ .

x

.

y

.

z

.

...

..
u⃗

.

v⃗

.

x

.

y

.

z

In Exercises – , find ∥ u⃗ ∥, ∥ v⃗ ∥, ∥ u⃗+ v⃗ ∥ and ∥ u⃗− v⃗ ∥.

. u⃗ = ⟨2, 1⟩, v⃗ = ⟨3,−2⟩

. u⃗ = ⟨−3, 2, 2⟩, v⃗ = ⟨1,−1, 1⟩

. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−3,−6⟩

. u⃗ = ⟨2,−3, 6⟩, v⃗ = ⟨10,−15, 30⟩

. Under what condi ons is ∥ u⃗ ∥+ ∥ v⃗ ∥ = ∥ u⃗+ v⃗ ∥?

In Exercises – , find the unit vector u⃗ in the direc on of
v⃗.

. v⃗ = ⟨3, 7⟩

. v⃗ = ⟨6, 8⟩

. v⃗ = ⟨1,−2, 2⟩

. v⃗ = ⟨2,−2, 2⟩

. Find the unit vector in the first quadrant of R2 that makes
a 50◦ angle with the x-axis.



. Find the unit vector in the second quadrant of R2 that
makes a 30◦ angle with the y-axis.

. Verify, fromKey Idea . . , that u⃗ = ⟨sin θ cosφ, sin θ sinφ, cos θ⟩
is a unit vector for all angles θ and φ.

A weight of lb is suspended from two chains, making an-
gles with the ver cal of θ andφ as shown in the figure below.

..

100lb

.

θ

.

φ

In Exercises – , angles θ and φ are given. Find the force
applied to each chain.

. θ = 30◦, φ = 30◦

. θ = 60◦, φ = 60◦

. θ = 20◦, φ = 15◦

. θ = 0◦, φ = 0◦

A weight of plb is suspended from a chain of length ℓwhile a
constant force of F⃗w pushes the weight to the right, making
an angle of θ with the ver cal, as shown in the figure below.
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ℓ

.

p lb

.

θ

.

F⃗w

In Exercises – , a force F⃗w and length ℓ are given. Find
the angle θ and the height the weight is li ed as it moves to
the right.

. F⃗w = 1lb, ℓ = 1 , p = 1lb

. F⃗w = 1lb, ℓ = 1 , p = 10lb

. F⃗w = 1lb, ℓ = 10 , p = 1lb

. F⃗w = 10lb, ℓ = 10 , p = 1lb
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The previous section introduced vectors and described how to add them
together and how to multiply them by scalars. This section introduces a
multiplication on vectors called the dot product.

Definition 3.3.1 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot
product of u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector.
We practice evaluating a dot product in the following example, then we
will discuss why this product is useful.

Example . . Evaluating dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

Solution

1. Using Definition 3.3.1, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definition, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple
to evaluate. It is only the sum of products. While the definition gives no
hint as to why we would care about this operation, there is an amazing
connection between the dot product and angles formed by the vectors.
Before stating this connection, we give a theorem stating some of the
properties of the dot product.



Note: proving Theorem 3.3.1 is
straightforward and left to the reader.
The reader is reminded, however,
that proofs must be general: choos-
ing particular numbers for the vec-
tors u⃗, v⃗, etc. only shows that the
properties hold for those particular
numbers. Instead, one should write
u⃗ = ⟨u1, u2, u3⟩, v⃗ = ⟨v1, v2, v3⟩, etc.
and then proceed using the rules of al-
gebra for real numbers in Section 1.2.
For example, u⃗ · v⃗ = v⃗ · u⃗ since

u⃗ · v⃗ = u1v1 + u2v2 + u3v3

= v1u1 + v2u2 + v3u3

= v⃗ · u⃗,

and this argument is valid no mat-
ter what values are substituted for the
components of the two vectors.

..

u⃗

.

v⃗

. θ

(a)

(b)

Figure . . : Illustra ng the angle formed
by two vectors with the same ini al point.

Figure . . : Proving Theorem . .
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Theorem 3.3.1 Properties of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ Commutative Property

2. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ Distributive Property

3. c(u⃗ · v⃗) = (cu⃗) · v⃗ = u⃗ · (cv⃗)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = ∥ v⃗ ∥2

The last statement of the theorem makes a handy connection between
the magnitude of a vector and the dot product with itself. Our definition
and theorem give properties of the dot product, but we are still likely
wondering “What does the dot product mean?” It is helpful to understand
that the dot product of a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecting the dot
product to magnitudes and angles. Given vectors u⃗ and v⃗ in the plane,
an angle θ is clearly formed when u⃗ and v⃗ are drawn with the same initial
point as illustrated in Figure 3.3.1(a). (We always take θ to be the angle
in [0, π] as two angles are actually created.)

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with
the same initial point, there is a plane that contains both u⃗ and v⃗. (When
u⃗ and v⃗ are co-linear, there are infinite planes that contain both vectors.)
In that plane, we can again find an angle θ between them (and again,
0 ≤ θ ≤ π). This is illustrated in Figure 3.3.1(b).

The following theorem connects this angle θ to the dot product of u⃗
and v⃗.

Theorem 3.3.2 The Dot Product and Angles

Let u⃗ and v⃗ be vectors in R2 or R3. Then

u⃗ · v⃗ = ∥ u⃗ ∥ ∥ v⃗ ∥ cos θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

The proof of Theorem 3.3.2 is an application of the Law of Cosines,
using the properties in Theorem 3.3.1. Referring to Figure 3.3.2, if we let
a = ∥u⃗∥, b = ∥v⃗∥, and c = ∥u⃗− v⃗∥, then the Law of Cosines tells us that

c2 = a2 + b2 − 2ab cos(θ).

Thus, we have

∥u⃗− v⃗∥2 = ∥u⃗∥2 + ∥v⃗∥2 − 2 ∥u⃗∥ ∥v⃗∥ cos θ
(u⃗− v⃗) · (u⃗− v⃗) = u⃗ · u⃗+ v⃗ · v⃗ − 2 ∥u⃗∥ ∥v⃗∥ cos θ

u⃗ · u⃗− u⃗ · v⃗ − v⃗ · u⃗+ v⃗ · v⃗ = u⃗ · u⃗+ v⃗ · v⃗ − 2 ∥u⃗∥ ∥v⃗∥ cos θ
−2u⃗ · v⃗ = −2 ∥u⃗∥ ∥v⃗∥ cos θ

u⃗ · v⃗ = ∥u⃗∥ ∥v⃗∥ cos θ,


https://en.wikipedia.org/wiki/Law_of_cosines
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Figure . . : Vectors used in Example
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as required.
When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos θ is positive; when

θ = π/2, cos θ = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos θ is
negative. Thus the sign of the dot product gives a general indication of
the angle between the vectors, illustrated in Figure 3.3.3.

..
u⃗ · v⃗ > 0

. u⃗.

v⃗

. θ.
u⃗ · v⃗ = 0

. u⃗.

v⃗

.
θ = π/2

.
u⃗ · v⃗ < 0

. u⃗.

v⃗

.
θ

Figure . . : Illustra ng the rela onship between the angle between vectors and the sign
of their dot product.

We can use Theorem 3.3.2 to compute the dot product, but generally
this theorem is used to find the angle between known vectors (since the
dot product is generally easy to compute). To this end, we rewrite the
theorem’s equation as

cos θ =
u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥
⇔ θ = cos−1

(
u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥

)
.

We practice using this theorem in the following example.

Example . . Using the dot product to find angles
Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 3.3.4.
Find the angles α, β and θ.

Solution We start by computing the magnitude of each vector.

∥ u⃗ ∥ =
√
10; ∥ v⃗ ∥ = 2

√
10; ∥ w⃗ ∥ = 5.

We now apply Theorem 3.3.2 to find the angles.

α = cos−1

(
u⃗ · v⃗

(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1

(
v⃗ · w⃗

(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1

(
u⃗ · w⃗

(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦



Figure . . : Vectors used in Example
. . .

Note: The term perpendicular orig-
inally referred to lines. As mathe-
matics progressed, the concept of “be-
ing at right angles to” was applied
to other objects, such as vectors and
planes, and the term orthogonal was
introduced. It is especially used when
discussing objects that are hard, or
impossible, to visualize: two vectors
in 5-dimensional space are orthogo-
nal if their dot product is 0. It is not
wrong to say they are perpendicular,
but common convention gives prefer-
ence to the word orthogonal.
Note also that Definition 3.3.2 makes
sense if either u⃗ or v⃗ is the zero vector,
but this is not the case for the con-
ventional understanding of the word
perpendicular.

Chapter Vectors

We see from our computation that α + β = θ, as indicated by Figure
3.3.4. While we knew this should be the case, it is nice to see that this
non-intuitive formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example . . Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in
Figure 3.3.5. Find the angle between each pair of vectors.

Solution

1. Between u⃗ and v⃗:

θ = cos−1

(
u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥

)
= cos−1

(
0√

3
√
14

)
=

π

2
.

2. Between u⃗ and w⃗:

θ = cos−1

(
u⃗ · w⃗

∥ u⃗ ∥∥ w⃗ ∥

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1

(
v⃗ · w⃗

∥ v⃗ ∥∥ w⃗ ∥

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 3.3.5. Such is the case when drawing
three–dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of
reasons, so it should seem significant that these angles are all π/2. Notice
the common feature in each calculation (and also the calculation of α in
Example 3.3.2): the dot products of each pair of angles was 0. We use
this as a basis for a definition of the term orthogonal, which is essentially
synonymous to perpendicular.

Definition 3.3.2 Orthogonal

Vectors u⃗ and v⃗ are orthogonal if their dot product is 0.
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Example . . Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.

Solution

1. Recall that a line perpendicular to a line with slope m has slope
−1/m, the “opposite reciprocal slope.” We can think of the slope
of u⃗ as 5/3, its “rise over run.” A vector orthogonal to u⃗ will have
slope −3/5. There are many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinite directions in space orthogonal to any given direc-
tion, so there are an infinite number of non–parallel vectors orthog-
onal to v⃗. Since there are so many, we have great leeway in finding
some.
One way is to arbitrarily pick values for the first two components,
leaving the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is
to be orthogonal to v⃗, then v⃗1 · v⃗ = 0, so

2 + 14 + 3z = 0 ⇒ z =
−16

3
.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar
technique by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what
we did in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two
components of v⃗, changing the sign of one of them (similar to the
“opposite reciprocal” concept before). Letting the third component
be 0 effectively ignores the third component of v⃗, and it is easy to
see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

An important construction is illustrated in Figure 3.3.6, where vectors
u⃗ and v⃗ are sketched. In part (a), a dotted line is drawn from the tip of u⃗
to the line containing v⃗, where the dotted line is orthogonal to v⃗. In part
(b), the dotted line is replaced with the vector z⃗ and w⃗ is formed, parallel
to v⃗. It is clear by the diagram that u⃗ = w⃗+ z⃗. What is important about
this construction is this: u⃗ is decomposed as the sum of two vectors, one
of which is parallel to v⃗ and one that is perpendicular to v⃗. It is hard
to overstate the importance of this construction (as we’ll see in upcoming
examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 3.3.6 (b) form a right
triangle, where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in
terms of v⃗ and u⃗.

Using trigonometry, we can state that

∥ w⃗ ∥ = ∥ u⃗ ∥ cos θ. ( . )
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Figure . . : Graphing the vectors used in
Example . . .
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We also know that w⃗ is parallel to to v⃗ ; that is, the direction of w⃗ is
the direction of v⃗, described by the unit vector 1

∥ v⃗ ∥ v⃗. The vector w⃗ is
the vector in the direction 1

∥ v⃗ ∥ v⃗ with magnitude ∥ u⃗ ∥ cos θ:

w⃗ =
(
∥ u⃗ ∥ cos θ

) 1

∥ v⃗ ∥
v⃗.

=

(
∥ u⃗ ∥ u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥

)
1

∥ v⃗ ∥
v⃗ Replace cos θ using Theorem . .

=
u⃗ · v⃗
∥ v⃗ ∥2

v⃗ =
u⃗ · v⃗
v⃗ · v⃗ v⃗ Using Theorem . . .

Since this construction is so important, it is given a special name.

Definition 3.3.3 Orthogonal Projection

Let u⃗ and v⃗ be given. The orthogonal projection of u⃗ onto v⃗,
denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =

(
u⃗ · v⃗
v⃗ · v⃗

)
v⃗.

Example . . Computing the orthogonal projection

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three
vectors with initial points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with initial points at the origin.

Solution

1. Applying Definition 3.3.3, we have

proj v⃗ u⃗ =

(
u⃗ · v⃗
v⃗ · v⃗

)
v⃗

=
−5

10
⟨3, 1⟩

=

⟨
−3

2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 3.3.7(a). Note how
the projection is parallel to v⃗; that is, it lies on the same line through
the origin as v⃗, although it points in the opposite direction. That
is because the angle between u⃗ and v⃗ is obtuse (i.e., greater than
90◦).

2. Apply the definition:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗ x⃗

=
6

3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .





..

v⃗

.

u⃗

.
proj v⃗ u⃗.

z⃗

Figure . . : Illustra ng the orthogonal
projec on.

Note: The argument leading to Defi-
nition 3.3.3 is not quite a proof, since
it depended on choices made in form-
ing the diagram in Figure 3.3.6. How-
ever, we can easily verify that the re-
sult in Key Idea 3.3.1 is always valid:
since

v⃗ · (u⃗− proj v⃗ u⃗) = v⃗ · u⃗− v⃗ ·
(
u⃗ · v⃗
∥v⃗∥2

v⃗

)
= v⃗ · u⃗− u⃗ · v⃗

v⃗ · v⃗ (v⃗ · v⃗)

= v⃗ · u⃗− u⃗ · v⃗ = 0

for any vectors u⃗ and v⃗ ̸= 0⃗, we are
guaranteed that the vector u−proj v⃗ u⃗
will always be orthogonal to v⃗.

. The Dot Product

These vectors are sketched in Figure 3.3.7(b), and again in part (c)
from a different perspective. Because of the nature of graphing these
vectors, the sketch in part (b) makes it difficult to recognize that the
drawn projection has the geometric properties it should. The graph
shown in part (c) illustrates these properties better.

Consider Figure 3.3.8 where the concept of the orthogonal projection
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. ( . )

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite Equation ( . ) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (u⃗− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (Notation
note: the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this
notation to state “x⃗ ∥ y⃗ ” which means “x⃗ is parallel to y⃗.” The expression
“⊥ y⃗ ” means “is orthogonal to y⃗,” and is used similarly.)

Key Idea 3.3.1 Orthogonal Decomposition of Vectors

Let u⃗ and v⃗ be given. Then u⃗ can be written as the sum of two
vectors, one of which is parallel to v⃗, and one of which is orthogonal
to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (u⃗− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example . . Orthogonal decomposition of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 3.3.5. Decompose u⃗ as
the sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 3.3.5. Decompose
w⃗ as the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

Solution

1. In Example 3.3.5, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗ ? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality
with the dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (u⃗− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.
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proj r⃗ g⃗
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Figure . . : Sketching the ramp and box
in Example . . . Note: The vectors are
not drawn to scale.
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2. We found in Example 3.3.5 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the
Key Idea, we have:

z⃗ = w⃗ − proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogonal.
We now write w⃗ as the sum of two vectors, one parallel and one
orthogonal to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗ − proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposition is useful.

Example . . Orthogonally decomposing a force vector
Consider Figure 3.3.9(a), showing a box weighing 50lb on a ramp that
rises 5ft over a span of 20ft. Find the components of force, and their
magnitudes, acting on the box (as sketched in part (b) of the figure):

1. in the direction of the ramp, and

2. orthogonal to the ramp.

Solution As the ramp rises 5ft over a horizontal distance of 20ft, we
can represent the direction of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity
pulls down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direction of the ramp, we compute
proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗ r⃗

=
−250

425
⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is ∥ proj r⃗ g⃗ ∥ = 50/
√
17 ≈ 12.13lb. Though

the box weighs 50lb, a force of about 12lb is enough to keep the box
from sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use
Key Idea 3.3.1.

z⃗ = g⃗ − proj r⃗ g⃗

=

⟨
200

17
,−800

17

⟩
≈ ⟨11.76,−47.06⟩ .

The magnitude of this force is ∥ z⃗ ∥ ≈ 48.51lb. In physics and
engineering, knowing this force is important when computing things
like static frictional force. (For instance, we could easily compute
if the static frictional force alone was enough to keep the box from
sliding down the ramp.)
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Application to Work

In physics, the application of a force F to move an object in a straight
line a distance d produces work; the amount of work W is W = Fd, (where
F is in the direction of travel). The orthogonal projection allows us to
compute work when the force is not in the direction of travel.

Consider Figure 3.3.10, where a force F⃗ is being applied to an object
moving in the direction of d⃗. (The distance the object travels is the mag-
nitude of d⃗.) The work done is the amount of force in the direction of d⃗,
∥ proj d⃗ F⃗ ∥, times ∥ d⃗ ∥:

∥ proj d⃗ F⃗ ∥ · ∥ d⃗ ∥ =

∥∥∥∥∥ F⃗ · d⃗
d⃗ · d⃗

d⃗

∥∥∥∥∥ · ∥ d⃗ ∥

=

∣∣∣∣∣ F⃗ · d⃗
∥ d⃗ ∥2

∣∣∣∣∣ · ∥ d⃗ ∥ · ∥ d⃗ ∥

=

∣∣∣F⃗ · d⃗
∣∣∣

∥ d⃗ ∥2
∥ d⃗ ∥2

=
∣∣∣F⃗ · d⃗

∣∣∣ .
The expression F⃗ · d⃗ will be positive if the angle between F⃗ and d⃗

is acute; when the angle is obtuse (hence F⃗ · d⃗ is negative), the force is
causing motion in the opposite direction of d⃗, resulting in “negative work.”
We want to capture this sign, so we drop the absolute value and find that
W = F⃗ · d⃗.

Definition 3.3.4 Work

Let F⃗ be a constant force that moves an object in a straight line
from point P to point Q. Let d⃗ = v⃗PQ. The work W done by F⃗
along d⃗ is W = F⃗ · d⃗.

Example . . Computing work
A man slides a box along a ramp that rises 3ft over a distance of 15ft by
applying 50lb of force as shown in Figure 3.3.11. Compute the work done.

Solution The figure indicates that the force applied makes a 30◦

angle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩ ≈ ⟨43.3, 25⟩ . The
ramp is represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos 30◦, sin 30◦⟩ · ⟨15, 3⟩ ≈ 724.5ft–lb.

Note how we did not actually compute the distance the object trav-
eled, nor the magnitude of the force in the direction of travel; this is all
inherently computed by the dot product!

The dot product is a powerful way of evaluating computations that
depend on angles without actually using angles. The next section explores
another “product” on vectors, the cross product. Once again, angles play
an important role, though in a much different way.



Exercises 3.3
Terms and Concepts

. The dot product of two vectors is a , not a vector.

. How are the concepts of the dot product and vector mag-
nitude related?

. How can one quickly tell if the angle between two vectors
is acute or obtuse?

. Give a synonym for “orthogonal.”

Problems
In Exercises – , find the dot product of the given vectors.

. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩

. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩

. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩

. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩

. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩

. Create an example of vectors u⃗, v⃗ and w⃗ inR3 to show that
u⃗ · (v⃗+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗. Then prove that the result holds
in general.

. Create an example of vectors u⃗ and v⃗ in R3 and scalar c to
show that c(u⃗ · v⃗) = u⃗ · (cv⃗). Then prove that the result
holds in general.

In Exercises – , find the measure of the angle between
the two vectors in both radians and degrees.

. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩

. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩

. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩

. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises – , a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

. v⃗ = ⟨4, 7⟩

. v⃗ = ⟨−3, 5⟩

. v⃗ = ⟨1, 1, 1⟩

. v⃗ = ⟨1,−2, 3⟩

In Exercises – , vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projec on of u⃗ onto v⃗, and sketch all three
vectors on the same axes.

. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises – , vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises – .

. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

. A lb box sits on a ramp that rises over a distance of
. Howmuch force is required to keep the box from slid-

ing down the ramp?

. A lb box sits on a ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

. How much work is performed in moving a box horizontally
with a force of lb applied at an angle of 45◦ to the

horizontal?

. How much work is performed in moving a box horizontally
with a force of lb applied at an angle of 10◦ to the

horizontal?

. Howmuchwork is performed inmoving a box up the length
of a ramp that rises over a distance of , with a force
of lb applied horizontally?

. Howmuchwork is performed inmoving a box up the length
of a ramp that rises over a distance of , with a force
of lb applied at an angle of 45◦ to the horizontal?

. Howmuchwork is performed inmoving a box up the length
of a ramp that makes a 5◦ angle with the horizontal,
with lb of force applied in the direc on of the ramp?



The definition of the cross product
may look strange (and complicated)
at first, but it’s more or less forced
by the requirement that it be orthog-
onal to both u⃗ and v⃗. To begin to see
why, suppose w⃗ = ⟨a, b, c⟩ is an arbi-
trary vector such that w⃗ · u⃗ = 0 and
w⃗ · v⃗ = 0. This gives us the pair of
equations

u1a+ u2b+ u3c = 0

v1a+ v2b+ v3c = 0.

This is a system of linear equations
in the variables a, b, and c. We’ll
learn the techniques for solving any
such system in Chapter 4, at which
point we’ll be able to see that (up to
a scalar multiple) the solution is given
by Definition 3.4.1.

. The Cross Product

. The Cross Product

“Orthogonality” is immensely important. A quick scan of your current
environment will undoubtedly reveal numerous surfaces and edges that
are perpendicular to each other (including the edges of this page). The
dot product provides a quick test for orthogonality: vectors u⃗ and v⃗ are
perpendicular if, and only if, u⃗ · v⃗ = 0.

Given two non–parallel, nonzero vectors u⃗ and v⃗ in space, it is very
useful to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There
is a operation, called the cross product, that creates such a vector.
This section defines the cross product, then explores its properties and
applications.

Definition 3.4.1 Cross Product

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩ .

This definition can be a bit cumbersome to remember. After an ex-
ample we will give a convenient method for computing the cross product.
For now, careful examination of the products and differences given in the
definition should reveal a pattern that is not too difficult to remember.
(For instance, in the first component only 2 and 3 appear as subscripts; in
the second component, only 1 and 3 appear as subscripts. Further study
reveals the order in which they appear.)

Let’s practice using this definition by computing a cross product.

Example . . Computing a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is
orthogonal to both u⃗ and v⃗.

Solution Using Definition 3.4.1, we have

u⃗× v⃗ = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩
= ⟨(−1)5− (4)2, (4)3− (2)5, (2)2− (−1)3⟩ = ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then
verify their result.)

We test whether or not u⃗ × v⃗ is orthogonal to u⃗ and v⃗ using the dot
product: (

u⃗× v⃗
)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(

u⃗× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and
v⃗.

We now introduce a method for computing the cross-product that is
easier to remember, and has the added benefit of allowing us to preview
determinants, which we will return to in earnest in Section 7.3.
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Consider a rectangular array
[
a b
c d

]
of four real numbers a, b, c, and d.

A 2× 2 determinant takes any such array and assigns the number ad− bc.
This is commonly denoted as follows:∣∣∣∣a b

c d

∣∣∣∣ = ad− bc.

Most people find it easiest to remember this in terms of the two diagonals
of the array: we take the product of the two numbers on the main diagonal
(top-left to bottom-right), and subtract the product of the two numbers
on the other diagonal: ∣∣∣∣a b

c d

∣∣∣∣
adbc

For example, we have
∣∣∣∣4 −2
6 3

∣∣∣∣ = 4(3) − (−2)(6) = 24. Once we get
comfortable with 2 × 2 determinants, we can write the cross product in
terms of them, as follows:

u⃗× v⃗ =

∣∣∣∣u2 u3

v2 v3

∣∣∣∣ i⃗− ∣∣∣∣u1 u3

v1 v3

∣∣∣∣ j⃗ + ∣∣∣∣u1 u2

v1 v2

∣∣∣∣ k⃗ ( . )

= (u2v3 − u3v2)⃗i− (u3v1 − u1v3)⃗j + (u1v2 − u2v1)k⃗,

as before. Now, this might not seem like much of an improvement over
the previous formula, so we take things one step further. First, we form a
3× 3 array as shown below. ∣∣∣∣∣∣

i⃗ j⃗ k⃗
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ .
The first row comprises the standard unit vectors i⃗, j⃗, and k⃗. The second
and third rows are the vectors u⃗ and v⃗, respectively. Next, we expand our
3× 3 array as a vector, where the coefficient of each standard unit vector
is given by the 2× 2 determinant that’s left over when we delete the row
and column containing that unit vector.

For example, if we use u⃗ and v⃗ from Example 3.4.1, we obtain the
array ∣∣∣∣∣∣

i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣ .
The expansion process used to obtain the coefficients of i⃗, j⃗k⃗ looks like the
following: ∣∣∣∣∣∣∣

i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣−1 4
2 5

∣∣∣∣ i⃗ = −13⃗i

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

2 −1 4
3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣2 4
3 5

∣∣∣∣ j⃗ = −2⃗j



Note: If the minus sign in front of
the j⃗ coefficient seems out of place to
you, it might help to imagine wrap-
ping our 3×3 array around a cylinder
(like the label on a tin can). If we read
from left to right, beginning in the j⃗
column, then we should place the k⃗
column first, followed by the i⃗ col-
umn. For the vectors u⃗ and v⃗ in Ex-
ample 3.4.1, this would result in the

coefficient
∣∣∣∣4 2
5 2

∣∣∣∣ = 2 for the j⃗ com-

ponent, which has the correct sign.
However, since our habit is to read
starting from the far left, we tend to
write the i⃗ column first, and then in-
troduce the minus sign to compen-
sate.

. The Cross Product

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣2 −1
3 2

∣∣∣∣ k⃗ = 7k⃗

There is one more important detail to note: notice in Equation ( . )
that there is a minus sign in front of the coefficient of the unit vector j⃗.
We need to make sure that the signs in front of each 2 × 2 determinant
follow this +, −, + pattern when we expand our array as a vector. For
the vectors u⃗ and v⃗ in Example 3.4.1, we end up with the following:

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣ =
∣∣∣∣−1 4
2 5

∣∣∣∣ i⃗− ∣∣∣∣2 4
3 5

∣∣∣∣ j⃗ + ∣∣∣∣2 −1
3 2

∣∣∣∣ k⃗
= −13⃗i− (−2)⃗j + 7k⃗ = ⟨−13, 2, 7⟩ ,

as before. The method will become more clear with a bit of practice.

Example . . Computing a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗ × u⃗.

Solution To compute u⃗× v⃗, we form our 3×3 array as prescribed
above, and expand it into a vector:

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
1 3 6
−1 2 1

∣∣∣∣∣∣ =
∣∣∣∣3 6
2 1

∣∣∣∣ i⃗− ∣∣∣∣ 1 6
−1 1

∣∣∣∣ j⃗ + ∣∣∣∣ 1 3
−1 2

∣∣∣∣ k⃗
= (3(1)− 6(2))⃗i− (1(1)− 6(−1))⃗j + (1(2)− 3(−1))k⃗

= −9⃗i− 7⃗j + 5k⃗ = ⟨−9,−7, 5⟩ .

To compute v⃗ × u⃗, we switch the second and third rows of the above
matrix, then expand as before:

v⃗ × u⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
−1 2 1
1 3 6

∣∣∣∣∣∣ =
∣∣∣∣2 1
3 6

∣∣∣∣ i⃗− ∣∣∣∣−1 1
1 6

∣∣∣∣ j⃗ + ∣∣∣∣−1 2
1 3

∣∣∣∣ k⃗
= (2(6)− 1(3))⃗i− ((−1)(6)− 1(1))⃗j + ((−1)(3)− 2(1))k⃗

= 9⃗i+ 7⃗j − 5k⃗ = ⟨9, 7,−5⟩ = −u⃗× v⃗.

Note how with the rows being switched, the products that once appeared
on the right now appear on the left, and vice–versa, so that the result is
the opposite of u⃗× v⃗. We leave it to the reader to verify that each of these
vectors is orthogonal to u⃗ and v⃗.

Properties of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(u⃗× v⃗) in the preceding example;
one can show using Definition 3.4.1 that this will always be the case. The
following theorem states several useful properties of the cross product,
each of which can be verified by referring to the definition.
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Theorem 3.4.1 Properties of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following
identities hold:

1. u⃗× v⃗ = −(v⃗ × u⃗) Anticommutative Prop-
erty

2. (a) (u⃗+ v⃗)× w⃗ = u⃗× w⃗ + v⃗ × w⃗ Distributive Properties
(b) u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗

3. c(u⃗× v⃗) = (cu⃗)× v⃗ = u⃗× (cv⃗)

4. (a) (u⃗× v⃗) · u⃗ = 0 Orthogonality Properties
(b) (u⃗× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗ Scalar Triple Product

We introduced the cross product as a way to find a vector orthogonal
to two given vectors, but we did not give a proof that the construction
given in Definition 3.4.1 satisfies this property. Theorem 3.4.1 asserts this
property holds; we leave it as a problem in the Exercise section to verify
this.

The algebraic properties of the cross product in Theorem 3.4.1 also
give us an additional method for computing the cross product in terms of
the unit vectors i⃗, j⃗, k⃗. We know from Property 5 that

i⃗× i⃗ = 0⃗, j⃗ × j⃗ = 0⃗, k⃗ × k⃗ = 0⃗,

and it’s easy to check that

i⃗× j⃗ = k⃗, j⃗ × k⃗ = i⃗, k⃗ × i⃗ = j⃗,

and then Property 1 guarantees that

j⃗ × i⃗ = −k⃗, k⃗ × j⃗ = −⃗i, i⃗× k⃗ = −j⃗.

Using Properties 2 and 3, we can then compute, for example,

⟨2, 0, 3⟩ × ⟨−1, 4, 2⟩ = (2⃗i+ 3k⃗)× (−⃗i+ 4⃗j + 2k⃗)

= −2(⃗i× i⃗) + 8(⃗i× j⃗) + 4(⃗i× k⃗)

− 3(k⃗ × i⃗) + 12(k⃗ × j⃗) + 6(k⃗ × k⃗)

= 0⃗ + 8k⃗ − 4⃗j − 3⃗j − 12⃗i+ 0⃗ = ⟨−12,−7, 8⟩ .

Property 5 from the theorem is also left to the reader to prove in the
Exercise section, but it reveals something more interesting than “the cross
product of a vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that
is, let there be a scalar c such that v⃗ = cu⃗. Consider their cross product:

u⃗× v⃗ = u⃗× (cu⃗)

= c(u⃗× u⃗) (by Property 3 of Theorem 3.4.1)
= 0⃗. (by Property 5 of Theorem 3.4.1)



Note: Definition 3.3.2 (through The-
orem 3.3.2) defines u⃗ and v⃗ to be or-
thogonal if u⃗ · v⃗ = 0. We could use
Theorem 3.4.2 to define u⃗ and v⃗ are
parallel if u⃗× v⃗ = 0. By such a defini-
tion, 0⃗ would be both orthogonal and
parallel to every vector. Apparent
paradoxes such as this are not uncom-
mon in mathematics and can be very
useful. (See also the first marginal
note on page 61.)
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We have just shown that the cross product of parallel vectors is 0⃗. This
hints at something deeper. Theorem 3.3.2 related the angle between two
vectors and their dot product; there is a similar relationship relating the
cross product of two vectors and the angle between them, given by the
following theorem.

Theorem 3.4.2 The Cross Product and Angles

Let u⃗ and v⃗ be vectors in R3. Then

∥ u⃗× v⃗ ∥ = ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theorem makes a statement about the magnitude of the
cross product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors
are parallel), the magnitude of the cross product is 0. The only vector
with a magnitude of 0 is 0⃗ (see Property 9 of Theorem 3.2.2), hence the
cross product of parallel vectors is 0⃗.

We provide some anecdotal evidence of the truth of this theorem in
the following example.

Example . . The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 3.4.2. Verify Theorem
3.4.2 by finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

Solution We use Theorem 3.3.2 to find the angle between u⃗ and
v⃗.

θ = cos−1

(
u⃗ · v⃗

∥ u⃗ ∥ ∥ v⃗ ∥

)
= cos−1

(
11√
46
√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 3.4.2 showed that u⃗ × v⃗ = ⟨−9,−7, 5⟩, hence
∥ u⃗ × v⃗ ∥ =

√
155. Is ∥ u⃗ × v⃗ ∥ = ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ? Using numerical

approximations, we find:

∥ u⃗× v⃗ ∥ =
√
155 ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ =

√
46
√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(

cos−1

(
11√
46
√
6

))
=

√
155√
46
√
6
,

which allows us to verify the theorem exactly.

To see that Theorem 3.4.2 holds in general, let u⃗ = ⟨u1, u2, u3⟩ and
v⃗ = ⟨v1, v2, v3⟩ be two arbitrary vectors in R3. Since the angle between u⃗
and v⃗ is defined to lie between 0 and π, we know that sin θ ≥ 0, so that
both sides of the equation ∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin θ are positive. Thus, we



Figure . . : Illustra ng the Right Hand
Rule of the cross product.
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can show that both sides are equal if we can show that their squares are
equal. We have

(∥u⃗∥ ∥v⃗∥ sin θ)2 = ∥u⃗∥2 ∥v⃗∥2 sin2 θ

= ∥u⃗∥2 ∥v⃗∥2 (1− cos2 θ) since sin2 θ + cos2 θ = 1

= ∥u⃗∥2 ∥v⃗∥2 − (∥u⃗∥ ∥v⃗∥ cos θ)2

= ∥u⃗∥2 ∥v⃗∥2 − (u⃗ · v⃗)2 by Theorem . .

= (u2
1 + u2

2 + u2
3)(v

2
1 + v22 + v23)− (u1v1 + u2v2 + u3v3)

2

= u2
2v

2
3 − 2u2u3v2v3 + u2

3v
2
2 + u1v

2
3 − 2u1u3v1v3

+u2
3v

2
1 + u2

1v
2
2 − 2u1u2v1v2 + u2

2v
2
1

= (u2v3 − u3v2)
2 + (u3v1 − u1v3)

2 + (u1v2 − u2v2)
2

= ∥u⃗× v⃗∥2 ,

as required.

Right Hand Rule

The anticommutative property of the cross product demonstrates that
u⃗×v⃗ and v⃗×u⃗ differ only by a sign – these vectors have the same magnitude
but point in the opposite direction. When seeking a vector perpendicular
to u⃗ and v⃗, we essentially have two directions to choose from, one in the
direction of u⃗× v⃗ and one in the direction of v⃗ × u⃗. Does it matter which
we choose? How can we tell which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that
it follows the right hand rule. Given u⃗ and v⃗ in R3 with the same
initial point, point the index finger of your right hand in the direction
of u⃗ and let your middle finger point in the direction of v⃗ (much as we
did when establishing the right hand rule for the 3-dimensional coordinate
system). Your thumb will naturally extend in the direction of u⃗× v⃗. One
can “practice” this using Figure 3.4.1. If you switch, and point the index
finder in the direction of v⃗ and the middle finger in the direction of u⃗, your
thumb will now point in the opposite direction, allowing you to “visualize”
the anticommutative property of the cross product.

Applications of the Cross Product

There are a number of ways in which the cross product is useful in
mathematics, physics and other areas of science beyond “just” finding a
vector perpendicular to two others. We highlight a few here.

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is
A = bh, where b is the length of the base and h is the height of the
parallelogram, as illustrated in Figure 3.4.2(a). As shown when defining
the Parallelogram Law of vector addition, two vectors u⃗ and v⃗ define a
parallelogram when drawn from the same initial point, as illustrated in
Figure 3.4.2(b). Trigonometry tells us that h = ∥ u⃗ ∥ sin θ, hence the area
of the parallelogram is

A = ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ = ∥ u⃗× v⃗ ∥, ( . )
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where the second equality comes from Theorem 3.4.2. We illustrate using
Equation ( . ) in the following example.

Example . . Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩
and v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the vertices of a parallelogram. Find the area of
the parallelogram.

Solution

1. Figure 3.4.3(a) sketches the parallelogram defined by the vectors u⃗
and v⃗. We have a slight problem in that our vectors exist in R2, not
R3, and the cross product is only defined on vectors in R3. We skirt
this issue by viewing u⃗ and v⃗ as vectors in the x−y plane of R3, and
rewrite them as u⃗ = ⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute
the cross product. It is easy to show that u⃗× v⃗ = ⟨0, 0, 5⟩; therefore
the area of the parallelogram is A = ∥ u⃗× v⃗ ∥ = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in
Figure 3.4.3(b)), we need to show that the opposite sides are parallel.
We can quickly show that −−→

AB =
−−→
DC = ⟨1, 2, 1⟩ and −−→

BC =
−−→
AD =

⟨2, 2, 1⟩. We find the area by computing the magnitude of the cross
product of −−→AB and −−→

BC:
−−→
AB ×

−−→
BC = ⟨0, 1,−2⟩ ⇒ ∥

−−→
AB ×

−−→
BC ∥ =

√
5 ≈ 2.236.

This application is perhaps more useful in finding the area of a tri-
angle (in short, triangles are used more often than parallelograms). We
illustrate this in the following example.

Example . . Area of a triangle
Find the area of the triangle with vertices A = (1, 2), B = (2, 3) and
C = (3, 1), as pictured in Figure 3.4.4.

Solution Given the orientation of this triangle in the plane, find-
ing the area of a triangle can be inconvenient using the “ 1

2bh” formula as
one has to compute the height, which generally involves finding angles,
etc. Using a cross product is much more direct.

We can choose any two sides of the triangle to use to form vectors;
we choose −−→

AB = ⟨1, 1⟩ and −→
AC = ⟨2,−1⟩. As in the previous example,

we will rewrite these vectors with a third component of 0 so that we can
apply the cross product. The area of the triangle is

1

2
∥
−−→
AB ×

−→
AC ∥ =

1

2
∥ ⟨1, 1, 0⟩ × ⟨2,−1, 0⟩ ∥ =

1

2
∥ ⟨0, 0,−3⟩ ∥ =

3

2
.




Figure . . : A parallelepiped is the three
dimensional analogue to the parallelo-
gram.

Figure . . : Determining the volume of
a parallelepiped

Figure . . : A parallelepiped in Example
. . .
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Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the paral-

lelepiped. Each face is parallel to the face opposite face, as illustrated
in Figure 3.4.5. The volume of any three-dimensional solid whose cross-
sectional area is a constant is given by V = B · h, where B is the area
of the base (the constant cross-sectional area), and h is the height. To
determine a formula for the volume, we refer to Figure 3.4.6. By crossing
v⃗ and w⃗, one gets a vector whose magnitude is the area of the base, and
whose direction is perpendicular to the parallelogram forming the base of
the solid. We can then see that the height of the parallelepiped is equal to
the length of the projection of the vector u⃗ onto v⃗× w⃗. Thus, our volume
is given by:

V = B · h
= ∥v⃗ × w⃗∥ ·

∥∥projv⃗×w⃗ u⃗
∥∥

= ∥v⃗ × w⃗∥ ·

∥∥∥∥∥
(
u⃗ · (v⃗ × w⃗)

∥v⃗ × w⃗∥2

)
(v⃗ × w⃗)

∥∥∥∥∥
= ∥v⃗ × w⃗∥ |u⃗ · (v⃗ × w⃗)|

∥v⃗ × w⃗∥2
∥v⃗ × w⃗∥

= |u⃗ · (v⃗ × w⃗)| .

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |u⃗ · (v⃗ × w⃗)| . ( . )

Note how this is the Scalar Triple Product, first seen in Theorem 3.4.1.
Applying the identities given in the theorem shows that we can apply the
Scalar Triple Product in any “order” we choose to find the volume. That
is,

V = |u⃗ · (v⃗ × w⃗)| = |u⃗ · (w⃗ × v⃗)| = |(u⃗× v⃗) · w⃗|, etc.
Example . . Finding the volume of parallelepiped
Find the volume of the parallelepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩,
v⃗ = ⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

Solution We apply Equation ( . ). We first find v⃗×w⃗ = ⟨1, 1,−1⟩.
Then

|u⃗ · (v⃗ × w⃗)| = | ⟨1, 1, 0⟩ · ⟨1, 1,−1⟩ | = 2.

So the volume of the parallelepiped is 2 cubic units.

Let’s take another look at how Equation ( . ) is computed in terms of
our formulas for the dot and cross products. With u⃗ = ⟨u1, u2, u3⟩ , v⃗ =
⟨v1, v2, v3⟩, and w⃗ = ⟨w1, w2, w3⟩, we have

u⃗ · (v⃗ × w⃗) = ⟨u1, u2, u3⟩ ·
⟨∣∣∣∣v2 v3

w2 w3

∣∣∣∣ ,− ∣∣∣∣v1 v3
w1 w3

∣∣∣∣ , ∣∣∣∣v1 v2
w1 w2

∣∣∣∣⟩
= u1

∣∣∣∣v2 v3
w2 w3

∣∣∣∣− u2

∣∣∣∣v1 v3
w1 w3

∣∣∣∣+ u3

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ .
Compare this with our determinant formula for computing the cross prod-
uct,

v⃗ × w⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ =
∣∣∣∣v2 v3
w2 w3

∣∣∣∣ i⃗− ∣∣∣∣v1 v3
w1 w3

∣∣∣∣ j⃗ + ∣∣∣∣v1 v2
w1 w2

∣∣∣∣ k⃗.
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If we replace the unit vectors i⃗, j⃗, veck in the above equation with the
components of u⃗, we arrive at our first instance of a 3× 3 determinant,
along with a method for computing such an object:∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ = u1

∣∣∣∣v2 v3
w2 w3

∣∣∣∣− u2

∣∣∣∣v1 v3
w1 w3

∣∣∣∣+ u3

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ = u⃗ · (v⃗ × w⃗).

We will return to our study of determinants in Section 7.3, where we will
learn techniques for efficiently computing determinants of any size.

While this application of the Scalar Triple Product is interesting, it is
not used all that often: parallelepipeds are not a common shape in physics
and engineering. (It is, however, essential to understanding the change of
variables formula for multiple integrals in Calculus.) The last application
of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A
classic scenario involving torque is the application of a wrench to a bolt.
When a force is applied to the wrench, the bolt turns. When we represent
the force and wrench with vectors F⃗ and ℓ⃗, we see that the bolt moves
(because of the threads) in a direction orthogonal to F⃗ and ℓ⃗. Torque is
usually represented by the Greek letter τ , or tau, and has units of N·m, a
Newton–meter, or ft·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this
book, when a force F⃗ is applied to a lever arm ℓ⃗, the resulting torque is

τ⃗ = ℓ⃗× F⃗ . ( . )

Example . . Computing torque
A lever of length 2ft makes an angle with the horizontal of 45◦. Find the
resulting torque when a force of 10lb is applied to the end of the level
where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure
3.4.8.

Solution

1. We start by determining vectors for the force and lever arm. Since
the lever arm makes a 45◦ angle with the horizontal and is 2ft long,
we can state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in
the left hand side of Figure 3.4.8), we can conclude it is making an
angle of −45◦ with the horizontal. As it has a magnitude of 10lb,
we can state F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using Equation ( . ) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the
cross product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩



..

ℓ⃗

.90◦ .

F⃗

.

ℓ⃗

.
60◦

.

F⃗

Figure . . : Showing a force being ap-
plied to a lever in Example . . .
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This clearly has a magnitude of 20 ft-lb.
We can view the force and lever arm vectors as lying “on the page”;
our computation of τ⃗ shows that the torque goes “into the page.”
This follows the Right Hand Rule of the cross product, and it also
matches well with the example of the wrench turning the bolt. Turn-
ing a bolt clockwise moves it in.

2. Our lever arm can still be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our

force vector makes a 60◦ angle with ℓ⃗, we can see (referencing the
right hand side of the figure) that F⃗ makes a −15◦ angle with the
horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =

⟨
5(1 +

√
3)√

2
,−5(1 +

√
3)√

2

⟩
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product
to find the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×

⟨
5(1 +

√
3)√

2
,−5(1 +

√
3)√

2
, 0

⟩
=
⟨
0, 0,−10

√
3
⟩

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are or-
thogonal, the magnitude of force is greater than when the vectors
are not orthogonal.

While the cross product has a variety of applications (as noted in
this chapter), its fundamental use is finding a vector perpendicular to
two others. Knowing a vector is orthogonal to two others is of incredible
importance, as it allows us to find the equations of lines and planes in a
variety of contexts. The importance of the cross product, in some sense,
relies on the importance of lines and planes, which see widespread use
throughout engineering, physics and mathematics. We study lines and
planes in the next two sections.



Exercises 3.4
Terms and Concepts
. The cross product of two vectors is a , not a
scalar.

. One can visualize the direc on of u⃗× v⃗ using the
.

. Give a synonym for “orthogonal.”

. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

. is a measure of the turning force applied to an
object.

Problems
In Exercises – , vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩

. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩

. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩

. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩

. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩

. u⃗ = i⃗, v⃗ = j⃗

. u⃗ = i⃗, v⃗ = k⃗

. u⃗ = j⃗, v⃗ = k⃗

. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗× (v⃗ +
w⃗) = u⃗× v⃗ + u⃗× w⃗.

. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗·(v⃗×w⃗) =
(u⃗× v⃗) · w⃗.

In Exercises – , the magnitudes of vectors u⃗ and v⃗ in R3

are given, along with the angle θ between them. Use this in-
forma on to find the magnitude of u⃗× v⃗.

. ∥ u⃗ ∥ = 2, ∥ v⃗ ∥ = 5, θ = 30◦

. ∥ u⃗ ∥ = 3, ∥ v⃗ ∥ = 7, θ = π/2

. ∥ u⃗ ∥ = 3, ∥ v⃗ ∥ = 4, θ = π

. ∥ u⃗ ∥ = 2, ∥ v⃗ ∥ = 5, θ = 5π/6

In Exercises – , find the area of the parallelogramdefined
by the given vectors.

. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩

. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩

. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩

. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises – , find the area of the triangle with the
given ver ces.

. Ver ces: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

. Ver ces: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

. Ver ces: (1, 1), (1, 3) and (2, 2).

. Ver ces: (3, 1), (1, 2) and (4, 3).

In Exercises – , find the area of the quadrilateral with
the given ver ces. (Hint: break the quadrilateral into trian-
gles.)

. Ver ces: (0, 0), (1, 2), (3, 0) and (4, 3).

. Ver ces: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises – , find the volume of the parallelepiped de-
fined by the given vectors.

. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩

. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises – , find a unit vector orthogonal to both u⃗
and v⃗.

. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩

. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩

. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩

. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩

. A bicycle rider applies lb of force, straight down,
onto a pedal that extends in horizontally from the
cranksha . Find the magnitude of the torque applied to
the cranksha .

. A bicycle rider applies lb of force, straight down, onto
a pedal that extends in from the cranksha , making a 30◦

anglewith the horizontal. Find themagnitude of the torque
applied to the cranksha .



. To turn a stubborn bolt, lb of force is applied to a in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

. To turn a stubborn bolt, lb of force is applied to a in
wrench in a confined space, where the direc on of ap-
plied force makes a 10◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

. Show, using the defini on of the Cross Product, that u⃗·(u⃗×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

. Show, using the defini on of the Cross Product, that u⃗ ×
u⃗ = 0⃗.



Figure . . : Defining a line in space.

. Lines

. Lines
To find the equation of a line in the x-y plane, we need two pieces of infor-
mation: a point and the slope. The slope conveys direction information.
As vertical lines have an undefined slope, the following statement is more
accurate:

To define a line, one needs a point on the line and the direction
of the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with initial point at
the origin and terminal point at P (i.e., p⃗ “points” to P ), and let d⃗ be a
vector. Consider the points on the line through P in the direction of d⃗.

Clearly one point on the line is P ; we can say that the vector p⃗ lies at
this point on the line. To find another point on the line, we can start at
p⃗ and move in a direction parallel to d⃗. For instance, starting at p⃗ and
traveling one length of d⃗ places one at another point on the line. Consider
Figure 3.5.2 where certain points along the line are indicated.

The figure illustrates how every point on the line can be obtained by
starting with p⃗ and moving a certain distance in the direction of d⃗. That
is, we can define the line as a function of t:

ℓ⃗(t) = p⃗+ t d⃗. ( . )

In many ways, this is not a new concept. Compare Equation ( . ) to
the familiar “y = mx+ b” equation of a line:

y = b + mx ℓ⃗(t) = p⃗ + t d⃗

Starting
Point Direction

How Far To
Go In That
Direction

Figure . . : Understanding the vector equa on of a line.

The equations exhibit the same structure: they give a starting point,
define a direction, and state how far in that direction to travel.

Equation ( . ) is an example of a vector–valued function; the input
of the function is a real number and the output is a vector. We will cover
vector–valued functions extensively in the next chapter.

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let
d⃗ = ⟨a, b, c⟩. Then the equation of the line through p⃗ in the direction of d⃗
is:

ℓ⃗(t) = p⃗+ td⃗

= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states the the x values of the line are given by x = x0+at,
the y values are given by y = y0 + bt, and the z values are given by




Figure . . : Graphing a line in Example
. . .
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z = z0 + ct. These three equations, taken together, are the parametric
equations of the line through p⃗ in the direction of d⃗.

Finally, each of the equations for x, y and z above contain the variable
t. We can solve for t in each equation:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y − y0

b
,

z = z0 + ct ⇒ t =
z − z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we
can set these equal to each other, forming the symmetric equations of
the line through p⃗ in the direction of d⃗:

x− x0

a
=

y − y0
b

=
z − z0

c
.

Each representation has its own advantages, depending on the context.
We summarize these three forms in the following definition, then give
examples of their use.

Definition 3.5.1 Equations of Lines in Space

Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in
the direction of d⃗ = ⟨a, b, c⟩ .

1. The vector equation of the line is

ℓ⃗(t) = p⃗+ td⃗.

2. The parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equations of the line are

x− x0

a
=

y − y0
b

=
z − z0

c
.

Example . . Finding the equation of a line
Give all three equations, as given in Definition 3.5.1, of the line through
P = (2, 3, 1) in the direction of d⃗ = ⟨−1, 1, 2⟩. Does the point Q =
(−1, 6, 6) lie on this line?

Solution We identify the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definition, we have

• the vector equation of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equations of the line are

x = 2− t, y = 3 + t, z = 1 + 2t; and




Figure . . : A graph of the line in Exam-
ple . . .

. Lines

• the symmetric equations of the line are
x− 2

−1
=

y − 3

1
=

z − 1

2
.

The first two equations of the line are useful when a t value is given:
one can immediately find the corresponding point on the line. These forms
are good when calculating with a computer; most software programs easily
handle equations in these formats. (For instance, to make Figure 3.5.3,
a certain graphics program was given the input (2-x,3+x,1+2*x). This
particular program requires the variable always be “x” instead of “t”).

Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 3.5.3
makes it clear that it does not. We can answer this question without the
graph using any of the three equation forms. Of the three, the symmetric
equations are probably best suited for this task. Simply plug in the values
of x, y and z and see if equality is maintained:

−1− 2

−1

?
=

6− 3

1

?
=

6− 1

2
⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not satisfy the symmetric
equations.

Example . . Finding the equation of a line through two points
Find the parametric equations of the line through the points P = (2,−1, 2)
and Q = (1, 3,−1).

Solution Recall the statement made at the beginning of this sec-
tion: to find the equation of a line, we need a point and a direction.
We have two points; either one will suffice. The direction of the line
can be found by the vector with initial point P and terminal point Q:−−→
PQ = ⟨−1, 4,−3⟩.

The parametric equations of the line ℓ through P in the direction of−−→
PQ are:

ℓ : x = 2− t y = −1 + 4t z = 2− 3t.

A graph of the points and line are given in Figure 3.5.4. Note how in
the given parametrization of the line, t = 0 corresponds to the point P ,
and t = 1 corresponds to the point Q. This relates to the understanding
of the vector equation of a line described in Figure 3.5.1. The parametric
equations “start” at the point P , and t determines how far in the direction
of −−→PQ to travel. When t = 0, we travel 0 lengths of −−→PQ; when t = 1, we
travel one length of −−→PQ, resulting in the point Q.

Parallel, Intersecting and Skew Lines

In the plane, two distinct lines can either be parallel or they will in-
tersect at exactly one point. In space, given equations of two lines, it can
sometimes be difficult to tell whether the lines are distinct or not (i.e., the
same line can be represented in different ways). Given lines ℓ⃗1(t) = p⃗1+td⃗1
and ℓ⃗2(t) = p⃗2 + td⃗2, we have four possibilities: ℓ⃗1 and ℓ⃗2 are

the same line they share all points;
intersecting lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.




Figure . . : Sketching the lines from Ex-
ample . . .

We say that a system of equations
with no solution, such as the one in
Example 3.5.3, is inconsistent. Al-
though it is possible to find values
that work for any two of the three
equations, there is no set of values for
s and t that work for all three equa-
tions simultaneously. We’ll develop
general techniques for studying sys-
tems of linear equations in Chapter
4.
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The next two examples investigate these possibilities.

Example . . Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :
x = 1 + 3t
y = 2− t
z = t

ℓ2 :
x = −2 + 4s
y = 3 + s
z = 5 + 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or
skew.

Solution We start by looking at the directions of each line. Line
ℓ1 has the direction given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direction
given by d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not paral-
lel, hence ℓ1 and ℓ2 are not the same line, nor are they parallel. Figure
3.5.5 verifies this fact (where the points and directions indicated by the
equations of each line are identified).

We next check to see if they intersect (if they do not, they are skew
lines). To find if they intersect, we look for t and s values such that the
respective x, y and z values are the same. That is, we want s and t such
that:

1 + 3t = x = −2 + 4s
2− t = y = 3 + s
t = z = 5 + 2s.

This is a relatively simple system of linear equations. Since the last equa-
tion is already solved for t, substitute that value of t into the equation
above it:

2− (5 + 2s) = 3 + s ⇒ s = −2, t = 1.

A key to remember is that we have three equations; we need to check if
s = −2, t = 1 satisfies the first equation as well:

1 + 3(1) ̸= −2 + 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Example . . Comparing lines
Consider the lines ℓ1 and ℓ2 given by the vector equations

ℓ⃗1(s) = ⟨2,−1, 4⟩+ s⟨0, 4,−8⟩

ℓ⃗2(t) = ⟨−3, 4,−6⟩+ t⟨2,−1, 2⟩.

Determine if the lines are parallel, skew, or intersecting.

Solution We can immediately see that the lines cannot be paral-
lel, since the x-component of the direction vector for ℓ1 is zero, but this
is not the case for the direction vector of ℓ2. (There is no scalar c such
that c(0) = 2.) To determine if the lines intersect, we proceed as in the
previous example. We must have

2 = x = −3 + 2t
−1 + 4s = y = 4− t
4− 8s = z = −6 + 2t.




. Lines

The first equation immediately gives us 2t = 5, so t = 5
2 . Plugging this

into the second equation gives us

4s = 4− 5

2
+ 1 =

5

2
⇒ s =

5

8
.

We now need to check to see if these values satisfy the third equation as
well: we have

4− 8s = 4− 5 = −1,

and
−6 + 2t = −6 + 5 = −1,

so the values s = 5
8 , t = 5

2 work for all three equations, and since

ℓ⃗1

(
5

8

)
= ⟨2,−1, 4⟩+ 5

8
⟨0, 4,−8⟩ = ⟨2, 3

2
,−1⟩ and

ℓ⃗2

(
5

2

)
= ⟨−3, 4,−6⟩+ 5

2
⟨2,−1, 2⟩ = ⟨2, 3

2
,−1⟩,

our point of intersection is (2, 3
2 ,−1).

Example . . Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :
x = −0.7 + 1.6t
y = 4.2 + 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05 + 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or
skew.

Solution It is obviously very difficult to simply look at these
equations and discern anything. This is done intentionally. In the “real
world,” most equations that are used do not have nice, integer coefficients.
Rather, there are lots of digits after the decimal and the equations can
look “messy.”

We again start by deciding whether or not each line has the same
direction. The direction of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the
direction of ℓ2 is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear
through observation whether two vectors are parallel or not, the standard
way of determining this is by comparing their respective unit vectors.
Using a calculator, we find:

u⃗1 =
d⃗1

∥ d⃗1 ∥
= ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2

∥ d⃗2 ∥
= ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are
equal to 4 decimal places). In most situations, it would suffice to conclude
that the lines are at least parallel, if not the same. One way to be sure is
to rewrite d⃗1 and d⃗2 in terms of fractions, not decimals. We have

d⃗1 =

⟨
16

10
,
272

100
,−336

100

⟩
d⃗2 =

⟨
−29

10
,−493

100
,
609

100

⟩
.



Figure . . : Graphing the lines in Exam-
ple . . .
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Figure . . : Establishing the distance
from a point to a line.
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One can then find the magnitudes of each vector in terms of fractions,
then compute the unit vectors likewise. After a lot of manual arithmetic
(or after briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10

83
,

17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10

83
,− 17√

830
,

21√
830

⟩
.

We can now say without equivocation that these lines are parallel.
Are they the same line? The parametric equations for a line de-

scribe one point that lies on the line, so we know that the point P1 =
(−0.7, 4.2, 2.3) lies on ℓ1. To determine if this point also lies on ℓ2, plug
in the x, y and z values of P1 into the symmetric equations for ℓ2:

(−0.7)−2.8
−2.9

?
= (4.2)−10.15

−4.93

?
= (2.3)−(−5.05)

6.09

1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line,
just parametrized differently. Figure 3.5.6 graphs this line along with the
points and vectors described by the parametric equations. Note how d⃗1
and d⃗2 are parallel, though point in opposite directions (as indicated by
their unit vectors above).

Distances

Given a point Q and a line ℓ⃗(t) = p⃗+ td⃗ in space, it is often useful to
know the distance from the point to the line. (Here we use the standard
definition of “distance,” i.e., the length of the shortest line segment from
the point to the line.) Identifying p⃗ with the point P , Figure 3.5.7 will
help establish a general method of computing this distance h.

From trigonometry, we know h = ∥
−−→
PQ ∥ sin θ. We have a similar

identity involving the cross product: ∥
−−→
PQ × d⃗ ∥ = ∥

−−→
PQ ∥ ∥ d⃗ ∥ sin θ.

Divide both sides of this latter equation by ∥ d⃗ ∥ to obtain h:

h =
∥
−−→
PQ× d⃗ ∥
∥ d⃗ ∥

. ( . )

We put Equation ( . ) to use in the following example.

Example . . Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩+
t ⟨2, 3, 1⟩ .

Solution The equation of the line line gives us the point P =

(1,−1, 1) that lies on the line, hence −−→
PQ = ⟨0, 2, 2⟩. The equation also

gives d⃗ = ⟨2, 3, 1⟩. Using Equation ( . ), we have the distance as

h =
∥
−−→
PQ× d⃗ ∥
∥ d⃗ ∥

=
∥ ⟨−4, 4,−4⟩ ∥√

14

=
4
√
3√
14

.




Note: We can’t overemphasize the
fact that the diagram referred to in
Key Idea 3.5.1 does not have to be
accurate with respect to the coordi-
nates and directions involved. It sim-
ply has to be capable of representing
the information in the problem. Note
that in Figure 3.5.8 in Example 3.5.7
we’ve drawn a line, some points, and
some vectors that represent the prob-
lem, without reference to a coordinate
system. The goal is to provide enough
detail to allow us to set up the prob-
lem.

Figure . . : Se ng up the solu on in Ex-
ample . .

. Lines

While Equation ( . ) gives us a convenient formula for computing the
distance, you are probably better off making sure you understand the ar-
gument used to obtain the formula. For one thing, a formula is easily
forgotten. For another, understanding the method will allow you to adapt
it to similar situations still to come, such as computing the distance be-
tween skew lines, or from a point to a plane. The general method for these
types of problems can be outlined as follows.

Key Idea 3.5.1 Steps for solving shortest distance prob-
lems

Suppose you are asked to find the distance between two objects, or
to determine an object (such as a point) that is closest to a given
object (a line or plane). Your solution to the problem should always
include the following steps:

1. Make a list of all the information provided in the problem.

2. Make a note of what quantities you’re asked to determine.

3. Draw a diagram. Label all relevant points and vectors,
including those you know, and those you want to find.

4. Using your diagram as a reference, compute any unknown
points or vectors.

We put the method in Key Idea 3.5.1 to use in the following example.
Note that in this example we’re asked not just for the distance from a
point to a line, but also for the point on the line that is closest to the
given point, so simply using Equation ( . ) is not enough.
Example . . Finding the closest point on a line
Find the distance from the point Q = (1, 3,−2) to the line ℓ⃗ that passes
through the point P = (2, 0,−1) in the direction of d⃗ = ⟨1,−1, 0⟩, and
find the point R on ℓ⃗ that is closest to Q.

Solution We’re given a point P on the line, along with a direction
vector d⃗, and a point Q not on the line. We seek the point R on the line
that is closest to Q, as well as the distance from Q to R. We begin by
diagramming the information in Figure 3.5.8. From the given points P
and Q we can immediately construct the vector

−−→
PQ = ⟨1− 2, 3− 0,−2− (−1)⟩ = ⟨−1, 3,−1⟩ .

Rather than use Formula ( . ) to find the distance, we begin instead by
finding the point R on the line that is closest to Q. From our diagram,
we can see that the vector −→

PR from P to R is equal to the projection of−−→
PQ onto the distance vector d⃗:

−→
PR = projd⃗

−−→
PQ =

(
⟨−1, 3,−1⟩ · ⟨1,−1, 0⟩
⟨1,−1, 0⟩ · ⟨1,−1, 0⟩

)
⟨1,−1, 0⟩ = ⟨−2, 2, 0⟩ .

Now, we need to pause and take care that we don’t make a very common
mistake: the vector −→

PR does not give the coordinates of the point R.
Instead, −→PR tells us how to get from the point P to the point R. Letting



Note: Skew lines always lie in par-
allel planes. In the next section we’ll
see that a plane can be determined by
two non-parallel direction vectors and
a point on the plane. The distance
between the two skew lines is then
equal to the distance between the two
parallel planes, which is given by the
length of a line segment perpendicu-
lar to both planes, and therefore, to
both lines.

Figure . . : Establishing the distance be-
tween lines.
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O denote the origin, we can write −−→
OP and −−→

OR for the position vectors of
P and R, respectively. Since −→

PR =
−−→
OR −

−−→
OP using the “tip minus tail”

rule for computing the vector between two points, we have
−−→
OR =

−−→
OP +

−→
PR = ⟨2, 0,−1⟩+ ⟨−2, 2, 0⟩ = ⟨0, 2,−1⟩ .

Thus, we have R = (0, 2,−1) as the point on the line closest to the point
Q. We can now find the distance from Q to the line using the distance
formula:

D =
√

(1− 0)2 + (3− 2)2 + (−2− (−1))2 =
√
3.

(You should verify that this agrees with the distance given by Formula
( . ).) An alternative way of computing the distance is to make use of the
orthogonal decomposition in Key Idea 3.3.1. By definition of the distance
from a point to a line, we know that the vector −−→

RQ must be orthogonal
to the line, and thus to the direction vector d⃗. Using Key Idea 3.3.1, we
have that

−−→
RQ =

−−→
PQ−

−→
PR = ⟨−1, 3,−1⟩ − ⟨−2, 2, 0⟩ = ⟨−1, 1, 1⟩ ,

and the shortest distance is given by
∥∥∥−−→RQ

∥∥∥ =
√
3, as before.

It is also useful to determine the distance between lines, which we
define as the length of the shortest line segment that connects the two
lines. This line segment is necessarily perpendicular to both lines. Let
lines ℓ⃗1(t) = p⃗1 + td⃗1 and ℓ⃗2(t) = p⃗2 + td⃗2 be given, as shown in Figure
3.5.9. To find the direction orthogonal to both d⃗1 and d⃗2, we take the
cross product: c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projection
of −−−→P1P2 onto c⃗ is the distance h we seek:

h =
∥∥∥ proj c⃗

−−−→
P1P2

∥∥∥ =

∥∥∥∥∥
−−−→
P1P2 · c⃗
c⃗ · c⃗ c⃗

∥∥∥∥∥
=

|
−−−→
P1P2 · c⃗|
∥ c⃗ ∥2

∥ c⃗ ∥ =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥ c⃗ ∥
. ( . )

A problem in the Exercise section is to show that this distance is 0
when the lines intersect. Note the use of the Triple Scalar Product:−−−→
P1P2 · c =

−−−→
P1P2 · (d⃗1 × d⃗2).

Example . . Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1 + 3t
y = 2− t
z = t

ℓ2 :
x = −2 + 4s
y = 3 + s
z = 5 + 2s.

Solution These are the sames lines as given in Example 3.5.3,
where we showed them to be skew. The equations allow us to identify the
following points and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒
−−−→
P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .




. Lines

Using Equation ( . ) we have that the distance h between the two lines
is

h =
|
−−−→
P1P2 · c⃗|
∥ c⃗ ∥

=
42√
62

≈ 5.334.

Once again, we do not recommend attempting to memorize Equation
( . ). Unless you somehow find yourself at a point in your life where you
need to find the distances between a whole lot of pairs of skew lines, you
will be better served by learning the skills required to set up and think
through a problem than you will be by memorizing a formula to plug
numbers into. In the case of skew lines, the key observation is that if we
take the vector between any pair of points, one on each line, and project
it onto the vector c⃗ = d⃗1 × d⃗2, the length of the resulting vector is the
distance we seek.

Somewhat more challenging is the problem of finding the points on
each line that actually realize this shortest distance.

Example . . Finding the closest points on skew lines
Find the points R1 on ℓ⃗1 and R2 on ℓ⃗2, where ℓ⃗1 and ℓ⃗2 are the lines from
Example 3.5.8, such that the distance from R1 to R2 is a minimum.

Solution Since R1 is a point on ℓ⃗1, we know that

R1 = (1 + 3t, 2− t, t), for some real number t, ( . )

and similarly,

R2 = (−2 + 4s, 3 + s, 5 + 2s), for some real number s. ( . )

The vector −−−→
R1R2 is therefore given by

−−−→
R1R2 = ⟨−3 + 4s− 3t, 1 + s+ t, 5 + 2s− t⟩ ,

for some pair of real numbers s and t. We know that the line segment
R1R2 must be perpendicular to both ℓ⃗1 and ℓ⃗2 in order to minimize the
distance, so the vector −−−→R1R2 must be orthogonal to both d⃗1 and d⃗2. Thus,

0 = d⃗1 ·
−−−→
R1R2 = 3(−3 + 4s− 3t)− 1(1 + s+ t) + 1(5 + 2s− t)

= 13s− 11t− 5, and

0 = d⃗2 ·
−−−→
R1R2 = 4(−3 + 4s− 3t) + 1(1 + s+ t) + 2(5 + 2s− t)

= 21s− 13t− 1.

We end up having to solve a system of two linear equations in the two
variables, s and t, given by

13s − 11t = 5,
21s − 13t = 1.

You probably had to solve such systems in high school. One option is to
solve graphically, by plotting the lines given by each equation, and seeing
where they intersect. However, this method has little hope of providing
an accurate answer. Instead, we try a little algebra. Multiplying the first
equation by 21 and the second by 13 gives us the equations 273s− 231t =
105 and 273s − 169t = 13, respectively. Subtracting the second equation



You might be thinking, “Are those
two values really the same?” A cal-
culator can verify this of course, by
computing the decimal approxima-
tions for the results in Examples 3.5.8
and 3.5.9. Alternatively, you can ver-
ify that

632+422+1472 = 27, 342 = 2(21)2(31),

so
√
632 + 422 + 1472

31
=

√
2(212)(31)31

=
21

√
2
√
31

31

=
21

√
2√

31

=
21(2)√
31

√
2

=
42√
62

.
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from the first, we have −62t = 92, so t = − 92
62 = − 46

31 . Plugging this value
back into any of the previous equations gives us s = − 351

403 = − 27
31 . (We

didn’t promise that the numbers would work out nicely!) Plugging these
values back into equations ( . ) and ( . ), we find

R1 =

(
−107

31
,
108

31
,−46

31

)
and R2 =

(
−170

31
,
66

31
,
101

31

)
.

Our vector −−−→
R1R2 is then given by

−−−→
R1R2 =

⟨
−63

31
,−42

31
,
147

31

⟩
=

1

31
⟨−63,−42, 147⟩ ,

and the distance between the two lines is given by∥∥∥−−−→R1R2

∥∥∥ =
1

31

√
632 + 422 + 1472 =

42√
62

,

as before.

Example 3.5.9 required us to solve a system of two linear equations in
two unknowns s and t. Although this involved some messy fractions, the
algebra involved was fairly straightforward. In many real life problems
it is necessary to be able to solve systems involving hundreds or even
thousands of equations and variables. We will begin our study of how to
systematically solve such systems in the next chapter.

One of the key points to understand from this section is this: to de-
scribe a line, we need a point and a direction. Whenever a problem is
posed concerning a line, one needs to take whatever information is offered
and glean point and direction information. Many questions can be asked
(and are asked in the Exercise section) whose answer immediately follows
from this understanding.

Lines are one of two fundamental objects of study in space. The other
fundamental object is the plane, which we study in detail in the next
section. Many complex three dimensional objects are studied by approxi-
mating their surfaces with lines and planes.



Exercises 3.5
Terms and Concepts

. To find an equa on of a line, what two pieces of informa-
on are needed?

. Two dis nct lines in the plane can intersect or be
.

. Two dis nct lines in space can intersect, be or be
.

. Use your ownwords to describewhat itmeans for two lines
in space to be skew.

Problems
In Exercises – , write the vector, parametric and symmet-
ric equa ons of the lines described.

. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.

. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.

. Passes through P = (2, 1, 5) andQ = (7,−2, 4).

. Passes through P = (1,−2, 3) andQ = (5, 5, 5).

. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

. Passes through the point of intersec on of ℓ⃗1(t) and ℓ⃗2(t)
and orthogonal to both lines, where
ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

. Passes through the point of intersec on of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t

y = −2 + 2t

z = 1 + t

and ℓ2 =


x = 2 + t

y = 2− t

z = 3 + 2t

.

. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.

. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises – , determine if the described lines are the
same line, parallel lines, intersec ng or skew lines. If inter-
sec ng, give the point of intersec on.

. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

. ℓ1 =


x = 1 + 2t

y = 3− 2t

z = t

and ℓ2 =


x = 3− t

y = 3 + 5t

z = 2 + 7t

. ℓ1 =


x = 1.1 + 0.6t

y = 3.77 + 0.9t

z = −2.3 + 1.5t

and ℓ2 =


x = 3.11 + 3.4t

y = 2 + 5.1t

z = 2.5 + 8.5t

. ℓ1 =


x = 0.2 + 0.6t

y = 1.33− 0.45t

z = −4.2 + 1.05t

and ℓ2 =


x = 0.86 + 9.2t

y = 0.835− 6.9t

z = −3.045 + 16.1t

. ℓ1 =


x = 0.1 + 1.1t

y = 2.9− 1.5t

z = 3.2 + 1.6t

and ℓ2 =


x = 4− 2.1t

y = 1.8 + 7.2t

z = 3.1 + 1.1t

In Exercises – , find the distance from the point to the
line.

. P = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

. P = (2, 5, 6), ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

. P = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

. P = (1, 1), ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises – , find the distance between the two lines,
and find the points on each line that are closest together.

. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

. ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises – explore special cases of the distance formu-
las ( . ) and ( . ).

. Let Q be a point on the line ℓ(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

. Let lines ℓ1(t) and ℓ2(t) be intersec ng lines. Show why
the distance formula correctly gives the distance between
these lines as 0.



. Let lines ℓ1(t) and ℓ2(t) be parallel.

(a) Show why formula ( . ) for the distance between
lines cannot be used as stated to find the distance
between the lines.

(b) Show why le ng c⃗ = (
−−−→
P1P2 × d⃗2)× d⃗2 allows one

to the use the formula.

(c) Show how one can use the formula for the distance
between a point and a line to find the distance be-
tween parallel lines.



Figure . . : Illustra ng defining a plane
with a sheet of cardboard and a nail.
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. Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard
with a point P marked on it. One can take a nail and stick it into the
cardboard at P such that the nail is perpendicular to the cardboard; see
Figure 3.6.1

This nail provides a “handle” for the cardboard. Moving the card-
board around moves P to different locations in space. Tilting the nail
(but keeping P fixed) tilts the cardboard. Both moving and tilting the
cardboard defines a different plane in space. In fact, we can define a plane
by: 1) the location of P in space, and 2) the direction of the nail.

The previous section showed that one can define a line given a point
on the line and the direction of the line (usually given by a vector). One
can make a similar statement about planes: we can define a plane in space
given a point on the plane and the direction the plane “faces” (using the
description above, the direction of the nail). Once again, the direction
information will be supplied by a vector, called a normal vector, that is
orthogonal to the plane.

What exactly does “orthogonal to the plane” mean? Choose any two
points P and Q in the plane, and consider the vector −−→PQ. We say a vector
n⃗ is orthogonal to the plane if n⃗ is perpendicular to −−→

PQ for all choices of
P and Q; that is, if n⃗ ·

−−→
PQ = 0 for all P and Q.

This gives us way of writing an equation describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and
only if, −−→

PQ is orthogonal to n⃗. Knowing −−→
PQ = ⟨x− x0, y − y0, z − z0⟩,

consider:

−−→
PQ · n⃗ = 0

⟨x− x0, y − y0, z − z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0 ( . )

More algebra produces:

ax+ by + cz = d, ( . )

where d = ax0 + by0 + cz0 is a real number. Both of the equations ( . )
or ( . ) are referred to as scalar equations for the plane. Note that
choosing the numbers a, b, c for the normal vector defines a whole family
of parallel planes; the value of the constant d determines a particular
member of that family.

As long as c ̸= 0, we can solve for z:

z =
1

c
(d− ax− by). ( . )

Equation ( . ) is especially useful as many computer programs can graph
functions in this form. Equations ( . ) and ( . ) have specific names,
given next.




Figure . . : Sketching the plane in Exam-
ple . . .
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Definition 3.6.1 Equations of a Plane in Standard and
General Forms

The plane passing through the point P = (x0, y0, z0) with normal
vector n⃗ = ⟨a, b, c⟩ can be described by an equation with standard
form

a(x− x0) + b(y − y0) + c(z − z0) = 0;

the equation’s general form is

ax+ by + cz = d.

A key to remember throughout this section is this: to find the equation
of a plane, we need a point and a normal vector. We will give several ex-
amples of finding the equation of a plane, and in each one different types
of information are given. In each case, we need to use the given informa-
tion to find a point on the plane and a normal vector.

Example . . Finding the equation of a plane.
Write the equation of the plane that passes through the points P =
(1, 1, 0), Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

Solution We need a vector n⃗ that is orthogonal to the plane.
Since P , Q and R are in the plane, so are the vectors −−→PQ and −→

PR; −−→PQ×
−→
PR

is orthogonal to −−→
PQ and −→

PR and hence the plane itself.
It is straightforward to compute n⃗ =

−−→
PQ ×

−→
PR = ⟨2, 1, 1⟩. We can

use any point we wish in the plane (any of P , Q or R will do) and we
arbitrarily choose P . Following Definition 3.6.1, the equation of the plane
in standard form is

2(x− 1) + (y − 1) + z = 0.

The plane is sketched in Figure 3.6.2.

We have just demonstrated the fact that any three non-collinear points
define a plane. (This is why a three-legged stool does not “rock;” it’s three
feet always lie in a plane. A four-legged stool will rock unless all four feet
lie in the same plane.)

Example . . Finding the equation of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equations are given below,
intersect, then give the equation of the plane that contains these two lines
in general form.

ℓ1 :
x = −5 + 2s
y = 1 + s
z = −4 + 2s

ℓ2 :
x = 2 + 3t
y = 1− 2t
z = 1 + t

Solution The lines clearly are not parallel. If they do not inter-
sect, they are skew, meaning there is not a plane that contains them both.
If they do intersect, there is such a plane.

To find their point of intersection, we set the x, y and z equations




Figure . . : Sketching the plane in Exam-
ple . . .

We can think of the point (−1, 3, 0)
in Example 3.6.2 as defining a point
of “origin” on the plane, and, even
though they are not perpendicular,
we can think of the lines ℓ⃗1 and ℓ⃗2
as defining a pair of coordinate axes
on the plane. Any other point can
be located with respect to these axes.
(Any two non-parallel lines define a
coordinate system in a plane; perpen-
dicular lines are simply more conve-
nient.)

. Planes

equal to each other and solve for s and t:

−5 + 2s = 2 + 3t
1 + s = 1− 2t

−4 + 2s = 1 + t
⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the directions of lines ℓ1 and

ℓ2, respectively. A normal vector to the plane containing these the two
lines will also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector
n⃗ by computing n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equation;
each line gives us infinite choices of points. We choose P , the point of
intersection. We follow Definition 3.6.1 to write the plane’s equation in
general form:

5(x+ 1) + 4(y − 3)− 7z = 0

5x+ 5 + 4y − 12− 7z = 0

5x+ 4y − 7z = 7.

The plane’s equation in general form is 5x+4y− 7z = 7; it is sketched in
Figure 3.6.3.

The two previous examples hint at an alternative method for describing
a plane in R3: instead of providing a single direction orthogonal to the
plane (given by the normal vector), we can give two directions that are
parallel to the plane, such as the vectors −−→PQ and −→

PR in Figure 3.6.2 of the
direction vectors d⃗1 and d⃗2 to the lines in Figure 3.6.3. Suppose (x, y, z)
is a point on the plane 5x + 4y − 7z = 7 from Example 3.6.2. We can
treat the point (−1, 3, 0) where the lines ℓ⃗1 and ℓ⃗2 intersect as our point
of reference on the plane. From this point, we can reach the point (x, y, z)
by first travelling some distance in the direction of d⃗1 (parallel to ℓ⃗1), and
then some distance in the direction of d⃗2 (parallel to ℓ⃗2). We can express
this mathematically as follows:

⟨x, y, z⟩ = ⟨−1, 3, 0⟩+ sd⃗1 + td⃗2 ( . )
= ⟨−1 + 2s+ 3t, 3 + s− 2t, 2s+ t⟩ .

Equation ( . ) can be viewed as a two-dimensional analogue of the vector
equation of a line given in the previous section. It tells us that to get from
the origin (0, 0, 0) to the point (x, y, z) on the plane, we should first travel
to the point (−1, 3, 0) on the plane, and then move parallel to the lines ℓ⃗1
and ℓ⃗2 until we reach our point. This vector equation for a plane is not
particularly useful in Science or Engineering applications, but it is useful
mathematically. In particular, if we wanted to describe a two-dimensional
plane in R4 (or any higher-dimensional space), we would have to resort
to this method. (Keeping this method for describing a plane in mind will
also help us to access some geometric intuition when we discuss span and
linear independence later in the text.)

Example . . Finding the equation of a plane
Give the equation, in standard form, of the plane that passes through the
point P = (−1, 0, 1) and is orthogonal to the line with vector equation
ℓ⃗(t) = ⟨−1, 0, 1⟩+ t ⟨1, 2, 2⟩.




Figure . . : The line and plane in Exam-
ple . . .

Figure . . : Graphing the planes and
their line of intersec on in Example . . .
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Solution As the plane is to be orthogonal to the line, the plane
must be orthogonal to the direction of the line given by d⃗ = ⟨1, 2, 2⟩. We
use this as our normal vector. Thus the plane’s equation, in standard
form, is

(x+ 1) + 2y + 2(z − 1) = 0.

The line and plane are sketched in Figure 3.6.4.

Example . . Finding the intersection of two planes
Give the parametric equations of the line that is the intersection of the
planes p1 and p2, where:

p1 : x− (y − 2) + (z − 1) = 0

p2 : −2(x− 2) + (y + 1) + (z − 3) = 0

Solution To find an equation of a line, we need a point on the
line and the direction of the line.

We can find a point on the line by solving each equation of the planes
for z:

p1 : z = −x+ y − 1

p2 : z = 2x− y − 2

We can now set these two equations equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

−x+ y − 1 = 2x− y − 2

2y = 3x− 1

y =
1

2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that
y = 1. We can now use the equations of either plane to find z: when x = 1
and y = 1, z = −1 on both planes. We have found a point P on the line:
P = (1, 1,−1).

We now need the direction of the line. Since the line lies in each plane,
its direction is orthogonal to a normal vector for each plane. Consid-
ering the equations for p1 and p2, we can quickly determine their nor-
mal vectors. For p1, n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A
direction orthogonal to both of these directions is their cross product:
d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equations of the line through P = (1, 1,−1) in the
direction of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 3.6.5.

Example . . Finding the intersection of a plane and a line
Find the point of intersection, if any, of the line ℓ(t) = ⟨3,−3,−1⟩ +
t ⟨−1, 2, 1⟩ and the plane with equation in general form 2x+ y + z = 4.

Solution The equation of the plane shows that the vector n⃗ =
⟨2, 1, 1⟩ is a normal vector to the plane, and the equation of the line shows





Figure . . : Illustra ng the intersec on
of a line and a plane in Example . . .

Note: Equation ( . ) is useful as it
does more than just give the distance
between a point and a plane. We will
see how it allows us to find several
other distances as well: the distance
between parallel planes and the dis-
tance from a line and a plane.
However, as with the distance prob-
lems in the previous section, learning
to follow the steps in Key Idea 3.5.1
will pay off more in the long run than
memorizing a formula. Here, our key
steps are to draw a diagram such as
Figure 3.6.7, which doesn’t need to be
accurate, but does need to contain all
the information needed to construct
the projection whose length gives us
the desired distance.

Figure . . : Illustra ng finding the dis-
tance from a point to a plane.

. Planes

that the line moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthog-
onal, we know there is a point of intersection. (If there were orthogonal,
it would mean that the plane and line were parallel to each other, either
never intersecting or the line was in the plane itself.)

To find the point of intersection, we need to find a t value such that
ℓ(t) satisfies the equation of the plane. Rewriting the equation of the line
with parametric equations will help:

ℓ(t) =


x = 3− t

y = −3 + 2t

z = −1 + t

.

Replacing x, y and z in the equation of the plane with the expressions
containing t found in the equation of the line allows us to determine a t
value that indicates the point of intersection:

2x+ y + z = 4

2(3− t) + (−3 + 2t) + (−1 + t) = 4

t = 2.

When t = 2, the point on the line satisfies the equation of the plane; that
point is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersection
between the plane and the line, illustrated in Figure 3.6.6.

Distances

Just as it was useful to find distances between points and lines in the
previous section, it is also often necessary to find the distance from a point
to a plane.

Consider Figure 3.6.7, where a plane with normal vector n⃗ is sketched
containing a point P and a point Q, not on the plane, is given. We measure
the distance from Q to the plane by measuring the length of the projection
of −−→PQ onto n⃗. That is, we want:

∥∥∥ proj n⃗
−−→
PQ

∥∥∥ =

∥∥∥∥∥ n⃗ ·
−−→
PQ

∥ n⃗ ∥2
n⃗

∥∥∥∥∥ =
|n⃗ ·

−−→
PQ|

∥ n⃗ ∥
( . )

Example . . Distance between a point and a plane
Find the distance bewteen the point Q = (2, 1, 4) and the plane with
equation 2x− 5y + 6z = 9.

Solution Referring to Figure 3.6.7, we need to determine the nor-
mal vector n⃗ and a point P on the plane. Using the equation of the plane,
we find the normal vector n⃗ = ⟨2,−5, 6⟩. To find a point on the plane,
we can let x and y be anything we choose, then let z be whatever satisfies
the equation. Letting x and y be 0 seems simple; this makes z = 3

2 . Thus
we let P =

⟨
0, 0, 3

2

⟩
, and −−→

PQ =
⟨
2, 1, 5

2

⟩
.





Chapter Vectors

We can now compute the projection of −−→PQ onto n⃗. We have:

projn⃗
−−→
PQ =

(−−→
PQ · n⃗
∥n⃗∥2

)
n⃗

=

(⟨
2, 1, 5

2

⟩
· ⟨2,−5, 6⟩

(22 + 52 + 62)

)
⟨2,−5, 6⟩

=
14

65
⟨2,−5, 6⟩ .

The desired distance is then given by∥∥∥projn⃗
−−→
PQ
∥∥∥ =

14

65
∥⟨2,−5, 6⟩∥ =

14√
65

.

Although it was not requested in Example 3.6.6, note that we can also
find the point R on the plane that is closest to Q. The desired point must
be such that −−→

RQ = projn⃗
−−→
PQ. Since we know the point Q and the vector

−−→
RQ, we can find the point R: since −−→

RQ =
−−→
OQ−

−−→
OR, we find that

−−→
OR =

−−→
OQ−

−−→
RQ

= ⟨2, 1, 4⟩ − 14

65
⟨2,−5, 6⟩

=
1

65
⟨102, 135, 176⟩ .

The desired point R thus has coordinates
(
102

65
,
135

65
,
176

65

)
. To make

sure that we haven’t made any mistakes, let’s make sure that this point
is indeed on the plane. We have

2

(
102

65

)
− 5

(
135

65

)
+ 6

(
176

65

)
=

1

65
(204− 675 + 1056) =

585

65
= 9,

as expected.

Example . . Distance between a line and a plane
Let ℓ be the line with vector equation

ℓ⃗(t) = ⟨3, 2,−4⟩+ t ⟨3, 1,−1⟩ ,

and let p be the plane with equation x− 2y + z = 4. Verify that the ℓ is
parallel to the plane p, and find the distance between them.

Solution From the vector equation for ℓ we have the direction
vector d⃗ = ⟨3, 1,−1⟩, and from the equation for p we can read off the
normal vector n⃗ = ⟨1,−2, 1⟩. Since

d⃗ · n⃗ = 3(1) + 1(−2)− 1(1) = 0,

we know that d⃗ is orthogonal to n⃗, and thus ℓ is parallel to p. To find
the distance from ℓ to p, we first choose a point on each object. From
the vector equation for ℓ we have the point P = (2, 0,−4), and setting
y = z = 0 in the equation for p, we get x = 4 and the point Q = (4, 0, 0).

From these two points we can construct the vector

v⃗ =
−−→
PQ = ⟨1,−2, 4⟩
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which begins on ℓ and ends on p. The distance from ℓ to p is then given
by the normal component of v⃗: we have

h = ∥projn⃗ v⃗∥ =
|n⃗ · v⃗|
∥n⃗∥

=
9

6
=

3

2
.

In the previous section we used Equation ( . ) to find the shortest dis-
tance between a pair of skew lines. Although we provided some discussion
of how this formula was obtained, it’s once again the case that memorizing
such a formula is not as effective as understanding the process that leads
to it. In the next example, we repeat Example 3.5.8, but this time we try
to understand the problem using planes.

Example . . Distance between skew lines
Find the distance between the skew lines

ℓ1 : ⟨x, y, z⟩ = ⟨1, 2, 0⟩+ t⟨3,−1, 1⟩
ℓ2 : ⟨x, y, z⟩ = ⟨−2, 3, 5⟩+ t⟨4, 1, 2⟩.

Solution We already found the distance between these two lines
in Example 3.5.8 using Equation ( . ). Supposing that we forgot this
formula, how would we proceed? The key is to realize that whenever we
have a pair of skew lines, we also have a pair of parallel planes, each of
which contains one of the lines. To see this, we first compute the cross
product of the direction vectors d⃗1 = ⟨3,−1, 1⟩ and d⃗2 = ⟨4, 1, 2⟩ for the
two lines. We find

n⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩,

which is the same as the cross product we computed in Example 3.5.8.
Since n⃗ is orthogonal to d⃗1, the plane through the point (1, 2, 0) with
normal vector n⃗ contains the line ℓ1. Similarly, the plane through (−2, 3, 5)
with normal vector n⃗ contains ℓ2. We now have our parallel planes.

The next step is to realize that at this point, the problem is no different
from the one we solved in Example 3.6.6: the distance from ℓ1 to ℓ2 is
the same as the distance between the parallel planes, and the distance
between parallel planes is equal to the distance between the first plane,
and any point on the second plane.

By definition, the point P1 = (1, 2, 0) on ℓ1 lies on the first plane, and
the point P2 = (−2, 3, 5) on ℓ2 lies on the second plane. We compute the
vector −−−→

P1P2 = ⟨−3, 1, 5⟩, and then find the projection of this vector onto
n⃗, as in Example 3.6.6. We have

projn⃗
−−−→
P1P2 =

(−−−→
P1P2 · n⃗
∥n⃗∥2

)
n⃗

=

(
⟨−3, 1, 5⟩ · ⟨−3,−2, 7⟩

(32 + 22 + 72)

)
⟨−3,−2, 7⟩

=
42

62
⟨−3,−2, 7⟩ .

The distance is then given by∥∥∥projn⃗
−−−→
P1P2

∥∥∥ =
42√
62

,
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as before.

These past two sections have not explored lines and planes in space
as merely an exercise of mathematical curiosity. There are many, many
applications of these fundamental concepts. Complex shapes can be mod-
elled (or, approximated) using planes. For instance, part of the exterior
of an aircraft may have a complex, yet smooth, shape, and engineers will
want to know how air flows across this piece as well as how heat might
build up due to air friction. Many equations that help determine air flow
and heat dissipation are difficult to apply to arbitrary surfaces, but sim-
ple to apply to planes. By approximating a surface with millions of small
planes one can more readily model the needed behaviour.

The focus of this chapter was on the geometry of vectors. In the next
chapter, we’ll study vectors from an algebraic point of view. Algebraically,
there is no need to restrict ourselves to two or three dimensions: the prop-
erties given in Theorem 3.2.2 are valid for vectors with three, four, or even
thousands of components. Vectors give us the ability to systematically
organize and manipulate information involving any number of variables,
making vectors an important tool in many quantitative fields, from the
physical sciences to finance and economics.



Exercises 3.6
Terms and Concepts

. In order to find the equa on of a plane, what two pieces of
informa on must one have?

. What is the rela onship between a plane and one of its nor-
mal vectors?

Problems
In Exercises – , give any two points in the given plane.

. 2x− 4y + 7z = 2

. 3(x+ 2) + 5(y − 9)− 4z = 0

. x = 2

. 4(y + 2)− (z − 6) = 0

In Exercises – , give the equa on of the described plane
in standard and general forms.

. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

. Passes through the points (1, 2, 3), (3,−1, 4) and
(1, 0, 1).

. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

. Contains the intersec ng lines
ℓ1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

. Contains the intersec ng lines
ℓ1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

. Contains the parallel lines
ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

. Contains the parallel lines
ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ2(t) = ⟨2, 2, 2⟩+ t ⟨4, 1, 3⟩.

. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2 + 5t

y = 2 + 2t

z = −1 + 2t

. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t

y = t

z = t

. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4 + 4t

y = 1 + 1t

z = 1 + 1t

. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y + 1)− 10z = 0.

. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises – , give the equa on of the line that is the
intersec on of the given planes.

. p1 : 3(x− 2) + (y − 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y + 3) + 6(z − 1) = 0.

. p1 : 5(x− 5) + 2(y + 2) + 4(z − 1) = 0, and
p2 : 3x− 4(y − 1) + 2(z − 1) = 0.

In Exercises – , find the point of intersec on between
the line and the plane.

. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y − z = −3

. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y − 2z = 8

. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y − z = 4

. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y − z = −4

In Exercises – , find the given distances.

. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y − 2) + 5(z − 2) = 0.

. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y + 4(z + 1) = 0.

. The distance between the parallel planes
x+ y + z = 0 and
(x− 2) + (y − 3) + (z + 4) = 0



. The distance between the parallel planes
2(x− 1) + 2(y + 1) + (z − 2) = 0 and
2(x− 3) + 2(y − 1) + (z − 3) = 0

. Show why if the point Q lies in a plane, then the distance

formula correctly gives the distance from the point to the
plane as 0.

. How is Exercise in Sec on . easier to answer once we
have an understanding of planes?
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. The Vector Space Rn

So far in this chapter, we have restricted our attention to vectors in two
or three dimensions, where we are able to visualize things geometrically.
Something that you may have noticed is that the algebraic rules for the
addition and scalar multiplication vectors are the same in both dimensions.
In this section, we consider this algebra of vectors abstractly, which will
allow us to move beyond three dimensions to vectors with an arbitrary
number of components.

Despite the fact that we cannot easily visualize them, higher-dimensional
vectors frequently arise in applications where there are many variables in-
volved. The fact that the rules of algebra remain the same mean that we
can continue to manipulate these objects, even though we can no longer
picture them.

Remark on notation: In the previous sections of this chapter, we
have used the “angle bracket” notation for vectors. This notation, which
is common in calculus, physics, and engineering textbooks, is popular
because it reinforces the connection between vectors and points (and pre-
sumably, because it fits nicely on the page). However, in later chapters,
when we study systems of equations and matrix multiplication, we will
see that this notation is not as natural as the column vector notation in-
troduced below. For the remainder of the text, we will write our vectors
as column vectors, as indicated in Definition 3.7.1 below.

For each positive integer n, a column vector x⃗ is formed by arranging

n real numbers x1, x2, . . . , xn into a column x⃗ =


x1

x2

...
xn

. In Chapter 5 we

will see that this is a special type of matrix; for now, we can think of a
column vector as an alternative to the notation ⟨x1, x2, . . . , xn⟩ encoun-
tered earlier in this chapter. In particular, we still refer to the numbers
x1, x2, . . . , xn in x⃗ as the components of x⃗, and we define addition and
scalar multiplication of column vectors in terms of their components, as
we did for vectors in R2 and R3.

That is, given vectors x⃗ =


x1

x2

...
xn

 and y⃗ =


y1
y2
...
yn

, and a scalar c, we

define

x⃗+ y⃗ =


x1

x2

...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn


and

cx⃗ = c


x1

x2

...
xn

 =


cx1

cx2

...
cxn

 .

With these operations, the set of all n× 1 column vectors provides an
example of what is known as a vector space.
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Definition 3.7.1 The vector space Rn

The space of all column vectors of real numbers is denoted by

Rn =



x1

x2

...
xn


∣∣∣∣∣∣∣∣∣ x1, x2, . . . , xn ∈ R

 .

As with the vectors in R2 and R3 we encountered in Chapter 3, we allow
the notation Rn to represent both the space of points (x1, x2, . . . , xn), and
the set of vectors defined within that space. Since we can identify any
point P with the position vector −−→

OP , the difference between viewing Rn

as a set of points or as a set of vectors is primarily one of perspective.

When n ≥ 4 we can no longer visualize vectors in Rn as we did in
Chapter 3, but we can handle them algebraically exactly as we did before,
and we can extend the definitions of Chapter 3 to apply to vectors in Rn.

In particular, we can define the length of a vector

x⃗ =


x1

x2

...
xn

 ∈ Rn

by

∥x⃗∥ =
√
x2
1 + x2

2 + · · ·+ x2
n,

and the dot product of vectors x⃗, y⃗ ∈ Rn by

x⃗ · y⃗ = x1y1 + x2y2 + · · ·+ xnyn.

Having defined the dot product, we can still declare two vectors x⃗ and y⃗
to be orthogonal if x⃗ · y⃗ = 0, and define the angle between two vectors by
requiring that the identity

x⃗ · y⃗ = ∥x⃗∥ ∥y⃗∥ cos θ

remain valid. Using these definitions, along with Theorem 5.1.1, we can
see that all of the properties of vector operations given in Theorem 3.2.2
remain valid in Rn.



Vector spaces are defined in general to
be sets on which one can define ad-
dition and scalar multiplication sat-
isfying the algebraic properties given
in Theorem 3.7.1. Examples of vec-
tor spaces other than Rn include the
space of m×n matrices (each choice of
m and n gives a different space), and
the space of all polynomial functions
of a real variable. Students interested
in learning more about abstract vec-
tor spaces should continue on to Math
3410 after completing this course.

We already defined linear combina-
tions of matrices, and of course col-
umn vectors are a special case, but we
repeat the definition in the context of
Rn as a reminder.

. The Vector Space Rn

Theorem 3.7.1 Algebraic properties of Rn

The following properties hold for the space Rn of n × 1 column
vectors:

1. If v⃗ and w⃗ are vectors in Rn, v⃗ + w⃗ is also a vector in Rn.

2. For any vectors v⃗, w⃗, v⃗ + w⃗ = w⃗ + v⃗.

3. For any vectors u⃗, v⃗, w⃗, (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗).

4. For any vector v⃗, v⃗ + 0⃗ = v⃗.

5. For any vector v⃗, we can define −v⃗ such that v⃗ + (−v⃗) = 0⃗.

6. If k is a scalar and v⃗ is a vector in Rn, then kv⃗ is also a vector
in Rn.

7. For any vector v⃗, 1 · v⃗ = v⃗.

8. For any scalars c, d and any vector v⃗, c(dv⃗) = (cd)v⃗).

9. For any scalar c and vectors v⃗, w⃗, c(v⃗ + w⃗) = cv⃗ + cw⃗.

10. For any scalars c, d and vector v⃗, (c+ d)v⃗ = cv⃗ + dv⃗.

Then ten properties listed in Theorem 3.7.1 are known as the vector
space axioms. Any set of objects satisfying these axioms is known as
a vector space. There are many interesting examples of vector spaces
other than Rn, but we will not study vector spaces in general in this text.

Linear combina ons and span
One of the key insights of linear algebra is that a space such as Rn, which
contains infinitely many objects, can be generated using the operations of
addition and scalar multiplication from a finite set of basic objects. We
saw in Chapter 3, for example, that every vector in R3 can be written in
terms of just three basic unit vectors i⃗, j⃗, and k⃗.

Since addition and scalar multiplication are the main operations of
linear algebra, it’s not too surprising (if a little unimaginative) that any
combination of these operations is called a linear combination.

Definition 3.7.2 Linear combination in Rn

A linear combination in Rn is any expression of the form

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k,

where c1, c2 . . . , ck ∈ R are scalars, and v⃗1, v⃗2, . . . , v⃗k ∈ Rn are
vectors.

Example . . Forming linear combinations

Let u⃗ =

 2
−1
3

 , v⃗ =

−4
6
3

 , w⃗ =

 2
3
12

 be vectors in R3. Form the following



Figure . . : Depic ng the linear combina-
on in Example . . .
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linear combinations:

1. 3u⃗− 4w⃗

2. u⃗+ v⃗ − 2w⃗

3. 7v⃗ + 3v⃗

4. 3u⃗+ v⃗ − w⃗

Solution

1. To simplify the linear combination, we first take care of the scalar
multiplication, and then perform the addition. (We choose to inter-
pret this expression as 3u⃗+ (−4)w⃗, and multiply by −4 in the first
step, and add in the second step, rather than multiplying by 4 and
then subtracting.)

3u⃗− 4w⃗ = 3

 2
−1
3

− 4

 2
3
12

 =

 6
−3
9

+

 −8
−12
−48

 =

 −2
−15
−39

 .

2. We proceed as with the previous problem, this time performing the
scalar multiplication of w⃗ by −2 in our heads:

u⃗+ v⃗ − 2w⃗ =

 2
−1
3

+

−4
6
3

+

 −4
−6
−24

 =

 −6
−1
−18

 .

3. We find

7u⃗+ 3v⃗ = 7

 2
−1
3

+ 3

−4
6
3

 =

14−7
21

+

−12
18
9

 =

 2
11
30

 .

4. For our last example, we compute

3u⃗+ v⃗ − w⃗ =

 6
−3
9

+

−4
6
3

−

 2
3
12

 =

00
0

 .

Notice that in the last example above, our linear combination works
out to be the zero vector. Let’s think about this geometrically for a second:
using the “tip-to-tail” method for adding vectors and beginning with the
tail of 3u⃗ at the origin, if we add the vector v⃗ at the tip of 3u⃗, and then
subtract w⃗, we end up back at the origin. The vectors 3u⃗, v⃗, and w⃗ must
therefore lie in the same plane, since they form three sides of a triangle,
as depicted in Figure 3.7.1.

Viewed another way, notice that we can solve the equation 3u⃗+v⃗−w⃗ =
0⃗ for w⃗: we have

w⃗ = 3u⃗+ v⃗.

What this tells us is that when we’re being asked to form linear com-
binations of the vectors u⃗, v⃗, and w⃗ in Example 3.7.1, then vector w⃗ is
redundant. Suppose the vector x⃗ is an arbitrary linear combination of
these vectors; that is,

x⃗ = au⃗+ bv⃗ + cw⃗
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for some scalars a, b, c. If we plug in w⃗ = 3u⃗+ v⃗, then we get

x⃗ = au⃗+ bv⃗ + c(3u⃗+ v⃗)

= au⃗+ bv⃗ + 3cu⃗+ cv⃗ distribute the scalar
= (a+ 3c)u⃗+ (b+ c)v⃗ collect terms.

Thus, x⃗ has been written in terms of u⃗ and v⃗ only.
These ideas come up frequently enough in Linear Algebra that they

have associated terminology. The definitions that follow seem innocent
enough, but their importance to the theory of Linear Algebra cannot be
understated.

Definition 3.7.3 The span of a set of vectors

Let A = {v⃗1, v⃗2, . . . , v⃗k} be a set of vectors in Rn. The span of
the vectors in A, denoted span(A) is the set S of all possible linear
combinations of the vectors in A. That is,

S = span(A) = {c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k | c1, c2, . . . , ck ∈ R}.

Example . . Describing spans in R3

Let u⃗, v⃗, w⃗ be as in Example 3.7.1. Describe the following spans:

1. span{u⃗}

2. span{u⃗, v⃗}

3. span{u⃗, v⃗, w⃗}

Solution

1. As a set, we have

span{u⃗} =

 t

 2
−1
3

 ∣∣∣∣∣∣ t ∈ R

 ,

the set of all scalar multiplies of the vector u⃗. If we think back to
Section 3.5, we can do a bit better with our description. The set

span{u⃗} consists of all vectors

xy
z

 such that

xy
z

 = t

 2
−1
3

 =

00
0

+ t

 2
−1
3

 ,

which we recognize as the equation of a line through the origin in
R3 in the direction of the vector u⃗.

2. Again, as a set we can write

span{u⃗, v⃗} =

s

 2
−1
3

+ t

−4
6
3

 ∣∣∣∣∣∣ s, t ∈ R

 ,



For any plane through the origin, the
sum of two vectors that lie in that
plane (or indeed, any linear combina-
tion of vectors in the plane) is again a
vector in that plane. We’ll see shortly
that this is the distinguishing charac-
teristic of any subspace of Rn.
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so span{u⃗, v⃗} consists of all vectors of the form

2s− 4t
−s+ 6t
3s+ 3t

, where

s and t can be any real numbers. Again, with a bit of thought, we
can come up with a geometric description of this set. Consider an
arbitrary vector

x⃗ = su⃗+ tv⃗ ∈ span{u⃗, v⃗}.
Any such vector can be obtained by moving some distance (measured
by the scalar s) in the direction of u⃗, and then moving another
distance (measured by the scalar t) in the direction of v⃗. We now
have two directions in which to move, and if we haven’t forgotten
what we learned in Section 3.6, this probably reminds us of the
description of a plane.
To see that span{u⃗, v⃗} is indeed a plane, we compute

n⃗ = u⃗× v⃗ =

−21
−18
8

 ,

which we know is orthogonal to both u⃗ and v⃗. It follows from the
properties of the dot product that for any other vector x⃗ = su⃗+ tv⃗
we have

n⃗ · x⃗ = n⃗ · (su⃗+ tv⃗) = s(n⃗ · s⃗) + t(n⃗ · v⃗) = s(0) + t(0) = 0,

so with x⃗ =

xy
z

, we have

−21x− 18y + 8z = 0,

which is the equation of a plane through the origin.

3. In the discussion following Example 3.7.1 we saw that any vector
that can be written as a linear combination of u⃗, v⃗, and w⃗ can be
written as a linear combination of u⃗ and v⃗ alone. Thus, the span of
u⃗, v⃗, and w⃗ doesn’t contain anything we didn’t already have in the
span of u⃗ and v⃗; that is,

span{u⃗, v⃗, w⃗} = span{u⃗, v⃗}.

Example . . Determining membership in a span

Given the vectors u⃗ =

 2
−1
1

, v⃗ =

32
5

, and w⃗ =

−2
5
3

, determine

whether or not the following vectors belong to span{u⃗, v⃗, w⃗}:

1. x⃗ =

36
9

 2. y⃗ =

 4
1
−3



Solution We do not yet have a general technique for solving
problems of this type. Notice that the question “Does x⃗ belong to the
span of {u⃗, v⃗, w⃗}?” is equivalent to the question, “Do there exist scalars
a, b, c such that

au⃗+ bv⃗ + cw⃗ = x⃗?



For reasons that become apparent as
soon as one begins a discussion of
basis and dimension (something we
won’t really cover in this text), we
must consider any set containing the
zero vector to be linearly dependent.
If we use Equation ( . ) to define lin-
ear independence, this is included in
the definition: if (for example) v⃗1 =
0⃗, then we can let c1 be any real num-
ber we want, and c1v⃗1 = 0⃗, so it is
possible to find a linear combination
where not all of the scalars are zero.
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Answering this question amounts to solving a system of linear equations:
if we plug in our vectors, we have

a

 2
−1
1

+ b

32
5

+ c

−2
5
3

 =

2a+ 3b− 2c
−a+ 2b+ 5c
a+ 5b+ 3c

 =

36
9

 .

By definition of the equality of vectors, this amounts to the system of
equations

2a + 3b − 2c = 3
−a + 2b + 5c = 6
a + 5b + 3c = 9

We will develop systematic techniques for solving such systems in the next
Chapter. Until then, is there anything we can say? The very astute reader
might notice that the vectors u⃗, v⃗, w⃗ all have something in common: their
third component is the sum of the first two: 1 = 2+ (−1) for u⃗, 5 = 3+ 2
for v⃗, and 3 = −2 + 5 for w⃗. Thus, all three vectors are of the form x

y
x+ y

. Now, notice what happens if we combine two such vectors:

s

 a
b

a+ b

+ t

 c
d

c+ d

 =

 sa+ tc
sb+ td

s(a+ b) + t(c+ d)

 =

 sa+ tc
sb+ td

(sa+ tc) + (sb+ td)

 ,

which is another vector of the same form. The same will be true for
combinations of three or more such vectors. For the vector x⃗, we check
that 3+6 = 9, so x⃗ has the correct form, and indeed (with a bit of “guess
and check” work, we find that a = b = c = 1 works, since u⃗+ v⃗ + w⃗ = x⃗.
Thus, we can conclude that

x⃗ ∈ span{u⃗, v⃗, w⃗}.

For the vector y⃗, we add the first two components, getting 4+1 = 5 ̸= −3.
Since the third component is not the sum of the first two, there is no way
that y⃗ could belong to the span of u⃗, v⃗, and w⃗.

Linear independence
Notice in Example 3.7.2 that the span did not change when we added
the vector w⃗ to the set of spanning vectors. This was probably not too
surprising, since we saw that w⃗ = 3u⃗ + v⃗, meaning that w⃗ is a linear
combination of u⃗ and v⃗, and thus,

w⃗ ∈ span{u⃗, v⃗}.

We don’t get anything new when we include the vector w⃗ since it lies in
the plane spanned by u⃗ and v⃗. We say that the vector w⃗ depends on u⃗ and
v⃗, in the same way that the total of a sum depends on the numbers being
added. Since this dependence is defined in terms of linear combinations,
we say that the vectors u⃗, v⃗, w⃗ are linearly dependent. In general, a
set of vectors v⃗1, . . . , v⃗k is linearly dependent of one of the vectors can be
written as a linear combination of the others. If this is impossible, we say
that the vectors are linearly independent. The formal definition is as
follows.
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Definition 3.7.4 Linear dependence

We say that a set of vectors

A = {v⃗1, v⃗2, . . . , v⃗k}

in Rn is linearly dependent if 0⃗ ∈ A, or if one of the vectors v⃗i
in A can be written as a linear combination of the other vectors in
A. If the set A is not linearly dependent, we say that it is linearly
independent.

Example . . Determining linear independence
Determine whether or not following sets of vectors are linearly indepen-
dent:

1. The vectors u⃗ =

 2
−1
1

, v⃗ =

32
5

, and w⃗ =

−2
5
3

 from Example

3.7.3.

2. The vectors

x⃗ =

 2
−1
0

 , y⃗ =

−2
3
1

 , and z⃗ =

11
0

 .

Solution Like problems involving span, a general approach to an-
swering questions like these about linear independence will have to wait
until we develop methods for solving systems of equations in the next
chapter. However, for these two sets of vectors, we can reason our way to
an answer.

1. Here, we noticed that all three vectors satisfy the condition z = x+y,
if we label their respective components as x, y, and z. But this
condition is simply the equation of a plane; namely, x + y − z = 0.
Intuition tells us that any plane can be written as the span of two
vectors, so we can expect that any one of the three vectors can be
written in terms of the other two, and indeed, this is the case. With
a bit of guesswork (or by asking a computer), we can determine that

w⃗ = −19

7
u⃗+

8

7
v⃗,

showing that w⃗ can be written as a linear combination of u⃗ and v⃗,
and thus, that our vectors are linearly dependent.

2. Here, we make the useful observation that two of our three vectors
have zero as their third component. Since x⃗ and z⃗ have third compo-
nent zero, it is impossible for y⃗ to be written as a linear combination
of x⃗ and z⃗, since any such linear combination would still have a zero
in the third component. To see that x⃗ cannot be written in terms of
y⃗ and z⃗, notice that for any a and b,

ay⃗ + bz⃗ =

−2a+ b
3a+ b

a

 .



At this point in the text, we’re not
in a position to prove that any set of
four vectors in R3 (or more generally,
k vectors in Rn, where k > n) is au-
tomatically independent. However,
we’ll soon see in Chapter 4 that in this
case, the test for independence given
by Equation ( . ) results in a “homo-
geneous” system of linear equations
with more variables than equations,
and that such a system is guaranteed
to have non-trivial solutions.
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If this is to equal x⃗, then we must have a = 0, giving us x⃗ = bz⃗, but
it’s clear that x⃗ is not a scalar multiple of z⃗. A similar argument
shows that z⃗ cannot be written in terms of x⃗ and y⃗, and thus our
vectors are linearly independent.

Another way to characterize linear independence is as follows: suppose
we have a linear combination equal to the zero vector:

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k = 0⃗. ( . )

This is always possible of course, since we can simply set each of the
scalars equal to zero. The condition of linear independence tells us that if
our vectors are independent, then this is the only way to obtain a linear
combination equal to the zero vector.

To see why this rule works, suppose we can choose our scalars in Equa-
tion ( . ) so that at least one of them is non-zero. For simplicity, let’s say
c1 ̸= 0. Then we can rewrite ( . ) as

c1v⃗1 = −c2v⃗2 − · · · − ckv⃗k,

and since c1 ̸= 0, we can divide both sides by c1, and we’ve written v⃗1 as
a linear combination of the remaining vectors.

For example, from Example 3.7.4 we can conclude (with a bit of rear-
ranging) that the vectors u⃗, v⃗, and w⃗ satisfy the relationship

19u⃗− 8v⃗ + 7w⃗ = 0⃗.

Linear independence can be a difficult concept at first, but in three
dimensions we can use Equation ( . ) to provide a visual interpretation
on a case-by-case basis.

Key Idea 3.7.1 Linearly independent sets of vectors in
R3

• Any set {u⃗} containing a single vector in R3 is linearly de-
pendent if u⃗ = 0⃗, and independent otherwise. (Here ( . )
becomes cu⃗ = 0⃗. If u⃗ ̸= 0⃗, the only solution is to take c = 0.)

• Any set {u⃗, v⃗} containing two non-zero vectors in R3 is lin-
early dependent if u⃗ is parallel to v⃗, and independent other-
wise. (In other words, two dependent vectors lie on the same
line. Two independent vectors span a plane.)

• Any set {u⃗, v⃗, w⃗} of three non-zero vectors in R3 is linearly
dependent if all three vectors lie in the same plane, and inde-
pendent otherwise.

• Any set of four or more vectors in R3 is automatically linearly
dependent.

This section introduced several new ideas. Some, like linear combi-
nations, are straightforward. Others, like span and linear independence,
take some getting used to. There remain two very obvious questions to
address:
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1. How do we tell whether or not a given vector belongs to the span of
a set of vectors?

2. How do we tell if a set of vectors is linearly independent?

It turns out that both questions lead to systems of linear equations.
As we saw in Example 3.7.3, we are currently unable to systematically
solve such problems. In Chapters 4 and 5 we will develop the techniques
needed to systematically solve such systems, at which point we will be
able to easily answer questions about linear independence and span.

To see how such systems arise, suppose we want to know whether or

not the vector w⃗ =


2
−1
3
0

 ∈ R4 belongs to V = span{v⃗1, v⃗2, v⃗3}, where

v⃗1 =


0
2
−1
4

 , v⃗2 =


3
1
0
−4

 , v⃗3 =


−3
6
7
2

 .

By definition, V is the set of all possible linear combinations of the vectors
v⃗1, v⃗2, v⃗3, so saying that w⃗ ∈ V is the same as saying that we can write w⃗
as a linear combination of these vectors. Thus, what we want to know is
whether or not there exist scalars x1, x2, x3 such that

w⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3.

Substituting in the values for our vectors, this gives

x1


0
2
−1
4

+ x2


3
1
0
−4

+ x3


−3
6
7
2

 =


3x2 − 3x3

2x1 + x2 + 6x3

−x1 + 7x3

4x1 − 4x2 + 2x3

 =


2
−1
3
0

 .

Since two vectors are equal if and only if each component is equal, the
above vector equation leads to the following system of four equations:

3x2 − 3x3 = 2
2x1 + x2 + 6x3 = −1
−x1 + 7x3 = 3
4x1 − 4x2 + 2x3 = 0

Thus, the question “Is the vector w⃗ an element of V ?” is equivalent to
the question “Is there a solution to the above system of equations?”

Questions about linear independence are similar, but not quite the
same. With the above example involving span, what we wanted to know
is “Does a solution exist?” With linear independence, it is not whether
a solution exists that is in doubt, but whether or not that solution is
unique. For example, suppose we wanted to know if the vectors in our
span example above are linearly independent. We would start with the
vector equation

x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗,

and ask whether or not there are any solutions other than x1 = x2 = x3 =
0. This vector equation leads to a system just like the one above, except
that the numbers to the right of the = signs would all be zeros. The
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techniques needed to answer these and other questions will be developed
beginning in Chapter 4.

Before moving on to our study of systems of equations, however, we
need to take some time to define matrix multiplication and explore
some of its properties.



Exercises 3.7
Problems
In Exercises – , simplify the given linear combina ons,
where

u⃗ =


−1
0
2
4

 , v⃗ =


3
4
−5
0

 , and w⃗ =


−3
2
0
7

 .

. 3u⃗− 2v⃗

. −2u⃗+ 3v⃗ + w⃗

. u⃗− 2v⃗ + 5w⃗

. 4v⃗ − 3w⃗

In Exercises – , calculate the given quan ty, where

u⃗ =


2
0
−1
3
7

 , v⃗ =


−3
5
0
−6
1

 , and w⃗ =


0
−3
5
2
−4

 .

. ∥v⃗∥

. u⃗ · v⃗

. w⃗ · (2u⃗− 3v⃗)

. 2(w⃗ · u⃗)− 3(w⃗ · v⃗)

In Exercises – , determine if the given statement is true or
false. Give a proof for any true statements, and give a coun-
terexample for any false statements.

. A subset of a linearly independent set is linearly indepen-
dent.

. A subset of a linearly dependent set is linearly dependent.

. Any set of vectors that contains the zero vector is linearly
dependent.

. If the vector w⃗ belongs to the span of the set {v⃗1, . . . , v⃗k},
then the set {w⃗, v⃗1, . . . , v⃗k} is linearly dependent.

. If the set {w⃗, v⃗1, . . . , v⃗k} is linearly dependent, then w⃗ be-
longs to the span of {v⃗1, . . . , v⃗k}.



Chapter 3 also presented us with a
few situations where the ability to
solve systems of equations would have
come in handy, such as the deriva-
tion of the cross product formula, and
when we wanted to compute the point
of intersection of two lines, or the line
of intersection of two planes.

: Systems of Linear Equa ons
In Section 3.7, we encountered the concepts of span and linear indepen-
dence, and saw that these lead naturally to certain systems of equations.
In each case we were able to explain the concept, but unable to compute
any examples, since we lacked the machinery for solving the systems of
equations that arose.

You have probably encountered simple systems of linear equations in
high school; you can might be able to remember solving systems of equa-
tions where you had two or three equations in two or three unknowns,
and you tried to find the value of the unknowns. In this chapter we will
uncover some of the fundamental principles guiding the solution to such
problems.

Solving such systems was a bit time consuming, but not terribly dif-
ficult. So why bother? We bother because, in addition to the theoreti-
cal applications mentioned above, there are many, many, many practical
applications where systems of linear equations arise, from business and
finance to engineering to computer graphics to understanding more math-
ematics. And not only are there many applications of systems of linear
equations, on most occasions where these systems arise we are using far
more than three variables. (Engineering applications, for instance, often
require thousands of variables.) So getting a good understanding of how
to solve these systems effectively is important.

. Introduc on to Linear Equa ons

AS YOU READ . . .

1. What is one of the annoying habits of mathematicians?

2. What is the difference between constants and coefficients?

3. Can a coefficient in a linear equation be 0?

We’ll begin this section by examining a problem you probably already
know how to solve.

Example . . Counting marbles in a jar
Suppose a jar contains red, blue and green marbles. You are told that
there are a total of 30 marbles in the jar; there are twice as many red
marbles as green ones; the number of blue marbles is the same as the sum
of the red and green marbles. How many marbles of each colour are there?

Solution We could attempt to solve this with some trial and er-
ror, and we’d probably get the correct answer without too much work.
However, this won’t lend itself towards learning a good technique for solv-
ing larger problems, so let’s be more mathematical about it.

Let’s let r represent the number of red marbles, and let b and g denote
the number of blue and green marbles, respectively. We can use the given
statements about the marbles in the jar to create some equations.



Here’s another “What if?” question:
what if we had a total of 20 marbles
in the jar? Could we still solve the
problem? Chances are that you can
still work out a solution to the sys-
tem, but what does it mean? (In this
case it’s probably safe to assume that
it doesn’t make physical sense to deal
with fractions of a marble.)
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Since we know there are 30 marbles in the jar, we know that

r + b+ g = 30. ( . )

Also, we are told that there are twice as many red marbles as green ones,
so we know that

r = 2g. ( . )

Finally, we know that the number of blue marbles is the same as the sum
of the red and green marbles, so we have

b = r + g. ( . )

From this stage, there isn’t one “right” way of proceeding. Rather,
there are many ways to use this information to find the solution. One way
is to combine ideas from equations 4.2 and 4.3; in 4.3 replace r with 2g.
This gives us

b = 2g + g = 3g. ( . )

We can then combine equations 4.1, 4.2 and 4.4 by replacing r in 4.1 with
2g as we did before, and replacing b with 3g to get

r + b+ g = 30

2g + 3g + g = 30

6g = 30

g = 5 ( . )

We can now use equation 4.5 to find r and b; we know from 4.2 that
r = 2g = 10 and then since r + b+ g = 30, we easily find that b = 15.

Mathematicians often see solutions to given problems and then ask
“What if. . .?” It’s an annoying habit that we would do well to develop
– we should learn to think like a mathematician. What are the right
kinds of “what if” questions to ask? Here’s another annoying habit of
mathematicians: they often ask “wrong” questions. That is, they often
ask questions and find that the answer isn’t particularly interesting. But
asking enough questions often leads to some good “right” questions. So
don’t be afraid of doing something “wrong;” we mathematicians do it all
the time.

So what is a good question to ask after seeing Example 4.1.1? Here
are two possible questions:

1. Did we really have to call the red balls “r”? Could we call them “q”?

2. What if we had 60 balls at the start instead of 30?

Let’s look at the first question. Would the solution to our problem
change if we called the red balls q? Of course not. At the end, we’d find
that q = 10, and we would know that this meant that we had 10 red balls.

Now let’s look at the second question. Suppose we had 60 balls, but the
other relationships stayed the same. How would the situation and solution
change? Let’s compare the “original” equations to the “new” equations.

Original New
r + b+ g = 30 r + b+ g = 60

r = 2g r = 2g
b = r + g b = r + g
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By examining these equations, we see that nothing has changed except
the first equation. It isn’t too much of a stretch of the imagination to see
that we would solve this new problem exactly the same way that we solved
the original one, except that we’d have twice as many of each type of ball.

A conclusion from answering these two questions is this: it doesn’t
matter what we call our variables, and while changing constants in the
equations changes the solution, they don’t really change the method of
how we solve these equations.

In fact, it is a great discovery to realize that all we care about are the
constants and the coefficients of the equations. By systematically handling
these, we can solve any set of linear equations in a very nice way. Before
we go on, we must first define what a linear equation is.

Definition 4.1.1 Linear Equation

A linear equation is an equation that can be written in the form

a1x1 + a2x2 + · · ·+ anxn = c

where the xi are variables (the unknowns), the ai are coefficients,
and c is a constant.

A system of linear equations is a set of linear equations that
involve the same variables.

A solution to a system of linear equations is a set of values for the
variables xi such that each equation in the system is satisfied.

So in Example 4.1.1, when we answered “how many marbles of each
colour are there?,” we were also answering “find a solution to a certain
system of linear equations.”

The following are examples of linear equations:

2x+ 3y − 7z = 29

x1 +
7

2
x2 + x3 − x4 + 17x5 = 3

√
−10

y1 + 142y4 + 4 = y2 + 13− y1
√
7r + πs+

3t

5
= cos(45◦)

Notice that the coefficients and constants can be fractions and irra-
tional numbers (like π, 3

√
−10 and cos(45◦)). The variables only come

in the form of aixi; that is, just one variable multiplied by a coefficient.
(Note that 3t

5 = 3
5 t, just a variable multiplied by a coefficient.) Also, it

doesn’t really matter what side of the equation we put the variables and
the constants, although most of the time we write them with the variables
on the left and the constants on the right.

We would not regard the above collection of equations to constitute a
system of equations, since each equation uses differently named variables.
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An example of a system of linear equations is

x1 − x2 + x3 + x4 = 1

2x1 + 3x2 + x4 = 25

x2 + x3 = 10

It is important to notice that not all equations used all of the vari-
ables (it is more accurate to say that the coefficients can be 0, so the last
equation could have been written as 0x1 + x2 + x3 + 0x4 = 10). Also,
just because we have four unknowns does not mean we have to have four
equations. We could have had fewer, even just one, and we could have
had more.

To get a better feel for what a linear equation is, we point out some
examples of what are not linear equations.

2xy + z = 1

5x2 + 2y5 = 100

1

x
+

√
y + 24z = 3

sin2 x1 + cos2 x2 = 29

2x1 + lnx2 = 13

The first example is not a linear equation since the variables x and y
are multiplied together. The second is not a linear equation because the
variables are raised to powers other than 1; that is also a problem in the
third equation (remember that 1/x = x−1 and

√
x = x1/2). Our variables

cannot be the argument of function like sin, cos or ln, nor can our variables
be raised as an exponent.

At this stage, we have yet to discuss how to efficiently find a solution
to a system of linear equations. That is a goal for the upcoming sections.
Right now we focus on identifying linear equations. It is also useful to
“limber” up by solving a few systems of equations using any method we
have at hand to refresh our memory about the basic process.
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Problems
In Exercises – , state whether or not the given equa on is
linear.

. x+ y + z = 10

. xy + yz + xz = 1

. −3x+ 9 = 3y − 5z + x− 7

.
√
5y + πx = −1

. (x− 1)(x+ 1) = 0

.
√

x2
1 + x2

2 = 25

. x1 + y + t = 1

. 1
x
+ 9 = 3 cos(y)− 5z

. cos(15)y + x
4
= −1

. 2x + 2y = 16

In Exercises – , solve the system of linear equa ons.

. x + y = −1
2x − 3y = 8

. 2x − 3y = 3
3x + 6y = 8

.
x − y + z = 1
2x + 6y − z = −4
4x − 5y + 2z = 0

.
x + y − z = 1
2x + y = 2

y + 2z = 0

. A farmer looks out his window at his chickens and pigs. He
tells his daughter that he sees heads and legs. How
many chickens and pigs does the farmer have?

. A lady buys trinkets at a yard sale. The cost of each trin-
ket is either . or . . If she spends . , howmany
of each type of trinket does she buy?



Note: when we multiplied the sec-
ond equation by − 1

2
in our third step,

we were proceeding according to a
well-known algorithm (which we will
soon explain) that is especially effi-
cient when implemented on a com-
puter. We should point out, however,
that since humans tend to be less
happy about working with fractions
than computers, we might reasonably
decide that our third step should be
to first add the second equation to the
third, so that the 2g in the third equa-
tion is cancelled by the −2g in the
second.
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. Using Matrices To Solve Systems of Linear Equa-
ons

AS YOU READ . . .

1. What is the coefficient matrix of a system of linear equations?

2. What is an augmented matrix?

3. How do you convert between a linear system and an augmented
matrix?

In Section 4.1 we solved a linear system using familiar techniques.
Later, we commented that in the linear equations we formed, the most
important information was the coefficients and the constants; the names
of the variables really didn’t matter. In Example 4.1.1 we had the following
three equations:

r + b+ g = 30

r = 2g

b = r + g

Let’s rewrite these equations so that all variables are on the left of
the equal sign and all constants are on the right. Also, for a bit more
consistency, let’s list the variables in alphabetical order in each equation.
Therefore we can write the equations as

b + g + r = 30
− 2g + r = 0

−b + g + r = 0
. ( . )

As we mentioned before, there isn’t just one “right” way of finding the
solution to this system of equations. Here is another way to do it, a way
that is a bit different from our method in Section 4.1.

First, let’s add the first and last equations together, and write the
result as a new third equation. This gives us:

b + g + r = 30
− 2g + r = 0

2g + 2r = 30
.

A nice feature of this is that the only equation with a b in it is the first
equation.

Now let’s multiply the second equation by − 1
2 . This gives

b + g + r = 30
g − 1/2r = 0
2g + 2r = 30

.

Let’s now do two steps in a row; our goal is to get rid of the g’s in the
first and third equations. In order to remove the g in the first equation,
let’s multiply the second equation by −1 and add that to the first equation,
replacing the first equation with that sum. To remove the g in the third
equation, let’s multiply the second equation by −2 and add that to the
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third equation, replacing the third equation. Our new system of equations
now becomes

b + 3/2r = 30
g − 1/2r = 0

3r = 30
.

Clearly we can multiply the third equation by 1
3 and find that r = 10;

let’s make this our new third equation, giving

b + 3/2r = 30
g − 1/2r = 0

r = 10
.

Now let’s get rid of the r’s in the first and second equation. To remove
the r in the first equation, let’s multiply the third equation by − 3

2 and
add the result to the first equation, replacing the first equation with that
sum. To remove the r in the second equation, we can multiply the third
equation by 1

2 and add that to the second equation, replacing the second
equation with that sum. This gives us:

b = 15
g = 5

r = 10
.

Clearly we have discovered the same result as when we solved this problem
in Section 4.1.

Now again revisit the idea that all that really matters are the coeffi-
cients and the constants. There is nothing special about the letters b, g
and r; we could have used x, y and z or x1, x2 and x3. And even then,
since we wrote our equations so carefully, we really didn’t need to write
the variable names at all as long as we put things “in the right place.”

Let’s look again at our system of equations in ( . ) and write the
coefficients and the constants in a rectangular array. This time we won’t
ignore the zeros, but rather write them out.

b + g + r = 30
0b − 2g + r = 0
−b + g + r = 0

⇔

 1 1 1 30
0 −2 1 0
−1 1 1 0


Notice how even the equal signs are gone; we don’t need them, for we
know that the last column contains the coefficients.

The mathematical object we have created on the right is called a ma-
trix. We will give a formal mathematical definition in Chapter 5, where
we will see that matrices are interesting objects in their own right, with
numerous interesting properties and applications. For now we can think of
a matrix simply as a rectangular table of numbers that allows us to keep
track of certain information; namely, the constants that define our system
of linear equations. Note that each row in our matrix represents one of
the equations, while each column (except for the last) represents a vari-
able. We will often want to distinguish between the coefficient matrix
of a system; that is, the matrix containing the coefficients (the numbers
in front of the variables) of a system of linear equations, and the matrix
that also includes the column of constants, as above. When we include
the constants, we refer to the resulting matrix as an augmented matrix.

It is common (but not mandatory) to place a vertical line separating
the final column of an augmented matrix (containing the constants) from
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the other columns (containing the coefficients). One advantage of doing
so is that we can quickly recognize that we’re dealing with an augmented
matrix rather than a coefficient matrix. For example, the augmented
matrix for the system ( . ) would be written as seen below on the right:

 1 1 1 30
0 −2 1 0
−1 1 1 0

  1 1 1 30
0 −2 1 0
−1 1 1 0


Without the vertical line With the vertical line

Two ways of writing an augmented matrix

We can use augmented matrices to find solutions to linear equations
by using essentially the same steps we used above. Every time we used
the word “equation” above, substitute the word “row,” as we show below.
The comments explain how we get from the current set of equations (or
matrix) to the one on the next line.

Let us look back at the steps we used to solve the system of equations
at the beginning of this section. Clearly, the order in which we right down
our equations does not affect the solution; in terms of our matrix, this
means we can rearrange the rows as we please. Note, however, that we
cannot rearrange the columns. To do so would mix up our variables,
causing us to lose track of our system.

In addition to changing the order of our equations, we also saw that
we can multiply both sides of any equation by a constant, and we can
add a multiple of one equation to another. These three manipulations are
known as the elementary operations used to solve a system of linear
equations. We will see that with these three elementary operations, we
can determine the solution (if any) to any linear system.

Each of these elementary operations corresponds to an operation per-
formed on the corresponding augmented matrix known as an elementary
row operation. We use a shorthand notation to describe these matrix
operations; let R1, R2 represent “row 1” and “row 2,” respectively. We
can write “add row 1 to row 3, and replace row 3 with that sum” as
“R1 + R3 → R3.” The expression “R1 ↔ R2” means “interchange row 1
and row 2.”

b + g + r = 30
− 2g + r = 0

−b + g + r = 0

 1 1 1 30
0 −2 1 0
−1 1 1 0


Replace equation 3 with the

sum of equations 1 and 3

Replace row 3 with the sum
of rows 1 and 3.
(R1 +R3 → R3)

b + g + r = 30
− 2g + r = 0

2g + 2r = 30

1 1 1 30
0 −2 1 0
0 2 2 30


Multiply equation 2 by − 1

2

Multiply row 2 by − 1
2

(− 1
2
R2 → R2)
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b + g + r = 30
g + −1/2r = 0
2g + 2r = 30

1 1 1 30
0 1 − 1

2 0
0 2 2 30


Replace equation 1 with the

sum of (−1) times equation 2
plus equation 1;

Replace equation 3 with the
sum of (−2) times equation 2

plus equation 3

Replace row 1 with the sum
of (−1) times row 2 plus row

1 (−R2 +R1 → R1);
Replace row 3 with the sum
of (−2) times row 2 plus row

3 (−2R2 +R3 → R3)

b + 3/2r = 30

g − 1/2r = 0

3r = 30

1 0 3
2 30

0 1 − 1
2 0

0 0 3 30


Multiply equation 3 by 1

3

Multiply row 3 by 1
3

( 1
3
R3 → R3)

b + 3/2r = 30
g − 1/2r = 0

r = 10

1 0 3
2 30

0 1 − 1
2 0

0 0 1 10


Replace equation 2 with the
sum of 1

2
times equation 3

plus equation 2;
Replace equation 1 with the
sum of − 3

2
times equation 3

plus equation 1

Replace row 2 with the sum
of 1

2
times row 3 plus row 2
( 1
2
R3 +R2 → R2);

Replace row 1 with the sum
of − 3

2
times row 3 plus row 1

(− 3
2
R3 +R1 → R1)

b = 15
g = 5

r = 10

1 0 0 15

0 1 0 5

0 0 1 10


The final matrix contains the same solution information as we have on

the left in the form of equations. Recall that the first column of our ma-
trices held the coefficients of the b variable; the second and third columns
held the coefficients of the g and r variables, respectively. Therefore, the
first row of the matrix can be interpreted as “b+ 0g + 0r = 15,” or more
concisely, “b = 15.”

Let’s practice this manipulation again.

Example . . Solving a system using augmented matrices
Find a solution to the following system of linear equations by simultane-
ously manipulating the equations and the corresponding augmented ma-
trices.

x1 + x2 + x3 = 0
2x1 + 2x2 + x3 = 0
−1x1 + x2 − 2x3 = 2

Solution We’ll first convert this system of equations into a ma-
trix, then we’ll proceed by manipulating the system of equations (and
hence the matrix) to find a solution. Again, there is not just one “right”
way of proceeding; we’ll choose a method that is pretty efficient, but
other methods certainly exist (and may be “better”!). The method use
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here, though, is a good one, and it is the method that we will be learning
in the future.

The given system and its corresponding augmented matrix are seen
below.

Original system of equations Corresponding matrix

x1 + x2 + x3 = 0
2x1 + 2x2 + x3 = 0
−1x1 + x2 − 2x3 = 2

 1 1 1 0
2 2 1 0
−1 1 −2 2


We’ll proceed by trying to get the x1 out of the second and third equation.

Replace equation 2 with the
sum of (−2) times equation 1

plus equation 2;
Replace equation 3 with the

sum of equation 1 and
equation 3

Replace row 2 with the sum of
(−2) times row 1 plus row 2

(−2R1 +R2 → R2);
Replace row 3 with the sum of

row 1 and row 3
(R1 +R3 → R3)

x1 + x2 + x3 = 0
−x3 = 0

2x2 − x3 = 2

1 1 1 0
0 0 −1 0
0 2 −1 2


Notice that the second equation no longer contains x2. We’ll exchange

the order of the equations so that we can follow the convention of solving
for the second variable in the second equation.

Interchange equations 2 and 3 Interchange rows 2 and 3
R2 ↔ R3

x1 + x2 + x3 = 0
2x2 − x3 = 2

−x3 = 0

1 1 1 0
0 2 −1 2
0 0 −1 0


Multiply equation 2 by 1

2

Multiply row 2 by 1
2

( 1
2
R2 → R2)

x1 + x2 + x3 = 0
x2 − 1

2x3 = 1
−x3 = 0

1 1 1 0

0 1 − 1
2 1

0 0 −1 0


Multiply equation 3 by −1

Multiply row 3 by −1
(−1R3 → R3)

x1 + x2 + x3 = 0
x2 − 1

2x3 = 1
x3 = 0

1 1 1 0

0 1 − 1
2 1

0 0 1 0


Notice that the last equation (and also the last row of the matrix) show

that x3 = 0. Knowing this would allow us to simply eliminate the x3 from
the first two equations. However, we will formally do this by manipulating
the equations (and rows) as we have previously.
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Replace equation 1 with the
sum of (−1) times equation 3

plus equation 1;
Replace equation 2 with the
sum of 1

2
times equation 3

plus equation 2

Replace row 1 with the sum
of (−1) times row 3 plus row

1
(−R3 +R1 → R1);

Replace row 2 with the sum
of 1

2
times row 3 plus row 2
( 1
2
R3 +R2 → R2)

x1 + x2 = 0
x2 = 1

x3 = 0

1 1 0 0
0 1 0 1
0 0 1 0


Notice how the second equation shows that x2 = 1. All that remains

to do is to solve for x1.

Replace equation 1 with the
sum of (−1) times equation 2

plus equation 1

Replace row 1 with the sum
of (−1) times row 2 plus row

1
(−R2 +R1 → R1)

x1 = −1
x2 = 1

x3 = 0

1 0 0 −1
0 1 0 1
0 0 1 0


Obviously the equations on the left tell us that x1 = −1, x2 = 1 and

x3 = 0, and notice how the matrix on the right tells us the same informa-
tion.



Exercises 4.2
Problems
In Exercises – , convert the given systemof linear equa ons
into an augmented matrix.

.
3x + 4y + 5z = 7
−x + y − 3z = 1
2x − 2y + 3z = 5

.
2x + 5y − 6z = 2
9x − 8z = 10
−2x + 4y + z = −7

.
x1 + 3x2 − 4x3 + 5x4 = 17

−x1 + 4x3 + 8x4 = 1
2x1 + 3x2 + 4x3 + 5x4 = 6

.

3x1 − 2x2 = 4
2x1 = 3

−x1 + 9x2 = 8
5x1 − 7x2 = 13

In Exercises – , convert the given augmented matrix into a
system of linear equa ons. Use the variables x1, x2, etc.

.
[
1 2 3
−1 3 9

]

.
[
−3 4 7
0 1 −2

]

.
[
1 1 −1 −1 2
2 1 3 5 7

]

.


1 0 0 0 2
0 1 0 0 −1
0 0 1 0 5
0 0 0 1 3



.
[
1 0 1 0 7 2
0 1 3 2 0 5

]
In Exercises – , perform the given row opera ons on A,
where

A =

 2 −1 7
0 4 −2
5 0 3

 .

. −1R1 → R1

. R2 ↔ R3

. R1 +R2 → R2

. 2R2 +R3 → R3

. 1
2
R2 → R2

. − 5
2
R1 +R3 → R3

A matrix A is given below. In Exercises – , a matrix B is
given. Give the row opera on that transformsA intoB.

A =

 1 1 1
1 0 1
1 2 3



. B =

 1 1 1
2 0 2
1 2 3



. B =

 1 1 1
2 1 2
1 2 3



. B =

 3 5 7
1 0 1
1 2 3



. B =

 1 0 1
1 1 1
1 2 3



. B =

 1 1 1
1 0 1
0 2 2


In Exercises – , rewrite the system of equa ons in ma-
trix form. Find the solu on to the linear system by simulta-
neously manipula ng the equa ons and the matrix.

. x + y = 3
2x − 3y = 1

. 2x + 4y = 10
−x + y = 4

. −2x + 3y = 2
−x + y = 1

. 2x + 3y = 2
−2x + 6y = 1

.
−5x1 + 2x3 = 14

x2 = 1
−3x1 + x3 = 8

.
− 5x2 + 2x3 = −11

x1 + 2x3 = 15
− 3x2 + x3 = −8
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. Elementary Row Opera ons and Gaussian Elimi-
na on

AS YOU READ . . .

1. Give two reasons why the Elementary Row Operations are called
“Elementary.”

2. T/F: Assuming a solution exists, all linear systems of equations can
be solved using only elementary row operations.

3. Give one reason why one might not be interested in putting a matrix
into reduced row echelon form.

4. Identify the leading 1s in the following matrix:
1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 0


5. Using the “forward” and “backward” steps of Gaussian elimination

creates lots of making computations easier.

In our examples thus far, we have essentially used just three types
of manipulations in order to find solutions to our systems of equations.
These three manipulations are:

1. Add a scalar multiple of one equation to a second equation, and
replace the second equation with that sum

2. Multiply one equation by a nonzero scalar

3. Swap the position of two equations in our list

We saw earlier how we could write all the information of a system
of equations in a matrix, so it makes sense that we can perform similar
operations on matrices (as we have done before). Again, simply replace
the word “equation” above with the word “row.”

We didn’t justify our ability to manipulate our equations in the above
three ways; it seems rather obvious that we should be able to do that.
In that sense, these operations are “elementary.” These operations are
elementary in another sense; they are fundamental – they form the basis
for much of what we will do in matrix algebra. Since these operations are
so important, we list them again here in the context of matrices.

Key Idea 4.3.1 Elementary Row Operations

1. Add a scalar multiple of one row to another row, and replace
the latter row with that sum

2. Multiply one row by a nonzero scalar

3. Swap the position of two rows
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Given any system of linear equations, we can find a solution (if one
exists) by using these three row operations. Elementary row operations
give us a new linear system, but the solution to the new system is the
same as the old. We can use these operations as much as we want and not
change the solution. This brings to mind two good questions:

1. Since we can use these operations as much as we want, how do we
know when to stop? (Where are we supposed to “go” with these
operations?)

2. Is there an efficient way of using these operations? (How do we get
“there” the fastest?)

We’ll answer the first question first. Most of the time (unless one
prefers obfuscation to clarification) we will want to take our original matrix
and, using the elementary row operations, put it into something called
reduced row echelon form. This is our “destination,” for this form
allows us to readily identify whether or not a solution exists, and in the
case that it does, what that solution is.

In the previous section, when we manipulated matrices to find solu-
tions, we were unwittingly putting the matrix into reduced row echelon
form. However, not all solutions come in such a simple manner as we’ve
seen so far. Putting a matrix into reduced row echelon form helps us iden-
tify all types of solutions. We’ll explore the topic of understanding what
the reduced row echelon form of a matrix tells us in the following sections;
in this section we focus on finding it.

Definition 4.3.1 Reduced Row Echelon Form

A matrix is in reduced row echelon form if its entries satisfy the
following conditions.

1. The first nonzero entry in each row is a 1 (called a leading 1).

2. Each leading 1 comes in a column to the right of the leading
1s in rows above it.

3. All rows of all 0s come at the bottom of the matrix.

4. If a column contains a leading 1, then all other entries in that
column are 0.

A matrix that satisfies the first three conditions is said to be in row
echelon form.



. Elementary Row Opera ons and Gaussian Elimina on

Example . . Determining if a matrix is in reduced row eche-
lon form
Which of the following matrices is in reduced row echelon form?

a)
[
1 0
0 1

]
b)
[
1 0 1
0 1 2

]

c)
[
0 0
0 0

]
d)
[
1 1 0
0 0 1

]

e)

 1 0 0 1
0 0 0 0
0 0 1 3

 f)

 1 2 0 0
0 0 3 0
0 0 0 4



g)

 0 1 2 3 0 4
0 0 0 0 1 5
0 0 0 0 0 0

 h)

 1 1 0
0 1 0
0 0 1



Solution The matrices in a), b), c), d) and g) are all in reduced
row echelon form. Check to see that each satisfies the necessary condi-
tions. If your instincts were wrong on some of these, correct your thinking
accordingly.

The matrix in e) is not in reduced row echelon form since the row of all
zeros is not at the bottom. The matrix in f) is not in reduced row echelon
form since the first nonzero entries in rows 2 and 3 are not 1. Finally, the
matrix in h) is not in reduced row echelon form since the first entry in
column 2 is not zero; the second 1 in column 2 is a leading one, hence all
other entries in that column should be 0.

We end this example with a preview of what we’ll learn in the future.
Consider the matrix in b). If this matrix came from the augmented matrix
of a system of linear equations, then we can readily recognize that the
solution of the system is x1 = 1 and x2 = 2. Again, in previous examples,
when we found the solution to a linear system, we were unwittingly putting
our matrices into reduced row echelon form.

We began this section discussing how we can manipulate the entries
in a matrix with elementary row operations. This led to two questions,
“Where do we go?” and “How do we get there quickly?” We’ve just
answered the first question: most of the time we are “going to” reduced
row echelon form. We now address the second question.

There is no one “right” way of using these operations to transform
a matrix into reduced row echelon form. However, there is a general
technique that works very well in that it is very efficient (so we don’t waste
time on unnecessary steps). This technique is called Gaussian elimination.
It is named in honour of the great mathematician Karl Friedrich Gauss.

While this technique isn’t very difficult to use, it is one of those things
that is easier understood by watching it being used than explained as a
series of steps. With this in mind, we will go through one more example
highlighting important steps and then we’ll explain the procedure in detail.



Technically, Gaussian elimination
consists only of the “forward steps”;
including the “backwards steps” re-
sults in an algorithm known as Gauss-
Jordan elimination. In Gaussian
elimination, instead of the backward
steps, one uses back substitution.
At the end of the forward steps, we
can immediately read off x3 = 3 from
the third row. The second row corre-
sponds to the equation x2 + 2x3 = 4,
and plugging in x3 = 3 to this equa-
tion, we get x2 + 6 = 4, so x2 = −2.
Finally, the first row gives the equa-
tion x1 + x2 − 3x3 = −4, and plug-
ging in x2 = −2 and x3 = 3, we get
x1 − 2 − 9 = −4, so x1 = 7. Us-
ing back substitution is slightly more
efficient than including the backward
steps, but once we get to examples
with free parameters, you’ll probably
find that it’s easier to go all the way
to reduced row-echelon form.
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Example . . Using row operations to simplify an augmented
matrix
Put the augmented matrix of the following system of linear equations into
reduced row echelon form.

−3x1 − 3x2 + 9x3 = 12
2x1 + 2x2 − 4x3 = −2

−2x2 − 4x3 = −8

Solution We start by converting the linear system into an aug-
mented matrix.  −3 −3 9 12

2 2 −4 −2
0 −2 −4 −8


Our next step is to change the entry in the box to a 1. To do this, let’s

multiply row 1 by − 1
3 .

− 1
3
R1 → R1

1 1 −3 −4
2 2 −4 −2
0 −2 −4 −8


We have now created a leading 1; that is, the first entry in the first

row is a 1. Our next step is to put zeros under this 1. To do this, we’ll
use the elementary row operation given below.

−2R1 +R2 → R2

1 1 −3 −4

0 0 2 6
0 −2 −4 −8


Once this is accomplished, we shift our focus from the leading one

down one row, and to the right one column, to the position that is boxed.
We again want to put a 1 in this position. We can use any elementary
row operations, but we need to restrict ourselves to using only the second
row and any rows below it. Probably the simplest thing we can do is
interchange rows 2 and 3, and then scale the new second row so that there
is a 1 in the desired position.

R2 ↔ R3

1 1 −3 −4

0 −2 −4 −8

0 0 2 6



− 1
2
R2 → R2

1 1 −3 −4
0 1 2 4

0 0 2 6


We have now created another leading 1, this time in the second row.

Our next desire is to put zeros underneath it, but this has already been
accomplished by our previous steps. Therefore we again shift our attention
to the right one column and down one row, to the next position put in the
box. We want that to be a 1. A simple scaling will accomplish this.

1
2
R3 → R3

1 1 −3 −4
0 1 2 4
0 0 1 3
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This ends what we will refer to as the forward steps. Our next task
is to use the elementary row operations and go back and put zeros above
our leading 1s. This is referred to as the backward steps. These steps are
given below.

3R3 +R1 → R1

−2R3 +R2 → R2

1 1 0 5
0 1 0 −2
0 0 1 3



−R2 +R1 → R1

1 0 0 7
0 1 0 −2
0 0 1 3


It is now easy to read off the solution as x1 = 7, x2 = −2 and x3 = 3.

We now formally explain the procedure used to find the solution above.
As you read through the procedure, follow along with the example above
so that the explanation makes more sense.

Forward Steps

1. Working from left to right, consider the first column that isn’t all
zeros that hasn’t already been worked on. Then working from top
to bottom, consider the first row that hasn’t been worked on.

2. If the entry in the row and column that we are considering is zero,
interchange rows with a row below the current row so that that
entry is nonzero. If all entries below are zero, we are done with this
column; start again at step 1.

3. Multiply the current row by a scalar to make its first entry a 1 (a
leading 1).

4. Repeatedly use Elementary Row Operation 1 to put zeros under-
neath the leading one.

5. Go back to step 1 and work on the new rows and columns until
either all rows or columns have been worked on.

If the above steps have been followed properly, then the following
should be true about the current state of the matrix:

1. The first nonzero entry in each row is a 1 (a leading 1).

2. Each leading 1 is in a column to the right of the leading 1s above it.

3. All rows of all zeros come at the bottom of the matrix.

Note that this means we have just put a matrix into row echelon form.
The next steps finish the conversion into reduced row echelon form. These
next steps are referred to as the backward steps. These are much easier to
state.

Backward Steps

1. Starting from the right and working left, use Elementary Row Op-
eration 1 repeatedly to put zeros above each leading 1.



In Example 4.3.3, we create our first
leading 1 by multiplying Row 1 by
− 1

2
. On a computer, this is the most

efficient option, and it’s a good choice
in this example, since every entry in
Row 1 is even, so no fractions are in-
troduced. Most people like to avoid
fractions if they can, and in some
cases that’s impossible with this type
of row operation. The other option
we could have tried here is adding
Row 3 to Row 1: since −2 + 3 = 1,
the row operation R1 → R1+R3 also
would have created a leading 1 for us.
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The basic method of Gaussian elimination is this: create leading ones
and then use elementary row operations to put zeros above and below
these leading ones. We can do this in any order we please, but by following
the “Forward Steps” and “Backward Steps,” we make use of the presence
of zeros to make the overall computations easier. This method is very
efficient, so it gets its own name (which we’ve already been using).

Definition 4.3.2 Gaussian Elimination

Gaussian elimination is the technique for finding the reduced
row echelon form of a matrix using the above procedure. It can be
abbreviated to:

1. Create a leading 1.

2. Use this leading 1 to put zeros underneath it.

3. Repeat the above steps until all possible rows have leading
1s.

4. Put zeros above these leading 1s.

Let’s practice some more.

Example . . Using Gaussian elimination
Use Gaussian elimination to put the matrix A into reduced row echelon
form, where

A =

−2 −4 −2 −10 0
2 4 1 9 −2
3 6 1 13 −4

 .

Solution We start by wanting to make the entry in the first col-
umn and first row a 1 (a leading 1). To do this we’ll scale the first row by
a factor of − 1

2 .

− 1
2
R1 → R1

 1 2 1 5 0
2 4 1 9 −2
3 6 1 13 −4


Next we need to put zeros in the column below this newly formed

leading 1.

−2R1 +R2 → R2

−3R1 +R3 → R3

 1 2 1 5 0

0 0 −1 −1 −2
0 0 −2 −2 −4


Our attention now shifts to the right one column and down one row

to the position indicated by the box. We want to put a 1 in that position.
Our only options are to either scale the current row or to interchange rows
with a row below it. However, in this case neither of these options will
accomplish our goal. Therefore, we shift our attention to the right one
more column.

We want to put a 1 where there is a –1. A simple scaling will accomplish
this; once done, we will put a 0 underneath this leading one.
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−R2 → R2

 1 2 1 5 0
0 0 1 1 2
0 0 −2 −2 −4



2R2 +R3 → R3

 1 2 1 5 0
0 0 1 1 2

0 0 0 0 0


Our attention now shifts over one more column and down one row to

the position indicated by the box; we wish to make this a 1. Of course,
there is no way to do this, so we are done with the forward steps.

Our next goal is to put a 0 above each of the leading 1s (in this case
there is only one leading 1 to deal with).

−R2 +R1 → R1

 1 2 0 4 −2
0 0 1 1 2
0 0 0 0 0


This final matrix is in reduced row echelon form.

Example . . Gaussian elimination, again
Put the matrix  1 2 1 3

2 1 1 1
3 3 2 1


into reduced row echelon form.

Solution Here we will show all steps without explaining each one.

−2R1 +R2 → R2

−3R1 +R3 → R3

 1 2 1 3
0 −3 −1 −5
0 −3 −1 −8



− 1
3
R2 → R2

 1 2 1 3
0 1 1/3 5/3
0 −3 −1 −8



3R2 +R3 → R3

 1 2 1 3
0 1 1/3 5/3
0 0 0 −3



− 1
3
R3 → R3

 1 2 1 3
0 1 1/3 5/3
0 0 0 1


−3R3 +R1 → R1

− 5
3
R3+R2 → R2

 1 2 1 0
0 1 1/3 0
0 0 0 1



−2R2 +R1 → R1

 1 0 1/3 0
0 1 1/3 0
0 0 0 1


The last matrix in the above example is in reduced row echelon form.

If one thinks of the original matrix as representing the augmented matrix
of a system of linear equations, this final result is interesting. What does
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it mean to have a leading one in the last column? We’ll figure this out in
the next section.

Example . . Using back substitution
Put the matrix A into reduced row echelon form, where

A =

 2 1 −1 4
1 −1 2 12
2 2 −1 9

 .

Solution We’ll again show the steps without explanation, although
we will stop at the end of the forward steps and make a comment.

1
2
R1 → R1

 1 1/2 −1/2 2
1 −1 2 12
2 2 −1 9


−R1 +R2 → R2

−2R1 +R3 → R3

 1 1/2 −1/2 2
0 −3/2 5/2 10
0 1 0 5



− 2
3
R2 → R2

 1 1/2 −1/2 2
0 1 −5/3 −20/3
0 1 0 5



−R2 +R3 → R3

 1 1/2 −1/2 2
0 1 −5/3 −20/3
0 0 5/3 35/3


3
5
R3 → R3

 1 1/2 −1/2 2
0 1 −5/3 −20/3
0 0 1 7


Let’s take a break here and think about the state of our linear system

at this moment. Converting back to linear equations, we now know

x1 + 1/2x2 − 1/2x3 = 2
x2 − 5/3x3 = −20/3

x3 = 7
.

Since we know that x3 = 7, the second equation turns into

x2 − (5/3)(7) = −20/3,

telling us that x2 = 5.
Finally, knowing values for x2 and x3 lets us substitute in the first

equation and find

x1 + (1/2)(5)− (1/2)(7) = 2,

so x1 = 3.

This process of substituting known values back into other equations is
called back substitution. This process is essentially what happens when
we perform the backward steps of Gaussian elimination. We make note
of this below as we finish out finding the reduced row echelon form of our
matrix.
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5
3
R3 +R2 → R2

(knowing x3 = 7 allows
us to find x2 = 5)

 1 1/2 −1/2 2
0 1 0 5
0 0 1 7


1
2
R3 +R1 → R1

− 1
2
R2 +R1 → R1

(knowing x2 = 5 and x3 = 7
allows us to find x1 = 3)

 1 0 0 3
0 1 0 5
0 0 1 7


We did our operations slightly “out of order” in that we didn’t put the

zeros above our leading 1 in the third column in the same step, highlighting
how back substitution works.

In all of our practice, we’ve only encountered systems of linear equa-
tions with exactly one solution. Is this always going to be the case? Could
we ever have systems with more than one solution? If so, how many solu-
tions could there be? Could we have systems without a solution? These
are some of the questions we’ll address in the next section.



Exercises 4.3
Problems
In Exercises – , state whether or not the given matrices are
in reduced row echelon form. If it is not, state why.

. (a)
[
1 0
0 1

]
(b)

[
0 1
1 0

] (c)
[
1 1
1 1

]
(d)

[
1 0 1
0 1 2

]

. (a)
[
1 0 0
0 0 1

]
(b)

[
1 0 1
0 1 1

] (c)
[
0 0 0
1 0 0

]
(d)

[
0 0 0
0 0 0

]

. (a)

 1 1 1
0 1 1
0 0 1


(b)

 1 0 0
0 1 0
0 0 0


(c)

 1 0 0
0 0 1
0 0 0


(d)

 1 0 0 −5
0 1 0 7
0 0 1 3



. (a)

 2 0 0 2
0 2 0 2
0 0 2 2


(b)

 0 1 0 0
0 0 1 0
0 0 0 0


(c)

 0 0 1 −5
0 0 0 0
0 0 0 0


(d)

 1 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 0 0


In Exercises – , use Gaussian Elimina on to put the given
matrix into reduced row echelon form.

.
[

1 2
−3 −5

]

.
[
2 −2
3 −2

]

.
[

4 12
−2 −6

]

.
[
−5 7
10 14

]

.
[
−1 1 4
−2 1 1

]

.
[
7 2 3
3 1 2

]

.
[

3 −3 6
−1 1 −2

]

.
[

4 5 −6
−12 −15 18

]

.

−2 −4 −8
−2 −3 −5
2 3 6



.

 2 1 1
1 1 1
2 1 2



.

 1 2 1
1 3 1
−1 −3 0



.

 1 2 3
0 4 5
1 6 9



.

 1 1 1 2
2 −1 −1 1
−1 1 1 0



.

 2 −1 1 5
3 1 6 −1
3 0 5 0



.

 1 1 −1 7
2 1 0 10
3 2 −1 17



.

 4 1 8 15
1 1 2 7
3 1 5 11



.
[
2 2 1 3 1 4
1 1 1 3 1 4

]

.
[
1 −1 3 1 −2 9
2 −2 6 1 −2 13

]
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AS YOU READ . . .

1. T/F: It is possible for a linear system to have exactly 5 solutions.

2. T/F: A variable that corresponds to a leading 1 is “free.”

3. How can one tell what kind of solution a linear system of equations
has?

4. Give an example (different from those given in the text) of a 2 equa-
tion, 2 unknown linear system that is not consistent.

5. T/F: A particular solution for a linear system with infinite solutions
can be found by arbitrarily picking values for the free variables.

So far, whenever we have solved a system of linear equations, we have
always found exactly one solution. This is not always the case; we will
find in this section that some systems do not have a solution, and others
have more than one.

We start with a very simple example. Consider the following linear
system:

x− y = 0.

There are obviously infinite solutions to this system; as long as x = y, we
have a solution. We can picture all of these solutions by thinking of the
graph of the equation y = x on the traditional x, y coordinate plane.

Let’s continue this visual aspect of considering solutions to linear sys-
tems. Consider the system

x+ y = 2

x− y = 0.

Each of these equations can be viewed as lines in the coordinate plane,
and since their slopes are different, we know they will intersect somewhere
(see Figure 4.1 (a)). In this example, they intersect at the point (1, 1) –
that is, when x = 1 and y = 1, both equations are satisfied and we have
a solution to our linear system. Since this is the only place the two lines
intersect, this is the only solution.

Now consider the linear system

x+ y = 1

2x+ 2y = 2.

It is clear that while we have two equations, they are essentially the same
equation; the second is just a multiple of the first. Therefore, when we
graph the two equations, we are graphing the same line twice (see Figure
4.1 (b); the thicker line is used to represent drawing the line twice). In
this case, we have an infinite solution set, just as if we only had the one
equation x+y = 1. We often write the solution as x = 1−y to demonstrate
that y can be any real number, and x is determined once we pick a value
for y.
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(a) (b) (c)
Figure 4.1: The three possibilities for

two linear equations with two unknowns.

Finally, consider the linear system

x+ y = 1

x+ y = 2.

We should immediately spot a problem with this system; if the sum of x
and y is 1, how can it also be 2? There is no solution to such a problem;
this linear system has no solution. We can visualize this situation in Figure
4.1 (c); the two lines are parallel and never intersect.

If we were to consider a linear system with three equations and two
unknowns, we could visualize the solution by graphing the corresponding
three lines. We can picture that perhaps all three lines would meet at
one point, giving exactly 1 solution; perhaps all three equations describe
the same line, giving an infinite number of solutions; perhaps we have
different lines, but they do not all meet at the same point, giving no
solution. We further visualize similar situations with, say, 20 equations
with two variables.

On the other hand, if we increase the number of variables to three,
then we know from Section 3.6 that the correct geometric visualization of
the situation involves planes. A single equation such as

2x− 3y + 4z = 7

describes a plane in R3 with normal vector n⃗ =

 2
−3
4

. (By inspection,

we can also choose a point on the plane. Since 3(−1)+4(1) = 7, we know
that the point (0,−1, 1) lies on the plane.)

If we have two equations in three unknowns, three possibilities arise.
The second equation could be a multiple of the first, in which case we
still have our original plane. The second equation could also describe a
parallel plane; for example, we might have

2x − 3y + 4z = 7
2x − 3y + 4z = 3

In this case we know that there is no possible solution to the system, since
there can be no point in common to these two parallel planes. The last
possibility is that the planes are non-parallel, in which case they intersect
in a line. For example, the system

2x − 3y + 4z = 7
−x + 3y − z = 1



Technology Note: In the previous
section, we learned how to find the
reduced row echelon form of a ma-
trix using Gaussian elimination – by
hand. We need to know how to do
this; understanding the process has
benefits. However, actually executing
the process by hand for every prob-
lem is not usually beneficial. In fact,
with large systems, computing the re-
duced row echelon form by hand is
effectively impossible. The ability to
use the RREF to quickly read off the
solution to a system is probably more
important than being able to find the
RREF in the first place. There are
plenty of programs available for free
online that will do the Gaussian elim-
ination for you, but use these with
caution: you won’t have access to a
computer on the exams, so you’d bet-
ter not become overly reliant on using
software.
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describes a pair of planes that intersect in the line (exercise)xy
z

 =

113
0

+ t

−9
−2
1

 .

From here, we can go on to consider three or more equations in three
variables; there might be no solution, or the planes might intersect in a
single point, or along a common line, or they might even all describe the
same plane.

While it becomes harder to visualize when we add variables, no matter
how many equations and variables we have, solutions to linear equations
always come in one of three forms: exactly one solution, infinite solutions,
or no solution. This is a fact that we will not prove here, but it deserves
to be stated.

Theorem 4.4.1 Solution Forms of Linear Systems

Every linear system of equations has exactly one solution, infinitely
many solutions, or no solution.

This leads us to a definition. Here we don’t differentiate between hav-
ing one solution and infinite solutions, but rather just whether or not a
solution exists.

Definition 4.4.1 Consistent and Inconsistent Linear
Systems

A system of linear equations is consistent if it has a solution (per-
haps more than one). A linear system is inconsistent if it does
not have a solution.

How can we tell what kind of solution (if one exists) a given system
of linear equations has? The answer to this question lies with properly
understanding the reduced row echelon form of a matrix. To discover what
the solution is to a linear system, we first put the matrix into reduced row
echelon form and then interpret that form properly.

Before we start with a simple example, let us make a note about find-
ing the reduced row echelon form of a matrix.

As a general rule, when we are learning a new technique, it is best to
not use technology to aid us. This helps us learn not only the technique
but some of its “inner workings.” We can then use technology once we
have mastered the technique and are now learning how to use it to solve
problems.

From here on out, in our examples, when we need the reduced row
echelon form of a matrix, we will not show the steps involved. Rather, we
will give the initial matrix, then immediately give the reduced row eche-
lon form of the matrix. We trust that the reader can verify the accuracy
of this form by both performing the necessary steps by hand or utilizing
some technology to do it for them.



In other words, any free parameters
in our system can be regarded as in-
dependent variables; the remaining
variables are then seen as dependent
variables, and the equations deter-
mined by the reduced row echelon
form of our system tell us how the de-
pendent variables depend on the pa-
rameters.
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Our first example explores officially a quick example used in the intro-
duction of this section.
Example . . Solving a linear system
Find the solution to the linear system

x1 + x2 = 1
2x1 + 2x2 = 2

.

Solution Create the corresponding augmented matrix, and then
put the matrix into reduced row echelon form.[

1 1 1
2 2 2

]
−→rref

[
1 1 1
0 0 0

]
Now convert the reduced matrix back into equations. In this case, we

only have one equation,
x1 + x2 = 1

or, equivalently,

x1 = 1− x2

x2 is a free parameter.

We have just introduced a new term, free parameter, or free vari-
able, or simply, parameter. It is used to stress that idea that x2 can
take on any value; we are “free” to choose any value for x2. Once this
value is chosen, the value of x1 is determined. We have infinitely many
choices for the value of x2, so therefore we have infinitely many solutions.
The variable x1 is also known as a leading variable, since the column
corresponding to x1 contains a leading 1 in the reduced row echelon form
of our augmented matrix.

For example, if we set x2 = 0, then x1 = 1; if we set x2 = 5, then
x1 = −4. Common practice is to assign a new name to our free parameter;
t is always a good choice. Doing so, we can write the solution to our system
as follows:

x1 = 1− t

x2 = t,

where t can be any real number. (Writing the solution in this way is meant
to be reminiscent of the parametric equations for a line in Section 3.5.)

Let’s try another example, one that uses more variables.

Example . . Solving another linear system
Find the solution to the linear system

x2 − x3 = 3
x1 + 2x3 = 2

−3x2 + 3x3 = −9
.

Solution To find the solution, put the corresponding matrix into
reduced row echelon form.0 1 −1 3

1 0 2 2
0 −3 3 −9

 −→rref

1 0 2 2
0 1 −1 3
0 0 0 0
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Now convert this reduced matrix back into equations. We have

x1 + 2x3 = 2

x2 − x3 = 3

or, equivalently,

x1 = 2− 2t

x2 = 3 + t

x3 = t,

where the parameter t can be any real number.
These two equations tell us that the values of x1 and x2 depend on

what t = x3 is. As we saw before, there is no restriction on what t must
be; it is “free” to take on the value of any real number. Once t is chosen,
we obtain a solution (x1, x2, x3) to our system. Since we have infinitely
many choices for the value of t, we have infinitely many solutions.

As examples, x1 = 2, x2 = 3, x3 = 0 is one solution; x1 = −2, x2 = 5,
x3 = 2 is another solution. Try plugging these values back into the original
equations to verify that these indeed are solutions. (By the way, since
infinitely many solutions exist, this system of equations is consistent.)

Examples such as these are known as particular solutions to our
system of equations; they correspond to a particular choice for the pa-
rameter t. The solution written in terms of the parameter t is known as
the general solution to the system of equations. Note that we’re not
restricted to verifying particular solutions: we can go whole hog and plug
the general solution into our system to make sure it works. For example,
in the first equation, we have

x2 − x3 = (3 + t)− t = 3,

so the first equation is satisfied. In the second equation, we have

x1 + 2x3 = (2− 2t) + 2t = 2,

so the second equation is satisfied. The reader can just as easily verify
that our solution works in the third equation as well.

In the two previous examples we have used the word “free” to describe
certain variables. What exactly is a free variable? How do we recognize
which variables are free and which are not?

Look back to the reduced matrix in Example 4.4.1. Notice that there
is only one leading 1 in that matrix, and that leading 1 corresponded to
the x1 variable. That told us that x1 was not a free variable; since x2 did
not correspond to a leading 1, it was a free variable.

Look also at the reduced matrix in Example 4.4.2. There were two
leading 1s in that matrix; one corresponded to x1 and the other to x2.
This meant that x1 and x2 were not free variables; since there was not a
leading 1 that corresponded to x3, it was a free variable.

We formally define this and a few other terms in this following defini-
tion.
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Definition 4.4.2 Dependent and Independent Variables

Consider the reduced row echelon form of an augmented matrix of
a linear system of equations. Then:

a variable that corresponds to a leading 1 is a leading, or
dependent, variable, and

a variable that does not correspond to a leading 1 is a non-leading,
or free, or independent, variable. Free variables are also known
as parameters.

These definitions help us understand when a consistent system of linear
equations will have infinitely many solutions. If there are no free variables,
then there is exactly one solution; if there are any free variables, there are
infinitely many solutions.

Key Idea 4.4.1 Consistent Solution Types

A consistent linear system of equations will have exactly one
solution if and only if there is a leading 1 for each variable in the
system.

If a consistent linear system of equations has a free variable, it has
infinitely many solutions.

If a consistent linear system has more variables than leading 1s,
then the system will have infinitely many solutions.

A consistent linear system with more variables than equations will
always have infinitely many solutions.

Note: Key Idea 4.4.1 applies only to consistent systems. If a system
is inconsistent, then no solution exists and talking about free and basic
variables is meaningless.

When a consistent system has only one solution, each equation that
comes from the reduced row echelon form of the corresponding augmented
matrix will contain exactly one variable. If the consistent system has
infinitely many solutions, then there will be at least one equation coming
from the reduced row echelon form that contains more than one variable.
The “first” variable will be the basic (or dependent) variable; all others
will be free variables.

We have now seen examples of consistent systems with exactly one
solution and others with infinitely many solutions. How will we recognize
that a system is inconsistent? Let’s find out through an example.
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Example . . An inconsistent system
Find the solution to the linear system

x1 + x2 + x3 = 1
x1 + 2x2 + x3 = 2
2x1 + 3x2 + 2x3 = 0

.

Solution We start by putting the corresponding matrix into re-
duced row echelon form.1 1 1 1

1 2 1 2
2 3 2 0

 −→rref

1 0 1 0
0 1 0 0
0 0 0 1


Now let us take the reduced matrix and write out the corresponding

equations. The first two rows give us the equations

x1 + x3 = 0

x2 = 0.

So far, so good. However the last row gives us the equation

0x1 + 0x2 + 0x3 = 1

or, more concisely, 0 = 1. Obviously, this is not true; we have reached a
contradiction. Therefore, no solution exists; this system is inconsistent.

In previous sections we have only encountered linear systems with
unique solutions (exactly one solution). Now we have seen three more
examples with different solution types. The first two examples in this
section had infinitely many solutions, and the third had no solution. How
can we tell if a system is inconsistent?

A linear system will be inconsistent only when it implies that 0 equals
1. We can tell if a linear system implies this by putting its corresponding
augmented matrix into reduced row echelon form. If we have any row
where all entries are 0 except for the entry in the last column, then the
system implies 0=1. More succinctly, if we have a leading 1 in the last
column of an augmented matrix, then the linear system has no solution.

Key Idea 4.4.2 Inconsistent Systems of Linear Equa-
tions

A system of linear equations is inconsistent if the reduced row ech-
elon form of its corresponding augmented matrix has a leading 1
in the last column.

Example . . Verifying that a system is inconsistent
Confirm that the linear system

x + y = 0
2x + 2y = 4

has no solution.



Why include the row of zeros in Ex-
ample 4.4.5? Rows of zeros some-
times appear “unexpectedly” in ma-
trices after they have been put in re-
duced row echelon form. When this
happens, we do learn something; it
means that at least one equation was
a combination of some of the others.
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Solution We can verify that this system has no solution in two
ways. First, let’s just think about it. If x + y = 0, then it stands to
reason, by multiplying both sides of this equation by 2, that 2x+ 2y = 0.
However, the second equation of our system says that 2x+ 2y = 4. Since
0 ̸= 4, we have a contradiction and hence our system has no solution. (We
cannot possibly pick values for x and y so that 2x+2y equals both 0 and
4.)

Now let us confirm this using the prescribed technique from above.
The reduced row echelon form of the corresponding augmented matrix is[

1 1 0
0 0 1

]
.

We have a leading 1 in the last column, so therefore the system is incon-
sistent.

Let’s summarize what we have learned up to this point. Consider the
reduced row echelon form of the augmented matrix of a system of linear
equations. (That sure seems like a mouthful in and of itself. However, it
boils down to “look at the reduced form of the usual matrix.”) If there is
a leading 1 in the last column, the system has no solution. Otherwise, if
there is a leading 1 for each variable, then there is exactly one solution;
otherwise (i.e., there are free variables) there are infinitely many solutions.

Systems with exactly one solution or no solution are the easiest to deal
with; systems with infinitely many solutions are a bit harder to deal with.
Therefore, we’ll do a little more practice. First, a definition: if there are
infinitely many solutions, what do we call one of those infinitely many
solutions?

Definition 4.4.3 Particular Solution

Consider a linear system of equations with infinitely many solu-
tions. A particular solution is one solution out of the infinitely
many set of possible solutions.

The easiest way to find a particular solution is to pick values for the
free variables which then determines the values of the dependent variables.
Again, more practice is called for.

Example . . Finding general and particular solutions
Give the general solution to a linear system whose augmented matrix in
reduced row echelon form is1 −1 0 2 4

0 0 1 −3 7
0 0 0 0 0


and give two particular solutions.

Solution We can essentially ignore the third row; it does not
divulge any information about the solution. The first and second rows
can be rewritten as the following equations:

x1 − x2 + 2x4 = 4

x3 − 3x4 = 7.



Note: It’s useful to state the number
of parameters in the general solution
to a system with infinitely many solu-
tions, since the number of parameters
has geometric significance. A one-
parameter family of solutions defines
a line, while a two-parameter family
of solutions defines a plane.
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Notice how the variables x1 and x3 correspond to the leading 1s of the
given matrix. Therefore x1 and x3 are dependent variables; all other
variables (in this case, x2 and x4) are free variables.

We generally write our solution with the dependent variables on the
left and independent variables and constants on the right. It is also a good
practice to acknowledge the fact that our free variables are, in fact, free.
So our final solution would look something like

x1 = 4 + s− 2t

x2 = s is free
x3 = 7 + 3t

x4 = t is free.

Note that in this case we have two free variables, x2 and x4, so we introduce
two parameters, s and t, in our general solution. While we would be correct
in saying that this system has infinitely many solutions, we can be more
precise about the nature of those solutions. Here, we say that we have
a two-parameter family of solutions, to indicate the fact that two
different parameters are required to describe the most general solution.

To find particular solutions, choose values for our free variables. There
is no “right” way of doing this; we are “free” to choose whatever we wish.

By setting x2 = 0 = x4, we have the solution x1 = 4, x2 = 0, x3 = 7,
x4 = 0. By setting x2 = 1 and x4 = −5, we have the solution x1 = 15,
x2 = 1, x3 = −8, x4 = −5. It is easier to read this when are variables are
listed vertically, so we repeat these solutions:

One particular solution is:

x1 = 4

x2 = 0

x3 = 7

x4 = 0.

Another particular solution
is:

x1 = 15

x2 = 1

x3 = −8

x4 = −5.

Example . . Finding general and particular solutions
Find the solution to a linear system whose augmented matrix in reduced
row echelon form is [

1 0 0 2 3
0 1 0 4 5

]
and give two particular solutions.

Solution Converting the two rows into equations we have

x1 + 2x4 = 3

x2 + 4x4 = 5.

We see that x1 and x2 are our dependent variables, for they correspond
to the leading 1s. Therefore, x3 and x4 are independent variables. This
situation feels a little unusual, for x3 doesn’t appear in any of the equations
above, but cannot overlook it; it is still a free variable since there is not a



What kind of situation would lead to
a column of all zeros? To have such
a column, the original matrix needed
to have a column of all zeros, meaning
that while we acknowledged the exis-
tence of a certain variable, we never
actually used it in any equation. In
practical terms, we could respond by
removing the corresponding column
from the matrix and just keep in mind
that that variable is free. In very
large systems, it might be hard to
determine whether or not a variable
is actually used and one would not
worry about it.
When we learn about eigenvectors
and eigenvalues, we will see that un-
der certain circumstances this situa-
tion arises. In those cases we leave
the variable in the system just to re-
mind ourselves that it is there.

Chapter Systems of Linear Equa ons

leading 1 that corresponds to it. We write our solution as:

x1 = 3− 2t

x2 = 5− 4t

x3 = s is free
x4 = t is free.

To find two particular solutions, we pick values for our free variables.
Again, there is no “right” way of doing this (in fact, there are . . . infinitely
many ways of doing this) so we give only an example here.

One particular solution is:

x1 = 3

x2 = 5

x3 = 1000

x4 = 0.

Another particular solution
is:

x1 = 3− 2π

x2 = 5− 4π

x3 = e2

x4 = π.

(In the second particular solution we picked “unusual” values for x3 and
x4 just to highlight the fact that we can.)
Example . . Finding general and particular solutions
Find the solution to the linear system

x1 + x2 + x3 = 5
x1 − x2 + x3 = 3

and give two particular solutions.

Solution The corresponding augmented matrix and its reduced
row echelon form are given below.[

1 1 1 5
1 −1 1 3

]
−→rref

[
1 0 1 4
0 1 0 1

]
Converting these two rows into equations, we have

x1 + x3 = 4

x2 = 1

giving us the solution

x1 = 4− t

x2 = 1

x3 = t is free.

Once again, we get a bit of an “unusual” solution; while x2 is a depen-
dent variable, it does not depend on any free variable; instead, it is always
1. (We can think of it as depending on the value of 1.) By picking two
values for x3, we get two particular solutions.

One particular solution is:

x1 = 4

x2 = 1

x3 = 0.

Another particular solution
is:

x1 = 3

x2 = 1

x3 = 1.
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The constants and coefficients of a matrix work together to determine
whether a given system of linear equations has one, infinitely many, or no
solution. The concept will be fleshed out more in later chapters, but in
short, the coefficients determine whether a matrix will have exactly one
solution or not. In the “or not” case, the constants determine whether or
not infinitely many solutions or no solution exists. (So if a given linear
system has exactly one solution, it will always have exactly one solution
even if the constants are changed.) Let’s look at an example to get an idea
of how the values of constants and coefficients work together to determine
the solution type.

Example . . Solving a system with a variable coefficient
For what values of k will the given system have exactly one solution,
infinitely many solutions, or no solution?

x1 + 2x2 = 3
3x1 + kx2 = 9

Solution We answer this question by forming the augmented ma-
trix and starting the process of putting it into reduced row echelon form.
Below we see the augmented matrix and one elementary row operation
that starts the Gaussian elimination process.[

1 2 3
3 k 9

]
−−−−−−−−−−−−−→
−3R1 +R2 → R2

[
1 2 3
0 k − 6 0

]
This is as far as we need to go. In looking at the second row, we see

that if k = 6, then that row contains only zeros and x2 is a free variable;
we have infinitely many solutions. If k ̸= 6, then our next step would be
to make that second row, second column entry a leading one. We don’t
particularly care about the solution, only that we would have exactly
one as both x1 and x2 would correspond to a leading one and hence be
dependent variables.

Our final analysis is then this. If k ̸= 6, there is exactly one solution;
if k = 6, there are infinitely many solutions. In this example, it is not
possible to have no solutions.

As an extension of the previous example, consider the similar aug-
mented matrix where the constant 9 is replaced with a 10. Performing the
same elementary row operation gives[

1 2 3
3 k 10

]
−−−−−−−−−−−−−→
−3R1 +R2 → R2

[
1 2 3
0 k − 6 1

]
.

As in the previous example, if k ̸= 6, we can make the second row,
second column entry a leading one and hence we have one solution. How-
ever, if k = 6, then our last row is [0 0 1], meaning we have no solution.

We have been studying the solutions to linear systems mostly in an
“academic” setting; we have been solving systems for the sake of solving
systems. In the next section, we’ll look at situations which create linear
systems that need solving (i.e., “word problems”).
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Problems
In Exercises – , find the solu on to the given linear system.
If the system has infinitely many solu ons, give par cular
solu ons. Then give a geometric descrip on of the system
and its solu on in terms of points, lines, and planes.

. 2x1 + 4x2 = 2
x1 + 2x2 = 1

. −x1 + 5x2 = 3
2x1 − 10x2 = −6

. x1 + x2 = 3
2x1 + x2 = 4

. −3x1 + 7x2 = −7
2x1 − 8x2 = 8

. 2x1 + 3x2 = 1
−2x1 − 3x2 = 1

. x1 + 2x2 = 1
−x1 − 2x2 = 5

. −2x1 + 4x2 + 4x3 = 6
x1 − 3x2 + 2x3 = 1

. −x1 + 2x2 + 2x3 = 2
2x1 + 5x2 + x3 = 2

. −x1 − x2 + x3 + x4 = 0
−2x1 − 2x2 + x3 = −1

. x1 + x2 + 6x3 + 9x4 = 0
−x1 − x3 − 2x4 = −3

.
2x1 + x2 + 2x3 = 0
x1 + x2 + 3x3 = 1
3x1 + 2x2 + 5x3 = 3

.
x1 + 3x2 + 3x3 = 1
2x1 − x2 + 2x3 = −1
4x1 + 5x2 + 8x3 = 2

.
x1 + 2x2 + 2x3 = 1
2x1 + x2 + 3x3 = 1
3x1 + 3x2 + 5x3 = 2

.
2x1 + 4x2 + 6x3 = 2
1x1 + 2x2 + 3x3 = 1
−3x1 − 6x2 − 9x3 = −3

In Exercises – , state for which values of k the given sys-
temwill have exactly solu on, infinite solu ons, or no solu-
on.

. x1 + 2x2 = 1
2x1 + 4x2 = k

. x1 + 2x2 = 1
x1 + kx2 = 1

. x1 + 2x2 = 1
x1 + kx2 = 2

. x1 + 2x2 = 1
x1 + 3x2 = k
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AS YOU READ . . .

1. How do most problems appear “in the real world?”

2. The unknowns in a problem are also called what?

3. How many points are needed to determine the coefficients of a 5th

degree polynomial?

We’ve started this chapter by addressing the issue of finding the solu-
tion to a system of linear equations. In subsequent sections, we defined
matrices to store linear equation information; we described how we can
manipulate matrices without changing the solutions; we described how to
efficiently manipulate matrices so that a working solution can be easily
found.

We shouldn’t lose sight of the fact that our work in the previous sec-
tions was aimed at finding solutions to systems of linear equations. In
this section, we’ll learn how to apply what we’ve learned to actually solve
some problems.

Many, problems that are addressed by engineers, businesspeople, sci-
entists and mathematicians can be solved by properly setting up systems
of linear equations. In this section we highlight only a few of the wide
variety of problems that matrix algebra can help us solve.

We start with a simple example.

Example . . Counting marbles, again
A jar contains 100 blue, green, red and yellow marbles. There are twice
as many yellow marbles as blue; there are 10 more blue marbles than red;
the sum of the red and yellow marbles is the same as the sum of the blue
and green. How many marbles of each color are there?

Solution Let’s call the number of blue balls b, and the number of
the other balls g, r and y, each representing the obvious. Since we know
that we have 100 marbles, we have the equation

b+ g + r + y = 100.

The next sentence in our problem statement allows us to create three more
equations.

We are told that there are twice as many yellow marbles as blue. One
of the following two equations is correct, based on this statement; which
one is it?

2y = b or 2b = y

The first equation says that if we take the number of yellow marbles,
then double it, we’ll have the number of blue marbles. That is not what
we were told. The second equation states that if we take the number of
blue marbles, then double it, we’ll have the number of yellow marbles.
This is what we were told.

The next statement of “there are 10 more blue marbles as red” can be
written as either

b = r + 10 or r = b+ 10.
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Which is it?
The first equation says that if we take the number of red marbles, then

add 10, we’ll have the number of blue marbles. This is what we were told.
The next equation is wrong; it implies there are more red marbles than
blue.

The final statement tells us that the sum of the red and yellow mar-
bles is the same as the sum of the blue and green marbles, giving us the
equation

r + y = b+ g.

We have four equations; altogether, they are

b+ g + r + y = 100

2b = y

b = r + 10

r + y = b+ g.

We want to write these equations in a standard way, with all the un-
knowns on the left and the constants on the right. Let us also write them
so that the variables appear in the same order in each equation (we’ll use
alphabetical order to make it simple). We now have

b+ g + r + y = 100

2b− y = 0

b− r = 10

−b− g + r + y = 0

To find the solution, let’s form the appropriate augmented matrix and
put it into reduced row echelon form. We do so here, without showing the
steps. 

1 1 1 1 100
2 0 0 −1 0
1 0 −1 0 10
−1 −1 1 1 0

 −→rref


1 0 0 0 20
0 1 0 0 30
0 0 1 0 10
0 0 0 1 40


We interpret from the reduced row echelon form of the matrix that we

have 20 blue, 30 green, 10 red and 40 yellow marbles.

Even if you had a bit of difficulty with the previous example, in reality,
this type of problem is pretty simple. The unknowns were easy to identify,
the equations were pretty straightforward to write (maybe a bit tricky for
some), and only the necessary information was given.

Most problems that we face in the world do not approach us in this way;
most problems do not approach us in the form of “Here is an equation.
Solve it.” Rather, most problems come in the form of:

Here is a problem. I want the solution. To help, here is lots
of information. It may be just enough; it may be too much; it
may not be enough. You figure out what you need; just give
me the solution.

Faced with this type of problem, how do we proceed? Like much of
what we’ve done in the past, there isn’t just one “right” way. However,
there are a few steps that can guide us. You don’t have to follow these
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steps, “step by step,” but if you find that you are having difficulty solv-
ing a problem, working through these steps may help. (Note: while the
principles outlined here will help one solve any type of problem, these
steps are written specifically for solving problems that involve only linear
equations.)

Key Idea 4.5.1 Mathematical Problem Solving

1. Understand the problem. What exactly is being asked?

2. Identify the unknowns. What are you trying to find? What
units are involved?

3. Give names to your unknowns (these are your variables).

4. Use the information given to write as many equations as you
can that involve these variables.

5. Use the equations to form an augmented matrix; use Gaussian
elimination to put the matrix into reduced row echelon form.

6. Interpret the reduced row echelon form of the matrix to iden-
tify the solution.

7. Ensure the solution makes sense in the context of the problem.

Having identified some steps, let us put them into practice with some
examples.

Example . . Arranging seating
A concert hall has seating arranged in three sections. As part of a special
promotion, guests will receive two of three prizes. Guests seated in the
first and second sections will receive Prize A, guests seated in the second
and third sections will receive Prize B, and guests seated in the first and
third sections will receive Prize C. Concert promoters told the concert hall
managers of their plans, and asked how many seats were in each section.
(The promoters want to store prizes for each section separately for easier
distribution.) The managers, thinking they were being helpful, told the
promoters they would need 105 A prizes, 103 B prizes, and 88 C prizes,
and have since been unavailable for further help. How many seats are in
each section?

Solution Before we rush in and start making equations, we should
be clear about what is being asked. The final sentence asks: “How many
seats are in each section?” This tells us what our unknowns should be:
we should name our unknowns for the number of seats in each section.
Let x1, x2 and x3 denote the number of seats in the first, second and
third sections, respectively. This covers the first two steps of our general
problem solving technique.

(It is tempting, perhaps, to name our variables for the number of prizes
given away. However, when we think more about this, we realize that we
already know this – that information is given to us. Rather, we should
name our variables for the things we don’t know.)

Having our unknowns identified and variables named, we now proceed
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to forming equations from the information given. Knowing that Prize A
goes to guests in the first and second sections and that we’ll need 105 of
these prizes tells us

x1 + x2 = 105.

Proceeding in a similar fashion, we get two more equations,

x2 + x3 = 103 and x1 + x3 = 88.

Thus our linear system is

x1 + x2 = 105
x2 + x3 = 103
x1 + x3 = 88

and the corresponding augmented matrix is1 1 0 105
0 1 1 103
1 0 1 88

 .

To solve our system, let’s put this matrix into reduced row echelon
form. 1 1 0 105

0 1 1 103
1 0 1 88

 −→rref

1 0 0 45
0 1 0 60
0 0 1 43


We can now read off our solution. The first section has 45 seats, the

second has 60 seats, and the third has 43 seats.

Example . . Determining river speed
A lady takes a 2-mile motorized boat trip down the Highwater River,
knowing the trip will take 30 minutes. She asks the boat pilot “How fast
does this river flow?” He replies “I have no idea, lady. I just drive the
boat.”

She thinks for a moment, then asks “How long does the return trip
take?” He replies “The same; half an hour.” She follows up with the
statement, “Since both legs take the same time, you must not drive the
boat at the same speed.”

“Naw,” the pilot said. “While I really don’t know exactly how fast I
go, I do know that since we don’t carry any tourists, I drive the boat twice
as fast.”

The lady walks away satisfied; she knows how fast the river flows.
(How fast does it flow?)

Solution This problem forces us to think about what information
is given and how to use it to find what we want to know. In fact, to find
the solution, we’ll find out extra information that we weren’t asked for!

We are asked to find how fast the river is moving (step 1). To find this,
we should recognize that, in some sense, there are three speeds at work in
the boat trips: the speed of the river (which we want to find), the speed
of the boat, and the speed that they actually travel at.

We know that each leg of the trip takes half an hour; if it takes half an
hour to cover 2 miles, then they must be travelling at 4 mph, each way.

The other two speeds are unknowns, but they are related to the overall
speeds. Let’s call the speed of the river r and the speed of the boat b.
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(And we should be careful. From the conversation, we know that the boat
travels at two different speeds. So we’ll say that b represents the speed
of the boat when it travels downstream, so 2b represents the speed of the
boat when it travels upstream.) Let’s let our speed be measured in the
units of miles/hour (mph) as we used above (steps 2 and 3).

What is the rate of the people on the boat? When they are travelling
downstream, their rate is the sum of the water speed and the boat speed.
Since their overall speed is 4 mph, we have the equation r + b = 4.

When the boat returns going against the current, its overall speed is
the rate of the boat minus the rate of the river (since the river is working
against the boat). The overall trip is still taken at 4 mph, so we have the
equation 2b−r = 4. (Recall: the boat is travelling twice as fast as before.)

The corresponding augmented matrix is[
1 1 4
2 −1 4

]
.

Note that we decided to let the first column hold the coefficients of b.
Putting this matrix in reduced row echelon form gives us:[

1 1 4
2 −1 4

]
−→rref

[
1 0 8/3
0 1 4/3

]
.

We finish by interpreting this solution: the speed of the boat (going
downstream) is 8/3 mph, or 2.6 mph, and the speed of the river is 4/3
mph, or 1.3 mph. All we really wanted to know was the speed of the river,
at about 1.3 mph.
Example . . Fitting a quadratic curve
Find the equation of the quadratic function that goes through the points
(−1, 6), (1, 2) and (2, 3).

Solution This may not seem like a “linear” problem since we are
talking about a quadratic function, but closer examination will show that
it really is.

We normally write quadratic functions as y = ax2 + bx + c where a,
b and c are the coefficients; in this case, they are our unknowns. We
have three points; consider the point (−1, 6). This tells us directly that
if x = −1, then y = 6. Therefore we know that 6 = a(−1)2 + b(−1) + c.
Writing this in a more standard form, we have the linear equation

a− b+ c = 6.

The second point tells us that a(1)2 + b(1) + c = 2, which we can
simplify as a+ b+ c = 2, and the last point tells us a(2)2 + b(2) + c = 3,
or 4a+ 2b+ c = 3. Thus our linear system is

a− b+ c = 6
a+ b+ c = 2

4a+ 2b+ c = 3.

Again, to solve our system, we find the reduced row echelon form of
the corresponding augmented matrix. We don’t show the steps here, just
the final result.1 −1 1 6

1 1 1 2
4 2 1 3

 −−−→rref

1 0 0 1
0 1 0 −2
0 0 1 3
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This tells us that a = 1, b = −2 and c = 3, giving us the quadratic
function y = x2 − 2x+ 3.

One thing interesting about the previous example is that it confirms
for us something that we may have known for a while (but didn’t know
why it was true). Why do we need two points to find the equation of the
line? Because in the equation of the a line, we have two unknowns, and
hence we’ll need two equations to find values for these unknowns.

A quadratic has three unknowns (the coefficients of the x2 term and
the x term, and the constant). Therefore we’ll need three equations, and
therefore we’ll need three points.

What happens if we try to find the quadratic function that goes through
3 points that are all on the same line? The fast answer is that you’ll get
the equation of a line; there isn’t a quadratic function that goes through
3 colinear points. Try it and see! (Pick easy points, like (0, 0), (1, 1) and
(2, 2). You’ll find that the coefficient of the x2 term is 0.)

Of course, we can do the same type of thing to find polynomials that
go through 4, 5, etc., points. In general, if you are given n + 1 points, a
polynomial that goes through all n+ 1 points will have degree at most n.

Example . . A money counting problem
A woman has 32 $1, $5 and $10 bills in her purse, giving her a total of
$100. How many bills of each denomination does she have?

Solution Let’s name our unknowns x, y and z for our ones, fives
and tens, respectively (it is tempting to call them o, f and t, but o looks
too much like 0). We know that there are a total of 32 bills, so we have
the equation

x+ y + z = 32.

We also know that we have $100, so we have the equation

x+ 5y + 10z = 100.

We have three unknowns but only two equations, so we know that we
cannot expect a unique solution. Let’s try to solve this system anyway
and see what we get.

Putting the system into a matrix and then finding the reduced row
echelon form, we have[

1 1 1 32

1 5 10 100

]
−→rref

[
1 0 − 5

4 15

0 1 9
4 17

]
.

Reading from our reduced matrix, we have the infinite solution set

x = 15 +
5

4
z

y = 17− 9

4
z

z is free.

While we do have infinite solutions, most of these solutions really don’t
make sense in the context of this problem. (Setting z = 1

2 doesn’t make
sense, for having half a ten dollar bill doesn’t give us $5. Likewise, having
z = 8 doesn’t make sense, for then we’d have “−1” $5 bills.) So we must
make sure that our choice of z doesn’t give us fractions of bills or negative
amounts of bills.
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To avoid fractions, z must be a multiple of 4 (−4, 0, 4, 8, . . .). Of course,
z ≥ 0 for a negative number wouldn’t make sense. If z = 0, then we have
15 one dollar bills and 17 five dollar bills, giving us $100. If z = 4, then
we have x = 20 and y = 8. We already mentioned that z = 8 doesn’t
make sense, nor does any value of z where z ≥ 8.

So it seems that we have two answers; one with z = 0 and one with
z = 4. Of course, by the statement of the problem, we are led to believe
that the lady has at least one $10 bill, so probably the “best” answer is
that we have 20 $1 bills, 8 $5 bills and 4 $10 bills. The real point of this
example, though, is to address how infinite solutions may appear in a real
world situation, and how surprising things may result.

Example . . Recreating a football score
In a football game, teams can score points through touchdowns worth 6
points, extra points (that follow touchdowns) worth 1 point, two point
conversions (that also follow touchdowns) worth 2 points and field goals,
worth 3 points. You are told that in a football game, the two compet-
ing teams scored on 7 occasions, giving a total score of 24 points. Each
touchdown was followed by either a successful extra point or two point
conversion. In what ways were these points scored?

Solution The question asks how the points were scored; we can
interpret this as asking how many touchdowns, extra points, two point
conversions and field goals were scored. We’ll need to assign variable
names to our unknowns; let t represent the number of touchdowns scored;
let x represent the number of extra points scored, let w represent the
number of two point conversions, and let f represent the number of f ield
goals scored.

Now we address the issue of writing equations with these variables
using the given information. Since we have a total of 7 scoring occasions,
we know that

t+ x+ w + f = 7.

The total points scored is 24; considering the value of each type of scoring
opportunity, we can write the equation

6t+ x+ 2w + 3f = 24.

Finally, we know that each touchdown was followed by a successful extra
point or two point conversion. This is subtle, but it tells us that the
number of touchdowns is equal to the sum of extra points and two point
conversions. In other words,

t = x+ w.

To solve our problem, we put these equations into a matrix and put
the matrix into reduced row echelon form. Doing so, we find1 1 1 1 7

6 1 2 3 24
1 −1 −1 0 0

 −→rref

1 0 0 0.5 3.5
0 1 0 1 4
0 0 1 −0.5 −0.5

 .

Therefore, we know that

t = 3.5− 0.5f

x = 4− f

w = −0.5 + 0.5f.
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We recognize that this means there are “infinite solutions,” but of course
most of these will not make sense in the context of a real football game.
We must apply some logic to make sense of the situation.

Progressing in no particular order, consider the second equation, x =
4− f . In order for us to have a positive number of extra points, we must
have f ≤ 4. (And of course, we need f ≥ 0, too.) Therefore, right away
we know we have a total of only 5 possibilities, where f = 0, 1, 2, 3 or 4.

From the first and third equations, we see that if f is an even number,
then t and w will both be fractions (for instance, if f = 0, then t =
3.5) which does not make sense. Therefore, we are down to two possible
solutions, f = 1 and f = 3.

If f = 1, we have 3 touchdowns, 3 extra points, no two point con-
versions, and (of course), 1 field goal. (Check to make sure that gives
24 points!) If f = 3, then we 2 touchdowns, 1 extra point, 1 two point
conversion, and (of course) 3 field goals. Again, check to make sure this
gives us 24 points. Also, we should check each solution to make sure that
we have a total of 7 scoring occasions and that each touchdown could be
followed by an extra point or a two point conversion.

We have seen a variety of applications of systems of linear equations.
We would do well to remind ourselves of the ways in which solutions to
linear systems come: there can be exactly one solution, infinite solutions,
or no solutions. While we did see a few examples where it seemed like we
had only 2 solutions, this was because we were restricting our solutions to
“make sense” within a certain context.

We should also remind ourselves that linear equations are immensely
important. The examples we considered here ask fundamentally simple
questions like “How fast is the water moving?” or “What is the quadratic
function that goes through these three points?” or “How were points in
a football game scored?” The real “important” situations ask much more
difficult questions that often require thousands of equations! (Gauss began
the systematic study of solving systems of linear equations while trying to
predict the next sighting of a comet; he needed to solve a system of linear
equations that had 17 unknowns. Today, this a relatively easy situation
to handle with the help of computers, but to do it by hand is a real pain.)
Once we understand the fundamentals of solving systems of equations, we
can move on to looking at solving bigger systems of equations; this text
focuses on getting us to understand the fundamentals.

Span and linear independence

We mentioned in Section 3.7 that the techniques of this chapter were
necessary to answer questions about vectors, including those involving
span and linear independence. We complete this section by including a
few examples involving these concepts.
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Example . . Determining which vectors belong to a span

Let v⃗1 =

 1
−2
0

, v⃗2 =

34
8

, and v⃗3 =

 3
−1
4

. Determine which of the

following vectors can be written as a linear combination of the vectors v⃗1,
v⃗2, v⃗3.

1. a⃗ =

 2
−14
−8

 2. b⃗ =

 1
0
−4

 3. c⃗ =

−4
3
1



Solution Put another way, this problem is asking us which, if
any, of the vectors a⃗, b⃗, c⃗ belong to the span of the vectors v⃗1, v⃗2, v⃗3.
Recall that

a⃗ ∈ span{v⃗1, v⃗2, v⃗3}
if and only if there exist scalars x1, x2, x3 such that

x1v⃗1 + x2v⃗2 + x3v⃗3 = a⃗.

Plugging in values for our vectors, we are trying to solve

x1

 1
−2
0

+ x2

34
8

+ x3

 3
−1
4

 =

 2
−14
−8

 .

If we combine the vectors on the left-hand side above into a single vector
and equate coefficients, we obtain the system

x1 + 3x2 + 3x3 = 2
−2x1 + 4x2 − x3 = −14

8x2 + 4x3 = −8

We now what to do from here: we set up our augmented matrix and
reduce:  1 3 3 2

−2 4 −1 −14

0 8 4 −8

 −→rref

1 0 3
2 5

0 1 1
2 −1

0 0 0 0

 .

The reduced row echelon form of our matrix tells us that there are infinitely
many solutions; in particular, there is a solution. Our general solution is

x1 = 5− 3

2
t

x2 = −1− 1

2
t

x3 = t,

but any particular solution will do. Taking t = 0, we get x1 = 5, x2 = −1,
and x3 = 0, telling us that

a⃗ = 5v⃗1 − v⃗2 + 0v⃗3.

The reader is encouraged to verify that this is indeed the case.
For the vector b⃗, we proceed as above. It should be clear that the

system of equations we obtain differs from the one above only in the



Note: In Section 4.6, we’ll start writ-
ing our solutions to linear systems in
vector form, and doing so gives us ad-
ditional insight into what’s going on
when there are infinitely many solu-
tions. We see something of a preview
in Example 4.5.7. The parameter t
resulted because the vectors v⃗1, v⃗2,
and v⃗3 were not linearly independent:
we don’t really need the variable x3

since the vector v⃗3 is redundant. In
general, we will end up with one or
more parameters in a consistent sys-
tem whenever the columns of the co-
efficient matrix are not linearly inde-
pendent.
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constants on the right-hand side (since these are defined by the vector b⃗),
so we can proceed by replacing the right-hand column in our augmented
matrix above by the vector b⃗, and reducing: 1 3 3 1

−2 4 −1 0

0 8 4 −4

 −→rref

1 0 3
2

2
5

0 1 1
2

1
5

0 0 0 − 7
10

 .

This time, we see that the third row in the reduced row echelon form of
our augmented matrix corresponds to the impossible equation 0 = − 7

10 ,
so no solution exists. This means that it is impossible to find scalars x1,
x2, x3 such that

b⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3,

and therefore the vector b⃗ cannot be written as a linear combination of
the vectors v⃗1, v⃗2, and v⃗3.

The solution for the vector c⃗ is similar. We replace the right-hand
column in our augmented matrix by c⃗ and reduce: 1 3 3 −4

−2 4 −1 3

0 8 4 1

 −→rref

1 0 3
2 − 5

2

0 1 1
2 − 1

2

0 0 0 5
8

 .

Again, the third row in the reduced row echelon form of our augmented
matrix tells us that our system of equations is inconsistent, and therefore,
the vector c⃗ does not belong to the span of the vectors v⃗1, v⃗2, and v⃗3.

Let us make a couple of observations before proceeding to the next
example. First, let us write out the result for the vector a⃗ using the
general solution, written in terms of the parameter t, and manipulate
things a bit:

a⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3

=

(
5− 3

2
t

)
v⃗1 +

(
−1− 1

2
t

)
v⃗3 + tv⃗3

= 5v⃗1 − v⃗2 + t

(
v⃗3 −

3

2
v⃗1 −

1

2
v⃗2

)
.

Setting t = 0 gives us the particular solution we chose. What happens if
we choose other values of t? Well, nothing happens to the left-hand side
of the equation above, so it must be that nothing happens on the right
either. How can this be? Look at the vector in parentheses: we have

v⃗3 −
3

2
v⃗1 −

1

2
v⃗2 =

 3
−1
4

− 3

2

34
8

+
1

2

 3
−1
4

 =

00
0

!
Of course nothing happens: choosing different values for t simply means
we’re adding different multiples of the zero vector to our particular solu-
tion!

The other thing to note, now that we’ve done a few examples, is that
once we have our vectors, we can jump straight to our augmented matrix,
since the columns of this matrix are simply the vectors we started with.
It’s important to do it once the long way, however, so that we understand
where everything is coming from. (Otherwise, you’ll find yourself staring
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at the solution to a system, and having no idea what that solution is telling
you!)

On the subject of saving time, if you went through the row operations
for each of the vectors above (if you didn’t, maybe you should: working
through the examples is good practice if you haven’t yet got the hang of
row operations), you probably noticed that you used the exact same row
operations for each of the three vectors. This is because the row operations
in an augmented matrix [A|⃗b] are dictated by the matrix A, and not by
the vector b⃗. With this observation in place, we can speed things up
considerably by solving the problem for all three vectors at once. We
simply set up and reduce an augmented matrix with three columns on the
right, like so: 1 3 3 2 1 −4

−2 4 −1 −14 0 3

0 8 4 −8 −4 1

 −→rref

 1 0 3
2 5 2

5 − 5
2

0 1 1
2 −1 1

5 − 1
2

0 0 0 0 − 7
10

5
8

 .

If we then consider each column on the right of the reduced row echelon
form separately, we obtain the same results as before.

We conclude this section with a pair of examples involving linear in-
dependence.
Example . . Determining linear independence
Determine whether or not the vectors

v⃗1 =

 1
−3
4

 , v⃗2 =

−2
1
−3

 , v⃗3 =

 2
0
−1


are linearly independent.

Solution We test for linear independence by setting up and solv-
ing Equation ( . ): we suppose that there exist scalars x1, x2, x3 such that

x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗,

and determine what values of x1, x2, x3 are possible. Putting in our vectors
we have

x1

 1
−3
4

+ x2

−2
1
−3

+ x3

 2
0
−1

 =

x1 − 2x2 + 2x3

−3x1 + 2x2

4x1 − 3x2 − x3

 =

00
0

 ,

leading to the system of linear equations

x1 − 2x2 + 2x3 = 0
−3x1 + 2x2 = 0
4x1 − 3x2 − z3 = 0

.

As with the examples involving span above, we end up with a system
of linear equations. As we’ll see in Section 4.6, this is an example of a
homogeneous system of equations. Any problem involving linear indepen-
dence results in such a system, and as you’ve probably already noticed, we
don’t need to worry about whether or not the system is consistent. The
so-called trivial solution x1 = x2 = x3 = 0 is always a possibility. With
linear independence, we don’t care about whether a solution exists; what
we want to know is whether or not that solution is unique.
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Since a homogeneous system is, after all, a linear system, we know how
to proceed: set up the corresponding augmented matrix and reduce. 1 −2 2 0

−3 1 0 0
4 −3 −1 0

 −→rref

1 0 0 0
0 1 0 0
0 0 1 0


From the reduced row echelon form of the augmented matrix, we can see
that our system has the unique solution x1 = x2 = x3 = 0. Since this is
the only possible solution, we can conclude that our vectors are linearly
independent.

Example . . Determining linear independence
Determine whether the vectors

w⃗1 =

 2
−3
1

 , w⃗2 =

30
4

 , w⃗3 =

 1
12
8


in R3 are linearly independent.

Solution As with Example 4.5.8, we know that Equation ( . )
leads to a system of linear equations with zeros on the right-hand sides,
and the vectors w⃗1, w⃗2, w⃗3 make up the columns on the left of the corre-
sponding augmented matrix. We find 2 3 1 0

−3 0 12 0
1 4 8 0

 −→rref

1 0 −4 0
0 1 3 0
0 0 0 0

 .

In this case, lack of leading 1 in the x3 column of the reduced row echelon
form of the augmented matrix tells us that we should expect infinitely
many solutions. Setting x3 = t as a free parameter, we have

x1 = 4t

x2 = −3t

x3 = t.

Choosing any value of t ̸= 0 gives us a non-trivial solution. For example,
setting t = 1 gives us 4w⃗1 − 3w⃗2 + w⃗3 = 0⃗, so w⃗3 can be written as the
linear combination

w⃗3 = −4w⃗1 + 3w⃗2,

which shows that the given vectors are not linearly independent.

In these last examples we’ve started to explore the connection between
vectors and systems of linear equations. We’ll continue to do so in the
next section, where we begin to write our solutions in vector form.



Exercises 4.5
Problems
In Exercises – , find the solu on of the given problem by:
(a) crea ng an appropriate system of linear equa ons
(b) forming the augmented matrix that corresponds to this

system
(c) pu ng the augmented matrix into reduced row echelon

form
(d) interpre ng the reduced row echelon form of the matrix

as a solu on

. A farmer looks out his window at his chickens and pigs. He
tells his daughter that he sees heads and legs. How
many chickens and pigs does the farmer have?

. A lady buys trinkets at a yard sale. The cost of each trin-
ket is either . or . . If she spends . , howmany
of each type of trinket does she buy?

. A carpenter can make two sizes of table, grande and ven .
The grande table requires table legs and table top; the
ven requires table legs and table tops. A er doing
work, he counts up spare parts in his warehouse and real-
izes that he has table tops le over, and legs. How
many tables of each kind can he build and use up exactly all
of his materials?

. A jar contains marbles. We know there are twice as
many green marbles as red; that the number of blue and
yellow marbles together is the same as the number of
green; and that three mes the number of yellow marbles
together with the red marbles gives the same numbers as
the blue marbles. Howmany of each color of marble are in
the jar?

. A rescue mission has sandwiches, bags of chips and
cookies. They know from experience that men will eat

sandwiches, bag of chips and cookies; women will eat
sandwich, a bag of chips and cookies; kids will eat half
a sandwhich, a bag of chips and cookies. If they want to
use all their food up, how many men, women and kids can
they feed?

In Exercises – , find the polynomial with the smallest de-
gree that goes through the given points.

. (1, 3) and (3, 15)

. (−2, 14) and (3, 4)

. (1, 5), (−1, 3) and (3,−1)

. (−4,−3), (0, 1) and (1, 4.5)

. (−1,−8), (1,−2) and (3, 4)

. (−3, 3), (1, 3) and (2, 3)

. (−2, 15), (−1, 4), (1, 0) and (2,−5)

. (−2,−7), (1, 2), (2, 9) and (3, 28)

. (−3, 10), (−1, 2), (1, 2) and (2, 5)

. (0, 1), (−3,−3.5), (−2,−2) and (4, 7)

. The general exponen al func on has the form f(x) =
aebx, where a and b are constants and e is Euler’s constant
(≈ . ). We want to find the equa on of the exponen al
func on that goes through the points (1, 2) and (2, 4).

(a) Show why we cannot simply subsitute in values for x
and y in y = aebx and solve using the techniques we
used for polynomials.

(b) Show how the equality y = aebx leads us to the lin-
ear equa on ln y = ln a+ bx.

(c) Use the techniques we developed to solve for the un-
knowns ln a and b.

(d) Knowing ln a, find a; find the exponen al func on
f(x) = aebx that goes through the points (1, 2) and
(2, 4).

. In a football game, points are scored from scoring occa-
sions. The number of successful extra point kicks is equal
to the number of successful two point conversions. Find
all ways in which the points may have been scored in this
game.

. In a football game, points are scored from scoring oc-
casions. There are more successful extra point kicks than
successful two point conversions. Find all ways inwhich the
points may have been scored in this game.

. In a basketball game, where points are scored either by
a point shot, a point shot or a point free throw,
points were scored from successful shots. Find all ways
in which the points may have been scored in this game.

. In a basketball game, where points are scored either by
a point shot, a point shot or a point free throw,
points were scored from successful shots. Find all ways
in which the points may have been scored in this game.

. Describe the equa ons of the linear func ons that go
through the point ( , ). Give examples.

. Describe the equa ons of the linear func ons that go
through the point ( , ). Give examples.

. Describe the equa ons of the quadra c func ons that go
through the points (2,−1) and ( , ). Give examples.

. Describe the equa ons of the quadra c func ons that go
through the points (−1, 3) and ( , ). Give examples.



In Exercises – , determine whether or not the vector x⃗
belongs to V = span{v⃗1, v⃗2}.

. v⃗1 =

 2
0
−1

, v⃗2 =

−3
2
4

, x⃗ =

−5
6
10



. v⃗1 =

 2
0
−1

, v⃗2 =

−3
2
4

, x⃗ =

 8
−4
−2



. v⃗1 =

 1
3
−2

, v⃗2 =

 0
5
−3

, x⃗ =

34
0



. v⃗1 =

 1
3
−2

, v⃗2 =

 0
5
−3

, x⃗ =

−2
4
−2



In Exercises – , determine whether or not the given vec-
tors are linearly independent.

. v⃗1 =

 1
3
−2

, v⃗2 =

 0
5
−3

, v⃗3 =

−2
4
−2



. v⃗1 =

 1
0
−2

, v⃗2 =

 0
2
−1

, v⃗3 =

−2
1
0



. v⃗1 =

11
1

, v⃗2 =

20
3

, v⃗3 =

01
2



. v⃗1 =

12
3

, v⃗2 =

32
1

, v⃗3 =

−3
2
7
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. Vector Solu ons to Linear Systems
AS YOU READ . . .

1. T/F: The equation Ax⃗ = b⃗ is just another way of writing a system
of linear equations.

2. T/F: In solving Ax⃗ = ⃗ , if there are 3 free variables, then the solution
will be “pulled apart” into 3 vectors.

3. T/F: A homogeneous system of linear equations is one in which all
of the coefficients are 0.

4. Whether or not the equation Ax⃗ = b⃗ has a solution depends on an
intrinsic property of .

So far in this chapter, we’ve learned a systematic method for solving
systems of linear equations. Some of the applied examples we considered
in the previous section led naturally to systems of equations, and had solu-
tions that were best interpreted in that context. Other examples, such as
those involving span and linear independence, were stated in terms of vec-
tors. In this section, we discuss how to write a system of linear equations
in terms of vectors and matrices, and express solutions as vectors.

Expressing the solutions of linear systems in terms of vectors will give
us additional insight into the behaviour of those systems, and provides a
stepping-off point for the study of the algebra of matrices.

We have often relied on previous algebra experience to help us un-
derstand linear algebra concepts. We do that again here. Consider the
equation ax = b, where a = 3 and b = 6. If we asked one to “solve for
x,” what exactly would we be asking? We would want to find a number,
which we call x, where a times x gives b; in this case, it is a number,
when multiplied by 3, returns 6. As long as a ̸= 0 (what if a does equal
zero?), we know that we can multiply both sides of the equation by 1

a to
get x = 1

a (b) =
b
a .

Consider a general system of linear equations, of the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

( . )

Notice that the information we place into our augmented matrix can be
divided into two pieces: the coefficient matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


and the column vector

b⃗ =


b1
b2
...
bm

 .
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Moreover, instead of writing our solution as a list (x1 =, x2 = . . .), we can
arrange our variables into a vector

x⃗ =


x1

x2

...
xn

 ,

and express our solution as a single vector rather than a list of numbers.
To create an analogy with the single variable equation ax = b, we ask:

Is there a way to define the product Ax⃗ of a matrix and a column vector
in such a way that the system ( . ) can be written in the form

Ax⃗ = b⃗?

Fortunately for us, the answer is yes! Even better, we’ll see that the defini-
tion we give here turns out to be a special case (and motivating example)
for the general definition of matrix multiplication given in Section 5.2.

The definition of the product Ax⃗ is straightforward. We want the
result to be a column vector of size m (that is, with m entries), so that we
can set it equal to the column vector b⃗. Furthermore, each entry in b⃗ is
the right-hand side of an equation in ( . ), so we want the corresponding
entry in Ax⃗ to be the left-hand side. We are immediately forced to adopt
the following rule:

Definition 4.6.1 The product Ax⃗

The product of the matrix A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 and the

vector x⃗ =


x1

x2

...
xn

 is given by

Ax⃗ =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

A few remarks about Definition 4.6.1 are needed here. First, note that
the number of columns in the matrix A matches the number of entries in
the vector x⃗, and the number of rows in A matches the number of entries
in the vector b⃗. Moreover,

The ith entry in the vector Ax⃗ is obtained by forming the dot
product of row i in the matrix A (viewed as a vector in Rn)
with the vector x⃗.

That is, since each row of A has n entries, as does the vector x⃗, we
can form the dot product of x⃗ with any of the rows of A. Each such dot
product forms the corresponding entry in the vector Ax⃗.
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To help understand what this is asking, we’ll consider an example. Let

A =

 1 1 1
1 −1 2
2 0 1

 , b⃗ =

 2
−3
1

 and x⃗ =

 x1

x2

x3

 .

(We don’t know what x⃗ is, so we have to represent its entries with the
variables x1, x2 and x3.) Let’s “solve for x⃗,” given the equation Ax⃗ = b⃗.

We multiply out the left hand side of this equation according to Defi-
nition 4.6.1. The first row of A is the row vector a⃗1 =

[
1 1 1

]
. Treating

this as a column vector, we form the dot product with x⃗, giving us

a⃗1 · x⃗ = x1 + x2 + x3.

Similarly, letting a⃗2 and a⃗3 denote the second and third rows of A, respec-
tively, we find

a⃗2 · x⃗ = x1 − x2 + 2x3

a⃗3 · x⃗ = 2x1 + x3.

Putting things together, we find that

Ax⃗ =

 x1 + x2 + x3

x1 − x2 + 2x3

2x1 + x3

 .

Be sure to note that the product is just a vector; it has just one column.
Setting Ax⃗ is equal to b⃗, we have x1 + x2 + x3

x1 − x2 + 2x3

2x1 + x3

 =

 2
−3
1

 .

Since two vectors are equal only when their corresponding entries are
equal, we know

x1 + x2 + x3 = 2

x1 − x2 + 2x3 = −3

2x1 + x3 = 1.

This should look familiar; it is a system of linear equations! Given
the matrix-vector equation Ax⃗ = b⃗, we can recognize A as the coefficient
matrix from a linear system and b⃗ as the vector of the constants from the
linear system. Given a system of equations, rewriting it in matrix form is
equally straightforward.

To solve a matrix–vector equation (and the corresponding linear sys-
tem), we simply augment the matrix A with the vector b⃗, put this matrix
into reduced row echelon form, and interpret the results.

We convert the above linear system into an augmented matrix and find
the reduced row echelon form:1 1 1 2

1 −1 2 −3
2 0 1 1

 −→rref

1 0 0 1
0 1 0 2
0 0 1 −1

 .

This tells us that x1 = 1, x2 = 2 and x3 = −1, so

x⃗ =

 1
2
−1

 .



Chapter Systems of Linear Equa ons

We should check our work; multiply out Ax⃗ and verify that we indeed
get b⃗:  1 1 1

1 −1 2
2 0 1

 1
2
−1

 does equal

 2
−3
1

 .

Example . . Solving a matrix equation
Solve the equation Ax⃗ = b⃗ for x⃗ where

A =

 1 2 3
−1 2 1
1 1 0

 and

 5
−1
2

 .

Solution The solution is rather straightforward, even though we
did a lot of work before to find the answer. Form the augmented matrix[
A b⃗

]
and interpret its reduced row echelon form. 1 2 3 5

−1 2 1 −1
1 1 0 2

 −→rref

1 0 0 2
0 1 0 0
0 0 1 1


In previous sections we were fine stating that the result as

x1 = 2, x2 = 0, x3 = 1,

but we were asked to find x⃗; therefore, we state the solution as

x⃗ =

 2
0
1

 .

This probably seems all well and good. While asking one to solve the
equation Ax⃗ = b⃗ for x⃗ seems like a new problem, in reality it is just asking
that we solve a system of linear equations. Our variables x1, etc., appear
not individually but as the entries of our vector x⃗. We are simply writing
an old problem in a new way.

In line with this new way of writing the problem, we have a new way
of writing the solution. Instead of listing, individually, the values of the
unknowns, we simply list them as the elements of our vector x⃗.

These are important ideas, so we state the basic principle once more:
solving the equation Ax⃗ = b⃗ for x⃗ is the same thing as solving a linear
system of equations. Equivalently, any system of linear equations can be
written in the form Ax⃗ = b⃗ for some matrix A and vector b⃗.

Since these ideas are equivalent, we’ll refer to Ax⃗ = b⃗ both as a matrix–
vector equation and as a system of linear equations: they are the same
thing.

We’ve seen two examples illustrating this idea so far, and in both cases
the linear system had exactly one solution. We know from Theorem 4.4.1
that any linear system has either one solution, infinitely many solutions,
or no solution. So how does our new method of writing a solution work
with infinitely many solutions and no solutions?

Certainly, if Ax⃗ = b⃗ has no solution, we simply say that the linear
system has no solution. There isn’t anything special to write. So the
only other option to consider is the case where we have infinitely many
solutions. We’ll learn how to handle these situations through examples.



Note: Our convention is always that
0⃗ denotes the vector of the appropri-
ate size whose entries are all zero, so
we didn’t really need to specify that
⃗ =

[
0
0

]
, but we did just to elimi-

nate any uncertainty.

. Vector Solu ons to Linear Systems

Example . . Finding the vector solution to a linear system
Solve the linear system Ax⃗ = ⃗ for x⃗ and write the solution in vector
form, where

A =

[
1 2
2 4

]
and ⃗ =

[
0
0

]
.

Solution
To solve this system, put the augmented matrix into reduced row ech-

elon form, which we do below.[
1 2 0
2 4 0

]
−→rref

[
1 2 0
0 0 0

]
We interpret the reduced row echelon form of this matrix to write the

solution as

x1 = −2t

x2 = t is free.

We are not done; we need to write the solution in vector form, for our
solution is the vector x⃗. Recall that

x⃗ =

[
x1

x2

]
.

From above we know that x1 = −2x2, where x2 = t, so we replace the x1

in x⃗ with −2t and replace x2 by t. This gives our solution as

x⃗ =

[
−2t
t

]
.

Note that we can now pull the t out of the vector (it is just a scalar) and
write x⃗ as

x⃗ = t

[
−2
1

]
.

For convenience, if we set
v⃗ =

[
−2
1

]
,

then our solution can be simply written as

x⃗ = tv⃗.

Recall that since our system was consistent and had a free variable, we
have infinitely many solutions. This form of the solution highlights this
fact; pick any value for t and we get a different solution.

For instance, by setting t = −1, 0, and 5, we get the solutions

x⃗ =

[
2
−1

]
,

[
0
0

]
, and

[
−10
5

]
,

respectively.
We should check our work; multiply each of the above vectors by A to

see if we indeed get ⃗ . Or, we can save ourselves some time and check the
general solution. We have

Ax⃗ = A(tv⃗) = t(Av⃗) = t

[
1 2
2 4

] [
−2
1

]
= t

[
0
0

]
=

[
0
0

]



x

y

v⃗

Figure . . : The solu on, as a line, to
Ax⃗ = ⃗ in Example . . .
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for every value of t.
We have officially solved this problem; we have found the solution to

Ax⃗ = ⃗ and written it properly. One final thing we will do here is graph
the solution, using our skills learned in the previous section.

Our solution is
x⃗ = x2

[
−2
1

]
.

This means that any scalar multiply of the vector v⃗ =

[
−2
1

]
is a solution;

we know how to sketch the scalar multiples of v⃗. This is done in Figure
4.6.1.

Here vector v⃗ is drawn as well as the line that goes through the origin
in the direction of v⃗. Any vector along this line is a solution. So in some
sense, we can say that the solution to Ax⃗ = ⃗ is a line.

A few comments are in order here. First, matrix equations (or the cor-
responding system of linear equations) such as the above where the vector
on the right-hand side is the zero vector form a special case that is im-
portant enough to have its own name: these are known as homogeneous
systems of equations. The formal definition is as follows.

Definition 4.6.2 Homogeneous Linear System of Equa-
tions

A system of linear equations is homogeneous if the constants in
each equation are zero.

Note: a homogeneous system of equations can be written in vector
form as Ax⃗ = ⃗ .

The term homogeneous comes from two Greek words; homo meaning
“same” and genus meaning “type.” A homogeneous system of equations is
a system in which each equation is of the same type – all constants are 0.

Notice that the line x⃗ = tv⃗ in the solution of Example 4.6.2 above
passes through the origin. This is an important characteristic of homoge-
neous systems: since A0⃗ = 0⃗ for any matrix A, we always have (at least)
the solution x⃗ = 0⃗. (We’ll have more to say about this below.)

V = {x⃗ ∈ Rn |Ax⃗ = 0⃗}.

Example . . Determining the solution of a homogeneous sys-
tem
Determine the solution to the system Ax⃗ = 0⃗, where

A =

[
2 −3
−2 3

]
.

Solution We proceed exactly as we did in Example 4.6.2, by form-
ing the proper augmented matrix and putting it into reduced row echelon
form, which we do below.[

2 −3 0
−2 3 0

]
−→rref

[
1 −3/2 0
0 0 0

]



x

y

v⃗

Figure . . : The solu on, as a line, to
Ax⃗ = ⃗ in Example . . .
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We interpret the reduced row echelon form of this matrix to find that

x1 = 3/2t

x2 = t is free.

As before, we can say that Ax⃗ = 0⃗ provided that

x⃗ =

[
x1

x2

]
=

[
3
2 t
t

]
= t

[
3
2
1

]
.

If we set
v⃗ =

[
3/2
1

]
,

then our solution can be written as{
tv⃗ | t ∈ R and v⃗ =

[
3/2
1

]}
Again, we have infinitely many solutions to the equation Ax⃗ = 0⃗; any

choice of x2 gives us one of these solutions. For instance, picking x2 = 2
gives the solution

x⃗ =

[
3
2

]
.

This is a particularly nice solution, since there are no fractions! In fact,
since the parameter t can take on any real value, there is nothing prevent-
ing us from defining a new parameter s = t/2, and then

x⃗ = t

[
3/2
1

]
= t

(
1

2

[
3
2

])
=

t

2

[
3
2

]
= s

[
3
2

]
= sw⃗,

where w⃗ = 2v⃗.
As in the previous example, our solutions are multiples of a vector,

and hence we can graph this, as done in Figure 4.6.2.

In the last two examples, we saw that the general solution could be
written in the form x⃗ = tv⃗ for a vector v⃗ such that Av⃗ = 0⃗. Such vectors
are known as the basic solutions to a homogeneous linear system.

Definition 4.6.3 Basic solution

Let Ax⃗ = 0⃗ be a homogeneous linear system of equations with
infinitely many solutions and free variables

xi1 = t1, xi2 = t2, . . . , xik = tk.

The basic solutions to the system Ax⃗ = 0⃗ are the vectors
v⃗1, v⃗2, . . . , v⃗k such that the general solution to the system is given
by

x⃗ = t1v⃗1 + t2v⃗2 + · · ·+ tkv⃗k.

To help clarify Definition 4.6.3, let’s do one more example where we
have more than one basic solution.
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Example . . A homogeneous system with two basic solutions
Find the general solution to the homogeneous system Ax⃗ = 0⃗, where

A =

 1 −2 0 4
3 −1 5 2
−2 −6 −10 12

 .

Solution As usual, to find the basic solutions, we set up the
augmented matrix of the system and reduce: 1 −2 0 4 0

3 −1 5 2 0
−2 −6 −10 12 0

 −→rref

1 0 2 0 0
0 1 1 −2 0
0 0 0 0 0


From the reduced row echelon form of the augmented matrix, we can read
off the following general solution:

x1 = −2s

x2 = −s+ 2t

x3 = s is free
x4 = t is free.

In this case, we have two parameters, so we expect two basic solutions.
To find these, we write our solution in vector form:

x⃗ =


x1

x2

x3

x4

 =


−2s

−s+ 2t
s
t

 = s


−2
−1
1
0

+ t


0
2
0
1

 .

From the above, we see that the general solution can be written as x⃗ =
sv⃗ + tw⃗, where

v⃗ =


−2
−1
1
0

 and w⃗ =


0
2
0
1


are the basic solutions to Ax⃗ = 0⃗.

Let’s practice finding vector solutions again; this time, we won’t solve
a system of the form Ax⃗ = ⃗ , but instead Ax⃗ = b⃗, for some vector b⃗ ̸= 0⃗.
Such systems are known (unsurprisingly) as non-homogeneous systems.

Example . . A non-homogeneous linear system
Solve the linear system Ax⃗ = b⃗, where

A =

[
1 2
2 4

]
and b⃗ =

[
3
6

]
.

Solution (Note that this is the same matrix A that we used in
Example 4.6.2. This will be important later.)

Our methodology is the same as before; we form the augmented matrix
and put it into reduced row echelon form.[

1 2 3
2 4 6

]
−→rref

[
1 2 3
0 0 0

]



x

y

x⃗p

v⃗

Figure . . : The solu on, as a line, to
Ax⃗ = b⃗ in Example . . .
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Interpreting this reduced row echelon form, we find that

x1 = 3− 2t

x2 = t is free.

Putting things into vector form, we have

x⃗ =

[
x1

x2

]
=

[
3− 2t

t

]
.

This solution is different than what we’ve seen in the past two exam-
ples; we can’t simply pull out a t since there is a 3 in the first entry.
Using the properties of matrix addition, we can “pull apart” this vector
and write it as the sum of two vectors: one which contains only constants,
and one that contains only terms involving the parameter t. We do this
below.

x⃗ =

[
3− 2t

t

]
=

[
3
0

]
+

[
−2t
t

]
=

[
3
0

]
+ t

[
−2
1

]
.

Once again, let’s give names to the different component vectors of this
solution (we are getting near the explanation of why we are doing this).
Let

x⃗p =

[
3
0

]
and v⃗ =

[
−2
1

]
.

We can then write our solution in the form

x⃗ = x⃗p + tv⃗.

We still have infinitely many solutions; by picking a value for t we get
one of these solutions. For instance, by letting t = −1, 0, or 2, we get the
solutions [

5
−1

]
,

[
3
0

]
and

[
−1
2

]
.

We have officially solved the problem; we have solved the equation
Ax⃗ = b⃗ for x⃗ and have written the solution in vector form. As an addi-
tional visual aid, we will graph this solution.

Each vector in the solution can be written as the sum of two vectors:
x⃗p and a multiple of v⃗. In Figure 4.6.3, x⃗p is graphed and v⃗ is graphed
with its origin starting at the tip of x⃗p. Finally, a line is drawn in the
direction of v⃗ from the tip of x⃗p; any vector pointing to any point on this
line is a solution to Ax⃗ = b⃗.

Notice that in this case our line does not pass through the origin, so
the set of solutions is not a subspace. On the other hand, every solution to
the system Ax⃗ = b⃗ can be obtained by adding the vector x⃗p to an element
of the set of solutions to the homogeneous system Ax⃗ = 0⃗. We’ll elaborate
on this shortly.

The previous examples illustrate some important concepts. One is that
(at least, when x⃗ ∈ R2 or R3) we can visualize the solution to a system of
linear equations. Before, when we had infinitely many solutions, we knew



Note: Visually, the solutions in Ex-
amples 4.6.2 and 4.6.5 were both
lines; from our experience with Sec-
tion 3.5 we know that this makes
sense, since the solutions involved a
single parameter t. The reader can
similarly expect that a solution in-
volving two parameters can be visual-
ized as a plane. Such was the case in
Example 4.6.4, except that here, our
solution is a plane in R4, making it
somewhat harder to visualize.
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we could arbitrarily pick values for our free variables and get different
solutions. We knew this to be true, and we even practised it, but the
result was not very “tangible.” Now, we can view our solution as a vector;
by picking different values for our free variables, we see this as multiplying
certain important vectors by a scalar which gives a different solution.

Another important concept that these examples demonstrate comes
from the fact that Examples 4.6.2 and 4.6.5 were only “slightly different”
and hence had only “slightly different” answers. Both solutions had

t

[
−2
1

]
in them; in Example 4.6.5 the solution also had another vector added to
this. The addition of the vector x⃗p in Example 4.6.5 is needed to account
for the fact that we were dealing with a non-homogeneous system of linear
equations.

Recall that for a homogeneous system of linear equations, we know that
x⃗ = 0⃗ will be a solution, since no matter what the matrix A is, we can
be certain that A⃗ = ⃗ . This fact is important; the zero vector is always
a solution to a homogeneous linear system. Therefore a homogeneous
system is always consistent; we need only to determine whether we have
exactly one solution (just ⃗) or infinitely many solutions. This idea is
important, so we give it its own box.

Key Idea 4.6.1 Homogeneous Systems and Consistency

All homogeneous linear systems are consistent.

How do we determine if we have exactly one or infinitely many solu-
tions? Recall Key Idea 4.4.1: if the solution has any free variables, then
it will have infinitely many solutions. How can we tell if the system has
free variables? Form the augmented matrix

[
A ⃗

]
, put it into reduced

row echelon form, and interpret the result.
It may seem that we’ve brought up a new question, “When does Ax⃗ =

⃗ have exactly one or infinitely many solutions?” only to answer with
“Look at the reduced row echelon form of A and interpret the results, just
as always.” Why bring up a new question if the answer is an old one?

While the new question has an old solution, it does lead to a great
idea. Let’s refresh our memory; earlier we solved two linear systems,

Ax⃗ = ⃗ and Ax⃗ = b⃗

where
A =

[
1 2
2 4

]
and b⃗ =

[
3
6

]
.

The solution to the first system of equations, Ax⃗ = ⃗ , is

x⃗ = t

[
−2
1

]
= tv⃗

and the solution to the second set of equations, Ax⃗ = b⃗, is

x⃗ =

[
3
0

]
+ t

[
−2
1

]
= x⃗p + tv⃗,
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for all t ∈ R, where x⃗p =

[
3
0

]
and v⃗ =

[
−2
1

]
.

To see why the general solution to Ax⃗ = b⃗ works, note that

Ax⃗p =

[
1 2
2 4

] [
3
0

]
=

[
3
6

]
= b⃗,

so x⃗p is a solution. (The subscript p of “x⃗p” is used to denote that this
vector is a particular solution: see Definition 4.4.3.) What about the
general solution x⃗ = x⃗p + tv⃗? Recalling that Av⃗ = ⃗ , we have

Ax⃗ = A(x⃗p + tv⃗) = Ax⃗p + t(Av⃗)

= b⃗+ t(⃗0) = b⃗,

for any value of t, so there are infinitely many solutions to our system, one
for each t ∈ R. The whole point is that x⃗p itself is a solution to Ax⃗ = b⃗,
and we could find more solutions by adding vectors “that go to zero” when
multiplied by A.

So we wonder: does this mean that Ax⃗ = b⃗ will have infinitely many
solutions? After all, if x⃗p and x⃗p + v⃗ are both solutions, don’t we have
infinitely many solutions?

No. If Ax⃗ = ⃗ has exactly one solution, then v⃗ = ⃗ , and x⃗p = x⃗p + v⃗;
we only have one solution.

So here is the culmination of all of our fun that started a few pages
back. If v⃗ is a solution to Ax⃗ = ⃗ and x⃗p is a solution to Ax⃗ = b⃗, then
x⃗p+v⃗ is also a solution to Ax⃗ = b⃗. If Ax⃗ = ⃗ has infinitely many solutions,
so does Ax⃗ = b⃗; if Ax⃗ = ⃗ has only one solution, so does Ax⃗ = b⃗. This
culminating idea is of course important enough to be stated again.

Key Idea 4.6.2 Solutions of Consistent Systems

Let Ax⃗ = b⃗ be a consistent system of linear equations.

1. If Ax⃗ = ⃗ has exactly one solution (x⃗ = ⃗), then Ax⃗ = b⃗ has
exactly one solution.

2. If Ax⃗ = ⃗ has infinitely many solutions, then Ax⃗ = b⃗ has
infinitely many solutions.

A key word in the above statement is consistent. If Ax⃗ = b⃗ is inconsis-
tent (the linear system has no solution), then it doesn’t matter how many
solutions Ax⃗ = ⃗ has; Ax⃗ = b⃗ has no solution.

We can elaborate on Key Idea 4.6.2 above, as well as Key Idea 4.4.1
from Section 4.4 by introducing one more piece of important terminology.
By now it is probably clear that the leading 1s in the reduced row echelon
form of a matrix play a key role in understanding the system. In fact, it
turns out that we can describe all of the different possibilities for a linear
system in terms of one number: the number of leading 1s in the reduced
row echelon form of a matrix.
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Definition 4.6.4 The rank of a matrix

The rank of a matrix A is denoted by rank(A) and defined as the
number of leading 1s in the reduced row echelon form of A.

Although we do not prove it in this textbook, the reduced row echelon
form of any matrix is unique; it follows from this fact that the rank of a
matrix is a well-defined number. The importance of rank is outlined in
the following result.

Theorem 4.6.1 Rank and solution types

Let A be an m × n matrix. For any linear system Ax⃗ = b⃗ in n
variables, we have the following possibilities:

1. If rank(A) < rank
[
A b⃗

]
, then the system Ax⃗ = b⃗ is incon-

sistent.

2. If rank(A) = rank
[
A b⃗

]
= n (where n is the number of

variables), then the system Ax⃗ = b⃗ has a unique solution.

3. If rank(A) = rank
[
A b⃗

]
=< n, then the system Ax⃗ = b⃗ has

infinitely solutions. Moreover, the general solution to Ax⃗ = b⃗
will involve k parameters, where

k = n− rank(A).

To understand Item 1 above, note that if

rank(A) < rank
[
A b⃗

]
,

then there must be a leading 1 in the right-hand column of the reduced
row echelon form of

[
A b⃗

]
, meaning that we have a row of the form

[
0 0 · · · 0 1

]
,

which is exactly what we expect in a system with no solutions.
Items 2 and 3 in Theorem 4.6.1 simply give another way of stating the

fact that the free variables are those variables that do not have a leading 1
in their column. This seems like an obvious fact, but it is very important.
Indeed, this observation leads to a major theorem, sometimes known as
the Fundamental Theorem of Linear Transformations, or the Rank-Nullity
Theorem.

Let us explore this result with a series of examples.
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Example . . Using matrices and vectors to solve a system of
equations
Rewrite the linear system

x1 + 2x2 − 3x3 + 2x4 + 7x5 = 2
3x1 + 4x2 + 5x3 + 2x4 + 3x5 = −4

as a matrix–vector equation, solve the system using vector notation, and
give the solution to the related homogeneous equations.

Solution Rewriting the linear system in the form of Ax⃗ = b⃗, we
have that

A =

[
1 2 −3 2 7
3 4 5 2 3

]
, x⃗ =


x1

x2

x3

x4

x5

 and b⃗ =

[
2
−4

]
.

To solve the system, we put the associated augmented matrix into reduced
row echelon form and interpret the results.

[
1 2 −3 2 7 2
3 4 5 2 3 −4

]
−→rref

[
1 0 11 −2 −11 −8
0 1 −7 2 9 5

]

x1 = −8− 11r + 2s+ 11t

x2 = 5 + 7r − 2s− 9t

x3 = r is free
x4 = s is free
x5 = t is free

We use this information to write x⃗, again pulling it apart. Since we
have three free variables and also constants, we’ll need to pull x⃗ apart into
four separate vectors.

x⃗ =


x1

x2

x3

x4

x5

 =


−8− 11r + 2s+ 11t
5 + 7r − 2s− 9t

r
s
t



=


−8
5
0
0
0

+


−11r
7r
r
0
0

+


2s
−2s
0
s
0

+


11t
−9t
0
0
t



=


−8
5
0
0
0

+ r


−11
7
1
0
0

+ s


2
−2
0
1
0

+ t


11
−9
0
0
1


= x⃗p︸︷︷︸

particular
solution

+ ru⃗+ sv⃗ + tw⃗︸ ︷︷ ︸
solution to homogeneous

equations Ax⃗ = ⃗
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So x⃗p is a particular solution; Ax⃗p = b⃗. (Multiply it out to verify that
this is true.) The other vectors, u⃗, v⃗ and w⃗, that are multiplied by our free
variables x3 = r, x4 = s and x5 = t, are each solutions to the homogeneous
equations, Ax⃗ = ⃗ . Any linear combination of these three vectors, i.e.,
any vector found by choosing values for r, s and t in ru⃗ + sv⃗ + tw⃗ is a
solution to Ax⃗ = ⃗ .

Example . . Finding vector solutions
Let

A =

[
1 2
4 5

]
and b⃗ =

[
3
6

]
.

Find the solutions to Ax⃗ = b⃗ and Ax⃗ = ⃗ .

Solution We go through the familiar work of finding the reduced
row echelon form of the appropriate augmented matrix and interpreting
the solution. [

1 2 3
4 5 6

]
−→rref

[
1 0 −1
0 1 2

]

x1 = −1

x2 = 2

Thus
x⃗ =

[
x1

x2

]
=

[
−1
2

]
.

This may strike us as a bit odd; we are used to having lots of different
vectors in the solution. However, in this case, the linear system Ax⃗ = b⃗
has exactly one solution, and we’ve found it. What is the solution to
Ax⃗ = ⃗? Since we’ve only found one solution to Ax⃗ = b⃗, we can conclude
from Key Idea 4.6.2 the related homogeneous equations Ax⃗ = ⃗ have only
one solution, namely x⃗ = ⃗ . We can write our solution vector x⃗ in a form
similar to our previous examples to highlight this:

x⃗ =

[
−1
2

]
=

[
−1
2

]
+

[
0
0

]
= x⃗p︸︷︷︸

particular
solution

+ ⃗︸︷︷︸
solution

to
Ax⃗ = ⃗

.

Again, in light of Theorem 4.6.1, this should not be too surprising. The
reduced row echelon form of A is

[
1 0
0 1

]
, so the rank of A is 2, and there

are 2 variables in our system, so we expect 2 − 2 = 0 parameters in our
general solution.

Example . . Further vector solutions
Let

A =

[
1 1
2 2

]
and b⃗ =

[
1
1

]
.

Find the solutions to Ax⃗ = b⃗ and Ax⃗ = ⃗ .



As previously noted, the fact that
Ax⃗ = b⃗ has no solution in Example
4.6.8 simply indicates the fact that b⃗
is not in the column space of A. Since
the rank of A is equal to one, we know
that col(A) is spanned by the single

vector v⃗ =

[
1
2

]
. Thus, we can only

expect Ax⃗ = b⃗ to have a solution if b⃗
is a scalar multiple of v⃗.
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Solution To solve Ax⃗ = b⃗, we put the appropriate augmented
matrix into reduced row echelon form and interpret the results.[

1 1 1
2 2 1

]
−→rref

[
1 1 0
0 0 1

]
We immediately have a problem; we see that the second row tells us

that 0x1 + 0x2 = 1, the sign that our system does not have a solution.
Thus Ax⃗ = b⃗ has no solution. Of course, this does not mean that Ax⃗ = ⃗

has no solution; it always has a solution.
To find the solution to Ax⃗ = ⃗ , we interpret the reduced row echelon

form of the appropriate augmented matrix.[
1 1 0
2 2 0

]
−→rref

[
1 1 0
0 0 0

]

x1 = −x2

x2 is free

Thus
x⃗ =

[
x1

x2

]
=

[
−x2

x2

]
= x2

[
−1
1

]
= x2u⃗.

We have no solution to Ax⃗ = b⃗, but infinitely many solutions to Ax⃗ =
⃗ .

The previous example may seem to violate the principle of Key Idea
4.6.2. After all, it seems that having infinitely many solutions to Ax⃗ = ⃗

should imply infinitely many solutions to Ax⃗ = b⃗. However, we remind
ourselves of the key word in the idea that we observed before: consistent.
If Ax⃗ = b⃗ is consistent and Ax⃗ = ⃗ has infinitely many solutions, then
so will Ax⃗ = b⃗. But if Ax⃗ = b⃗ is not consistent, it does not matter how
many solutions Ax⃗ = ⃗ has; Ax⃗ = b⃗ is still inconsistent.

In this chapter, we developed a systematic method for solving systems
of linear equations. A key tool in this method was the augmented matrix
corresponding to a given system. In this final section, we’ve seen that
further insight into the structure of solutions can be gained by considering
our systems in terms of matrices and vectors.

In the next chapter, we will begin the study of matrices as objects unto
themselves. We will see that they can be added and multiplied by scalars
in exactly the same way as vectors, and in addition to this, matrices of the
correct sizes can be multiplied in a way that reproduces Definition 4.6.1
above as a special case.

One question that may have occurred to you as you worked through
this section is the following: in the one-variable linear equation ax = b,
we know that as long as a ̸= 0, we can divide both sides by a, giving us
the solution x = b/a. Now, given the matrix equation Ax⃗ = b⃗, is there
some equivalent means of “dividing by A” to obtain the solution x⃗? The
short answer is no. Indeed, there is no such thing as matrix division; the
algebraic rules for matrix multiplication are much more complicated than
they are for numbers. (In particular, we’ll see that for matrices, AB is
usually not the same thing as BA!)

The slightly longer answer to our question might be phrased as “Some-
times. Well, sort of.” To obtain the correct (and much longer) answer, we
will be led in the next chapter to the definition of the inverse of a matrix.



Exercises 4.6
Problems
In Exercises – , a matrix A and vectors b⃗, u⃗ and v⃗ are
given. Verify that u⃗ and v⃗ are both solu ons to the equa on
Ax⃗ = b⃗; that is, show thatAu⃗ = Av⃗ = b⃗.

. A =

[
1 −2
−3 6

]
,

b⃗ =

[
0
0

]
, u⃗ =

[
2
1

]
, v⃗ =

[
−10
−5

]

. A =

[
1 −2
−3 6

]
,

b⃗ =

[
2
−6

]
, u⃗ =

[
0
−1

]
, v⃗ =

[
2
0

]

. A =

[
1 0
2 0

]
,

b⃗ =

[
0
0

]
, u⃗ =

[
0
−1

]
, v⃗ =

[
0
59

]

. A =

[
1 0
2 0

]
,

b⃗ =

[
−3
−6

]
, u⃗ =

[
−3
−1

]
, v⃗ =

[
−3
59

]

. A =

[
0 −3 −1 −3
−4 2 −3 5

]
,

b⃗ =

[
0
0

]
, u⃗ =


11
4

−12
0

,

v⃗ =


9

−12
0
12



. A =

[
0 −3 −1 −3
−4 2 −3 5

]
,

b⃗ =

[
48
36

]
, u⃗ =


−17
−16
0
0

,

v⃗ =


−8
−28
0
12


In Exercises – , a matrixA and vectors b⃗, u⃗ and v⃗ are given.
Verify thatAu⃗ = ⃗ ,Av⃗ = b⃗ andA(u⃗+ v⃗) = b⃗.

. A =

 2 −2 −1
−1 1 −1
−2 2 −1

,

b⃗ =

 1
1
1

, u⃗ =

 1
1
0

, v⃗ =

 1
1
−1



. A =

 1 −1 3
3 −3 −3
−1 1 1

,
b⃗ =

−1
−3
1

, u⃗ =

 2
2
0

, v⃗ =

 2
3
0



. A =

 2 0 0
0 1 −3
3 1 −3

,
b⃗ =

 2
−4
−1

, u⃗ =

 0
6
2

, v⃗ =

 1
−1
1


In Exercises – , a matrixA and vector b⃗ are given.

(a) Solve the equa onAx⃗ = ⃗ .
(b) Solve the equa onAx⃗ = b⃗.

In each of the above, be sure to write your answer in vector
format. Also, when possible, give par cular solu ons to
each equa on.

. A =

[
0 2
−1 3

]
, b⃗ =

[
−2
−1

]

. A =

[
−4 −1
−3 −2

]
, b⃗ =

[
1
4

]

. A =

[
1 −2
0 1

]
, b⃗ =

[
0
−5

]

. A =

[
1 0
5 −4

]
, b⃗ =

[
−2
−1

]

. A =

[
2 −3
−4 6

]
, b⃗ =

[
1
−1

]

. A =

[
−4 3 2
−4 5 0

]
, b⃗ =

[
−4
−4

]

. A =

[
1 5 −2
1 4 5

]
, b⃗ =

[
0
1

]

. A =

[
−1 −2 −2
3 4 −2

]
, b⃗ =

[
−4
−4

]

. A =

[
2 2 2
5 5 −3

]
, b⃗ =

[
3
−3

]

. A =

[
1 5 −4 −1
1 0 −2 1

]
,

b⃗ =

[
0
−2

]



. A =

[
−4 2 −5 4
0 1 −1 5

]
,

b⃗ =

[
−3
−2

]

. A =

[
0 0 2 1 4
−2 −1 −4 −1 5

]
,

b⃗ =

[
3
4

]

. A =

 3 0 −2 −4 5
2 3 2 0 2
−5 0 4 0 5

,
b⃗ =

−1
−5
4



. A =

−1 3 1 −3 4
3 −3 −1 1 −4
−2 3 −2 −3 1

,
b⃗ =

 1
1
−5



. A =

−4 −2 −1 4 0
5 −4 3 −1 1
4 −5 3 1 −4

,
b⃗ =

 3
2
1


In Exercises – , a matrixA and vector b⃗ are given. Solve
the equa onAx⃗ = b⃗, write the solu on in vector format, and
sketch the solu on as the appropriate line on the Cartesian
plane.

. A =

[
2 4
−1 −2

]
, b⃗ =

[
0
0

]

. A =

[
2 4
−1 −2

]
, b⃗ =

[
−6
3

]

. A =

[
2 −5
−4 −10

]
, b⃗ =

[
1
2

]

. A =

[
2 −5
−4 −10

]
, b⃗ =

[
0
0

]





: Matrix Algebra
In the last chapter we learned how to solve systems of equations, and along
the way, we saw that a key tool for solving systems efficiently was the use
of matrices. In this chapter, we will finally give a proper definition of
what, exactly, a matrix is, after which we will proceed to develop the
algebraic properties of matrices, just as we did for vectors in Chapter 3.

A fundamental topic of mathematics is arithmetic; adding, subtracting,
multiplying and dividing numbers. After learning how to do this, most of
us went on to learn how to add, subtract, multiply and divide “x”. We
are comfortable with expressions such as

x+ 3x− x · x2 + x5 · x−1

and know that we can “simplify” this to

4x− x3 + x4.

This chapter deals with the idea of doing similar operations, but in-
stead of an unknown number x, we will be using a matrix A. So what
exactly does the expression

A+ 3A−A ·A2 +A5 ·A−1

mean? Before we can do anything, we need to actually define what a
matrix is! Once we’ve taken care of that, we are going to need to learn to
define what matrix addition, scalar multiplication, matrix multiplication
and matrix inversion are. We will learn just that, plus some more good
stuff, in this chapter.

. Matrix Addi on and Scalar Mul plica on
AS YOU READ . . .

1. What is remarkable about the definition of a matrix?

2. When are two matrices equal?

3. Write an explanation of how to add matrices as though writing to
someone who knows what a matrix is but not much more.

4. T/F: There is only 1 zero matrix.

5. T/F: To multiply a matrix by 2 means to multiply each entry in the
matrix by 2.

As mentioned above, a matrix is a construction that allows us to
organize information in a tabular form. For example, we may be interested
in the following (made up) data involving crop yields on several Southern
Alberta farms, given in tabular form:

Corn Potatoes Soybeans Wheat
Farm A 48 18 92 0
Farm B 0 0 73 152
Farm C 34 203 0 88

Figure . . : crop yields, in metric tonnes



Matrices work well in situations such
as our farming example where the
data we need to organize falls into
two categories, in this case, farms
and crops. What if our data de-
pends on three or more categories?
(Perhaps we also want to track type
of fertilizer?) It turns out that
along with matrices, mathematicians
have invented higher-dimensional ar-
rays called tensors, that can handle
almost any data organization scenario
you can think of. Tensors are usu-
ally encountered in more advanced
courses in abstract algebra.
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Someone in charge of compiling data on farms and crops probably
already has a program or spreadsheet set up with all of the farms and
crops pre-defined; what they are interested in are the numbers giving the
crop yields. Thus, when they enter their data into the computer, they are
probably more interested in the array

A =

48 18 92 0
0 0 73 152
34 203 0 88

 . ( . )

As long as we’re consistent and always assign each farm to the same row,
and each crop to the same column, we can dispense with the labels and
work directly with the data.

The array above is our first example of a matrix, which we now define.
The definition of matrix is remarkable only in how unremarkable it seems
– it is simply a way of organizing information (usually numbers) into an
array.

Definition 5.1.1 Matrix

A matrix is a rectangular array of numbers.

The horizontal lines of numbers form rows and the vertical lines of
numbers form columns. A matrix with m rows and n columns is
said to be an m × n matrix (“an m by n matrix”, or a matrix of
size m× n).

The entries of an m× n matrix are indexed as follows:
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
... . . . ...

am1 am2 am3 · · · amn

 .

That is, a32 means “the number in the third row and second col-
umn.” To save space, we will sometimes use the shorthand notation
A = [aij ] to denote a matrix A with entries aij . If we need to spec-
ify the size, we can also write A = [aij ]m×n.

Two special types of matrix are worth noting: those with a single row
or column. Such matrices are known as vectors.
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Definition 5.1.2 Row and column vectors

A row vector is a 1× n matrix of the form

R =
[
r1 r2 · · · rn

]
.

A column vector is a m× 1 matrix of the form

C =


c1
c2
...
cm

 .

In particular, we can obtain row or column vectors by isolating any
row or column of a given m × n matrix. For example, given our matrix
of crop data in Equation ( . ), we might be interested only in Farm B, in
which case we would want the row vector

RB =
[
0 0 73 152

]
.

Similarly, we might only be interested in yields for soybean crops, in which
case the column vector

Csoy =

9273
0


is our object of interest.

Continuing with our farming example, suppose that in addition to the
matrix A of 2014 crop yields above we also have data for 2015 crop yields
given by

B =

41 25 15 20
0 72 0 165
47 193 0 77

 .

We might be interested in quantities such as the total crop yields over two
years. If we arrange these totals into a matrix T , it seems like it should
be reasonable to define matrix addition in such a way that we can write

T = A+B.

This leads to two questions. First, how do we define matrix addition in
order to ensure this outcome? Second, and perhaps more fundamentally,
what do we mean by “=” in the context of matrices? Let us tackle the
second question first.

Definition 5.1.3 Matrix Equality

Two m × n matrices A and B are equal if their corresponding
entries are equal.

Notice that our more formal definition specifies that if matrices are
equal, they have the same size. This should make sense.

Now we move on to describing how to add two matrices together. To
start off, take a wild stab: how do you think we should add our matrices
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of crop data above? Well, if we want the sum to represent the total yields
for each crop, then it stands to reason that to add the two matrices, we
add together each of the corresponding crop yields within them:

T = A+B

=

48 18 92 0
0 0 73 152
34 203 0 88

+

41 25 15 20
0 72 0 165
47 193 0 77


=

48 + 41 18 + 25 92 + 15 0 + 20
0 + 0 0 + 72 73 + 0 152 + 165
34 + 47 203 + 193 0 + 0 88 + 77


=

89 43 107 20
0 72 73 317
81 396 0 165

 .

So to add the two matrices, we added their corresponding entries. This
is exactly how we define matrix addition in general:

Definition 5.1.4 Matrix Addition

Let A = [aij ] and B = [bij ] be m× n matrices. The sum of A and
B, denoted A+B, is

a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
... . . . ...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

For another example, suppose we wanted to know the total production
for each farm in 2014, assuming that our matrices represent all of the
crops each farm produces. This would be obtained by simply calculating
the total for each row in the matrix A. Another way to accomplish the
same task is as follows: let

C1 =

480
34

 , C2 =

 18
0
203

 , C3 =

9273
0

 , C4 =

 0
152
88


denote the columns of the matrix A; note that each column represents the
yields across all three farms for each crop. The total yield for each farm
can then be calculated according to

Y = C1 + C2 + C3 + C4480
34

+

 18
0

203

+

9273
0

+

 0
152
88

 =

158225
325

 .

The column vector Y then contains the total yields for each farm. Notice
that although we only defined the sum of two matrices in Definition 5.1.4,
it makes sense to add any number of matrices, and there is no need to add
parentheses.



Note: In Linear Algebra, a scalar
is simply a number. For most of this
text, the scalars we consider are real
numbers, although one can also use
complex numbers as scalars. (Com-
plex numbers will be introduced in
Chapter 2.) As we saw in Chapter 3,
multiplying a vector by a scalar scales
the length of that vector.
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Recall from Chapter 3 that we defined the multiplication of a vector
v⃗ = ⟨a, b, c⟩ by a scalar t ∈ R by

tv⃗ = t⟨a, b, c⟩ = ⟨ta, tb, tc⟩.

It stands to reason that scalar multiplication should be defined in ex-
actly the same way for row and column vectors; after all, in most cases
these are just different ways of writing down the same mathematical ob-
ject. Thus, in order to multiply a row or column vector by a scalar, we
should multiply each entry in the vector by that scalar. From here, it’s not
too much of a stretch to conclude that the same definition is reasonable
for matrices in general.

Definition 5.1.5 Scalar Multiplication

Let A = [aij ] be an m×n matrix and let k be a scalar. The scalar
multiplication A by k, denoted kA, is defined by

ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n

...
... . . . ...

kam1 kam2 · · · kamn

 .

Referring one last time to our farming data, we could imagine that a
fertilizer company is advertising a new product they claim will increase
crop yields by 30%. Increasing the yield of each crop by 30% amounts
to multiplying each of the entries in the matrices A or B by a factor of
1.3; according to Definition 5.1.5, this is the same as forming the scalar
multiples 1.3A and 1.3B.

Since we have two years’ worth of crop data, we could also ask for the
average yield for each crop on each farm. For example, Farm A produced
48 tonnes of corn in 2014, and 41 tonnes of corn in 2015. The two-year
average for corn on Farm A is thus

48 + 41

2
=

89

2
= 44.5 tonnes.

Notice that we can obtain the average for each entry by dividing each
entry in T = A + B by 2, which is the same thing as multiplying by 1

2 .
Our matrix of averages is

1

2
T =

1

2

89 43 107 20
0 72 73 317
81 396 0 165

 =

89/2 43/2 107/2 10
0 36 73/2 317/2

81/2 198 0 165/2

 .

Finally, notice also that since

48 + 41

2
=

1

2
(48) +

1

2
(41),

with similar considerations for the other entries, we also could have ob-
tained the average by first dividing A and B by 1

2 , and then adding the
result. That is,

1

2
T =

1

2
(A+B) =

1

2
A+

1

2
B.
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We’ll see shortly that this result is due to a general property of matrix
arithmetic, called the distributive property.

Expressions such as 1
2A + 1

2B that use both addition and scalar mul-
tiplication together occur frequently in Linear Algebra, and are known as
linear combinations. In general, a linear combination can be formed
from any number of matrices, as long as they’re all of the same size.

Definition 5.1.6 Linear combination

Given m × n matrices A1, A2, . . . , Ak, a linear combination of
these matrices is any expression of the form

B = c1A1 + c2A2 + · · ·+ ckAk,

where c1, c2, . . . , ck are scalars.

It is time to forget our farm data and move into some abstract compu-
tational examples to make sure we have the hang of these new operations.

Example . . Matrix addition and scalar multiplication
Let

A =

 1 2 3
−1 2 1
5 5 5

 , B =

 2 4 6
1 2 2
−1 0 4

 , C =

[
1 2 3
9 8 7

]
.

Simplify the following matrix expressions.

1. A+B

2. B +A

3. A−B

4. A+ C

5. −3A+ 2B

6. A−A

7. 5A+ 5B

8. 5(A+B)

Solution

1. Adding the corresponding entries of A and B, we have

A+B =

 1 + 2 2 + 4 3 + 6
−1 + 1 2 + 2 1 + 2
5− 1 5 + 0 5 + 4

 =

 3 6 9
0 4 3
4 5 9

 .

2. To compute B + A, we again add the corresponding entries, but in
the opposite order:

B +A =

 2 + 14 + 2 6 + 3
1− 1 2 + 2 2 + 1
−1 + 5 0 + 5 4 + 5

 =

 3 6 9
0 4 3
4 5 9

 .

3. In this case, we have to subtract the entries of B from those of A.
This gives us

A−B =

−1 −2 −3
−2 0 −1
6 5 1

 .
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4. A+C is not defined. If we look at our definition of matrix addition,
we see that the two matrices need to be the same size. Since A and
C have different dimensions, we don’t even try to create something
as an addition; we simply say that the sum is not defined.

5. To compute this linear combination we first carry out the scalar
multiplication, followed by the addition:

−3A+ 2B = −3

 1 2 3
−1 2 1
5 5 5

+ 2

 2 4 6
1 2 2
−1 0 4


=

 −3 −6 −9
3 −6 −3

−15 −15 −15

+

 4 8 12
2 4 4
−2 0 8


=

 1 2 3
5 −2 1

−17 −15 −7

 .

6. Subtracting each entry of A from itself, we get

A−A =

 0 0 0
0 0 0
0 0 0

 .

7. Carrying out the scalar multiplication followed by the addition, we
find

5A+ 5B =

 5 10 15
−5 10 5
25 25 25

+

 10 20 30
5 10 10
−5 0 20

 =

 15 30 45
0 20 15
20 25 45

 .

8. In this case, we first perform the addition, followed by the scalar
multiplication. We obtain:

5

 1 2 3
−1 2 1
5 5 5

+

 2 4 6
1 2 2
−1 0 4

 = 5 ·

 3 6 9
0 4 3
4 5 9


=

 15 30 45
0 20 15
20 25 45

 .

Our example raised a few interesting points. Notice how A+B = B+A.
We probably aren’t surprised by this, since we know that when dealing
with numbers, a + b = b + a. Also, notice that 5A + 5B = 5(A + B).
In our example, we were careful to compute each of these expressions
following the proper order of operations; knowing these are equal allows
us to compute similar expressions in the most convenient way.

Another interesting thing that came from our previous example is that

A−A =

 0 0 0
0 0 0
0 0 0

 .

It seems like this should be a special matrix; after all, every entry is 0 and
0 is a special number.



We use the bold face to distinguish
the zero matrix, 0, from the number
zero, 0.
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In fact, this is a special matrix. We define 0, which we read as “the zero
matrix,” to be the matrix of all zeros. We should be careful; this previous
“definition” is a bit ambiguous, for we have not stated what size the zero
matrix should be. Is

[
0 0
0 0

]
the zero matrix? How about

[
0 0

]
?

Let’s not get bogged down in semantics. If we ever see 0 in an expres-
sion, we will usually know right away what size 0 should be; it will be the
size that allows the expression to make sense. If A is a 3× 5 matrix, and
we write A + 0, we’ll simply assume that 0 is also a 3 × 5 matrix. If we
are ever in doubt, we can add a subscript; for instance, 02×7 is the 2× 7
matrix of all zeros.

Since the zero matrix is an important concept, we give it its own defi-
nition box.

Definition 5.1.7 The Zero Matrix

The m×n matrix of all zeros, denoted 0m×n, is the zero matrix.

When the dimensions of the zero matrix are clear from the context,
the subscript is generally omitted.

The following presents some of the properties of matrix addition and
scalar multiplication that we discovered above, plus a few more.

Theorem 5.1.1 Properties of Matrix Addition and
Scalar Multiplication

The following equalities hold for all m × n matrices A, B and C
and scalars k.

1. A+B = B +A (Commutative Property)

2. (A+B) + C = A+ (B + C) (Associative Property)

3. k(A+B) = kA+kB (Scalar Multiplication Distributive Prop-
erty)

4. kA = Ak

5. A+ 0 = 0 +A = A (Additive Identity)

6. 0A = 0

Be sure that this last property makes sense; it says that if we multiply
any matrix by the number 0, the result is the zero matrix, or 0. (You now
have more than one kind of zero to keep track of!)

It’s important to understand that since matrix addition and scalar
multiplication are defined in terms of the entries of our matrices, the
properties in Theorem 5.1.1 follow directly from the properties of real
number arithmetic in Section 1.2. For example to prove item 1 above, let
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A = [aij ] and B = [bij ] be m× n matrices. We then have

A+B = [aij ] + [bij ]

= [aij + bij ] by Defini on . .
= [bij + aij ] since addi on of real numbers commutes
= [bij ] + [aij ] by Defini on . .
= B +A.

Similarly, the distributive property in item 3 is valid since

k(A+B) = k([aij ] + [bij ])

= k[aij + bij ] defini on of matrix addi on
= [k(aij + bij)] defini on of scalar mul plica on
= [k · aij + k · bij ] distribu ve property of real numbers
= [k · aij ] + [·bij ] defini on of matrix addi on
= k[aij ] + k[bij ] defini on of scalar mul plica on
= kA+ kB.

The verification of the remaining properties in Theorem 5.1.1 is similar,
and left as an exercise for the reader.

We began this section with the concept of matrix equality. Let’s put
our matrix addition properties to use and solve a matrix equation.

Example . . Solving a matrix equation
Let

A =

[
2 −1
3 6

]
.

Find the matrix X such that

2A+ 3X = −4A.

Solution We can use basic algebra techniques to manipulate this
equation for X; first, let’s subtract 2A from both sides. This gives us

3X = −6A.

Now divide both sides by 3 to get

X = −2A.

Now we just need to compute −2A; we find that

X =

[
−4 2
−6 −12

]
.

Our matrix properties identified 0 as the Additive Identity; i.e., if you
add 0 to any matrix A, you simply get A. This is similar in notion to the
fact that for all numbers a, a + 0 = a. A Multiplicative Identity would
be a matrix I where I × A = A for all matrices A. (What would such a
matrix look like? A matrix of all 1s, perhaps?) However, in order for this
to make sense, we’ll need to learn to multiply matrices together, which
we’ll do in the next section.



Exercises 5.1
Problems
MatricesA andB are given below. In Exercises – , simplify
the given expression.

A =

[
1 −1
7 4

]
B =

[
−3 2
5 9

]

. A+B

. 2A− 3B

. 3A−A

. 4B − 2A

. 3(A−B) +B

. 2(A−B)− (A− 3B)

Matrices A and B are given below. In Exercises – , sim-
plify the given expression.

A =

[
3
5

]
B =

[
−2
4

]

. 4B − 2A

. −2A+ 3A

. −2A− 3A

. −B + 3B − 2B

Matrices A and B are given below. In Exercises – , find
X that sa sfies the equa on.

A =

[
3 −1
2 5

]
B =

[
1 7
3 −4

]

. 2A+X = B

. A−X = 3B

. 3A+ 2X = −1B

. A− 1
2
X = −B

In Exercises – , find values for the scalars a and b that
sa sfy the given equa on.

. a

[
1
2

]
+ b

[
−1
5

]
=

[
1
9

]

. a

[
−3
1

]
+ b

[
8
4

]
=

[
7
1

]

. a

[
4
−2

]
+ b

[
−6
3

]
=

[
10
−5

]

. a

[
1
1

]
+ b

[
−1
3

]
=

[
5
5

]

. a

[
1
3

]
+ b

[
−3
−9

]
=

[
4

−12

]

. a

 1
2
3

+ b

 1
1
2

 =

 0
−1
−1



. a

 1
0
1

+ b

 5
1
2

 =

 3
4
7


. Complete the proof of Theorem . . .
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AS YOU READ . . .

1. T/F: To multiply A×B, the number of rows of A and B need to be
the same.

2. T/F: The entry in the 2nd row and 3rd column of the product AB
comes from multipling the 2nd row of A with the 3rd column of B.

3. Name two properties of matrix multiplication that also hold for “reg-
ular multiplication” of numbers.

4. Name a property of “regular multiplication” of numbers that does
not hold for matrix multiplication.

5. T/F: A3 = A ·A ·A

In the previous section we found that the definition of matrix addition
was very intuitive, and we ended that section discussing the fact that
eventually we’d like to know what it means to multiply matrices together.

In the spirit of the last section, take another wild stab: what do you
think [

1 2
3 4

]
×
[
1 −1
2 2

]
means?

You are likely to have guessed[
1 −2
6 8

]
but this is, in fact, not right. (I guess you could define multiplication this
way; you’ll even find that it satisfies plenty of nice properties. Unfortu-
nately, nice properties don’t make up for the fact that this definition just
isn’t useful.) The actual answer is[

5 3
11 5

]
.

If you can look at this one example and suddenly understand exactly
how matrix multiplication works, then you are probably smarter than the
author. While matrix multiplication isn’t hard, it isn’t nearly as intuitive
as matrix addition is.

To further muddy the waters (before we clear them), consider[
1 2
3 4

]
×
[
1 −1 0
2 2 −1

]
.

Our experience from the last section would lend us to believe that this is
not defined, but our confidence is probably a bit shaken by now. In fact,
this multiplication is defined, and it is[

5 3 −2
11 5 −4

]
.

You may see some similarity in this answer to what we got before, but
again, probably not enough to really figure things out.



In this text, row vectors are only
used in this section when we discuss
matrix multiplication, whereas we’ll
make extensive use of column vectors.
Other texts make great use of row
vectors, but little use of column vec-
tors. It is a matter of preference and
tradition: “most” texts use column
vectors more. In some more advanced
textbooks, row vectors are considered
to be “dual” to column vectors. Ab-
stractly, a dual vector is an object
that eats a vector and spits out a
number. Here, we see that the way a
row vector eats a column vector and
produces a number is via multiplica-
tion.
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Before diving in to the general definition of matrix multiplication, let’s
start simple, with row and column vectors. Recall from Definition 5.1.2
in Section 5.1 that a row vector is a 1 × n matrix of the form a⃗ =[
a1 a2 · · · an

]
, and a column vector is an m× 1 matrix of the form

b⃗ =


b1
b2
...
bm

.

Definition 5.2.1 Multiplying a row vector by a column
vector

Let u⃗ be an 1×n row vector with entries u1, u2, · · · , un and let v⃗ be
an n× 1 column vector with entries v1, v2, · · · , vn. The product
of u⃗ and v⃗, denoted u⃗ · v⃗ or u⃗v⃗, is

u⃗v⃗ =

n∑
i=1

uivi = u1v1 + u2v2 + · · ·+ unvn.

Notice that this is essentially the same as the definition of the dot
product given at the beginning of Section 3.7. There are two key points
to notice about the product defined in Definition 5.2.1:

1. In order for the product u⃗v⃗ to be defined, u⃗ and v⃗ need to have the
same number of entries.

2. To multiply u⃗ and v⃗ we multiply the corresponding entries, and then
add up the resulting values.

Example . . Multiplying row and column vectors
Let

u⃗ =
[
1 2 3

]
, v⃗ =

[
2 0 1 −1

]
, x⃗ =

−2
4
3

 , y⃗ =


1
2
5
0

 .

Find the following products.

1. u⃗x⃗

2. v⃗y⃗

3. u⃗y⃗

4. u⃗v⃗

5. x⃗u⃗

Solution

1. u⃗x⃗ =
[
1 2 3

] −2
4
3

 = 1(−2) + 2(4) + 3(3) = 15

2. v⃗y⃗ =
[
2 0 1 −1

] 
1
2
5
0

 = 2(1) + 0(2) + 1(5)− 1(0) = 7



. Matrix Mul plica on

3. u⃗y⃗ is not defined; Definition 5.2.1 specifies that in order to multiply
a row vector and column vector, they must have the same number
of entries.

4. u⃗v⃗ is not defined; we only know how to multipy row vectors by
column vectors. We haven’t defined how to multiply two row vectors
(in general, it can’t be done).

5. The product x⃗u⃗ is defined, but we don’t know how to do it yet. Right
now, we only know how to multiply a row vector times a column
vector; we don’t know how to multiply a column vector times a row
vector. (That’s right: u⃗x⃗ ̸= x⃗u⃗!)

Now that we understand how to multiply a row vector by a column
vector, we are ready to define matrix multiplication.

Definition 5.2.2 Matrix Multiplication

Let A be an m × r matrix, and let B be an r × n matrix. The
matrix product of A and B, denoted A · B, or simply AB, is
the m× n matrix M whose entry in the ith row and jth column is
the product of the ith row of A and the jth column of B.

It may help to illustrate it in this way. Let matrix A have rows a⃗1, a⃗2,
· · · , a⃗m and let B have columns b⃗1, b⃗2, · · · , b⃗n. Thus A looks like

− a⃗1 −
− a⃗2 −

...
− a⃗m −


where the “−” symbols just serve as reminders that the a⃗i represent rows,
and B looks like  | | |

b⃗1 b⃗2 · · · b⃗n
| | |


where again, the “|” symbols just remind us that the b⃗i represent column
vectors. Then

AB =


a⃗1b⃗1 a⃗1b⃗2 · · · a⃗1b⃗n
a⃗2b⃗1 a⃗2b⃗2 · · · a⃗2b⃗n

...
... . . . ...

a⃗mb⃗1 a⃗mb⃗2 · · · a⃗mb⃗n

 .

Two quick notes about this definition. First, notice that in order to
multiply A and B, the number of columns of A must be the same as
the number of rows of B (we refer to these as the “inner dimensions”).
Secondly, the resulting matrix has the same number of rows as A and the
same number of columns as B (we refer to these as the “outer dimensions”).
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final dimensions are the
outer dimensions︷ ︸︸ ︷

(m×r)× (r︸ ︷︷ ︸
these inner dimensions

must match

× n)

Of course, this will make much more sense when we see an example.
Example . . A more general matrix product
Revisit the matrix product we saw at the beginning of this section; mul-
tiply [

1 2
3 4

] [
1 −1 0
2 2 −1

]
.

Solution Let’s call our first matrix A and the second B. We
should first check to see that we can actually perform this multiplication.
Matrix A is 2×2 and B is 2×3. The “inner” dimensions match up, so we
can compute the product; the “outer” dimensions tell us that the product
will be 2× 3. Let

AB =

[
m11 m12 m13

m21 m22 m23

]
.

Let’s find the value of each of the entries.
The entry m11 is in the first row and first column; therefore to find

its value, we need to multiply the first row of A by the first column of B.
Thus

m11 =
[
1 2

] [ 1
2

]
= 1(1) + 2(2) = 5.

So now we know that

AB =

[
5 m12 m13

m21 m22 m23

]
.

Finishing out the first row, we have

m12 =
[
1 2

] [−1
2

]
= 1(−1) + 2(2) = 3

using the first row of A and the second column of B, and

m13 =
[
1 2

] [ 0
−1

]
= 1(0) + 2(−1) = −2

using the first row of A and the third column of B. Thus we have

AB =

[
5 3 −2

m21 m22 m23

]
.

To compute the second row of AB, we multiply with the second row
of A. We find

m21 =
[
3 4

] [ 1
2

]
= 11,

m22 =
[
3 4

] [−1
2

]
= 5, and

m23 =
[
3 4

] [ 0
−1

]
= −4.
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Thus
AB =

[
1 2
3 4

] [
1 −1 0
2 2 −1

]
=

[
5 3 −2
11 5 −4

]
.

Example . . Multiplying matrices
Multiply  1 −1

5 2
−2 3

[ 1 1 1 1
2 6 7 9

]
.

Solution Let’s first check to make sure this product is defined.
Again calling the first matrix A and the second B, we see that A is a 3×2
matrix and B is a 2×4 matrix; the inner dimensions match so the product
is defined, and the product will be a 3× 4 matrix,

AB =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 .

We will demonstrate how to compute some of the entries, then give
the final answer. The reader can fill in the details of how each entry was
computed.

m11 =
[
1 −1

] [ 1
2

]
= −1.

m13 =
[
1 −1

] [ 1
7

]
= −6.

m23 =
[
5 2

] [ 1
7

]
= 19.

m24 =
[
5 2

] [ 1
9

]
= 23.

m32 =
[
−2 3

] [ 1
6

]
= 16.

m34 =
[
−2 3

] [ 1
9

]
= 25.

So far, we’ve computed this much of AB:

AB =

 −1 m12 −6 m14

m21 m22 19 23
m31 16 m33 25

 .

The final product is

AB =

−1 −5 −6 −8
9 17 19 23
4 16 19 25

 .

Example . . An undefined product
Multiply, if possible, [

2 3 4
9 8 7

] [
3 6
5 −1

]
.
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Solution Again, we’ll call the first matrix A and the second B.
Checking the dimensions of each matrix, we see that A is a 2× 3 matrix,
whereas B is a 2×2 matrix. The inner dimensions do not match, therefore
this multiplication is not defined.

Example . . A vector product revisited
In Example 5.2.1, we were told that the product x⃗u⃗ was defined, where

x⃗ =

−2
4
3

 and u⃗ =
[
1 2 3

]
,

although we were not shown what that product was. Find x⃗u⃗.

Solution Again, we need to check to make sure the dimensions
work correctly (remember that even though we are referring to u⃗ and x⃗
as vectors, they are, in fact, just matrices).

The column vector x⃗ has dimensions 3 × 1, whereas the row vector u⃗
has dimensions 1 × 3. Since the inner dimensions do match, the matrix
product is defined; the outer dimensions tell us that the product will be a
3× 3 matrix, as shown below:

x⃗u⃗ =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 .

To compute the entry m11, we multiply the first row of x⃗ by the first
column of u⃗. What is the first row of x⃗? Simply the number −2. What
is the first column of u⃗? Just the number 1. Thus m11 = −2. (This does
seem odd, but through checking, you can see that we are indeed following
the rules.)

What about the entry m12? Again, we multiply the first row of x⃗ by
the first column of u⃗; that is, we multiply −2(2). So m12 = −4.

What about m23? Multiply the second row of x⃗ by the third column
of u⃗; multiply 4(3), so m23 = 12.

One final example: m31 comes from multiplying the third row of x⃗,
which is 3, by the first column of u⃗, which is 1. Therefore m31 = 3.

So far we have computed

x⃗u⃗ =

 −2 −4 m13

m21 m22 12
3 m32 m33

 .

After performing all 9 multiplications, we find

x⃗u⃗ =

−2 −4 −6
4 8 12
3 6 9

 .

In this last example, we saw a “nonstandard” multiplication (at least,
it felt nonstandard). Studying the entries of this matrix, it seems that
there are several different patterns that can be seen amongst the entries.
(Remember that mathematicians like to look for patterns. Also remember
that we often guess wrong at first; don’t be scared and try to identify some
patterns.)
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In Section 5.1, we identified the zero matrix 0 that had a nice property
in relation to matrix addition (i.e., A + 0 = A for any matrix A). In the
following example we’ll identify a matrix that works well with multiplica-
tion as well as some multiplicative properties. For instance, we’ve learned
how 1 ·A = A; is there a matrix that acts like the number 1? That is, can
we find a matrix X where X · A = A? (We made a guess in Section 5.1
that maybe a matrix of all 1s would work, but you can probably already
see that this guess is doomed to failure.)

Example . . Computing matrix products
Let

A =

 1 2 3
2 −7 5
−2 −8 3

 , B =

 1 1 1
1 1 1
1 1 1


C =

 1 0 2
2 1 0
0 2 1

 , I =

 1 0 0
0 1 0
0 0 1

 .

Find the following products.

1. AB

2. BA

3. A03×4

4. AI

5. IA

6. I2

7. BC

8. B2

Solution We will find each product, but we leave the details of
each computation to the reader.

1. AB =

 1 2 3
2 −7 5
−2 −8 3

 1 1 1
1 1 1
1 1 1

 =

 6 6 6
0 0 0
−7 −7 −7



2. BA =

 1 1 1
1 1 1
1 1 1

 1 2 3
2 −7 5
−2 −8 3

 =

 1 −13 11
1 −13 11
1 −13 11


3. A03×4 = 03×4.

4. AI =

 1 2 3
2 −7 5
−2 −8 3

 1 0 0
0 1 0
0 0 1

 =

 1 2 3
2 −7 5
−2 −8 3



5. IA =

 1 0 0
0 1 0
0 0 1

 1 2 3
2 −7 5
−2 −8 3

 =

 1 2 3
2 −7 5
−2 −8 3


6. We haven’t formally defined what I2 means, but we could probably

make the reasonable guess that I2 = I · I. Thus

I2 =

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1



7. BC =

 1 1 1
1 1 1
1 1 1

 1 0 2
2 1 0
0 2 1

 =

 3 3 3
3 3 3
3 3 3
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8. B2 = BB =

 1 1 1
1 1 1
1 1 1

 1 1 1
1 1 1
1 1 1

 =

 3 3 3
3 3 3
3 3 3



This example is simply chock full of interesting ideas; it is almost hard
to think about where to start.

Interes ng Idea # : Notice that in our example, AB ̸= BA! When
dealing with numbers, we were used to the idea that ab = ba. With ma-
trices, multiplication is not commutative. (Of course, we can find special
situations where it does work. In general, though, it doesn’t.)

Interes ng Idea # : Right before this example we wondered if there was
a matrix that “acted like the number 1,” and guessed it may be a matrix
of all 1s. However, we found out that such a matrix does not work in that
way; in our example, AB ̸= A. We did find that AI = IA = A. There is
a Multiplicative Identity; it just isn’t what we thought it would be. And
just as 12 = 1, I2 = I.

Interes ng Idea # : When dealing with numbers, we are very familiar
with the notion that “If ax = bx, then a = b.” (As long as x ̸= 0.) Notice
that, in our example, BB = BC, yet B ̸= C. In general, just because
AX = BX, we cannot conclude that A = B.

Matrix multiplication is turning out to be a very strange operation.
We are very used to multiplying numbers, and we know a bunch of prop-
erties that hold when using this type of multiplication. When multiplying
matrices, though, we probably find ourselves asking two questions, “What
does work?” and “What doesn’t work?” We’ll answer these questions; first
we’ll do an example that demonstrates some of the things that do work.

Example . . Exploring properties of matrix multiplication
Let

A =

[
1 2
3 4

]
, B =

[
1 1
1 −1

]
and C =

[
2 1
1 2

]
.

Find the following:

1. A(B + C)

2. AB +AC

3. A(BC)

4. (AB)C

Solution We’ll compute each of these without showing all the
intermediate steps. Keep in mind order of operations: things that appear
inside of parentheses are computed first.

1.

A(B + C) =

[
1 2
3 4

]([
1 1
1 −1

]
+

[
2 1
1 2

])
=

[
1 2
3 4

] [
3 2
2 1

]
=

[
7 4
17 10

]



Be careful: in computing ABC to-
gether, we can first multiply AB or
BC, but we cannot change the order
in which these matrices appear. We
cannot multiply BA or AC, for in-
stance.

Definition 5.2.3 uses a term we won’t
define until Definition 7.1.2 on page
302: diagonal. In short, a “diago-
nal matrix” is one in which the only
nonzero entries are the “diagonal en-
tries.” The examples given here and
in the exercises should suffice until we
meet the full definition later.
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2.

AB +AC =

[
1 2
3 4

] [
1 1
1 −1

]
+

[
1 2
3 4

] [
2 1
1 2

]
=

[
3 −1
7 −1

]
+

[
4 5
10 11

]
=

[
7 4
17 10

]
3.

A(BC) =

[
1 2
3 4

]([
1 1
1 −1

] [
2 1
1 2

])
=

[
1 2
3 4

] [
3 3
1 −1

]
=

[
5 1
13 5

]
4.

(AB)C =

([
1 2
3 4

] [
1 1
1 −1

])[
2 1
1 2

]
=

[
3 −1
7 −1

] [
2 1
1 2

]
=

[
5 1
13 5

]
In looking at our example, we should notice two things. First, it looks

like the “distributive property” holds; that is, A(B + C) = AB + AC.
This is nice as many algebraic techniques we have learned about in the
past (when doing “ordinary algebra”) will still work. Secondly, it looks
like the “associative property” holds; that is, A(BC) = (AB)C. This is
nice, for it tells us that when we are multiplying several matrices together,
we don’t have to be particularly careful in what order we multiply certain
pairs of matrices together.

In leading to an important theorem, let’s define a matrix we saw in an
earlier example.

Definition 5.2.3 Identity Matrix

The n×n matrix with 1’s on the diagonal and zeros elsewhere is the
n× n identity matrix, denoted In. When the context makes the
dimension of the identity clear, the subscript is generally omitted.

Note that while the zero matrix can come in all different shapes and
sizes, the identity matrix is always a square matrix. We show a few identity
matrices below.

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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In our examples above, we have seen examples of things that do and
do not work. We should be careful about what examples prove, though.
If someone were to claim that AB = BA is always true, one would only
need to show them one example where they were false, and we would
know the person was wrong. However, if someone claims that A(B+C) =
AB + AC is always true, we can’t prove this with just one example. We
need something more powerful; we need a true proof.

In this text, we forgo most proofs. The reader should know, though,
that when we state something in a theorem, there is a proof that backs
up what we state. Our justification comes from something stronger than
just examples.

Now we give the good news of what does work when dealing with
matrix multiplication.

Theorem 5.2.1 Properties of Matrix Multiplication

Let A, B and C be matrices whose sizes are such that the follow-
ing operations make sense, and let k be a scalar. The following
equalities hold:

1. A(BC) = (AB)C (Associative Property)

2. A(B + C) = AB +AC and
(B + C)A = BA+ CA (Distributive Property)

3. k(AB) = (kA)B = A(kB)

4. AI = IA = A

The above box contains some very good news, and probably some very
surprising news. Matrix multiplication probably seems to us like a very
odd operation, so we probably wouldn’t have been surprised if we were
told that A(BC) ̸= (AB)C. It is a very nice thing that the Associative
Property does hold.

As we near the end of this section, we raise one more issue of notation.
We define A0 = I. If n is a positive integer, we define

An = A ·A · · · · ·A︸ ︷︷ ︸
n times

.

With numbers, we are used to a−n = 1
an . Do negative exponents work

with matrices, too? The answer is yes, sort of. We’ll have to be careful,
and we’ll cover the topic in detail once we define the inverse of a matrix.
For now, though, we recognize the fact that A−1 ̸= 1

A , for 1
A makes no

sense; we don’t know how to “divide” by a matrix.

We end this section with a reminder of some of the things that do not
work with matrix multiplication. The good news is that there are really
only two things on this list.

1. Matrix multiplication is not commutative; that is, AB ̸= BA.

2. In general, just because AX = BX, we cannot conclude that A = B.
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The bad news is that these ideas pop up in many places where we don’t
expect them. For instance, we are used to

(a+ b)2 = a2 + 2ab+ b2.

What about (A+B)2? All we’ll say here is that

(A+B)2 ̸= A2 + 2AB +B2;

we leave it to the reader to figure out why.



Exercises 5.2
Problems
In Exercises – , row and column vectors u⃗ and v⃗ are de-
fined. Find the product u⃗v⃗, where possible.

. u⃗ =
[
1 −4

]
v⃗ =

[
−2
5

]

. u⃗ =
[
2 3

]
v⃗ =

[
7
−4

]

. u⃗ =
[
1 −1

]
v⃗ =

[
3
3

]

. u⃗ =
[
0.6 0.8

]
v⃗ =

[
0.6
0.8

]

. u⃗ =
[
1 2 −1

]
v⃗ =

 2
1
−1



. u⃗ =
[
3 2 −2

]
v⃗ =

−1
0
9



. u⃗ =
[
8 −4 3

]
v⃗ =

 2
4
5



. u⃗ =
[
−3 6 1

]
v⃗ =

 1
−1
1


. u⃗ =

[
1 2 3 4

]
v⃗ =


1
−1
1
−1


. u⃗ =

[
6 2 −1 2

]
v⃗ =


3
2
9
5



. u⃗ =
[
1 2 3

]
v⃗ =

[
3
2

]

. u⃗ =
[
2 −5

]
v⃗ =

 1
1
1


In Exercises – , matricesA andB are defined.

(a) Give the dimensions of A and B. If the dimensions
properly match, give the dimensions ofAB andBA.

(b) Find the productsAB andBA, if possible.

. A =

[
1 2
−1 4

]
B =

[
2 5
3 −1

]

. A =

[
3 7
2 5

]
B =

[
1 −1
3 −3

]

. A =

[
3 −1
2 2

]
B =

[
1 0 7
4 2 9

]

. A =

 0 1
1 −1
−2 −4


B =

[
−2 0
3 8

]

. A =

[
9 4 3
9 −5 9

]
B =

[
−2 5
−2 −1

]

. A =

−2 −1
9 −5
3 −1


B =

[
−5 6 −4
0 6 −3

]

. A =

 2 6
6 2
5 −1


B =

[
−4 5 0
−4 4 −4

]

. A =

−5 2
−5 −2
−5 −4


B =

[
0 −5 6
−5 −3 −1

]

. A =

 8 −2
4 5
2 −5


B =

[
−5 1 −5
8 3 −2

]

. A =

[
1 4
7 6

]
B =

[
1 −1 −5 5
−2 1 3 −5

]

. A =

[
−1 5
6 7

]
B =

[
5 −3 −4 −4
−2 −5 −5 −1

]



. A =

−1 2 1
−1 2 −1
0 0 −2


B =

 0 0 −2
1 2 −1
1 0 0



. A =

−1 1 1
−1 −1 −2
1 1 −2


B =

−2 −2 −2
0 −2 0
−2 0 2



. A =

−4 3 3
−5 −1 −5
−5 0 −1


B =

 0 5 0
−5 −4 3
5 −4 3



. A =

−4 −1 3
2 −3 5
1 5 3


B =

−2 4 3
−1 1 −1
4 0 2


In Exercises – , a diagonal matrixD and a matrix A are
given. Find the productsDA andAD, where possible.

. D =

[
3 0
0 −1

]
A =

[
2 4
6 8

]

. D =

[
4 0
0 −3

]
A =

[
1 2
1 2

]

. D =

−1 0 0
0 2 0
0 0 3


A =

 1 2 3
4 5 6
7 8 9



. D =

 1 1 1
2 2 2
−3 −3 −3


A =

 2 0 0
0 −3 0
0 0 5



. D =

[
d1 0
0 d2

]

A =

[
a b
c d

]

. D =

 d1 0 0
0 d2 0
0 0 d3


A =

 a b c
d e f
g h i


In Exercises – , a matrixA and a vector x⃗ are given. Find
the productAx⃗.

. A =

[
2 3
1 −1

]
, x⃗ =

[
4
9

]

. A =

[
−1 4
7 3

]
, x⃗ =

[
2
−1

]

. A =

 2 0 3
1 1 1
3 −1 2

, x⃗ =

 1
4
2



. A =

−2 0 3
1 1 −2
4 2 −1

, x⃗ =

 4
3
1


. A =

[
2 −1
4 3

]
, x⃗ =

[
x1

x2

]

. A =

 1 2 3
1 0 2
2 3 1

, x⃗ =

 x1

x2

x3


. LetA =

[
0 1
1 0

]
. FindA2 andA3.

. LetA =

[
2 0
0 3

]
. FindA2 andA3.

. LetA =

−1 0 0
0 3 0
0 0 5

. FindA2 andA3.

. LetA =

 0 1 0
0 0 1
1 0 0

. FindA2 andA3.

. LetA =

 0 0 1
0 0 0
0 1 0

. FindA2 andA3.

. In the text we state that (A + B)2 ̸= A2 + 2AB + B2.
We inves gate that claim here.

(a) Let A =

[
5 3
−3 −2

]
and let B =

[
−5 −5
−2 1

]
.

ComputeA+B.
(b) Find (A+B)2 by using your answer from (a).
(c) ComputeA2 + 2AB +B2.



(d) Are the results from (a) and (b) the same?
(e) Carefully expand the expression

(A+B)2 = (A+B)(A+B)

and show why this is not equal toA2 + 2AB +B2.
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AS YOU READ . . .

1. T/F: To solve the matrix equation AX = B, put the matrix
[
A X

]
into reduced row echelon form and interpret the result properly.

2. T/F: The first column of a matrix product AB is A times the first
column of B.

3. Give two reasons why one might solve for the columns of X in the
equation AX=B separately.

We concluded the last chapter with a discussion about solving numeri-
cal equations like ax = b for x. We have seen how to solve equations of the
form Ax⃗ = b⃗ by identifying them as systems of linear equations. In this
section we will learn how to solve the general matrix equation AX = B
for X.

We will start by considering the best case scenario when solving Ax⃗ =
b⃗; that is, when A is square and we have exactly one solution. For instance,
suppose we want to solve Ax⃗ = b⃗ where

A =

[
1 1
2 1

]
and b⃗ =

[
0
1

]
.

We know how to solve this; put the appropriate matrix into reduced row
echelon form and interpret the result.[

1 1 0
2 1 1

]
−→rref

[
1 0 1
0 1 −1

]
We read from this that

x⃗ =

[
1
−1

]
.

Written in a more general form, we found our solution by forming the
augmented matrix [

A b⃗
]

and interpreting its reduced row echelon form:[
A b⃗

] −→rref
[
I x⃗

]
Notice that when the reduced row echelon form of A is the identity matrix
I we have exactly one solution. This, again, is the best case scenario.

We apply the same general technique to solving the matrix equation
AX = B for X. We’ll assume that A is a square matrix (B need not be)
and we’ll form the augmented matrix[

A B
]
.

Putting this matrix into reduced row echelon form will give us X, much
like we found x⃗ before. [

A B
] −→rref

[
I X

]
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As long as the reduced row echelon form of A is the identity matrix,
this technique works great. After a few examples, we’ll discuss why this
technique works, and we’ll also talk just a little bit about what happens
when the reduced row echelon form of A is not the identity matrix.

First, some examples.

Example . . Solving a matrix equation
Solve the matrix equation AX = B where

A =

[
1 −1
5 3

]
and B =

[
−8 −13 1
32 −17 21

]
.

Solution To solve AX = B for X, we form the proper augmented
matrix, put it into reduced row echelon form, and interpret the result.[

1 −1 −8 −13 1
5 3 32 −17 21

]
−→rref

[
1 0 1 −7 3
0 1 9 6 2

]
We read from the reduced row echelon form of the matrix that

X =

[
1 −7 3
9 6 2

]
.

We can easily check to see if our answer is correct by multiplying AX.

Example . . Another matrix equation
Solve the matrix equation AX = B where

A =

 1 0 2
0 −1 −2
2 −1 0

 and B =

−1 2
2 −6
2 −4

 .

Solution To solve, let’s again form the augmented matrix[
A B

]
,

put it into reduced row echelon form, and interpret the result. 1 0 2 −1 2
0 −1 −2 2 −6
2 −1 0 2 −4

 −→rref

 1 0 0 1 0
0 1 0 0 4
0 0 1 −1 1


We see from this that

X =

 1 0
0 4
−1 1

 .

Why does this work? To see the answer, let’s define five matrices.

A =

[
1 2
3 4

]
, u⃗ =

[
1
1

]
, v⃗ =

[
−1
1

]
, w⃗ =

[
5
6

]
and X =

[
1 −1 5
1 1 6

]
Notice that u⃗, v⃗ and w⃗ are the first, second and third columns of X,

respectively. Now consider this list of matrix products: Au⃗, Av⃗, Aw⃗ and
AX.
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Au⃗ =

[
1 2
3 4

] [
1
1

]
=

[
3
7

]

Aw⃗ =

[
1 2
3 4

] [
5
6

]
=

[
17
39

]

Av⃗ =

[
1 2
3 4

] [
−1
1

]
=

[
1
1

]

AX =

[
1 2
3 4

] [
1 −1 5
1 1 6

]
=

[
3 1 17
7 1 39

]
So again note that the columns of X are u⃗, v⃗ and w⃗; that is, we can

write
X =

[
u⃗ v⃗ w⃗

]
.

Notice also that the columns of AX are Au⃗, Av⃗ and Aw⃗, respectively.
Thus we can write

AX = A
[
u⃗ v⃗ w⃗

]
=
[
Au⃗ Av⃗ Aw⃗

]
=

[ [
3
7

] [
1
1

] [
17
39

] ]
=

[
3 1 17
7 1 39

]
This is exactly the same sort of thing we did in Section 4.5 when we
had several vectors and we wanted to determine whether or not each of
them belonged to a given span. Rather than perform the same set of row
operations for each vector separately, we can do them all together. (See
the discussion following Example 4.5.7.)

Thus, we are once again making use of the following fact:
The columns of a matrix product AX are A times the columns
of X.

How does this help us solve the matrix equation AX = B for X?
Assume that A is a square matrix (that forces X and B to be the same
size). We’ll let x⃗1, x⃗2, · · · x⃗n denote the columns of the (unknown) matrix
X, and we’ll let b⃗1, b⃗2, · · · b⃗n denote the columns of B. We want to solve
AX = B for X. That is, we want X where

AX = B

A
[
x⃗1 x⃗2 · · · x⃗n

]
=
[
b⃗1 b⃗2 · · · b⃗n

]
( . )[

Ax⃗1 Ax⃗2 · · · Ax⃗n

]
=
[
b⃗1 b⃗2 · · · b⃗n

]
If the matrix on the left hand side is equal to the matrix on the right,

then their respective columns must be equal. This means we need to solve
n equations:

Ax⃗1 = b⃗1

Ax⃗2 = b⃗2

... =
...

Ax⃗n = b⃗n
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We already know how to do this; this is what we learned in the previous
section. Let’s do this in a concrete example. In our above work we defined
matrices A and X, and looked at the product AX. Let’s call the product
B; that is, set B= AX. Now, let’s pretend that we don’t know what X
is, and let’s try to find the matrix X that satisfies the equation AX = B.
As a refresher, recall that

A =

[
1 2
3 4

]
and B =

[
3 1 17
7 1 39

]
.

Since A is a 2 × 2 matrix and B is a 2 × 3 matrix, what dimensions
must X be in the equation AX = B? The number of rows of X must
match the number of columns of A; the number of columns of X must
match the number of columns of B. Therefore we know that X must be
a 2× 3 matrix.

We’ll call the three columns of X x⃗1, x⃗2 and x⃗3. Our previous expla-
nation tells us that if AX = B, then:

AX = B

A
[
x⃗1 x⃗2 x⃗3

]
=

[
3 1 17
7 1 39

]
[
Ax⃗1 Ax⃗2 Ax⃗3

]
=

[
3 1 17
7 1 39

]
.

Hence

Ax⃗1 =

[
3
7

]
Ax⃗2 =

[
1
1

]
Ax⃗3 =

[
17
39

]
To find x⃗1, we form the proper augmented matrix and put it into

reduced row echelon form and interpret the results.[
1 2 3
3 4 7

]
−→rref

[
1 0 1
0 1 1

]
This shows us that

x⃗1 =

[
1
1

]
.

To find x⃗2, we again form an augmented matrix and interpret its re-
duced row echelon form.[

1 2 1
3 4 1

]
−→rref

[
1 0 −1
0 1 1

]
Thus

x⃗2 =

[
−1
1

]
which matches with what we already knew from above.

Before continuing on in this manner to find x⃗3, we should stop and
think. If the matrix vector equation Ax⃗ = b⃗ is consistent, then the steps
involved in putting [

A b⃗
]
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into reduced row echelon form depend only on A; it does not matter what
b⃗ is. So when we put the two matrices[

1 2 3
3 4 7

]
and

[
1 2 1
3 4 1

]
from above into reduced row echelon form, we performed exactly the same
steps! (In fact, those steps are: −3R1 + R2 → R2; − 1

2R2 → R2; −2R2 +
R1 → R1.)

This is just as we noted after Example 4.5.7. Instead of solving for each
column of X separately, performing the same steps to put the necessary
matrices into reduced row echelon form three different times, why don’t
we just do it all at once? (Unless you enjoy doing unnecessary work.)
Instead of individually putting[

1 2 3
3 4 7

]
,

[
1 2 1
3 4 1

]
and

[
1 2 17
3 4 39

]
into reduced row echelon form, let’s just put[

1 2 3 1 17
3 4 7 1 39

]
into reduced row echelon form.[

1 2 3 1 17
3 4 7 1 39

]
−→rref

[
1 0 1 −1 5
0 1 1 1 6

]
By looking at the last three columns, we see X:

X =

[
1 −1 5
1 1 6

]
.

In each of the examples we’ve considered so far, the reduced row eche-
lon form R of the matrix A was equal to the n×n identity matrix: R = I.
It follows from Definition 4.6.4 in Section 4.6 that for an n× n matrix A,
we have R = I if and only if the rank of A is equal to n. At this point
we should recall Theorem 4.6.1 from Section 4.6, and the discussion that
followed. One of the things Theorem 4.6.1 tells us is that if A is an n× n
matrix and rank(A) = n, then the equation Ax⃗ = b⃗ is guaranteed to
have a unique solution, no matter what the vector b⃗ is.

But what if rank(A) < n? In this case, the reduced row echelon form
of A is an n× n matrix R with at least row of zeros on the bottom. Our
experience with solving systems of the form Ax⃗ = b⃗ tells us that in this
case, the matrix equation AX = B may have infinitely many solutions, or
no solution at all. Let us consider an example.
Example . . Solving AX = B when rank(A) < n
Solve the matrix equations AX = B and AX = C, where

A =

 1 0 −3
−2 3 4
0 6 −4

 , B =

1 2 0
1 1 3
6 3 0

 , and C =

 4 −2 −3
−6 5 7
4 2 2

 .

Solution We proceed as in the previous examples. For the equa-
tion AX = B, we have

[
A B

]
=

 1 0 −3 1 2 0
−2 3 4 1 1 3
0 6 −4 6 3 0

 →

1 0 −3 1 2 0
0 3 −2 3 5 3
0 0 0 0 −7 −6

 .
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We stopped before reaching the reduced row echelon form, but there’s no
reason to continue: we already have a row of zeros on the left-hand side
of the augmented matrix, and two non-zero entries in that same row, on
the right. What this tells us is that it will be impossible to solve for the
second and third columns of X; thus, there is no solution in this case.

For the equation AX = C, we have

[
A C

]
=

 1 0 −3 4 −2 −3
−2 3 4 −6 5 7
0 6 −4 4 2 2

 −→rref

1 0 −3 4 −2 3
0 1 −2/3 2/3 1/3 1/3
0 0 0 0 0 0

 .

In this case, we are able to solve for each column of X, but in each case
there are infinitely many possibilities: we find X =

[
x⃗1 x⃗2 x⃗3

]
, where

x⃗1 =

4 + 3r
2
3 + 2

3r
r

 , x⃗2 =

−2 + 3s
1
3 + 2

3s
s

 , x⃗3 =

−3 + 3t
1
3 + 2

3 t
t

 ,

for parameters r, s, t. Any choice of values for each of these parameters
provides us with a solution. For simple example, we can set all three
parameters equal to zero, giving us

X =

 4 −2 −3
2/3 1/3 1/3
0 0 0

 .

It’s easy to check that indeed, AX = C in this case.

In the previous example, we saw that the equation AX = B had no
solution, while we were able to solve AX = C. How do we know which of
these will be the case? Let’s go back to Equation ( . ) above. From this
equation, we can see that each column of B is of the form b⃗i = Ax⃗i for
some vector x⃗i. Now recall from Section 3.7 that the set of vectors of the
form Ax⃗ is precisely the column space of A. In the case of the matrix C,
we can check that if we write

A =
[⃗
a1 a⃗2 a⃗3

]
and C =

[
c⃗1 c⃗2 c⃗3

]
,

then c⃗1 = a⃗1 − a⃗2, c⃗2 = a⃗1 + a⃗2 + a⃗3, and c⃗3 = a⃗2 + a⃗3. Thus, all three
columns of C are linear combinations of the columns of A, which is what
allowed us to find a solution to AX = C even though the rank of A was
less than n.

Now that we’ve justified the technique we’ve been using in this section
to solve AX = B for X, we reinforce its importance by restating it as a
Key Idea.
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Key Idea 5.3.1 Solving AX = B

Let A be an n× n matrix, where the reduced row echelon form of
A is I. To solve the matrix equation AX = B for X,

1. Form the augmented matrix
[
A B

]
.

2. Put this matrix into reduced row echelon form.

(a) If it is of the form
[
I C

]
, for some matrix C that

appears in the columns where B once was, then C = X.
(b) If it is of the form

[
R C

]
, where the matrix R (the

reduced row echelon form of A) has one or more rows
of zeros, then there will be either no solution or in-
finitely many solutions, depending on whether or not
the columns of B belong to the column space of A.

These simple steps cause us to ask certain questions. One of these we
asked (and answered) above: What if A does not have maximum rank,
so that the reduced row echelon form of A is not equal to I? Second, we
specify above that A should be a square matrix. What happens if A isn’t
square? Is a solution still possible? If you study what happens in Example
5.3.3 carefully, you can probably guess that a similar argument applies,
by applying the ideas of Section 4.6 to each column of B individually.

These questions are good to ask, and we leave it to the reader to dis-
cover their answers. Instead of tackling these questions, we instead tackle
the problem of “Why do we care about solving AX = B?” The simple
answer is that, for now, we only care about the special case when B = I.
By solving AX = I for X, we find a matrix X that, when multiplied by
A, gives the identity I. That will be very useful.



Exercises 5.3
Problems
In Exercises – , matrices A and B are given. Solve the
matrix equa onAX = B.

. A =

[
4 −1
−7 5

]
,

B =

[
8 −31

−27 38

]

. A =

[
1 −3
−3 6

]
,

B =

[
12 −10
−27 27

]

. A =

[
3 3
6 4

]
,

B =

[
15 −39
16 −66

]

. A =

[
−3 −6
4 0

]
,

B =

[
48 −30
0 −8

]

. A =

[
−1 −2
−2 −3

]
,

B =

[
13 4 7
22 5 12

]

. A =

[
−4 1
−1 −2

]
,

B =

[
−2 −10 19
13 2 −2

]

. A =

[
1 0
3 −1

]
, B = I2

. A =

[
2 2
3 1

]
, B = I2

. A =

−2 0 4
−5 −4 5
−3 5 −3

,
B =

−18 2 −14
−38 18 −13
10 2 −18



. A =

−5 −4 −1
8 −2 −3
6 1 −8

,
B =

−21 −8 −19
65 −11 −10
75 −51 33



. A =

 0 −2 1
0 2 2
1 2 −3

, B = I3

. A =

−3 3 −2
1 −3 2
−1 −1 2

, B = I3
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. The Matrix Inverse
AS YOU READ . . .

1. T/F: If A and B are square matrices where AB = I, then BA = I.

2. T/F: A matrix A has exactly one inverse, infinite inverses, or no
inverse.

3. T/F: Everyone is special.

4. T/F: If A is invertible, then Ax⃗ = ⃗ has exactly 1 solution.

5. What is a corollary?

6. Fill in the blanks: a matrix is invertible is useful; computing
the inverse is .

Once again we visit the old algebra equation, ax = b. How do we solve
for x? We know that, as long as a ̸= 0,

x =
b

a
, or, stated in another way, x = a−1b.

What is a−1? It is the number that, when multiplied by a, returns 1.
That is,

a−1a = 1.

Let us now think in terms of matrices. We have learned of the identity
matrix I that “acts like the number 1.” That is, if A is a square matrix,
then

IA = AI = A.

If we had a matrix, which we’ll call A−1, where A−1A = I, then by analogy
to our algebra example above it seems like we might be able to solve the
linear system Ax⃗ = b⃗ for x⃗ by multiplying both sides of the equation by
A−1. That is, perhaps

x⃗ = A−1⃗b.

There is no guarantee that such a matrix is going to exist for an arbitrary
n× n matrix A, but if it does, we say that A is invertible:

Definition 5.4.1 Invertible Matrices and the Inverse of
A

We say that an n×n matrix A is invertible if there exists a matrix
X such that

AX = XA = In.

When this is the case, we call the matrix X the inverse of A and
write X = A−1,

Of course, there is a lot of speculation here. We don’t know in general
that such a matrix like A−1 exists. (And if it does, whether that matrix
is unique, despite the use of the definite article in stating that X is “the”
inverse of A.) However, we do know how to solve the matrix equation
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AX = B, so we can use that technique to solve the equation AX = I for
X. This seems like it will get us close to what we want. Let’s practice
this once and then study our results.

Example . . Solving AX = I
Let

A =

[
2 1
1 1

]
.

Find a matrix X such that AX = I.

Solution We know how to solve this from the previous section:
we form the proper augmented matrix, put it into reduced row echelon
form and interpret the results.[

2 1 1 0
1 1 0 1

]
−→rref

[
1 0 1 −1
0 1 −1 2

]
We read from our matrix that

X =

[
1 −1
−1 2

]
.

Let’s check our work:

AX =

[
2 1
1 1

] [
1 −1
−1 2

]
=

[
1 0
0 1

]
= I

Sure enough, it works.

Looking at our previous example, we are tempted to jump in and call
the matrix X that we found “A−1.” However, there are two obstacles in
the way of us doing this.

First, we know that in general AB ̸= BA. So while we found that
AX = I, we can’t automatically assume that XA = I.

Secondly, we have seen examples of matrices where AB = AC, but
B ̸= C. So just because AX = I, it is possible that another matrix Y
exists where AY = I. If this is the case, using the notation A−1 would be
misleading, since it could refer to more than one matrix.

These obstacles that we face are not insurmountable. The first obstacle
was that we know that AX = I but didn’t know that XA = I. That’s
easy enough to check, though. Let’s look at A and X from our previous
example.

XA =

[
1 −1
−1 2

] [
2 1
1 1

]
=

[
1 0
0 1

]
= I

Perhaps this first obstacle isn’t much of an obstacle after all. Of course,
we only have one example where it worked, so this doesn’t mean that it
always works. We have good news, though: it always does work. The only
“bad” news is that this is a bit harder to prove. For now, we will state



Note: Theorem 5.4.1 only applies to
square matrices. If A is an m × n
matrix, with m ̸= n, it is sometimes
possible to find an n × m matrix B
such that AB = Im (in this case B
is called a “right inverse” for A), or
an n × m matrix C such that CA =
In (a “left inverse” for A). However,
the only case where A has both a left
and a right inverse is when m = n, in
which case B = C. If m < n, only a
right inverse is possible, while if m >
n, only a left inverse is possible.
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it as theorem, but the proof will have to wait until later: see the proof of
Theorem 5.5.1 on page 233.

Theorem 5.4.1 Special Commuting Matrix Products

Let A be an n× n matrix.

1. If there is a matrix X such that AX = In, then XA = In.

2. If there is a matrix X such that XA = In, then AX = In.

The second obstacle is easier to address. We want to know if another
matrix Y exists where AY = I = Y A. Let’s suppose that it does. Consider
the expression XAY . Since matrix multiplication is associative, we can
group this any way we choose. We could group this as (XA)Y ; this results
in

(XA)Y = IY

= Y.

We could also group XAY as X(AY ). This tells us

X(AY ) = XI

= X

Combining the two ideas above, we see that X = XAY = Y ; that is,
X = Y . We conclude that there is only one matrix X where XA = I =
AX. (Even if we think we have two, we can do the above exercise and see
that we really just have one.)

We have just proved the following theorem.

Theorem 5.4.2 Uniqueness of Solutions to AX = In

Let A be an n× n matrix and let X be a matrix where AX = In.
Then X is unique; it is the only matrix that satisfies this equation.
In other words, if A is an n× n matrix and AX = AY = In, then
X = Y = A−1.

Thus, we were justified in Definition 5.4.1 in calling A−1 “the” inverse
of A (rather than merely “an” inverse). Theorem 5.4.2 is incredibly im-
portant in practice. It tells us that if we are able to establish that either
AX = In or XA = In for some matrix X, then we can immediately con-
clude two things: first, that A is invertible, and second, that A = A−1.
We put this observation to use in the next example.
Example . . Using Theorems 5.4.1 and 5.4.2
Suppose A is an n×n matrix such that A5 = In. Prove that A is invertible,
and find an expression for A−1.

Solution Using Theorem 5.4.2, we can quickly kill two birds with
one stone. Using properties of exponents (and the fact that 5 = 1 + 4),
we have

A5 = A · (A ·A ·A ·A) = A(A4) = In.



Example 5.4.3 shows that not all
square matrices (or even non-zero
square matrices) are invertible, hence
Definition 5.4.1 is necessary: why
bother calling A “invertible” if every
square matrix is? If everyone is spe-
cial, then no one is. Then again, ev-
eryone is special.
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Thus, if we set X = A4, then AX = In, so by Theorems 5.4.1 and 5.4.2,
A is invertible, and A−1 = A4.

At this point, it is natural to wonder which n × n matrices will be
invertible. Will any non-zero matrix do? (No.) Are such matrices a rare
occurrence? (No.) As we proceed through this chapter and the next, we
will see that there are many different conditions one can place on an n×n
matrix that are equivalent to the statement “The matrix A is invertible.”
Before we begin our attempt to answer this question in general, let’s look
at a particular example.

Example . . A non-invertible matrix
Find the inverse of A =

[
1 2
2 4

]
.

Solution By solving the equation AX = I for X will give us the
inverse of A. Forming the appropriate augmented matrix and finding its
reduced row echelon form gives us

[
1 2 1 0
2 4 0 1

]
−→rref

[
1 2 0 1/2
0 0 1 −1/2

]

Yikes! We were expecting to find that the reduced row echelon form of
this matrix would look like

[
I A−1

]
.

However, we don’t have the identity on the left hand side. Our conclusion:
A is not invertible.

We have just seen that not all matrices are invertible. The attentive
reader might have been able to spot the source of the trouble in the pre-
vious example: notice that the second row of A is a multiple of the first,
so that the row operation R2 − 2R1 → R2 created a row of zeros. Can
you think what sort of condition would signal trouble for a general n× n
matrix? Here, we need to think back to our discussions of the various
theoretical concepts we’ve encountered, such as rank, span, linear inde-
pendence, and so on. Let us think of the rows of A as row vectors. The
elementary row operations that we perform on a matrix either rearrange
these vectors, or create new vectors that are linear combinations of the
old ones. The only way we end up with a row of zeros in the reduced row
echelon form of A is if one of the rows of A can be written as a linear
combination of the others; that is, if the rows of A are linearly dependent.
We also know that if there is a row of zeros in the reduced row echelon
form of A, then not every row contains a leading 1. Recalling that the
rank of A is equal to the number of leading 1s in the reduced row echelon
form of A, we have the following:



Here’s a useful exercise for the reader
to consider: can you prove in general
that for a 2 × 2 matrix A, if one row
of A is a multiple of the other, then
the same is true of the columns? (We
can see that this is the case in Exam-
ple 5.4.3.) A fundamental theorem in
linear algebra states that for a general
m× n matrix, the number of linearly
independent rows is equal to the num-
ber of linearly independent columns.
The proof of this fact is rather techni-
cal, so we have not included it in this
book. However, the rough idea is to
follow the leading 1s: in the reduced
row echelon form of A, each leading
1 occupies both a row and a column,
and the rows (or columns) that end
up with leading 1s are the ones that
are linearly independent.
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Theorem 5.4.3 Inverses and rank

Let A be an n × n matrix. Then the following statements are
equivalent:

1. The matrix A is invertible.

2. The rank of A is equal to n.

3. The rows of A are linearly independent.

4. The columns of A are linearly independent.

The claim that “the following statements are equivalent” in Theorem
5.4.3 means that as soon as we know that one of the statements on the list
is true, we can immediately conclude that the others are true as well. This
is also the case if we know one of the statements is false. For example, if
we know that rank(A) < n, then we can immediately conclude that A will
not be invertible.

Let’s sum up what we’ve learned so far. We’ve discovered that if a
matrix has an inverse, it has only one. Therefore, we gave that special
matrix a name, “the inverse.” Finally, we describe the most general way
to find the inverse of a matrix, and a way to tell if it does not have one.

Key Idea 5.4.1 Finding A−1

Let A be an n×n matrix. To find A−1, put the augmented matrix[
A In

]
into reduced row echelon form. If the result is of the form[

In X
]
,

then A−1 = X. If not, (that is, if the first n columns of the reduced
row echelon form are not In), then A is not invertible.

Let’s try again.
Example . . Computing the inverse of a matrix

Find the inverse, if it exists, of A =

 1 1 −1
1 −1 1
1 2 3

.

Solution We’ll try to solve AX = I for X and see what happens. 1 1 −1 1 0 0
1 −1 1 0 1 0
1 2 3 0 0 1

 −→rref

 1 0 0 1/2 1/2 0
0 1 0 1/5 −2/5 1/5
0 0 1 −3/10 1/10 1/5


We have a solution, so

A−1 =

 1/2 1/2 0
1/5 −2/5 1/5

−3/10 1/10 1/5

 .



We don’t prove Theorem 5.4.4 here,
but it really isn’t hard to do. Put the
matrix [

a b 1 0
c d 0 1

]
into reduced row echelon form and
you’ll discover the result of the the-
orem. Alternatively, multiply A by
what we propose is the inverse and
see that we indeed get I. It turns out
that Theorem 5.4.4 is a special case of
a general formula for the inverse of a
matrix in terms of determinants. We
will discuss determinants in the next
chapter, although we will stop short
of giving this formula. While useful in
certain theoretical situations, the de-
terminant formula for the inverse is
only a shortcut in the 2× 2 case. For
larger matrices, the method given in
this section is computationally much
faster.
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Multiply AA−1 to verify that it is indeed the inverse of A.

In general, given a matrix A, to find A−1 we need to form the aug-
mented matrix

[
A I

]
and put it into reduced row echelon form and

interpret the result. In the case of a 2 × 2 matrix, though, there is a
shortcut. We give the shortcut in terms of a theorem.

Theorem 5.4.4 The Inverse of a 2×2 Matrix

Let
A =

[
a b
c d

]
.

A is invertible if and only if ad− bc ̸= 0.

If ad− bc ̸= 0, then

A−1 =
1

ad− bc

[
d −b
−c a

]
.

We can’t divide by 0, so if ad−bc = 0, we don’t have an inverse. Recall
Example 5.4.3, where

A =

[
1 2
2 4

]
.

Here, ad− bc = 1(4)− 2(2) = 0, which is why A didn’t have an inverse.
Although this idea is simple, we should practice it.

Example . . Computing a 2× 2 inverse using Theorem 5.4.4
Use Theorem 5.4.4 to find the inverse of

A =

[
3 2
−1 9

]
if it exists.

Solution Since ad− bc = 29 ̸= 0, A−1 exists. By the Theorem,

A−1 =
1

3(9)− 2(−1)

[
9 −2
1 3

]
=

1

29

[
9 −2
1 3

]
We can leave our answer in this form, or we could “simplify” it as

A−1 =
1

29

[
9 −2
1 3

]
=

[
9/29 −2/29
1/29 3/29

]
.

We started this section out by speculating that just as we solved alge-
braic equations of the form ax = b by computing x = a−1b, we might be
able to solve matrix equations of the form Ax⃗ = b⃗ by computing x⃗ = A−1⃗b.
If A−1 does exist, then we can solve the equation Ax⃗ = b⃗ this way. Con-
sider:



A corollary is an idea that follows di-
rectly from a theorem; typically all
the hard work is done in proving the
theorem, and any resulting corollaries
are easy consequences.

The method employed in Example
5.4.6 is useful in theory, but not in
practice: the amount of work required
to solve a system this way is sig-
nificantly greater than the amount
of work involved in Gaussian Elim-
ination. The only scenario where
you should consider using the inverse
to solve a system (aside from being
asked to do so on a test!) is when
there are several systems you need to
solve that all have the same coefficient
matrix.

. The Matrix Inverse

Ax⃗ = b⃗ (original equa on)

A−1Ax⃗ = A−1⃗b (mul ply both sides on the le byA−1)

Ix⃗ = A−1⃗b (sinceA−1A = I)

x⃗ = A−1⃗b (since Ix⃗ = x⃗)

Let’s step back and think about this for a moment. The only thing we
know about the equation Ax⃗ = b⃗ is that A is invertible. We also know
that solutions to Ax⃗ = b⃗ come in three forms: exactly one solution, infinite
solutions, and no solution. We just showed that if A is invertible, then
Ax⃗ = b⃗ has at least one solution. We showed that by setting x⃗ equal to
A−1⃗b, we have a solution. Is it possible that more solutions exist?

No. Suppose we are told that a known vector v⃗ is a solution to the
equation Ax⃗ = b⃗; that is, we know that Av⃗ = b⃗. We can repeat the above
steps:

Av⃗ = b⃗

A−1Av⃗ = A−1⃗b

Iv⃗ = A−1⃗b

v⃗ = A−1⃗b.

This shows that all solutions to Ax⃗ = b⃗ are exactly x⃗ = A−1⃗b when A is
invertible. We have just proved the following theorem.

Theorem 5.4.5 Invertible Matrices and Solutions to
Ax⃗ = b⃗

Let A be an invertible n×n matrix, and let b⃗ be any n× 1 column
vector. Then the equation Ax⃗ = b⃗ has exactly one solution, namely

x⃗ = A−1⃗b.

A corollary to this theorem is: If A is not invertible, then Ax⃗ = b⃗ does
not have exactly one solution. It may have infinite solutions and it may
have no solution, and we would need to examine the reduced row echelon
form of the augmented matrix

[
A b⃗

]
to see which case applies.

We demonstrate our theorem with an example.
Example . . Using a matrix inverse to solve a system
Solve Ax⃗ = b⃗ by computing x⃗ = A−1⃗b, where

A =

 1 0 −3
−3 −4 10
4 −5 −11

 and b⃗ =

 −15
57
−46

 .

Solution Without showing our steps, we compute

A−1 =

 94 15 −12
7 1 −1
31 5 −4

 .



As odd as it may sound, knowing a
matrix is invertible is useful; actually
computing the inverse isn’t. This is
discussed at the end of the next sec-
tion.
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We then find the solution to Ax⃗ = b⃗ by computing A−1⃗b:

x⃗ = A−1⃗b

=

 94 15 −12
7 1 −1
31 5 −4

 −15
57
−46


=

 −3
−2
4

 .

We can easily check our answer: 1 0 −3
−3 −4 10
4 −5 −11

 −3
−2
4

 =

 −15
57
−46

 .

Knowing a matrix is invertible is incredibly useful. Among many other
reasons, if you know A is invertible, then you know for sure that Ax⃗ = b⃗ has
a solution (as we just stated in Theorem 5.4.5). In the next section we’ll
demonstrate many different properties of invertible matrices, including
stating several different ways in which we know that a matrix is invertible.



Exercises 5.4
Problems
In Exercises – , A matrix A is given. Find A−1 using Theo-
rem . . , if it exists.

.
[

1 5
−5 −24

]

.
[
1 −4
1 −3

]

.
[
3 0
0 7

]

.
[
2 5
3 4

]

.
[

1 −3
−2 6

]

.
[
3 7
2 4

]

.
[
1 0
0 1

]

.
[
0 1
1 0

]

In Exercises – , a matrix A is given. Find A−1 using Key
Idea . . , if it exists.

.
[
−2 3
1 5

]

.
[
−5 −2
9 2

]

.
[
1 2
3 4

]

.
[

5 7
5/3 7/3

]

.

 25 −10 −4
−18 7 3
−6 2 1



.

 2 3 4
−3 6 9
−1 9 13



.

 1 0 0
4 1 −7
20 7 −48



.

 −4 1 5
−5 1 9
−10 2 19



.

 5 −1 0
7 7 1
−2 −8 −1



.

 1 −5 0
−2 15 4
4 −19 1



.

 25 −8 0
−78 25 0
48 −15 1



.

 1 0 0
7 5 8
−2 −2 −3



.

 0 0 1
1 0 0
0 1 0



.

 0 1 0
1 0 0
0 0 1



.


1 0 0 0

−19 −9 0 4
33 4 1 −7
4 2 0 −1



.


1 0 0 0
27 1 0 4
18 0 1 4
4 0 0 1



.


−15 45 −3 4
55 −164 15 −15

−215 640 −62 59
−4 12 0 1



.


1 0 2 8
0 1 0 0
0 −4 −29 −110
0 −3 −5 −19



.


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



.


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 −4





In Exercises – , amatrixA and a vector b⃗ are given. Solve
the equa onAx⃗ = b⃗ using Theorem . . .

. A =

[
3 5
2 3

]
, b⃗ =

[
21
13

]

. A =

[
1 −4
4 −15

]
, b⃗ =

[
21
77

]

. A =

[
9 70
−4 −31

]
, b⃗ =

[
−2
1

]

. A =

[
10 −57
3 −17

]
, b⃗ =

[
−14
−4

]

. A =

 1 2 12
0 1 6
−3 0 1

 ,

b⃗ =

−17
−5
20



. A =

 1 0 −3
8 −2 −13
12 −3 −20

 ,

b⃗ =

 −34
−159
−243



. A =

 5 0 −2
−8 1 5
−2 0 1

 ,

b⃗ =

 33
−70
−15



. A =

 1 −6 0
0 1 0
2 −8 1

 ,

b⃗ =

 −69
10

−102





Note: Theorem 5.5.1 gives us several
different ways of saying what is essen-
tially the same thing (logically speak-
ing). Theorems like this are very use-
ful, since it’s often the case that, in a
given situation, one of the conditions
can easily be checked, allowing us to
immediately obtain information that
might be difficult (or impossible) to
verify directly.

Note: If we know that A is invertible,
then we already know that there is a
matrix B where BA = I. That is part
of the definition of invertible. Part
of the significance of this Theorem is
that as soon as we find a matrix B
such that AB = I, we immediately
know that A is invertible, and that
BA = I as well. We made this claim
in Theorem 5.4.1, but did not provide
a proof at the time.

. Proper es of the Matrix Inverse

. Proper es of the Matrix Inverse

AS YOU READ . . .

1. What does it mean to say that two statements are “equivalent?”

2. T/F: If A is not invertible, then Ax⃗ = ⃗ could have no solutions.

3. T/F: If A is not invertible, then Ax⃗ = b⃗ could have infinitely many
solutions.

4. What is the inverse of the inverse of A?

5. T/F: Solving Ax⃗ = b⃗ using Gaussian elimination is faster than using
the inverse of A.

We ended the previous section by stating that invertible matrices are
important. Since they are, in this section we study invertible matrices
in two ways. First, we look at ways to tell whether or not a matrix is
invertible, and second, we study properties of invertible matrices (that is,
how they interact with other matrix operations).

In the last section we stated Theorem 5.4.3, in which we listed several
properties of a matrix that equivalent to that matrix being invertible,
including the fact that an n × n matrix must have rank n in order to be
invertible.

We begin this section by collecting additional properties that are equiv-
alent to matrix a matrix being invertible. Some of these results were es-
tablished in the previous section, but we state them again here for ease of
reference.

Theorem 5.5.1 Invertible Matrix Theorem

Let A be an n×n matrix. The following statements are equivalent.

(a) A is invertible.

(b) The equation Ax⃗ = ⃗ has exactly one solution (namely, x⃗ =
⃗).

(c) The reduced row echelon form of A is I.

(d) The equation Ax⃗ = b⃗ has exactly one solution for every n× 1

vector b⃗.

(e) There exists a matrix C such that AC = I.

(f) There exists a matrix B such that BA = I.

Note that the theorem uses the phrase “the following statements are
equivalent.” Recall that when two or more statements are equivalent, it
means that the truth of any one of them implies that the rest are also true;
if any one of the statements is false, then they are all false. So, for example,
if we determined that the equation Ax⃗ = ⃗ had exactly one solution (and
A was an n× n matrix) then we would know that A was invertible, that
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Ax⃗ = b⃗ had only one solution, that the reduced row echelon form of A
was I, etc.

Let’s see exactly why all of these statements are equivalent. What we
will do is establish the following chain of logic:

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a).

Since this chain of implications circles back on itself, each of the statements
implies the others. (For example, to show (e) implies (c), we start at (e)
and circle around through (a) until we get to (c).

• (a) ⇒ (b): Suppose Ax⃗ = ⃗ for some vector x⃗. Since A is invertible,
we can multiply both sides of this equation by A−1, giving us

x⃗ = Ix⃗ = (A−1A)x⃗ = A−1(Ax⃗) = A−1⃗ = ⃗.

Thus, the only possible solution to the system is x⃗ = ⃗ .

• (b) ⇒ (c): Suppose the only solution to Ax⃗ = ⃗ is x⃗ = ⃗ . Why
must the reduced row echelon form of A be equal to I? If we let R
denote the reduced row echelon form of A, we know that to solve
Ax⃗ = ⃗ , we form the augmented matrix

[
A ⃗

]
and reduce:[

A ⃗
] −→rref

[
R ⃗

]
If the R ̸= I, then R has a row of zeros, and thus, so does

[
R ⃗

]
,

in which case the system Ax⃗ = ⃗ would have at least one parameter,
and thus infinitely many solutions. Since we’re assuming that Ax⃗ =
⃗ has the unique solution x⃗ = ⃗ , it follows that R cannot have a row
of zeros, and thus R = I.

• (c) ⇒ (d): Suppose that the reduced row echelon form of A is equal
to I. It follows that when solving the system Ax⃗ = b⃗, we would have[

A b⃗
] −→rref

[
I c⃗

]
for some column vector c⃗, and thus x⃗ = c⃗ is the unique solution to
Ax⃗ = b⃗.

• (d) ⇒ (e): Suppose that Ax⃗ = b⃗ has a unique solution for every
column vector b⃗. Then in particular, we have a unique solution c⃗j
to the systems Ax⃗ = e⃗j for j = 1, . . . , n, where e⃗1, e⃗2, . . . , e⃗n are the
standard basis vectors in Rn (and also the columns of In). If we let

C =
[
c⃗1 c⃗2 · · · c⃗n

]
,

then

AC =
[
Ac⃗1 Ac⃗2 · · · Ac⃗n

]
=
[
e⃗1 e⃗2 · · · e⃗n

]
= In.

• (e) ⇒ (f): Suppose that AC = In for some n × n matrix C. We
claim that Property 2 holds for the matrix C. To see this, note that
since AC = In, if Cx⃗ = ⃗ , then

x⃗ = In(x⃗) = (AC)x⃗ = A(Cx⃗) = A⃗ = ⃗.

Since Property 2 holds for the matrix C, it follows that Properties
3, 4, and 5 do as well, by what we’ve proven so far. Thus, there



Think about how we, up to this point,
determined the solution to Ax⃗ =
b⃗. We set up the augmented ma-
trix

[
A b⃗

]
and put it into reduced

row echelon form. We know that get-
ting the identity matrix on the left
means that we had a unique solution
(and not getting the identity means
we either have no solution or infinitely
many solutions). So getting I on the
left means having a unique solution;
having I on the left means that the
reduced row echelon form of A is I,
which we know is the same as A be-
ing invertible.

. Proper es of the Matrix Inverse

exists a matrix D such that CD = In. We can complete our proof
by showing that D = A, and this is the case since (recalling that
we’ve assumed AC = In)

A = A(In) = A(CD) = (AC)D = InD = D.

Thus, (f) holds. (Note that this argument finally establishes the
truth of Theorem 5.4.1.)

• (f) ⇒ (a): Suppose that BA = In for some matrix B. Using the
same argument we just gave, it then follows that AB = In, and if
AB = BA = In, then by definition A is invertible and B = A−1.

So we came up with a list of statements that are all equivalent to the
statement “A is invertible.” Again, if we know that if any one of them is
true (or false), then they are all true (or all false).

Theorem 5.5.1 states formally that if A is invertible, then Ax⃗ = b⃗ has
exactly one solution, namely A−1⃗b. What if A is not invertible? What are
the possibilities for solutions to Ax⃗ = b⃗?

We know that Ax⃗ = b⃗ cannot have exactly one solution; if it did, then
by our theorem it would be invertible. Recalling that linear equations have
either one solution, infinitely many solutions, or no solution, we are left
with the latter options when A is not invertible. This idea is important
and so we’ll state it again as a Key Idea.

Key Idea 5.5.1 Solutions to Ax⃗ = b⃗ and the Invertibility
of A

Consider the system of linear equations Ax⃗ = b⃗.

1. If A is invertible, then Ax⃗ = b⃗ has exactly one solution,
namely A−1⃗b.

2. If A is not invertible, then Ax⃗ = b⃗ has either infinitely many
solutions or no solution.

In Theorem 5.5.1 we’ve come up with a list of ways in which we can
tell whether or not a matrix is invertible. At the same time, we have come
up with a list of properties of invertible matrices – things we know that
are true about them. (For instance, if we know that A is invertible, then
we know that Ax⃗ = b⃗ has only one solution.)

We now go on to discover other properties of invertible matrices. Specif-
ically, we want to find out how invertibility interacts with other matrix
operations. For instance, if we know that A and B are invertible, what is
the inverse of A + B? What is the inverse of AB? What is “the inverse
of the inverse?” We’ll explore these questions through an example.

Example . . Exploring properties of the inverse
Let

A =

[
3 2
0 1

]
and B =

[
−2 0
1 1

]
.

Find:
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1. A−1

2. B−1

3. (AB)−1

4. (A−1)−1

5. (A+B)−1

6. (5A)−1

In addition, try to find connections between each of the above.

Solution

1. Computing A−1 is straightforward; we’ll use Theorem 5.4.4.

A−1 =
1

3

[
1 −2
0 3

]
=

[
1/3 −2/3
0 1

]
2. We compute B−1 in the same way as above.

B−1 =
1

−2

[
1 0
−1 −2

]
=

[
−1/2 0
1/2 1

]
3. To compute (AB)−1, we first compute AB:

AB =

[
3 2
0 1

] [
−2 0
1 1

]
=

[
−4 2
1 1

]
We now apply Theorem 5.4.4 to find (AB)−1.

(AB)−1 =
1

−6

[
1 −2
−1 −4

]
=

[
−1/6 1/3
1/6 2/3

]
4. To compute (A−1)−1, we simply apply Theorem 5.4.4 to A−1:

(A−1)−1 =
1

1/3

[
1 2/3
0 1/3

]
=

[
3 2
0 1

]
.

5. To compute (A+B)−1, we first compute A+B then apply Theorem
5.4.4:

A+B =

[
3 2
0 1

]
+

[
−2 0
1 1

]
=

[
1 2
1 2

]
.

We notice immediately that the two rows of A + B are the same!
Subtracting Row 1 from Row 2 would produce a row of zeros, so
A+B has rank 1 < 2, and therefore cannot be invertible.

6. To compute (5A)−1, we compute 5A and then apply Theorem 5.4.4.

(5A)−1 =

([
15 10
0 5

])−1

=
1

75

[
5 −10
0 15

]
=

[
1/15 −2/15
0 1/5

]

We now look for connections between A−1, B−1, (AB)−1, (A−1)−1

and
(A+B)−1.

3. Is there some sort of relationship between (AB)−1 and A−1 and
B−1? A first guess that seems plausible is (AB)−1 = A−1B−1. Is
this true? Using our work from above, we have

A−1B−1 =

[
1/3 −2/3
0 1

] [
−1/2 0
1/2 1

]
=

[
−1/2 −2/3
1/2 1

]
.
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Obviously, this is not equal to (AB)−1. Before we do some further
guessing, let’s think about what the inverse of AB is supposed to
do. The inverse – let’s call it C – is supposed to be a matrix such
that

(AB)C = C(AB) = I.

In examining the expression (AB)C, we see that we want B to some-
how “cancel” with C. What “cancels” B? An obvious answer is B−1.
This gives us a thought: perhaps we got the order of A−1 and B−1

wrong before. After all, we were hoping to find that

ABA−1B−1 ?
= I,

but algebraically speaking, it is hard to cancel out these terms.(Recall
that matrix multiplication is not commutative: AB ̸= BA in gen-
eral.) However, switching the order of A−1 and B−1 gives us some
hope. Is (AB)−1 = B−1A−1? Let’s see.

(AB)(B−1A−1) = A(BB−1)A−1 (regrouping by the associa ve property)

= AIA−1 (BB−1 = I)

= AA−1 (AI = A)
= I AA−1 = I)

Since (AB)(B−1A−1) = In, we know immediately from Theorem
5.5.1 that (AB)−1 = B−1A−1. Note also that our argument above
was completely general, so this result holds true for any pair of n×n
matrices A and B. Let’s confirm this with our example matrices.

B−1A−1 =

[
−1/2 0
1/2 1

] [
1/3 −2/3
0 1

]
=

[
−1/6 1/3
1/6 2/3

]
= (AB)−1.

It worked!

4. Is there some sort of connection between (A−1)−1 and A? The
answer is pretty obvious: they are equal. The “inverse of the inverse”
returns one to the original matrix.

5. Is there some sort of relationship between (A+B)−1, A−1 and B−1?
Certainly, if we were forced to make a guess without working any
examples, we would guess that

(A+B)−1 ?
= A−1 +B−1.

However, we saw that in our example, the matrix (A+B) isn’t even
invertible. This pretty much kills any hope of a connection.

6. Is there a connection between (5A)−1 and A−1? Consider:

(5A)−1 =

[
1/15 −2/15
0 1/5

]
=

1

5

[
1/3 −2/3
0 1/5

]
=

1

5
A−1

Yes, there is a connection!



A natural question to ask at this
point is whether or not the product
of two non-invertible matrices could
ever be invertible. The answer, not
surprisingly, is “No.” To see this, sup-
pose AB is invertible. Then we know
that the only solution to the equa-
tion (AB)x⃗ = ⃗ is x⃗ = ⃗ . But if
B is not invertible, then the equation
Bx⃗ = ⃗ does have a non-trivial solu-
tion x⃗ ̸= ⃗ , and then

(AB)x⃗ = A(Bx⃗) = A⃗ = ⃗,

implying that x⃗ is a non-zero solution
to (AB)x⃗ = ⃗ , and thus AB cannot
be invertible.

The fact that invertibility works well
with matrix multiplication should not
come as a surprise. After all, say-
ing that A is invertible makes a state-
ment about the mulitiplicative prop-
erties of A. It says that I can multiply
A with a special matrix to get I. In-
vertibility, in and of itself, says noth-
ing about matrix addition, therefore
we should not be too surprised that
it doesn’t work well with it.

We still haven’t formally defined di-
agonal, but the definition is rather vi-
sual so we risk it. See Definition 7.1.2
on page 302 for more details.
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Let’s summarize the results of this example. If A and B are both
invertible matrices, then so is their product, AB. We demonstrated this
with our example, and there is more to be said. Let’s suppose that A and
B are n× n matrices, but we don’t yet know if they are invertible. If AB
is invertible, then each of A and B are; if AB is not invertible, then either
A or B is not invertible.

In short, invertibility “works well” with matrix multiplication. How-
ever, we saw that it doesn’t work well with matrix addition. Knowing
that A and B are invertible does not help us find the inverse of (A+B);
in fact, the latter matrix may not even be invertible.

Let’s do one more example, then we’ll summarize the results of this
section in a theorem.

Example . . Computing the inverse of a diagonal matrix

Find the inverse of A =

 2 0 0
0 3 0
0 0 −7

.

Solution We’ll find A−1 using Key Idea 5.4.1. 2 0 0 1 0 0
0 3 0 0 1 0
0 0 −7 0 0 1

 −→rref

 1 0 0 1/2 0 0
0 1 0 0 1/3 0
0 0 1 0 0 −1/7


Therefore

A−1 =

 1/2 0 0
0 1/3 0
0 0 −1/7

 .

The matrix A in the previous example is a diagonal matrix: the only
nonzero entries of A lie on the diagonal. The relationship between A
and A−1 in the above example seems pretty strong, and it holds true in
general. We’ll state this and summarize the results of this section with
the following theorem.

Theorem 5.5.2 Properties of Invertible Matrices

Let A and B be n× n invertible matrices. Then:

1. AB is invertible; (AB)−1 = B−1A−1.

2. A−1 is invertible; (A−1)−1 = A.

3. nA is invertible for any nonzero scalar n; (nA)−1 = 1
nA

−1.

4. If A is a diagonal matrix, with diagonal entries d1, d2, · · · , dn,
where none of the diagonal entries are 0, then A−1 exists and
is a diagonal matrix. Furthermore, the diagonal entries of
A−1 are 1/d1, 1/d2, · · · , 1/dn.

Furthermore,

1. If a product AB is not invertible, then A or B is not invertible.

2. If A or B are not invertible, then AB is not invertible.



Yes, real people do solve linear equa-
tions in real life. Not just mathemati-
cians, but economists, engineers, and
scientists of all flavours regularly need
to solve linear equations, and the ma-
trices they use are often huge.
Most people see matrices at work
without thinking about it. Digital
pictures are simply “rectangular ar-
rays” of numbers representing colours
– they are matrices of colours. Many
of the standard image processing op-
erations involve matrix operations.
The author’s wife has a “7 megapixel”
camera which creates pictures that
are 3072 × 2304 in size, giving over
7 million pixels, and that isn’t even
considered a “large” picture these
days.

. Proper es of the Matrix Inverse

We end this section with a comment about solving systems of equations
“in real life.” Solving a system Ax⃗ = b⃗ by computing A−1⃗b seems pretty
slick, so it would make sense that this is the way it is normally done.
However, in practice, this is rarely done. There are two main reasons why
this is the case.

First, computing A−1 and A−1⃗b is “expensive” in the sense that it takes
up a lot of computing time. Certainly, our calculators have no trouble
dealing with the 3 × 3 cases we often consider in this textbook, but in
real life the matrices being considered are very large (as in, hundreds of
thousand rows and columns). Computing A−1 alone is rather impractical,
and we waste a lot of time if we come to find out that A−1 does not exist.
Even if we already know what A−1 is, computing A−1⃗b is computationally
expensive – Gaussian elimination is faster.

Secondly, computing A−1 using the method we’ve described often gives
rise to numerical roundoff errors. Even though computers often do compu-
tations with an accuracy to more than 8 decimal places, after thousands of
computations, rounding off can cause big errors. (A “small” 1, 000×1, 000
matrix has 1, 000, 000 entries! That’s a lot of places to have roundoff errors
accumulate!) It is not unheard of to have a computer compute A−1 for
a large matrix, and then immediately have it compute AA−1 and not get
the identity matrix. (The result is usually very close, with the numbers
on the diagonal close to 1 and the other entries near 0. But it isn’t exactly
the identity matrix.)

Therefore, in real life, solutions to Ax⃗ = b⃗ are usually found using the
methods we learned in Section 4.6. It turns out that even with all of our
advances in mathematics, it is hard to beat the basic method that Gauss
introduced a long time ago.



Exercises 5.5
Problems

In Exercises – , matrices A and B are given. Compute
(AB)−1 andB−1A−1.

. A =

[
1 2
1 1

]
, B =

[
3 5
2 5

]

. A =

[
1 2
3 4

]
, B =

[
7 1
2 1

]

. A =

[
2 5
3 8

]
, B =

[
1 −1
1 4

]

. A =

[
2 4
2 5

]
, B =

[
2 2
6 5

]

In Exercises – , a 2 × 2 matrix A is given. Compute A−1

and (A−1)−1 using Theorem . . .

. A =

[
−3 5
1 −2

]

. A =

[
3 5
2 4

]

. A =

[
2 7
1 3

]

. A =

[
9 0
7 9

]
. Find 2 × 2 matrices A and B that are each inver ble, but
A+B is not.

. Create a random 6 × 6 matrix A, then have a calculator
or computer compute AA−1. Was the iden ty matrix re-
turned exactly? Comment on your results.

. Use a calculator or computer to computeAA−1, where

A =


1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256

 .

Was the iden ty matrix returned exactly? Comment on
your results.
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. Elementary Matrices
In this section we introduce the concept of an elementary matrix. Ele-
mentary matrices are relatively simple objects, as their name suggests,
but as we will see, they give us a simple method for understanding why
our algorithm for computing the inverse of a matrix works. When we
reach the discussion of determinants and their properties, we’ll also see
that elementary matrices provide a simple proof of an important result:
the product rule for determinants.

Definition 5.6.1 Elementary Matrix

An elementary matrix is an n×n matrix E that can be obtained
from the identity matrix using a single row operation.

Note that by reversing the elementary row operation used to create an
n×n elementary matrix E, we could equally well say that E is a matrix of
rank n that is one row operation away from its reduced row-echelon form
(namely, the identity matrix).

The following are examples of elementary matrices, along with the
elementary row operation used to obtain it from the identity:

E1 =

[
1 2
0 1

]
R1 → R1 + 2R2

E2 =

1 0 0
0 0 1
0 1 0

 R2 ↔ R3

E3 =

[
4 0
0 1

]
4R1 → R1

E4 =

1 0 0
0 1

5 0
0 0 1

 1

5
R2 → R2

E5 =

1 0 0
0 1 −4
0 0 1

 R2 − 4R3 → R2

The main reason that elementary matrices are useful is that they give
us a way of encoding (or more to the point, keeping track of) the ele-
mentary row operations used to define them. The primary result is the
following:

Theorem 5.6.1 Effect of Multiplication by an Elemen-
tary Matrix

Let A be an n×k matrix and suppose that the matrix B is obtained
from A using an elementary row operation. Then B = EA, where
E is the elementary matrix obtained from the identity matrix using
the same row operation used to obtain B from A.
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In other words, if use the notation X
RO−−→ Y to denote that a particular

row operation is applied to the matrix X to obtain the matrix Y , if

A
RO−−→ B

and
I

RO−−→ E,

then B = EA.

Example . . Multiplication by an elementary matrix

Let A =

2 −1 1
0 3 2
4 1 −1

. For each of the following elementary row op-

erations, construct the corresponding elementary matrix, and verify that
multiplication by this matrix performs the desired row operation.

1. A =

2 −1 1
0 3 2
4 1 −1

 R1↔R3−−−−−→

4 1 −1
0 3 2
2 −1 1

 = B1.

2. A =

2 −1 1
0 3 2
4 1 −1

 2R1→R1−−−−−−→

4 −2 2
0 3 2
4 1 −1

 = B2

3. A =

2 −1 1
0 3 2
4 1 −1

 R3−2R1→R3−−−−−−−−→

2 −1 1
0 3 2
0 3 −3

 = B3

Solution
1. Applying the same row operation to the 3× 3 identity matrix gives

us the elementary matrix E1 =

0 0 1
0 1 0
1 0 0

, and we can easily verify

that

E1A =

0 0 1
0 1 0
1 0 0

2 −1 1
0 3 2
4 1 −1

 =

4 1 −1
0 3 2
2 −1 1

 = B1.

2. For the row operation 2R1 → R1 the corresponding elementary ma-

trix is E2 =

2 0 0
0 1 0
0 0 1

, and we have

E2A =

2 0 0
0 1 0
0 0 1

2 −1 1
0 3 2
4 1 −1

 =

4 −2 2
0 3 2
4 1 −1

 .

3. The elementary matrix corresponding to the row operation R3 −

2R1 → R3 is E3 =

 1 0 0
0 1 0
−2 0 1

, and

E3A =

 1 0 0
0 1 0
−2 0 1

2 −1 1
0 3 2
4 1 −1

 =

2 −1 1
0 3 2
0 3 −3

 = B3.
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Inverses of Elementary Matrices

Notice that every elementary row operation is reversible. If we apply a row
operation of the type Ri ↔ Rj to a matrix, applying it again will return
our matrix to its original state. (Swapping two rows and then swapping
them back again results in no net change.) It follows that any “Type 1”
elementary matrix obtained by a row operation of this type is its own
inverse. In terms of row operations,

I
Ri↔Rj−−−−−→ E

Ri↔Rj−−−−−→ I.

But we know that applying the second row operation is the same as mul-
tiplying on the left by E; therefore, we have E(E)E2 = I. It follows from
the definition of the inverse that E = E−1.

Now let us consider the other two types of row operation. For a “Type
2” elementary matrix, obtained using a row operation of the type kRi →
Ri, we multiply one of the rows of our matrix by a common constant
k ̸= 0. If we then multiply by 1

k
, we will be back to where we started.

Thus, if E is obtained from the identity using the row operation kRi →
Ri, then E−1 is obtained from the identity using the row operation 1

k
Ri →

Ri. For any matrix A we have

A
kRi→Ri−−−−−→ EA

1
kRi→Ri−−−−−−→ E−1(EA) = A.

Finally, for a “Type 3” elementary matrix, obtained from the identity
using a row operation of the type Ri + kRj → Ri, we add a multiple
of one row to another. If we want to undo the affect of adding row j
to row i, we simply subtract the same multiple of row j to row i. Thus,
E−1 is obtained from the identity using the row operation Ri−kRj → Ri.

Example . . Inverses of elementary matrices
Determine the inverse of each of the elementary matrices below:

1. E1 =

0 1 0
1 0 0
0 0 1

.

2. E2 =

1 0 −3
0 1 0
0 0 1

.

3. E3 =

1 0 0
0 1 0
0 0 3

7

.

Solution

1. The matrix E1 is a Type 1 elementary matrix, obtained by exchang-
ing rows 1 and 2. Thus, we have E−1

1 = E1. This is easily verified
by checking that E2

1 = I.

2. The matrix E2 is a Type 3 elementary matrix, obtained from the
identity using the row operation R1 − 3R3 → R1. The opposite row

operation is R1 + 3R3 → R1; thus, E−1
2 =

1 0 3
0 1 0
0 0 1

. Again, we

an easily check that E2E
−1
2 = I.
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3. The matrix E3 is a Type 2 elementary matrix, obtained from the
identity matrix using the row operation 3

7R3 → R3. The opposite
row operation is 7

3R3 → R3, since 1

3/7
=

7

3
. It follows that E−1

3 =1 0 0
0 1 0
0 0 7

3

.

Elementary matrices and inverses

Consider an n× n matrix A. Suppose we wish to reduce A to its reduced
row-echelon form (to solve a system of equations, perhaps, or determine
the null space off A, etc.) To do so, we carry out a series of elementary
row operations, say

A
RO1−−−→ A1

RO2−−−→ A2
RO3−−−→ · · · ROk−−−→ Ak = R,

where R is the reduced row-echelon form of A. Let E1, E2, . . . , Ek be the
elementary matrices corresponding to the elementary row operations RO1,
RO2, . . . , ROk. Then we have

A1 = E1A

A2 = E2A1 = (E2E1)A

...
...

R = Ak = EkAk−1 = (EkEk−1 · · ·E2E1)A.

Now, the reduced row-echelon form R might have one or more rows of
zeros, depending on the rank of A, but let us focus for now on the case
where rank(A) = n, in which case we know that R = In, the n×n identity
matrix.

In this case, we have (putting R = I in the last equality above):

(Ek · · ·E2E1)A = In.

Letting B = Ek · · ·E2E1, we have BA = In, and it follows from the In-
vertible Matrix Theorem that B = A−1. We have:

Theorem 5.6.2 The inverse is a product of elementary
matrices

Let A be an invertible n× n matrix, and let E1, E2, . . . , Ek be the
elementary matrices corresponding (in order) to the elementary row
operations used to reduce A to the identity matrix. Then

A−1 = Ek · · ·E2E1.

This result makes sense in the context of our algorithm for computing
the inverse. Recall that to compute A−1, we form the augmented matrix
[ A I ], and apply elementary row operations until we reach the reduced
row-echelon form [ I A−1 ].
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Notice that at each step, applying an elementary row operation to an
augmented matrix [ M N ] is the same as multiplying both M and N
by the corresponding elementary matrix. In terms of elementary matrices,
our algorithm looks like the following:

[ E I ]
RO1−−−→ [ E1A E1I ]

RO2−−−→ [ E2(E1A) E2(E1) ] (Note E1I = E1)
...

ROk−−−→ [ (Ek · · ·E2E1)A Ek · · ·E2E1 ] = [ In A−1 ].

Since we have (Ek · · ·E2E1)A = In on the left, it follows that we must
have Ek · · ·E2E1 = A−1 on the right.

We also have the following consequence of our above theorem (which
we may view as an additional entry in our list of equivalent statements in
the Invertible Matrix Theorem):

Theorem 5.6.3 Invertible matrices are products of ele-
mentary matrices

An n × n matrix A is invertible if and only if it is a product of
elementary matrices.

To see why this result is true, recall from Theorem 5.5.2 that if A and
B are invertible n × n matrices, then so is AB, and (AB)−1 = B−1A−1.
We can easily extend this result to products of three or more matrices.
If A1, A2, . . . , Ak are all invertible n × n matrices, then A1A2 · · ·Ak is
invertible, and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A−1
2 A−1

1 .

We know from our discussion above that every invertible matrix is in-
vertible; therefore, if A = E1E2 · · ·Ek is a product of elementary matrices,
then A is invertible.

Conversely, suppose that A is invertible. From the previous theorem,
we know that A−1 is a product of elementary matrices; namely,

A−1 = Ek · · ·E2E1,

where E1, E2, . . . , Ek are the elementary matrices corresponding to the
elementary row operations used to carry A to the identity matrix. Thus,
we have

A = (A−1)−1

= (Ek · · ·E2E1)
−1

= E−1
1 E−1

2 · · ·E−1
k .

Since the inverse of an elementary matrix is another elementary matrix,
our result follows. Note that when we take the inverse of the product of
elementary matrices, we must reverse the order of multiplication.
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Example . . Writing an invertible matrix as a product of elementary ma-
trices

Write the matrix A =

 2 −1 3
−1 0 4
1 −1 3

 as a product of elementary matrices, if possible.

Solution We use Gauss-Jordan elimination to carry the matrix A to its reduced
row-echelon form. For each elementary row operation performed, we keep track of the
corresponding elementary matrix and its inverse. 2 −1 3

−1 0 4
1 −1 3

 R1↔R3−−−−−→

 1 −1 3
−1 0 4
2 −1 3

 E1 =

0 0 1
0 1 0
1 0 0

 E−1
1 =

0 0 1
0 1 0
1 0 0


R2+R1→R2−−−−−−−−→

1 −1 3
0 −1 7
2 −1 3

 E2 =

1 0 0
1 1 0
0 0 1

 E−1
2 =

 1 0 0
−1 1 0
0 0 1


R3−2R1→R3−−−−−−−−→

1 −1 3
0 −1 7
0 1 −3

 E3 =

 1 0 0
0 1 0
−2 0 1

 E−1
3 =

1 0 0
0 1 0
2 0 1


R2↔R3−−−−−→

1 −1 3
0 1 −3
0 −1 7

 E4 =

1 0 0
0 0 1
0 1 0

 E−1
4 =

1 0 0
0 0 1
0 1 0


R3+R2→R3−−−−−−−−→

1 −1 3
0 1 −3
0 0 4

 E5 =

1 0 0
0 1 0
0 1 1

 E−1
5 =

1 0 0
0 1 0
0 −1 1


1
4R3→R3−−−−−−→

1 −1 3
0 1 −3
0 0 1

 E6 =

1 0 0
0 1 0
0 0 1

4

 E−1
6 =

1 0 0
0 1 0
0 0 4


R2+3R3→R2−−−−−−−−→

1 −1 3
0 1 0
0 0 1

 E7 =

1 0 0
0 1 3
0 0 1

 E−1
7 =

1 0 0
0 1 −3
0 0 1


R1−3R3→R1−−−−−−−−→

1 −1 0
0 1 0
0 0 1

 E8 =

1 0 −3
0 1 0
0 0 1

 E−1
8 =

1 0 3
0 1 0
0 0 1


R1+R2→R1−−−−−−−−→

1 0 0
0 1 0
0 0 1

 E9 =

1 1 0
0 1 0
0 0 1

 E−1
9 =

1 −1 0
0 1 0
0 0 1

 .

We then have
A−1 = E9E8E7E6E5E4E3E2E1

and
A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6 E−1

7 E−1
8 E−1

9 .

(Ideally we’d actually write out the matrices above, but since we needed nine steps to get
A to the identity, limitations on space prevent us from doing so.)



Exercises 5.6
Problems
In Exercises – , iden fy the row opera on encoded by the
given elementary matrix.

.
[
1 −3
0 1

]

.
[
2 0
0 1

]

.

 1 0 0
−4 1 0
0 0 1



.

0 0 1
0 1 0
1 0 0


In Exercises – , write the elementary matrix of the given
size that corresponds to the given row opera on.

. R1 − 3R2 → R1 for a 2× 2matrix.

. R3 + 2R1 → R3 for a 3× 3matrix.

. 7R2 → R2 for a 2× 2matrix.

. R1 ↔ R2 for a 3× 5matrix.

In Exercises – , find the inverse of the given elementary
matrix, and state the row opera on corresponding to the in-

verse. (Note: these are the same matrices as problems to
.)

.
[
1 −3
0 1

]

.
[
2 0
0 1

]

.

 1 0 0
−4 1 0
0 0 1



.

0 0 1
0 1 0
1 0 0


In Exercises – , for the given matrixA,

. writeA−1 as a product of elementary matrices

. writeA as a product of elementary matrices.

. A =

[
3 1
1 0

]

. A =

[
2 3
−1 0

]

. A =

2 0 2
3 1 1
0 0 1







We can multiply a 3× 2 matrix by a
2D vector and get a 3D vector back,
and this gives very interesting results.
See section 6.2.

: Matrix Transforma ons
. Matrix Transforma ons
AS YOU READ . . .

1. What do mathematicians do?

2. T/F: Multiplying a vector by a matrix always changes its length and
direction.

3. To understand how the Cartesian plane is affected by multiplication
by a matrix, it helps to study how what is affected?

4. Transforming the Cartesian plane through matrix multiplication trans-
forms straight lines into what kind of lines?

5. T/F: If one draws a picture of a sheep on the Cartesian plane, then
transformed the plane using the matrix[

−1 0
0 1

]
,

one could say that the sheep was “sheared.”

We already looked at the basics of graphing vectors, and the arithmetic
of multiplying matrices. In this section and the next, we will return to
the geometric interpretation of vectors given in Chapter 3. Our goal in
doing so is to obtain a visual understanding of the definition of matrix
multiplication given in Section 5.2. Although the algebraic definition of
matrix multiplication appears strange at first, we’ll see that our definition
of matrix multiplication allows us to use matrices to define functions that
transform one vector into another, just as the functions you’re familiar
with from high school or Calculus transform one number into another.
We can then visualize matrices and matrix multiplication in terms of their
effect on vectors.

Given an m × n matrix A we can define a function T that takes an
n × 1 column vector x⃗ ∈ Rn as input, and produces an m × 1 column
vector y⃗ ∈ Rm as output, according to the relationship

y⃗ = T (x⃗) = Ax⃗.

Such a function is known as a matrix transformation; it is an example
of a more general class of functions between vector spaces known as linear
transformations.

The graphical representation of vectors allows us to visualize matrix
transformations (at least, in lower dimensions). This visualization plays
a key role in applications such as computer graphics. We’ll also see that
the desire to define functions via matrix multiplication provides some jus-
tification for defining matrix multiplication the way we do.

Matrix - Vector Mul plica on
To simplify the discussion, and to make it easier for us to picture what’s
going on, we’ll restrict ourselves (for now) to vectors in R2. We want
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to visualize the result of multiplying a vector by a matrix. In order to
multiply a 2D vector by a matrix and get a 2D vector back, our matrix
must be a square, 2× 2 matrix.

We’ll start with an example. Given a matrix A and several vectors,
we’ll graph the vectors before and after they’ve been multiplied by A and
see what we learn.

Example . . Multiplying a vector by a matrix
Let A be a matrix, and x⃗, y⃗, and z⃗ be vectors as given below.

A =

[
1 4
2 3

]
, x⃗ =

[
1
1

]
, y⃗ =

[
−1
1

]
, z⃗ =

[
3
−1

]
Graph x⃗, y⃗ and z⃗, as well as Ax⃗, Ay⃗ and Az⃗.

Solution

x

y

x⃗
y⃗

z⃗

Ax⃗

Ay⃗

Az⃗

Figure 6.1: Multiplying vectors by a matrix in Example 6.1.1.

It is straightforward to compute:

Ax⃗ =

[
5
5

]
, Ay⃗ =

[
3
1

]
, and Az⃗ =

[
−1
3

]
.

The vectors are sketched in Figure 6.1

There are several things to notice. When each vector is multiplied by
A, the result is a vector with a different length (in this example, always
longer), and in two of the cases (for y⃗ and z⃗), the resulting vector points
in a different direction.

This isn’t surprising. In the previous section we learned about matrix
multiplication, which is a strange and seemingly unpredictable operation.
Would you expect to see some sort of immediately recognizable pattern
appear from multiplying a matrix and a vector? (This is a rhetorical
question; the expected answer is “No.”) In fact, the surprising thing from
the example is that x⃗ and Ax⃗ point in the same direction! Why does the
direction of x⃗ not change after multiplication by A? (We’ll answer this in
Section 8.1 when we learn about something called “eigenvectors.”)

Different matrices act on vectors in different ways. (That’s one reason
we call them “different.”) Some always increase the length of a vector
through multiplication, others always decrease the length, others increase
the length of some vectors and decrease the length of others, and others
still don’t change the length at all. A similar statement can be made about
how matrices affect the direction of vectors through multiplication: some
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change every vector’s direction, some change “most” vector’s direction
but leave some the same, and others still don’t change the direction of
any vector.

How do we set about studying how matrix multiplication affects vec-
tors? We could just create lots of different matrices and lots of different
vectors, multiply, then graph, but this would be a lot of work with very
little useful result. It would be too hard to find a pattern of behaviour in
this. (Remember, that’s what mathematicians do. We look for patterns.)

Instead, we’ll begin by using a technique we’ve employed often in the
past. We have a “new” operation; let’s explore how it behaves with “old”
operations. Specifically, we know how to sketch vector addition. What
happens when we throw matrix multiplication into the mix? Let’s try an
example.

Example . . Combining addition and matrix multiplication
Let A be a matrix and x⃗ and y⃗ be vectors as given below.

A =

[
1 1
1 2

]
, x⃗ =

[
2
1

]
, y⃗ =

[
−1
1

]
Sketch x⃗ + y⃗, Ax⃗, Ay⃗, and A(x⃗ + y⃗).

Solution It is pretty straightforward to compute:

x⃗ + y⃗ =

[
1
2

]
; Ax⃗ =

[
3
4

]
; Ay⃗ =

[
0
1

]
, A(x⃗ + y⃗) =

[
3
5

]
.

In Figure 6.2, we have graphed the above vectors and have included
dashed gray vectors to highlight the additive nature of x⃗+ y⃗ and A(x⃗+ y⃗).
Does anything strike you as interesting?

x

y

x⃗y⃗

x⃗ + y⃗

Ax⃗

Ay⃗

A(x⃗ + y⃗)

Figure 6.2: Vector addition and matrix multiplication in Example 6.1.2.

Let’s not focus on things which don’t matter right now: let’s not focus
on how long certain vectors became, nor necessarily how their direction
changed. Rather, think about how matrix multiplication interacted with
the vector addition.

In some sense, we started with three vectors, x⃗, y⃗, and x⃗+ y⃗. This last
vector is special; it is the sum of the previous two. Now, multiply all three
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by A. What happens? We get three new vectors, but the significant thing
is this: the last vector is still the sum of the previous two! (We emphasize
this by drawing dotted vectors to represent part of the Parallelogram Law.)

Of course, we knew this already: we already knew that Ax⃗ + Ay⃗ =
A(x⃗+ y⃗), for this is just the Distributive Property of matrix multiplication
given in Theorem 5.2.1. However, now we get to see this graphically.

Let’s do one more example.

Example . . Sketching the effect of matrix multiplicaiton
Let A, x⃗, y⃗, and z⃗ be as given below.

A =

[
1 −1
1 −1

]
, x⃗ =

[
1
1

]
, y⃗ =

[
−1
1

]
, z⃗ =

[
4
1

]
Graph x⃗, y⃗ and z⃗, as well as Ax⃗, Ay⃗ and Az⃗.

Solution

x

y

x⃗
y⃗ z⃗

Ax⃗

Ay⃗

Az⃗

Figure 6.3: Multiplying vectors by a matrix in Example 6.1.3.

It is straightforward to compute:

Ax⃗ =

[
0
0

]
, Ay⃗ =

[
−2
−2

]
, and Az⃗ =

[
3
3

]
.

The vectors are sketched in Figure 6.3.
These results are interesting. While we won’t explore them in great

detail here, notice how x⃗ got sent to the zero vector. Notice also that Ax⃗,
Ay⃗ and Az⃗ are all in a line (as well as x⃗!). Why is that? Are x⃗, y⃗ and z⃗
just special vectors, or would any other vector get sent to the same line
when multiplied by A? (Don’t just sit there, try it out!)

Transforma ons of the Cartesian Plane
We studied in Chapter 3 how to visualize vectors and how the matrix
arithmetic operations of addition and scalar multiplication can be graphi-
cally represented for vectors. In the discussion above, we limited our visual
understanding of matrix multiplication to graphing a vector, multiplying
it by a matrix, then graphing the resulting vector. In rest of this section
we’ll explore these multiplication ideas in greater depth. Instead of mul-
tiplying individual vectors by a matrix A, we’ll study what happens when
we multiply every vector in the Cartesian plans by A. (No, we won’t do
them one by one.)

Because of the Distributive Property, as illustrated in Example 6.1.2,
we know that the Cartesian plane will be transformed in a very nice,
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predictable way. Straight lines will be transformed into other straight
lines (and they won’t become curvy, or jagged, or broken). Curved lines
will be transformed into other curved lines (perhaps the curve will become
“straight,” but it won’t become jagged or broken).

Example 6.1.2 has very significant implications. We usually think of
the Cartesian plane as a set of points; we can adjust this thought just
slightly and think of it as a set of vectors that point to each of these
points. What happens to the Cartesian plane if we multiply every vector
in the plane by the same matrix A?

Checking every single vector in the plane isn’t practical, so we have to
look for other ways to visualize the effects of matrix multiplication. One
way of studying how the whole Cartesian plane is affected by multipli-
cation by a matrix A is to study how the unit square is affected. The
unit square is the square with corners at the points (0, 0), (1, 0), (1, 1),
and (0, 1). Each corner can be represented by the vector that points to
it; multiply each of these vectors by A and we can get an idea of how A
affects the whole Cartesian plane.

Let’s try an example.
Example . . Visualizing a matrix transformation using vec-
tors
Plot the vectors of the unit square before and after they have been multi-
plied by A, where

A =

[
1 4
2 3

]
.

Solution The four corners of the unit square can be represented
by the vectors [

0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

]
.

Multiplying each by A gives the vectors[
0
0

]
,

[
1
2

]
,

[
5
5

]
,

[
4
3

]
,

respectively.
(Hint: one way of using your calculator to do this for you quickly is

to make a 2 × 4 matrix whose columns are each of these vectors. In this
case, create a matrix

B =

[
0 1 1 0
0 0 1 1

]
.

Then multiply B by A and read off the transformed vectors from the
respective columns:

AB =

[
0 1 5 4
0 2 5 3

]
.

This saves time, especially if you do a similar procedure for multiple ma-
trices A. Of course, we can save more time by skipping the first column;
since it is the column of zeros, it will stay the column of zeros after mul-
tiplication by A.)

The unit square and its transformation are graphed in Figure 6.4,
where the shaped vertices correspond to each other across the two graphs.
Note how the square got turned into some sort of quadrilateral (it’s actu-
ally a parallelogram). A really interesting thing is how the triangular and
square vertices seem to have changed places – it is as though the square,
in addition to being stretched out of shape, was flipped.
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Figure 6.4: Transforming the unit square
by matrix multiplication in Example 6.1.4.
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Figure 6.5: Emphasizing straight lines go-
ing to straight lines in Example 6.1.4.

To stress how “straight lines get transformed to straight lines,” consider
Figure 6.5. Here, the unit square has some additional points drawn on it
which correspond to the shaded dots on the transformed parallelogram.
Note how relative distances are also preserved; the dot halfway between
the black and square dots is transformed to a position along the line,
halfway between the black and square dots.

Much more can be said about this example. Before we delve into this,
though, let’s try one more example.
Example . . Visualizing a matrix transformation using a re-
gion
Plot the transformed unit square after it has been transformed by A, where

A =

[
0 −1
1 0

]
.

Solution We’ll put the vectors that correspond to each corner in
a matrix B as before and then multiply it on the left by A. Doing so gives:

AB =

[
0 −1
1 0

] [
0 1 1 0
0 0 1 1

]
=

[
0 0 −1 −1
0 1 1 0

]
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In Figure 6.6 the unit square is again drawn along with its transfor-
mation by A.

x

y

1

1

x

y

1

Figure 6.6: Transforming the unit square
by matrix multiplication in Example 6.1.5.

Make note of how the square moved. It did not simply “slide” to the
left; (mathematically, that is called a translation) nor did it “flip” across
the y axis. Rather, it was rotated counterclockwise about the origin 90◦.
In a rotation, the shape of an object does not change; in our example, the
square remained a square of the same size.

We have broached the topic of how the Cartesian plane can be trans-
formed via multiplication by a 2×2 matrix A. We have seen a few examples
so far, and our intuition as to how the plane is changed has been informed
only by seeing how the unit square changes. Let’s explore this further by
investigating two questions:

1. Suppose we want to transform the Cartesian plane in a known way
(for instance, we may want to rotate the plane counterclockwise
180◦). How do we find the matrix (if one even exists) which performs
this transformation?

2. How does knowing how the unit square is transformed really help in
understanding how the entire plane is transformed?

These questions are closely related, and as we answer one, we will help
answer the other.

To get started with the first question, look back at Examples 6.1.4
and 6.1.5 and consider again how the unit square was transformed. In
particular, is there any correlation between where the vertices ended up
and the matrix A?

If you are just reading on, and haven’t actually gone back and looked
at the examples, go back now and try to make some sort of connection.
Otherwise – you may have noted some of the following things:

1. The zero vector (⃗ , the “black” corner) never moved. That makes
sense, though; A⃗ = ⃗ .

2. The “square” corner, i.e., the corner corresponding to the vector[
1
0

]
, is always transformed to the vector in the first column of A!

3. Likewise, the “triangular” corner, i.e., the corner corresponding to
the vector

[
0
1

]
, is always transformed to the vector in the second

column of A! (This is less of a surprise, given the result of the
previous point.)
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4. The “white dot” corner is always transformed to the sum of the two
column vectors of A. (This observation is a bit more obscure than
the first three. It follows from the fact that this corner of the unit
square is the “sum” of the other two nonzero corners.)

Let’s now take the time to understand these four points. The first
point should be clear; ⃗ will always be transformed to ⃗ via matrix mul-
tiplication. (Hence the hint in the middle of Example 6.1.4, where we are
told that we can ignore entering in the column of zeros in the matrix B.)

We can understand the second and third points simultaneously. Let

A =

[
a b
c d

]
, e⃗1 =

[
1
0

]
and e⃗2 =

[
0
1

]
.

What are Ae⃗1 and Ae⃗2?

Ae⃗1 =

[
a b
c d

] [
1
0

]
=

[
a
c

]

Ae⃗2 =

[
a b
c d

] [
0
1

]
=

[
b
d

]
So by mere mechanics of matrix multiplication, the square corner e⃗1

is transformed to the first column of A, and the triangular corner e⃗2 is
transformed to the second column of A. A similar argument demonstrates
why the white dot corner is transformed to the sum of the columns of A.
(Another way of looking at all of this is to consider what A ·I is: of course,
it is just A. What are the columns of I? Just e⃗1 and e⃗2.)

Revisit now the question “How do we find the matrix that performs a
given transformation on the Cartesian plane?” The answer follows from
what we just did. Think about the given transformation and how it would
transform the corners of the unit square. Make the first column of A the
vector where e⃗1 goes, and make the second column of A the vector where
e⃗2 goes.

Let’s practice this in the context of an example.

Example . . Determining a matrix transformation
Find the matrix A that flips the Cartesian plane about the x axis and
then stretches the plane horizontally by a factor of two.

Solution We first consider e⃗1 =

[
1
0

]
. Where does this corner go

to under the given transformation? Flipping the plane across the x axis
does not change e⃗1 at all; stretching the plane sends e⃗1 to

[
2
0

]
. Therefore,

the first column of A is
[
2
0

]
.

Now consider e⃗2 =

[
0
1

]
. Flipping the plane about the x axis sends e⃗2
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to the vector
[

0
−1

]
; subsequently stretching the plane horizontally does

not affect this vector. Therefore the second column of A is
[

0
−1

]
.

Putting this together gives

A =

[
2 0
0 −1

]
.

To help visualize this, consider Figure 6.7 where a shape is transformed
under this matrix. Notice how it is turned upside down and is stretched
horizontally by a factor of two. (The gridlines are given as a visual aid.)

Figure 6.7: Transforming the Cartesian plane in Example 6.1.6

A while ago we asked two questions. The first was “How do we find
the matrix that performs a given transformation?” We have just answered
that question (although we will do more to explore it in the future). The
second question was “How does knowing how the unit square is trans-
formed really help us understand how the entire plane is transformed?”

Consider Figure 6.8 where the unit square (with vertices marked with
shapes as before) is shown transformed under an unknown matrix. How
does this help us understand how the whole Cartesian plane is trans-
formed? For instance, how can we use this picture to figure out how the
point (2, 3) will be transformed?

x

y

Figure 6.8: The unit square under an unknown transformation.
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There are two ways to consider the solution to this question. First, we
know now how to compute the transformation matrix; the new position
of e⃗1 is the first column of A, and the new position of e⃗2 is the second
column of A. Therefore, by looking at the figure, we can deduce that

A =

[
1 −1
1 2

]
.

To find where the point (2, 3) is sent, simply multiply[
1 −1
1 2

] [
2
3

]
=

[
−1
8

]
.

There is another way of doing this which isn’t as computational –
it doesn’t involve computing the transformation matrix. Consider the
following equalities: [

2
3

]
=

[
2
0

]
+

[
0
3

]
= 2

[
1
0

]
+ 3

[
0
1

]
= 2e⃗1 + 3e⃗2

This last equality states something that is somewhat obvious: to arrive
at the vector

[
2
3

]
, one needs to go 2 units in the e⃗1 direction and 3 units in

the e⃗2 direction. To find where the point (2, 3) is transformed, one needs
to go 2 units in the new e⃗1 direction and 3 units in the new e⃗2 direction.
This is demonstrated in Figure 6.9.

x

y

2 × “new” e⃗1

3 × “new” e⃗2

new location of
the point (2, 3)

Figure 6.9: Finding the new location of the point (2, 3).

We are coming to grips with how matrix transformations work. We
asked two basic questions: “How do we find the matrix for a given trans-
formation?” and “How do we understand the transformation without the
matrix?”, and we’ve answered each accompanied by one example. Let’s
do another example that demonstrates both techniques at once.
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Example . . Determining and analyzing a matrix transforma-
tion
First, find the matrix A that transforms the Cartesian plane by stretching
it vertically by a factor of 1.5, then stretches it horizontally by a factor
of 0.5, then rotates it clockwise about the origin 90◦. Secondly, using
the new locations of e⃗1 and e⃗2, find the transformed location of the point
(−1, 2).

Solution To find A, first consider the new location of e⃗1. Stretch-
ing the plane vertically does not affect e⃗1; stretching the plane horizontally
by a factor of 0.5 changes e⃗1to

[
1/2
0

]
, and then rotating it 90◦ about the

origin moves it to
[

0
−1/2

]
. This is the first column of A.

Now consider the new location of e⃗2. Stretching the plane vertically
changes it to

[
0

3/2

]
; stretching horizontally does not affect it, and rotating

90◦ moves it to
[
3/2
0

]
. This is then the second column of A. This gives

A =

[
0 3/2

−1/2 0

]
.

Where does the point (−1, 2) get sent to? The corresponding vector[
−1
2

]
is found by going −1 units in the e⃗1 direction and 2 units in the

e⃗2 direction. Therefore, the transformation will send the vector to −1
units in the new e⃗1 direction and 2 units in the new e⃗2 direction. This is
sketched in Figure 6.10, along with the transformed unit square. We can
also check this multiplicatively:

[
0 3/2

−1/2 0

] [
−1
2

]
=

[
3

1/2

]
.

Figure 6.11 shows the effects of the transformation on another shape.

x

y

Figure 6.10: Understanding the transformation in Example 6.1.7.
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Figure 6.11: Transforming the Cartesian plane in Example 6.1.7

Right now we are focusing on transforming the Cartesian plane – we
are making 2D transformations. Knowing how to do this provides a foun-
dation for transforming 3D space, which, among other things, is very
important when producing 3D computer graphics. Basic shapes can be
drawn and then rotated, stretched, and/or moved to other regions of space.
This also allows for things like “moving the camera view.” Of course, alge-
braically, there is nothing stopping us from working with transformations
of vectors in Rn for any value of n. The limitation to two and three
dimensions is strictly one of visualization.

What kinds of transformations are possible? We have already seen
some of the things that are possible: rotations, stretches, and flips. We
have also mentioned some things that are not possible. For instance, we
stated that straight lines always get transformed to straight lines. There-
fore, we cannot transform the unit square into a circle using a matrix.

Let’s look at some common transformations of the Cartesian plane
and the matrices that perform these operations. In the following figures, a
transformation matrix will be given alongside a picture of the transformed
unit square. (The original unit square is drawn lightly as well to serve as
a reference.)

D Matrix Transforma ons

Horizontal stretch
by a factor of k.[

k 0
0 1

]
x

y

(k, 1)
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Vertical stretch by
a factor of k.[

1 0
0 k

]
x

y

(1, k)

Horizontal shear
by a factor of k.[

1 k
0 1

]
x

y

(k, 1)

Vertical shear by a
factor of k.[

1 0
k 1

]
x

y

(k, 1)

Horizontal
reflection across the
y axis.[

−1 0
0 1

] x

y

Vertical reflection
across the x axis.[

1 0
0 −1

]
x

y
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Diagonal reflection
across the line y = x.[

0 1
1 0

] x

y

Rotation around the
origin by an angle of
θ. [

cos θ − sin θ
sin θ cos θ

]
x

y

θ

Projection onto the
x axis.
(Note how the square
is “squashed” down
onto the x-axis.)[

1 0
0 0

] x

y

Projection onto the
y axis.
(Note how the square
is “squashed” over
onto the y-axis.)[

0 0
0 1

] x

y

Now that we have seen a healthy list of transformations that we can
perform on the Cartesian plane, let’s practice a few more times creating
the matrix that gives the desired transformation. In the following example,
we develop our understanding one more critical step.



Note: recall from Section 5.2 that
matrix multiplication is not commu-
tative. Since A1A2 ̸= A2A1 in gen-
eral, we should expect that the trans-
formation A2(A1x⃗) = (A2A1)x⃗ is
not the same as the transformation
A1(A2x⃗) = (A1A2)x⃗. Interpreted
as transformations of the plane, this
makes sense visually: for example, in
most cases, a reflection followed by a
rotation will not produce the same re-
sult as performing the rotation first,
followed by the reflection. The reader
is encouraged to experiment with a
few examples to see what happens
when the order is reversed.
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Example . . Determining the matrix of a transformation
Find the matrix A that transforms the Cartesian plane by performing the
following operations in order:

1. Vertical shear by a fac-
tor of 0.5

2. Counterclockwise rota-
tion about the origin by
an angle of θ = 30◦

3. Horizontal stretch by a
factor of 2

4. Diagonal reflection
across the line y = x

Solution Wow! We already know how to do this – sort of. We
know we can find the columns of A by tracing where e⃗1 and e⃗2 end up, but
this also seems difficult. There is so much that is going on. Fortunately, we
can accomplish what we need without much difficulty by being systematic.

First, let’s perform the vertical shear. The matrix that performs this
is

A1 =

[
1 0
0.5 1

]
.

After that, we want to rotate everything clockwise by 30◦. To do this, we
use

A2 =

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦
]
=

[√
3/2 −1/2

1/2
√
3/2

]
.

In order to do both of these operations, in order, we multiply A2A1.
To perform the final two operations, we note that

A3 =

[
2 0
0 1

]
and A4 =

[
0 1
1 0

]
perform the horizontal stretch and diagonal reflection, respectively. Thus
to perform all of the operations “at once,” we need to multiply by

A = A4A3A2A1

=

[
0 1
1 0

] [
2 0
0 1

] [√
3/2 −1/2

1/2
√
3/2

] [
1 0
0.5 1

]
=

[
(
√
3 + 2)/4

√
3/2

(2
√
3− 1)/2 −1

]
≈
[
0.933 0.866
1.232 −1

]
.

Let’s consider this closely. Suppose I want to know where a vector x⃗
ends up. We claim we can find the answer by multiplying Ax⃗. Why does
this work? Consider:

Ax⃗ = A4A3A2A1x⃗

= A4A3A2(A1x⃗) (performs the ver cal shear)

= A4A3(A2x⃗1) (performs the rota on)

= A4(A3x⃗2) (performs the horizontal stretch)

= A4x⃗3 (performs the diagonal reflec on)

= x⃗4 (the result of transforming x⃗)

Most readers are not able to visualize exactly what the given list of
operations does to the Cartesian plane. In Figure 6.12 we sketch the
transformed unit square; in Figure 6.13 we sketch a shape and its trans-
formation.
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x

y

Figure 6.12: The transformed unit square in Example 6.1.8.

Figure 6.13: A transformed shape in Example 6.1.8.

Once we know what matrices perform the basic transformations, (or
know where to find them) performing complex transformations on the
Cartesian plane really isn’t that . . . complex. It boils down to multiplying
by a series of matrices.

We’ve shown many examples of transformations that we can do, and
we’ve mentioned just a few that we can’t – for instance, we can’t turn a
square into a circle. Why not? Why is it that straight lines get sent to
straight lines? All these questions require us to think like mathematicians
– we are being asked to study the properties of an object we just learned
about and their connections to things we’ve already learned. We’ll do all
this (and more!) in the following section.



Exercises 6.1
Problems

In Exercises – , a matrixA is given. Sketch x⃗, y⃗,Ax⃗ andAy⃗
on the same Cartesian axes, where

x⃗ =

[
1
1

]
and y⃗ =

[
−1
2

]
.

. A =

[
1 −1
2 3

]

. A =

[
2 0
−1 3

]

. A =

[
1 1
1 1

]

. A =

[
1 2
−1 −2

]

In Exercises – , a sketch of transformedunit square is given.
Find the matrixA that performs this transforma on.

.
x

y

1

1

.
x

y

1

1

.
x

y

1

1

.
x

y

1

1

In Exercises – , a list of transforma ons is given. Find the
matrix A that performs those transforma ons, in order, on
the Cartesian plane.

. (a) ver cal shear by a factor of

(b) horizontal shear by a factor of

. (a) horizontal shear by a factor of

(b) ver cal shear by a factor of

. (a) horizontal stretch by a factor of

(b) reflec on across the line y = x

. (a) counterclockwise rota on by an angle of 45◦

(b) ver cal stretch by a factor of 1/2

. (a) clockwise rota on by an angle of 90◦

(b) horizontal reflec on across the y axis

(c) ver cal shear by a factor of

. (a) ver cal reflec on across the x axis

(b) horizontal reflec on across the y axis

(c) diagonal reflec on across the line y = x

In Exercises – , two sets of transforma ons are given.
Sketch the transformed unit square under each set of trans-
forma ons. Are the transforma ons the same? Explain
why/why not.

. (a) a horizontal reflec on across the y axis, followed by
a ver cal reflec on across the x axis, compared to

(b) a counterclockise rota on of 180◦

. (a) a horizontal stretch by a factor of followed by a re-
flec on across the line y = x, compared to

(b) a ver cal stretch by a factor of

. (a) a horizontal stretch by a factor of / followed by a
ver cal stretch by a factor of , compared to

(b) the same opera ons but in opposite order

. (a) a reflec on across the line y = x followed by a re-
flec on across the x axis, compared to

(b) a reflec on across the the y axis, followed by a reflec-
on across the line y = x.



Chapter Matrix Transforma ons

. Proper es of Linear Transforma ons
AS YOU READ . . .

1. T/F: Translating the Cartesian plane 2 units up is a linear transfor-
mation.

2. T/F: If T is a linear transformation, then T (⃗) = ⃗ .

In the previous section we discussed standard transformations of the
Cartesian plane – rotations, reflections, etc. As a motivational example
for this section’s study, let’s consider another transformation – let’s find
the matrix that moves the unit square one unit to the right (see Figure
6.14). This is called a translation.

x

y

x

y

Figure 6.14: Translating the unit square one unit to the right.

Our work from the previous section allows us to find the matrix quickly.
By looking at the picture, it is easy to see that e⃗1 is moved to

[
2
0

]
and

e⃗2 is moved to
[
1
1

]
. Therefore, the transformation matrix should be

A =

[
2 1
0 1

]
.

However, look at Figure 6.15 where the unit square is drawn after
being transformed by A. It is clear that we did not get the desired result;
the unit square was not translated, but rather stretched/sheared in some
way.

x

y

x

y

Figure 6.15: Actual transformation of the unit square by matrix A.

What did we do wrong? We will answer this question, but first we
need to develop a few thoughts and vocabulary terms.

We’ve been using the term “transformation” to describe how we’ve
changed vectors. In fact, “transformation” is synonymous to “function.”
We are used to functions like f(x) = x2, where the input is a number
and the output is another number. In the previous section, we learned
about transformations (functions) where the input was a vector and the



We use T instead of f to define the
function T (x⃗) = Ax⃗ to help differ-
entiate it from “regular” functions.
“Normally” functions are defined us-
ing lower case letters when the input
is a number; when the input is a vec-
tor, we use upper case letters. (It also
appears to be tradition to use the let-
ter T to describe linear transforma-
tions, and mathematicians are suck-
ers for tradition.)
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output was another vector. If A is a “transformation matrix,” then we
could create a function of the form T (x⃗) = Ax⃗. That is, a vector x⃗ is the
input, and the output is x⃗ multiplied by A.

When we defined f(x) = x2 above, we let the reader assume that the
input was indeed a number. If we wanted to be complete, we should have
stated

f : R → R where f(x) = x2.

The first part of that line told us that the input was a real number (that
was the first R) and the output was also a real number (the second R).

To define a transformation where a 2D vector is transformed into an-
other 2D vector via multiplication by a 2× 2 matrix A, we should write

T : R2 → R2 where T (x⃗) = Ax⃗.

Here, the first R2 means that we are using 2D vectors as our input, and
the second R2 means that a 2D vector is the output.

Consider a quick example:

T : R2 → R3 where T

([
x1

x2

])
=

 x2
1

2x1

x1x2

 .

Notice that this takes 2D vectors as input and returns 3D vectors as out-
put. For instance,

T

([
3
−2

])
=

 9
6
−6

 .

We now define a special type of transformation (function).

Definition 6.2.1 Linear Transformation

A transformation T : Rn → Rm is a linear transformation if it
satisfies the following two properties:

1. T (x⃗ + y⃗) = T (x⃗) + T (y⃗) for all vectors x⃗ and y⃗, and

2. T (kx⃗) = kT (x⃗) for all vectors x⃗ and all scalars k.

If T is a linear transformation, it is often said that “T is linear.”

Note that the two defining properties of a linear transformation, when
combined, tell us that linear transformations “map linear combinations to
linear combinations.” That is, if we know the values of T (v⃗1), T (v⃗2), . . . , T (v⃗k),
and we’re given v⃗ = c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k, then

T (v⃗) = T (c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k)

= T (c1v⃗1) + T (c2v⃗2) + · · ·+ T (ckv⃗k)

= c1T (v⃗1) + c2T (v⃗2) + · · ·+ ckT (v⃗k).

Example . . Computing a linear transformation from given
values
Given that T : R3 → R2 is a linear transformation such that

T (u⃗) =

[
−1
2

]
, T (v⃗) =

[
3
0

]
, and T (w⃗) =

[
1
−4

]
,
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compute the value of T (2u⃗− 3v⃗ + w⃗).

Solution As argued above, we have

T (2u⃗− 3v⃗ + w⃗) = 2T (u⃗)− 3T (v⃗) + T (w⃗)

= 2

[
−1
2

]
− 3

[
3
0

]
+

[
1
−4

]
=

[
−10
0

]
.

Example . . Computing a linear transformation from given
values
Suppose T : R2 → R3 is a linear transformation such that

T

([
2
1

])
=

 2
−1
3

 and T

([
−1
3

])
=

04
1

 .

Compute the value of T
([

1
11

])
.

Solution This problem takes some more work, since we first need
to figure out how to write the vector

[
1
11

]
as a linear combination of the

vectors
[
2
1

]
and

[
−1
3

]
. That is, we need to find scalars a and b such that

a

[
2
1

]
+ b

[
−1
3

]
=

[
1
11

]
.

Writing the left-hand side as the single vector
[
2a− b
a+ 3b

]
, we see that this

amounts to solving the pair of equations

2a − b = 1
a + 3b = 11

If we multiply the first equation by 3 and add it to the second, we get
7a+0b = 14, so a = 2. Plugging this value back into either equation gives
us b = 3, so we have

T

([
1
11

])
= T

(
2

[
2
1

]
+ 3

[
−1
3

])
= 2T

([
2
1

])
+ 3T

([
−1
3

])

= 2

 2
−1
3

+ 3

04
1

 =

 4
10
9

 .

Notice that in Example 6.2.2, in order to make use of the properties of
our linear transformation, we had to first solve a system of linear equations.
With two equations in two unknowns, it’s not too hard to come up with
the answer. As the size and number of the vectors involved increases,



In Example 6.2.4, it’s important to
remember the following principle of
logic: to show that something doesn’t
work, we just need to show one case
where it fails, which we did in Exam-
ple 6.2.3. To show that something al-
ways works, we need to show it works
for all cases – simply showing it works
for a few cases isn’t enough. (An ex-
ample is not a proof.) However, do-
ing so can be helpful in understanding
the situation better, and can give us
clues as to how to construct a general
proof.
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such problems cannot be tackled without a systematic method for solving
systems of linear equations. Fortunately, we will be introducing just such
a method in Chapter 4.

The previous two examples show us what we can do if we know in
advance that our transformation is linear. The next two examples show
us how to determine if a given transformation is indeed a linear transfor-
mation.
Example . . Identifying linear transformations
Determine whether or not the transformation T : R2 → R3 is a linear
transformation, where

T

([
x1

x2

])
=

 x2
1

2x1

x1x2

 .

Solution We’ll arbitrarily pick two vectors x⃗ and y⃗:

x⃗ =

[
3
−2

]
and y⃗ =

[
1
5

]
.

Let’s check to see if T is linear by using the definition.

1. Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)? First, compute x⃗ + y⃗:

x⃗ + y⃗ =

[
3
−2

]
+

[
1
5

]
=

[
4
3

]
.

Now compute T (x⃗), T (y⃗), and T (x⃗ + y⃗):

T (x⃗) = T

([
3
−2

])

=

 9
6
−6


T (y⃗) = T

([
1
5

])

=

 1
2
5


T (x⃗ + y⃗) = T

([
4
3

])

=

 16
8
12


Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)? 9

6
−6

+

 1
2
5

 !

̸=

 16
8
12

 .

Therefore, T is not a linear transformation.
So we have an example of something that doesn’t work. Let’s try an

example where things do work.
Example . . Identifying linear transformations
Determine whether or not the transformation T : R2 → R2 is a linear
transformation, where T (x⃗) = Ax⃗ and

A =

[
1 2
3 4

]
.

Solution Let’s start by again choosing a couple of vectors and
seeing what happens. x⃗ and y⃗. Let’s choose the same x⃗ and y⃗ from
Example 6.2.3.

x⃗ =

[
3
−2

]
and y⃗ =

[
1
5

]
.
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If the linearity properties hold for these vectors, then maybe it is actually
linear (and we’ll do more work).

1. Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)? Recall:

x⃗ + y⃗ =

[
4
3

]
.

Now compute T (x⃗), T (y⃗), and T (x⃗) + T (y⃗):

T (x⃗) = T

([
3
−2

])
=

[
−1
1

] T (y⃗) = T

([
1
5

])
=

[
11
23

] T (x⃗ + y⃗) = T

([
4
3

])
=

[
10
24

]

Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)?[
−1
1

]
+

[
11
23

]
!
=

[
10
24

]
.

So far, so good: T (x⃗ + y⃗) is equal to T (x⃗) + T (y⃗).

2. Is T (kx⃗) = kT (x⃗)? Let’s pick k = 7 (or whatever value you prefer),
and use x⃗ as before.

T (7x⃗) = T

([
21
−14

])
=

[
−7
7

]
= 7

[
−1
1

]
= 7 · T (x⃗) !

So far it seems that T is indeed linear, for it worked in one example
with arbitrarily chosen vectors and scalar. Now we need to try to show it
is always true.

Consider T (x⃗ + y⃗). By the definition of T , we have

T (x⃗ + y⃗) = A(x⃗ + y⃗).

By Theorem 5.2.1, part 2 (on page 208) we state that the Distributive
Property holds for matrix multiplication. (Recall that a vector is just a
special type of matrix, so this theorem applies to matrix–vector multipli-
cation as well.) So A(x⃗ + y⃗) = Ax⃗ + Ay⃗. Recognize now that this last
part is just T (x⃗) + T (y⃗)! We repeat the above steps, all together:

T (x⃗ + y⃗) = A(x⃗ + y⃗) (by the defini on of T in this example)
= Ax⃗ +Ay⃗ (by the Distribu ve Property)
= T (x⃗) + T (y⃗) (again, by the defini on of T )

Therefore, no matter what x⃗ and y⃗ are chosen, T (x⃗ + y⃗) = T (x⃗) + T (y⃗).
Thus the first part of the linearity definition is satisfied.



The matrix–like brackets around T
are intended to suggest that the stan-
dard matrix A is a matrix represen-
tative of the given transformation.
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The second part is satisfied in a similar fashion. Let k be a scalar, and
consider:

T (kx⃗) = A(kx⃗) (by the defini on of T is this example)
= kAx⃗ (by Theorem . . part )
= kT (x⃗) (again, by the defini on of T )

Since T satisfies both parts of the definition, we conclude that T is a
linear transformation.

In the previous two examples of transformations, we saw one transfor-
mation that was not linear and one that was. One might wonder “Why is
linearity important?”, which we’ll address shortly.

First, consider how we proved the transformation in Example 6.2.4
was linear. We defined T by matrix multiplication, that is, T (x⃗) = Ax⃗.
We proved T was linear using properties of matrix multiplication – we
never considered the specific values of A! That is, we didn’t just choose
a good matrix for T ; any matrix A would have worked. This leads us to
an important theorem. The first part we have essentially just proved; the
second part we won’t prove, although its truth is very powerful.

Theorem 6.2.1 Matrices and Linear Transformations

1. Define T : Rn → Rm by T (x⃗) = Ax⃗, where A is an m × n
matrix. Then T is a linear transformation.

2. Let T : Rn → Rm be any linear transformation. Then there
exists an unique m× n matrix A such that T (x⃗) = Ax⃗.

The second part of the theorem says that all linear transformations
can be described using matrix multiplication. Given any linear transfor-
mation, there is a matrix that completely defines that transformation.
This important matrix gets its own name.

Definition 6.2.2 Standard Matrix of a Linear Transfor-
mation

Let T : Rn → Rm be a linear transformation. By Theorem 6.2.1,
there is a matrix A such that T (x⃗) = Ax⃗. This matrix A is called
the standard matrix of the linear transformation T , and is
denoted [T ].

While exploring all of the ramifications of Theorem 6.2.1 is outside
the scope of this text, let it suffice to say that since 1) linear transfor-
mations are very, very important in economics, science, engineering and
mathematics, and 2) the theory of matrices is well developed and easy to
implement by hand and on computers, then 3) it is great news that these
two concepts go hand in hand.

We have already used the second part of this theorem in a small way.
In the previous section we looked at transformations graphically and found
the matrices that produced them. At the time, we didn’t realize that these
transformations were linear, but indeed they were.



The idea that linear transformations
“send zero to zero” has an interesting
relation to terminology. The reader
is likely familiar with functions like
f(x) = 2x + 3 and would likely refer
to this as a “linear function.” How-
ever, f(0) ̸= 0, so f is not “linear” by
our new definition of linear. We erro-
neously call f “linear” since its graph
produces a line, though we should
be careful to instead state that “the
graph of f is a line.” In the context
of calculus are only linear transforma-
tions if b = 0. In the case of maps T :
Rn → Rm, we can similarly consider
functions of the form T (x⃗) = Ax⃗+ b⃗;
such functions are again useful in ar-
eas such as vector calculus, but unless
b⃗ = 0⃗, they are not linear transforma-
tions, since T (⃗0) = b⃗.

Recall that in Example 6.2.2, we had
to solve a system of equations to de-
termine how to write our given vec-
tor in terms of two other vectors for
which the value of a transformation
is known. The advantage of knowing
the values of a transformation on the
standard unit vectors is that we know
immediately how to write any other
vector in terms of them.
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This brings us back to the motivating example with which we started
this section. We tried to find the matrix that translated the unit square one
unit to the right. Our attempt failed, and we have yet to determine why.
Given our link between matrices and linear transformations, the answer
is likely “the translation transformation is not a linear transformation.”
While that is a true statement, it doesn’t really explain things all that
well. Is there some way we could have recognized that this transformation
wasn’t linear? (That is, apart from applying the definition directly?)

Yes, there is. Consider the second part of the linear transformation
definition. It states that T (kx⃗) = kT (x⃗) for all scalars k. If we let k = 0,
we have T (0x⃗) = 0 ·T (x⃗), or more simply, T (⃗) = ⃗ . That is, if T is to be
a linear transformation, it must send the zero vector to the zero vector.

This is a quick way to see that the translation transformation fails to
be linear. By shifting the unit square to the right one unit, the corner at
the point (0, 0) was sent to the point (1, 0), i.e.,

the vector
[
0
0

]
was sent to the vector

[
1
0

]
.

This property relating to ⃗ is important, so we highlight it here.

Key Idea 6.2.1 Linear Transformations and ⃗

Let T : Rn → Rm be a linear transformation. Then:

T (⃗n) = ⃗
m.

That is, the zero vector in Rn gets sent to the zero vector in Rm.

The Standard Matrix of a Linear Transforma on

It is often the case that while one can describe a linear transformation,
one doesn’t know what matrix performs that transformation (i.e., one
doesn’t know the standard matrix of that linear transformation). How do
we systematically find it? We’ll need a new definition.

Definition 6.2.3 Standard Unit Vectors

In Rn, the standard unit vectors e⃗i are the vectors with a 1 in
the ith entry and 0s everywhere else.

We’ve already seen these vectors in the previous section. In R2, we
identified

e⃗1 =

[
1
0

]
and e⃗2 =

[
0
1

]
.

In R4, there are 4 standard unit vectors:

e⃗1 =


1
0
0
0

 , e⃗2 =


0
1
0
0

 , e⃗3 =


0
0
1
0

 , and e⃗4 =


0
0
0
1

 .
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How do these vectors help us find the standard matrix of a linear
transformation? Recall again our work in the previous section. There,
we practised looking at the transformed unit square and deducing the
standard transformation matrix A. We did this by making the first column
of A the vector where e⃗1 ended up and making the second column of A
the vector where e⃗2 ended up. One could represent this with:

A =
[
T (e⃗1) T (e⃗2)

]
= [T ].

That is, T (e⃗1) is the vector where e⃗1 ends up, and T (e⃗2) is the vector
where e⃗2 ends up.

The same holds true in general. Given a linear transformation T :
Rn → Rm, the standard matrix of T is the matrix whose ith column is the
vector where e⃗i ends up. To see that this is the case, note that any vector
x⃗ ∈ Rn can be written as

x⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n,

and by Definition 6.2.1, we have

T (x⃗) = T (x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n)

= x1T (e⃗1) + x2T (e⃗2) + · · ·+ xnT (e⃗n)

=
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]

x1

x2

...
xn


= Ax⃗,

where A =
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]
is the m×n matrix whose columns

are given by the vectors T (e⃗i), for i = 1, 2, . . . , n. Thus, we have the fol-
lowing theorem.

Theorem 6.2.2 The Standard Matrix of a Linear Trans-
formation

Let T : Rn → Rm be a linear transformation. Then [T ] is the
m× n matrix:

[T ] =
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]
.

Let’s practice this theorem in an example.

Example . . Computing the matrix of a linear transformation
Define T : R3 → R4 to be the linear transformation where

T

 x1

x2

x3

 =


x1 + x2

3x1 − x3

2x2 + 5x3

4x1 + 3x2 + 2x3

 .

Find [T ].
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Solution T takes vectors from R3 into R4, so [T ] is going to be
a 4× 3 matrix. Note that

e⃗1 =

 1
0
0

 , e⃗2 =

 0
1
0

 and e⃗3 =

 0
0
1

 .

We find the columns of [T ] by finding where e⃗1, e⃗2 and e⃗3 are sent, that
is, we find T (e⃗1), T (e⃗2) and T (e⃗3).

T (e⃗1) = T

 1
0
0



=


1
3
0
4



T (e⃗2) = T

 0
1
0



=


1
0
2
3



T (e⃗3) = T

 0
0
1



=


0
−1
5
2


Thus

[T ] = A =


1 1 0
3 0 −1
0 2 5
4 3 2

 .

Let’s check this. Consider the vector

x⃗ =

 1
2
3

 .

Strictly from the original definition, we can compute that

T (x⃗) = T

 1
2
3

 =


1 + 2
3− 3
4 + 15

4 + 6 + 6

 =


3
0
19
16

 .

Now compute T (x⃗) by computing [T ]x⃗= Ax⃗.

Ax⃗ =


1 1 0
3 0 −1
0 2 5
4 3 2


 1
2
3

 =


3
0
19
16

 .

They match! (Of course they do. That was the whole point.)
Let’s do another example, one that is more application oriented.

Example . . An application to baseball
A baseball team manager has collected basic data concerning his hitters.
He has the number of singles, doubles, triples, and home runs they have
hit over the past year. For each player, he wants two more pieces of
information: the total number of hits and the total number of bases.

Using the techniques developed in this section, devise a method for the
manager to accomplish his goal.

Solution If the manager only wants to compute this for a few
players, then he could do it by hand fairly easily. After all:
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total # hits = # of singles + # of doubles + # of triples + # of home runs,

and

total # bases = # of singles + 2×# of doubles + 3×# of triples + 4×#
of home runs.

However, if he has a lot of players to do this for, he would likely want
a way to automate the work. One way of approaching the problem starts
with recognizing that he wants to input four numbers into a function
(i.e., the number of singles, doubles, etc.) and he wants two numbers as
output (i.e., number of hits and bases). Thus he wants a transformation
T : R4 → R2 where each vector in R4 can be interpreted as

# of singles
# of doubles
# of triples

# of home runs

 ,

and each vector in R2 can be interpreted as[
# of hits

# of bases

]
.

To find [T ], he computes T (e⃗1), T (e⃗2), T (e⃗3) and T (e⃗4).

T (e⃗1) = T



1
0
0
0


 =

[
1
1

]
T (e⃗2) = T



0
1
0
0


 =

[
1
2

]

T (e⃗3) = T



0
0
1
0


 =

[
1
3

]
T (e⃗4) = T



0
0
0
1


 =

[
1
4

]

(What do these calculations mean? For example, finding T (e⃗3) =

[
1
3

]
means that one triple counts as 1 hit and 3 bases.)

Thus our transformation matrix [T ]is

[T ] = A =

[
1 1 1 1
1 2 3 4

]
.

As an example, consider a player who had 102 singles, 30 doubles, 8
triples and 14 home runs. By using A, we find that

[
1 1 1 1
1 2 3 4

]
102
30
8
14

 =

[
154
242

]
,

meaning the player had 154 hits and 242 total bases.
A question that we should ask concerning the previous example is

“How do we know that the function the manager used was actually a
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linear transformation? After all, we were wrong before – the translation
example at the beginning of this section had us fooled at first.”

This is a good point; the answer is fairly easy. Recall from Example
6.2.3 the transformation

T6.2.3

([
x1

x2

])
=

 x2
1

2x1

x1x2


and from Example 6.2.5

T6.2.5

 x1

x2

x3

 =


x1 + x2

3x1 − x3

2x2 + 5x3

4x1 + 3x2 + 2x3

 ,

where we use the subscripts for T to remind us which example they came
from.

We found that T6.2.3 was not a linear transformation, but stated that
T6.2.5 was (although we didn’t prove this). What made the difference?

Look at the entries of T6.2.3(x⃗) and T6.2.5(x⃗). T6.2.3 contains entries
where a variable is squared and where 2 variables are multiplied together
– these prevent T6.2.3 from being linear. On the other hand, the entries
of T6.2.5 are all of the form a1x1 + · · ·+ anxn; that is, they are just sums
of the variables multiplied by coefficients. T is linear if and only if the
entries of T (x⃗) are of this form. (Hence linear transformations are related
to linear equations, as defined in Section 4.1.) This idea is important.

Key Idea 6.2.2 Conditions on Linear Transformations

Let T : Rn → Rm be a transformation and consider the entries of

T (x⃗) = T



x1

x2

...
xn


 .

T is linear if and only if each entry of T (x⃗) is of the form a1x1 +
a2x2 + · · · anxn.

Going back to our baseball example, the manager could have defined
his transformation as

T



x1

x2

x3

x4


 =

[
x1 + x2 + x3 + x4

x1 + 2x2 + 3x3 + 4x4

]
.

Since that fits the model shown in Key Idea 6.2.2, the transformation T
is indeed linear and hence we can find a matrix [T ] that represents it.

Let’s practice this concept further in an example.

Example . . Using Key Idea 6.2.2 to identify linear transfor-
mations
Using Key Idea 6.2.2, determine whether or not each of the following
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transformations is linear.

T1

([
x1

x2

])
=

[
x1 + 1
x2

]
T2

([
x1

x2

])
=

[
x1/x2√

x2

]

T3

([
x1

x2

])
=

[√
7x1 − x2

πx2

]
Solution T1 is not linear! This may come as a surprise, but we

are not allowed to add constants to the variables. By thinking about this,
we can see that this transformation is trying to accomplish the translation
that got us started in this section – it adds 1 to all the x values and leaves
the y values alone, shifting everything to the right one unit. However, this
is not linear; again, notice how ⃗ does not get mapped to ⃗ .

T2 is also not linear. We cannot divide variables, nor can we put
variables inside the square root function (among other other things; again,
see Section 4.1). This means that the baseball manager would not be
able to use matrices to compute a batting average, which is (number of
hits)/(number of at bats).

T3 is linear. Recall that the coefficients
√
7 and π are just numbers.

In the next section we introduce the concept of a subspace. This
subject is closely related to the concepts of span and linear independence
covered in Section 3.7. We introduce it here in preparation for our final
section, where we will define two important subspaces associated to a ma-
trix transformation: the null space and the column space.



Exercises 6.2
Problems

In Exercises – , a transforma on T is given. Determine
whether or not T is linear; if not, state why not.

. T

([
x1

x2

])
=

[
x1 + x2

3x1 − x2

]

. T

([
x1

x2

])
=

[
x1 + x2

2

x1 − x2

]

. T

([
x1

x2

])
=

[
x1 + 1
x2 + 1

]

. T

([
x1

x2

])
=

[
1
1

]

. T

([
x1

x2

])
=

[
0
0

]

In Exercises – , a linear transforma on T is given. Find
[T ].

. T

([
x1

x2

])
=

[
x1 + x2

x1 − x2

]

. T

([
x1

x2

])
=

 x1 + 2x2

3x1 − 5x2

2x2



. T

 x1

x2

x3

 =


x1 + 2x2 − 3x3

0
x1 + 4x3

5x2 + x3



. T

 x1

x2

x3

 =

 x1 + 3x3

x1 − x3

x1 + x3



. T

([
x1

x2

])
=

[
0
0

]

. T



x1

x2

x3

x4


 =

[
x1 + 2x2 + 3x3 + 4x4

]



Another way of phrasing Definition
6.3.1 is to say that V is a subspace
if any linear combination of vectors
in V is another vector in V ; that is,
V is closed under taking linear com-
binations.

A subspace of Rn is a subset that
looks like a copy of Rm, where m ≤
n. The visual examples you should
keep in mind are lines (which look
like copies of R) and planes (which
look like copies of R2) in R3. How-
ever, not all lines and planes will do:
as we will see, only those lines and
planes that pass through the origin
form subspaces.

. Subspaces of Rn

. Subspaces of Rn

One of the things we noted in Example 3.7.2 was that since w⃗ belonged
to span{u⃗, v⃗}, adding w⃗ to any vector in span{u⃗, v⃗} resulted in another
vector in span{u⃗, v⃗}. This leads to the notion of a subspace, another one
of the key concepts in linear algebra.

What sets subspaces apart from other subsets of Rn is the requirement
that all of the properties listed in Theorem 3.7.1 remain valid when applied
to vectors from that subspace. We will not prove it here, but it suffices
that the subspace be closed under the operations of addition and scalar
multiplication.

Definition 6.3.1 Subspace of Rn

A subset V ⊆ Rn is called a subspace of Rn, provided that the
following conditions hold:

1. For any vectors u⃗, v⃗ ∈ V , u⃗+ v⃗ ∈ V

2. For any vector v⃗ ∈ V and scalar c ∈ R, cv⃗ ∈ V .

It follows from Definition 6.3.1 that any linear combination of vectors
in a subspace V is again an element of that subspace. One other important
consequence of Definition 6.3.1 must be noted here: since any subspace V
is closed under scalar multiplication by any scalar, and since 0 · v⃗ = 0⃗ for
any vector v⃗, every subspace contains the zero vector. This often
provides an easy test when we want to rule out the possibility that a subset
is a subspace.

Example . . Identifying subspaces
Determine which of the following subsets of R3 are subspaces:

1. R =


xy
z

 ∣∣∣∣∣∣ 2x− 4y + 3z = 0

 2. S =


 x
4x
3

 ∣∣∣∣∣∣ x ∈ R


Solution

1. From our work in Section 3.6, we notice right away that the set R

describes a plane with normal vector given by n⃗ =

 2
−4
3

. Moreover,

this particular plane passes through the origin, since 2(0) − 4(0) +
3(0) = 0, telling us that 0⃗ ∈ R.
It turns out that any plane through the origin is a subspace, and R
is no exception, but let’s verify this directly using Definition 6.3.1.
Suppose

u⃗ =

u1

u2

u3

 and v⃗ =

v1v2
v3


are vectors in R, so that 2u1−4u2+3u3 = 0 and 2v1−4v2+3v3 = 0.
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For the vector

u⃗+ v⃗ =

u1 + v1
u2 + v2
u3 + v3

 ,

we find

2(u1+v1)−4(u2+v2)+3(u3+v3) = (2u1−4u2+3u3)+(2v1−4v2+3v3) = 0+0 = 0,

which shows that u⃗+ v⃗ ∈ R. Similarly, for any scalar c,

2(cu1)− 4(cu2) + 3(cu3) = c(2u1 − 4u2 + 3u3) = 0,

verifying that cu⃗ ∈ R. Since R is closed under both addition and
scalar multiplication, it is a subspace.

2. For the subset S, we immediately notice that the third component
must always equal 3; therefore, it is impossible for the zero vector
to belong to S, and thus S is not a subspace.

To make sure we’ve got the hang of things, we’ll try a couple more
examples.

Example . . Identifying subspaces
Determine which of the following subsets of R3 are subspaces:

1. T =


3a− 2b

a+ b
a− 4b

 ∣∣∣∣∣∣ a, b ∈ R

 2. U =


x+ y

3xy
x2

 ∣∣∣∣∣∣ x, y ∈ R


Solution

1. Suppose we have two vectors v⃗ =

3a− 2b
a+ b
a− 4b

 and w⃗ =

3c− 2d
c+ d
a− 4b

 in

the subset T . Then we find

v⃗ + w⃗ =

3a− 2b
a+ b
a− 4b

+

3c− 2d
c+ d
a− 4b

 =

(3a− 2b) + (3c− 2d)
(a+ b) + (c+ d)

(a− 4b) + (c− 4d)


=

3(a+ c)− 2(b+ d)
(a+ c) + (b+ d)
(a+ c)− 4(b+ d)

 .

Since a+ c and b+ d are again real numbers, we see that v⃗ + w⃗ fits
the definition of T , so v⃗ + w⃗ ∈ T .
Next, if k ∈ R is a scalar, we have

kv⃗ = k

3a− 2b
a+ b
a− 4b

 =

k(3a− 2b)
k(a+ b)
k(a− 4b)

 =

3(ka)− 2(kb)
(ka) + (kb)
(ka)− 4(kb)

 ,

which again fits the patter for vectors in T , so kv⃗ ∈ T . From Defi-
nition 6.3.1, we can conclude that T is a subspace.



Note: When we want to show that a
subset is a subspace, we have to ver-
ify that Definition 6.3.1 is satisfied for
all possible vectors in that set. Since
we generally have infinitely many vec-
tors to deal with, our verification is
going to require us to give a general
argument, using variables instead of
numbers.
On the other hand, if we want to
show that a subset is not a subspace,
we just have to show that Defini-
tion 6.3.1 fails for one or two spe-
cific vectors. A choice of vector(s) for
which the definition fails is called a
counterexample. When construct-
ing a counterexample it’s a good idea
to choose small numbers to keep the
arithmetic simple.
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2. You probably recall from your high school mathematics that a func-
tion such as f(x) = ax + b is considered linear, since its graph is
a straight line. Functions like f(x) = x2 are considered non-linear,
since their graphs are curved. One of the morals a student does well
to learn quickly in linear algebra is that any expressions involving
non-linear functions of any variables present are not going to play
well with the rules of linear algebra.
For the subset U , the expressions 3xy and x2 tip us off that we are
probably not dealing with a subspace here. The easiest way to make
sure of this is to check the rules in Definition 6.3.1 using specific
vectors.
If we let x = 1 and y = 2 in the definition of the set U , we get the
vector

v⃗ =

 1 + 2
3(1)(2)

12

 =

36
1

 .

Now consider the vector 4v⃗. We have

4v⃗ = 4

36
1

 =

126
4

 .

Looking at the definition of the set U , we know that if 4v⃗ ∈ U , then
the third component of v⃗ tells us x2 = 4, so x = ±2. Now, let’s look
at the other two components. If x = 2, we must have

2 + y = 12 and 3(2)(y) = 6.

The first equation tells us that y = 10, while the second requires
y = 1. Since 10 ̸= 1, this is impossible. Similarly, if x = −2,
then we would have to have y = 14 looking at the first component,
and y = −1 from the second. Since this is again impossible, it
must be the case that 4v⃗ /∈ U . Since U is not closed under scalar
multiplication, U is not a subspace.

After seeing a few examples (and a few exercises), the reader can prob-
ably develop some intuition for identifying subspaces. To make sure we
don’t become too reliant on intuition, however, we’ll give one more exam-
ple with two very similar-looking sets, only one of which is a subspace.

Example . . Identifying subspaces
Determine which of the following subsets of R3 are subspaces:

1. V =


u+ 2v
v + 4
u− 2

 ∣∣∣∣∣∣ u, v ∈ R

 2. W =


2u+ v
v + 4
u− 2

 ∣∣∣∣∣∣ u, v ∈ R


Solution

1. The expressions v + 4 and u− 3 in the definition of V look like the
sort of linear functions we see in high school, but we need to keep in
mind that in linear algebra the zero vector has an important role in
making sure the algebra works properly. In Linear Algebra, among
all functions of the form f(x) = mx + b, only those with b = 0 are
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considered “linear”: these are the functions whose graphs are lines
through the origin.
The first thing we might check is whether or not 0⃗ ∈ V . If we wantu+ 2v

v + 4
u− 2

 =

00
0

 ,

then clearly we need v = −4 and u = 2 from the second and third
components, but 2+2(−4) = −6 ̸= 0, so there is no way to obtain the
zero vector as an element of V , telling us that V is not a subspace.

2. The subset W looks a lot like the subset V , so our instinct is probably
telling us that W is not a subspace, either. To know for sure, the
first thing we might check is whether or not 0⃗ ∈ W . In this case, we
see that 0⃗ is indeed in there. Setting u = 2 and v = −4, we get the
vector 2(2) + (−4)

−4 + 4
2− 2

 =

00
0

 = 0⃗,

so 0⃗ ∈ W . Let’s try the addition test. Setting u = 1 and v = 0 gives
us the vector

v⃗ =

2(1) + 0
0 + 4
1− 2

 =

 2
4
−1

 ∈ W.

Setting u = 0 and v = 1 gives us the vector

w⃗ =

2(0) + 1
1 + 4
0− 2

 =

 1
5
−2

 ∈ W.

We now check to see whether or not v⃗ + w⃗ ∈ W . We have

v⃗ + w⃗ =

 2
4
−1

+

 1
5
−2

 =

 3
9
−3

 .

If this is an element of W , then we must have v+4 = 9 for some v ∈ R
(looking at the second component) and u− 2 = −3 for some u ∈ R
(looking at the third component), so u = −1 and v = 5. Putting
these values into the first component, we need to have 2(−1)+5 = 3,
which is true! Does this mean W is a subspace? Not so fast: we
only checked addition for one pair of vectors, and we haven’t checked
scalar multiplication.

If we try a few more examples (the reader is encouraged to do so),
we find that things keep working out, so we begin to suspect that
maybe W really is a subspace. The only way to know for sure is to
attempt to verify Definition 6.3.1 with a general proof. Suppose

v⃗ =

2a+ b
b+ 4
a− 2

 and w⃗ =

2c+ d
d+ 4
c− 2
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are arbitrary elements of W . Adding these vectors, we get

v⃗ + w⃗ =

2(a+ c) + (b+ d)
(b+ d) + 8
(a+ c)− 4

 ,

which certainly doesn’t look like an element of W ; the constants are
all wrong! We have an 8 in the second component instead of a 4, and
a −4 in the third component instead of a −2. (This is why constant
terms in the definition of a subset are generally problematic.)
However, with a bit of sleight of hand, things are not as bad as they
seem. Let’s write the second component as (b+ d+ 4) + 4, and the
third as (a+ c− 2)− 2, and let v = b+ d+ 4, and u = a+ c− 2. If
v⃗ + w⃗ is an element of W , then we’re going to need

2(a+ c) + (b+ d) = 2u+ v,

so that v⃗+w⃗ =

2u+ v
v + 4
u− 2

 fits the definition of W . Is this true? Let’s

check:

2u+v = 2(a+c−2)+(b+d+4) = 2(a+c)−4+(b+d)+4 = 2(a+c)+(b+d).

The extra constants cancel, so addition works! Similarly, we find

kv⃗ =

k(2a+ b)
k(b+ 4)
k(c− d)


=

2(ka) + (kb)
(kb) + 4k
(ka)− 2k


=

 2(ka) + (kb)
(kb+ 4k − 4) + 4
(ka− 2k + 2)− 2


=

2(ka− 2k + 2) + (kb+ 4k − 4)
(kb+ 4k − 4) + 4
(ka− 2k + 2)− 2

 ,

which fits the definition of W . (Note that in the last equality, things
cancel out again:

2(ka−2k+2)+(kb+4k−4) = 2(ka)−4k+4+(kb)+4k−4 = 2(ka)+(kb).

Whew! That wasn’t so straightforward. Could we have made our
lives a little bit easier? (The answer to this rhetorical question is
almost always yes.)
We know that the potential trouble here came from the constant
terms, so one option we have is to try burying them. Given the
element

v⃗ =

2u+ v
v + 4
u− 2

 ∈ W,

we’re under no obligation to stick with the variables u and v. Let’s
try to simplify a bit: if we let x = u−2 (so u = x+2) and y = v+4
(so v = y − 4), then

2u+ v = 2(x+ 2) + (y − 4) = 2x+ 4 + y − 4 = 2x+ y,
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and thus we can write v⃗ =

2x+ y
y
x

, with no more constant terms.

In this form it’s much easier to verify that W is a subspace.

Let’s take a second look at the subspaces T and W from Examples

6.3.2 and 6.3.3. Given an element v⃗ =

3a− 2b
a+ b
a− 4b

 of T , we note that

v⃗ =

3a− 2b
a+ b
a− 4b

 =

3aa
a

+

−2b
b

−4b

 = a

31
1

+ b

−2
1
−4

 ;

in other words, T can be written as the span of the vectors31
1

 and

−2
1
−4

 .

Similarly, if we write w⃗ =

2x+ y
y
x

 ∈ W for an arbitrary element of W

(using our change of variables), we have

w⃗ =

2x0
x

+

yy
0

 = x

20
1

+ y

11
0

 ,

so the subspace W again can be rewritten as

W = span


20
1

 ,

11
0

 .

In fact, although we will not prove it in this textbook, every subspace
of Rn can be written as the span of some finite set of vectors. (This is
usually done in Math 3410.) We can, however, prove that every span is a
subspace.

Theorem 6.3.1 Every span is a subspace

Let v⃗1, v⃗2, . . . , v⃗k be vectors in Rn. Then V = span{v⃗1, v⃗2, . . . , v⃗k}
is a subspace of Rn.

To see that this is true, recall that any element of a span is by definition
a linear combination. Given two arbitrary elements

a⃗ = a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k

b⃗ = b1v⃗1 + b2v⃗2 + · · ·+ bkv⃗k

of V , we note that

a⃗+ b⃗ = (a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k) + (b1v⃗1 + b2v⃗2 + · · ·+ bkv⃗k)

= (a1v⃗1 + b1v⃗1) + (a2v⃗2 + b2v⃗2) + · · ·+ (akv⃗k + bkv⃗k)

= (a1 + b1)v⃗1 + (a2 + b2)v⃗2 + · · ·+ (ak + bk)v⃗k,



The trivial subspace appears at first
glance to be an exception to the rule
that “every subspace is a span”, but
we can consider it to be the span of
the zero vector. In more advanced
textbooks where the concept of a ba-
sis is discussed, the trivial subspace is
often considered to be the “span” of
the empty set. Since the empty set
contains zero vectors, the trivial sub-
space is said to be zero-dimensional.
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so that a⃗+ b⃗ can be written as a linear combination of the vectors v⃗i and
therefore belongs to V . Similarly, for any scalar c, we have

ca⃗ = c(a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k)

= (ca1)v⃗1 + (ca2)v⃗2 + · · · (cak)v⃗k,

so that ca⃗ is an element of V as well. Thus, by Definition 6.3.1, we know
that V is a subspace of Rn.

We conclude with a discussion of how Theorem 6.3.1 and the concept
of linear independence allows us to give a complete description of the
possible subspaces of Rn. To begin with, we have the simplest possible
subspace, the trivial subspace

V0 = {⃗0}.

If a subspace V has at least one non-zero vector, let’s say v⃗ ∈ V , then
by definition it must contain every scalar multiple of that vector. Thus,
the next simplest type of subspace is given as the span of a single, non-zero
vector:

V1 = {tv⃗ | t ∈ R and v⃗ ̸= 0⃗}

Of course, there are infinitely many possibilities for v⃗, but each choice of
v⃗ ̸= 0⃗ leads to a subspace that looks and acts “the same”. As discussed
earlier, we can picture a subspace of this type as a line through the origin.

Next, we could consider a subspace V2 = span{v⃗, w⃗}, with v⃗, w⃗ ̸= 0⃗.
There are two possibilities. One is that v⃗ and w⃗ are parallel, so that the
set {v⃗, w⃗} is linearly dependent. In this case we can write w⃗ = kv⃗ for some
scalar k, and for any scalars a and b,

av⃗ + bw⃗ = av⃗ + b(kv⃗) = (a+ bk)v⃗,

so our subspace V2 is really of the same type as V1. If, however, the
vectors v⃗ and w⃗ are linearly independent, then adding the vector w⃗ gives
us a second direction to work with, and V2 becomes an object that is
strictly larger than V1. In this case, the visualization is that of a plane
through the origin.

Depending on the size of n, this argument continues. If we add a third
vector u⃗ that is already in the span of v⃗ and w⃗, then the set {u⃗, v⃗, w⃗} is
linearly dependent, and the span of this set is the same as what we already
had. If, however, u⃗ /∈ span{v⃗, w⃗}, then {u⃗, v⃗, w⃗} is linearly independent,
and

V3 = span{u⃗, v⃗, w⃗}

is a strictly larger subspace than span{v⃗, w⃗}. We could then look for a
fourth vector, and so on. However, in the familiar case of R3, the process
stops at 3.
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Key Idea 6.3.1 Subspaces of R3

There are four different types of subspaces in R3:

• The trivial subspace, V0 = {⃗0}. (Zero dimensional)

• Lines through the origin, of the form

V1 = span{v⃗},

where v⃗ ̸= 0⃗. (One dimensional)

• Planes through the origin, of the form

V2 = span{v⃗, w⃗},

where the vectors v⃗, w⃗ are linearly independent. (Two dimen-
sional)

• The complete space V3 = R3. (Three dimensional)

Notice the reference to dimension in Key Idea 6.3.1. In R3, we can rely
on our intuitive (geometric) understanding of the concept of dimension.
A complete understanding of the concept of dimension will have to wait
until Math 3410; however, using the concepts in this section, we can make
the following definition.

Definition 6.3.2 Dimension of a subspace

The dimension of a subspace V ⊆ Rn is the smallest number of
vectors needed to span V .

One could also define dimension as the largest number of linearly in-
dependent vectors one can choose from a subspace. If B = {v⃗1, . . . , v⃗k} is
a set of vectors in a subspace V such that

1. V = span(B), and

2. B is linearly independent,

then we say B is a basis for V . For example, the set {⃗i, j⃗, k⃗} is a basis for
R3. There are many possible bases for a subspace, but one can prove that
the number of vectors in any basis is the same. Once this fact is estab-
lished, we could alternatively define dimension as the number of vectors
in any basis.



Exercises 6.3
Problems
In Exercises – , determine if the given subset ofR2 is a sub-
space. Support your conclusionwith a proof or counterexam-
ple.

. S =

{[
x
y

] ∣∣∣∣ 2x− 3y = 4

}

. T =

{[
x+ y
x− y

] ∣∣∣∣ x, y ∈ R
}

. U =

{[
x
y

] ∣∣∣∣ y = 2x

}

. V =

{[
x
x2

] ∣∣∣∣ x ∈ R
}
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. Null Space and Column Space
We close this chapter with some discussion of a theoretical nature. First,
we will attempt to gain some additional insight into the (initially myste-
rious) definition of matrix multiplication by revisiting it from the point
of view of linear transformations. We’ll then introduce two fundamental
subspaces associated with a matrix transformation.

Matrix mul plica on as func on composi on

Recall that one of the ways we can obtain new functions from old ones is
via function composition. Given two functions f(x) and g(x) (where
x ∈ R), we can form the compositions

(f ◦ g)(x) = f(g(x)) and
(g ◦ f)(x) = g(f(x)),

as long as we meet certain conditions on the compatibility of the domains
and ranges of the two functions. If you paid attention in high school, you
probably also remember that the order of composition matters: in general,

(f ◦ g)(x) ̸= (g ◦ f)(x).

For example, if f(x) = 2x+ 1 and g(x) = x2, then

(f ◦ g)(x) = f(g(x)) = 2g(x) + 1 = 2x2 + 1,

while

(g ◦ f)(x) = g(f(x)) = (f(x))2 = (2x+ 1)2 = 4x2 + 4x+ 1.

In this example, both functions are defined from R to R, and neither is
a linear transformation in the sense of this section. In fact, if f : R → R
satisfies Definition 6.2.1, then we must have f(x) = ax for some real
number a. If g(x) = bx is another linear transformation from R to R,
notice that we have

(f ◦ g)(x) = f(g(x)) = a(g(x)) = a(bx) = (ab)x.

Thus, to compose two linear transformations from R to R, we simply
multiply the constants used to define the transformations.

Now, what about a general linear transformation S : Rn → Rm? We
know that any such transformation is a matrix transformation: we must
have

S(x⃗) = Ax⃗

for any x⃗ ∈ Rn, where A is an m× n matrix. Since we’re multiplying an
m×n matrix by an n×1 matrix, the rules of matrix multiplication ensure
that the output y⃗ = Ax⃗ is an element of Rm.

Suppose now that we want to define the composition (S ◦ T )(x⃗) for
some other linear transformation T . Recall the following rule of function
composition:

In order for the composition S ◦ T to be defined, the range
of T must be contained in the domain of S.
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That is, since S ◦ T is defined by (S ◦ T )(x⃗) = S(T (x⃗)), the vector T (x⃗)
(which by definition is in the range of T ) must belong to the domain of S.
This means that we must have T (x⃗) ∈ Rn, so we have

T : Rk → Rn

for some natural number k. On the other hand, we know that if T is a
linear transformation, then T is defined by matrix multiplication: T (x⃗) =
Bx⃗ for some n× k matrix B.

Let us now recall one of the rules of matrix multiplication:

For the matrix product AB to be defined, the number of
columns of A must equal the number of rows of B.

That is, if A is an m× n matrix, then B must be an n× k matrix for
some k. But this is the same conclusion as above! What is the connection?
Well, if we follow the rules for function composition, if T (x⃗) = Bx⃗ and
S(y⃗) = Ay⃗, we must have

(S ◦ T )(x⃗) = S(T (x⃗)) = A(T (x⃗)) = A(Bx⃗) = (AB)x⃗,

where the last equality is due to the associative property of matrix multi-
plication from Theorem 5.2.1. Thus, we see that

Composition of linear transformations is the same as
multiplication of the corresponding matrices!

Looking at things from the point of view of matrix transformations
gives us two insights on the nature of matrix multiplication:

1. When A and B are both n×n matrices, the transformations S(x⃗) =
Ax⃗ and T (x⃗) = Bx⃗ are both maps from Rn to Rn, and we can define
both

(S ◦ T )(x⃗) = (AB)x⃗

and
(T ◦ S)(x⃗) = (BA)x⃗.

Our experience with functions teaches us that most of the time,
S ◦T ̸= T ◦S, so of course it makes sense that AB ̸= BA in general!

2. The fact that AB is defined only when the number of columns of A
matches the number of rows of B is simply a consequence of the fact
that S ◦T is only defined if the range of T is a subset of the domain
of A.

What about the “row times column” rule for determining the entries
of AB? Let’s look at how things work in 2D. Suppose we’ve defined linear
transformations

S

([
x
y

])
= A

[
x
y

]
=

[
a11 a12
a21 a22

] [
x
y

]
and

T

([
x
y

])
= B

[
x
y

]
=

[
b11 b12
b21 b22

] [
x
y

]
.
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If we write T

([
x
y

])
=

[
u
v

]
, where u = b11x + b12y and v = b21x + b22y,

then we have

(S ◦ T )
([

x
y

])
= S

(
T

([
x
y

]))
= S

([
u
v

])
=

[
a11 a12
a21 a22

] [
u
v

]
=

[
a11u+ a12v
a21u+ a22v

]
=

[
a11(b11x+ b12y) + a12(b21x+ b22y)
a21(b11x+ b12y) + a22(b21x+ b22y)

]
=

[
(a11b11 + a12b21)x+ (a11b12 + a12b22)y
(a21b11 + a22b21)x+ (a21b12 + a22b22)y

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

] [
x
y

]
.

But we also argued above that we should have

(S ◦ T )
([

x
y

])
= (AB)

[
x
y

]
,

from which we’re forced to conclude that

AB =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
,

and this is exactly the rule for multiplying two 2× 2 matrices! Of course,
we can repeat the above argument for the general case where A is m× n
and B is n × k, but you can probably guess that the algebra gets a bit
messy on that one, so we’ll spare you the details.

Column space and null space
When we discussed the composition of linear transformations above, we
briefly mentioned that this involves the consideration of the range. Recall
that the range of a function is the set of all possible outputs when every
input in the domain is considered. For example, with the function f(x) =
x2, where x can be any real number, the range is the set of all real numbers
y ≥ 0. (If y = x2 and x is real, then y can’t be negative.)

If we’re given a linear transformation T : Rn → Rm, we might want
to know what sort of vectors y⃗ ∈ Rm can be obtained from T . Consider
Examples 6.1.2 and 6.1.3 from way back at the beginning of the section.
In Example 6.1.2, the vectors Ax⃗ and Ay⃗ were non-parallel, and therefore
independent. It follows that for any other vector z⃗ ∈ R2, we can find
scalars a and b such that

z⃗ = a(Ax⃗) + b(Ay⃗) = A(ax⃗) +A(by⃗) = A(ax⃗+ by⃗),

so every vector in R2 can be written as the output of the transforma-
tion T (x⃗) = Ax⃗. On the other hand, using the matrix A =

[
1 −1
1 −1

]
in

Example 6.1.3, for any vector
[
a
b

]
∈ R2, we have

A

[
a
b

]
=

[
1 −1
1 −1

] [
a
b

]
=

[
a− b
a− b

]
= (a− b)

[
1
1

]
,



Note: Although we didn’t say so at
the time, we already encountered this
rule for multiplying a vector by a ma-
trix in the argument we gave in sup-
port of Theorem 6.2.2 on page 271.
Some textbooks actually use this ob-
servation to give an alternative defi-
nition of matrix multiplication. Once
we know how the product Ax⃗ is de-
fined for an m×n matrix A and n×1
vector x⃗, we can define AB for an n×p
matrix B as follows: first, we write

B =
[⃗
b1 b⃗2 · · · b⃗p

]
,

where the n× 1 vectors b⃗1, . . . , b⃗p are
the columns of B. We then define

AB = A
[⃗
b1 b⃗2 · · · b⃗p

]
=

[
Ab⃗1 Ab⃗2 · · · Ab⃗p

]
.

It’s a good exercise to verify (with
a few examples) that this definition
of the product AB is the same as
the “row times column” definition we
gave earlier.
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so the only vectors in the range of T (x⃗) = Ax⃗ are those parallel to the

vector
[
1
1

]
.

Next, we’re going to consider a general matrix transformation T :
Rn → Rm given by T (x⃗) = Ax⃗, but we’ll play around with the multipli-
cation a little bit. By definition (and a bit of manipulation), we have

T (x⃗) = Ax⃗ =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn



x1

x2

...
xn



=


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



=


a11x1

a21x1

...
am1x1

+


a12x2

a22x2

...
am2x2

+ · · ·+


a1nxn

a2nxn

...
amnxn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n

...
amn

 .

Thus, whenever we multiply a vector by a matrix, the result is a linear
combination of the columns of A! If we think of each column of A as
a column vector in Rm, we can make the following definition:

Definition 6.4.1 The column space of a matrix

The column space of an m × n matrix A is the subspace of Rm

spanned by the columns of A:

col(A) = span



a11
a21
...

am1

 ,


a12
a22
...

am2

 , . . . ,


a1n
a2n

...
amn


 .

From the discussion above, we can make two conclusions. First, if
T (x⃗) = Ax⃗ is a linear transformation, we have

range(T ) = col(A).

Second, as mentioned in Definition 6.4.1, since the range of T can be writ-
ten as a span, it is automatically a subspace of Rm according to Theorem
6.3.1. The range of a linear transformation is one of the more important
examples of a subspace.

To give a more useful description of the column space, we rely Theorem
6.4.1 below, whose proof is too technical for this text. To help with the
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statement of this theorem, we first introduce one more bit of terminology.
We will call a column of a matrix A a pivot column if the corresponding
column in the reduced row echelon form of A contains a leading 1.

Theorem 6.4.1 Basis for the column space of a matrix

A basis for the column space of an m× n matrix A is given by the
set of pivot columns of A.

We will illustrate Theorem 6.4.1 with an example. It’s important to
note that while we need to find the reduced row echelon form of A in order
to find the pivot columns, the columns we want are those of the original
matrix A, not its RREF.

Example . . Finding a basis for the column space
Determine a basis for the column space of the matrix

A =

 1 0 2 −3
2 −1 0 4
−1 1 3 0

 .

Solution We begin by computing the reduced row echelon form
R of A. We find

R =

1 0 0 −17
0 1 0 −38
0 0 1 7

 ,

and note that R has leading 1s in columns 1, 2, and 3. It follows that

B =


 1

2
−1

 ,

 0
−1
1

 ,

20
3


is a basis for col(A).

Let’s make a few observations about the previous example. Notice that
we have three leading 1s, so rank(A) = 3. In particular, there is a leading
1 in each row, so we’re guaranteed that the system Ax⃗ = b⃗ is consistent,
no matter what the vector b⃗ is. Since the number of pivot columns of A
is equal to the number of leading 1s, we obtain the following result:

Theorem 6.4.2 Dimension of the column space

The dimension of the column space of a matrix A (or equivalently,
the dimension of range of the matrix transformation defined by A)
is equal to the rank of A.

To see why this result can be useful, notice that in our previous exam-
ple, the matrix transformation T (x⃗) = Ax⃗ determines a linear transfor-
mation T : R4 → R3. Notice that there are three vectors in the basis for
col(A); this means that the column space of A (and thus, the range of T )
is three-dimensional, and therefore the range of T is all of R3, and thus,
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no matter what vector b⃗ ∈ R3 we choose, we’re guaranteed to be able to
find a vector x⃗ ∈ R4 such that Ax⃗ = b⃗.

The key observation here is that the question “Does Ax⃗ = b⃗ have
a solution?” is equivalent to the question “Does the vector b⃗ belong to
col(A)?” Unfortunately, while we may gain some insight from noticing
that these questions are the same, we are no further ahead when it comes
to answering them. Whatever version we prefer, the only way to get an
answer is to compute the reduced row echelon formof

[
A b⃗

]
.

Suppose we repeated Example 6.4.1 using the matrix A from Example
4.6.4. Both cases involved a matrix of size 3× 4, but the matrix from Ex-
ample 4.6.4 had rank 2, so the column space of A is only two-dimensional.
In this case, the system Ax⃗ = b⃗ will be consistent if b⃗ belongs to the span
of the first two columns of A, and inconsistent otherwise.

Reading off the first two columns of A, we find that

col(A) = span


 1

3
−2

 ,

−2
−1
−6

 .

We know that this is a plane through the origin in R3, but how do we
quickly determine what vectors belong to this plane? There’s an easy way
and a hard way. The easy way is to compute the cross product, as we did
in many of the problems from Section 3.6. We find 1

3
−2

×

−2
−1
−6

 =

−20
10
5

 = 5

−4
2
1

 = 5n⃗,

where we’ve chosen to factor out the scalar multiple of 5 to simplify our
normal vector. From this we know that a vector

b⃗ =

ab
c


belongs to the column space of A if and only if

−4a+ 2b+ c = 0,

using the scalar form for the equation of a plane in R3. Having done it
the easy way, let us do things once more the hard way. (Why do it the
hard way if the easy way works? Because if we’re in any other case than
a two-dimensional subspace of R3, the hard way is the only option we
have!) The hard way is to solve the equation Ax⃗ = b⃗ for an arbitrary

vector b⃗ =

ab
c

. As with the previous examples, we set up the augmented

matrix and reduce: 1 −2 0 4 a
3 −1 5 2 b
−2 −6 −10 12 c

 −→

1 −2 0 4 a
0 1 1 −2 (b− 3a)/5
0 0 0 0 (c− 4a+ 2b)/10

 .

We stopped before getting all the way to the reduced row echelon form,
but we’re far enough along to realize that the only way our system can be
consistent is if the last entry in the third row is equal to zero. This gives
us the condition

c− 4a+ 2b

10
= 0,
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which (after multiplying both sides by 10) is exactly the same as what we
found using the cross product.

The other important example is the null space of a matrix. The null
space of an m × n matrix A is simply the set of all those vectors x⃗ ∈ Rn

such that Ax⃗ = 0⃗.

Definition 6.4.2 The null space of a matrix

The null space of an m× n matrix A is denoted by null(A), and
defined by

null(A) = {x⃗ ∈ Rn |Ax⃗ = 0⃗}.

For example, we saw in Example 6.1.3 that the vector x⃗ =

[
1
1

]
belongs

to the null space of the matrix A =

[
1 −1
1 −1

]
, since

Ax⃗ =

[
1 −1
1 −1

] [
1
1

]
=

[
1− 1
1− 1

]
=

[
0
0

]
.

Given a general m×n matrix A, we know from Section 4.6 that deter-
mining the null space amounts to simply solving a homogeneous system
of linear equations. Let us see how this works in an example.

Example . . Determining the null space of a matrix
Determine the null space of the matrix

A =

[
2 −3
−2 3

]
.

Solution Since the null space of A is equal to the set of all solu-
tions x⃗ to the matrix equation Ax⃗ = 0⃗, we proceed by forming the proper
augmented matrix and putting it into reduced row echelon form, which
we do below. [

2 −3 0
−2 3 0

]
−→rref

[
1 −3/2 0
0 0 0

]
We interpret the reduced row echelon form of this matrix to find that

x1 = 3/2t

x2 = t is free.

We can say that x⃗ ∈ null(A) provided that

x⃗ =

[
x1

x2

]
=

[
3
2 t
t

]
= t

[
3
2
1

]
.

If we set
v⃗ =

[
3/2
1

]
,

then we can write our solution as

null(A) =

{
tv⃗ | t ∈ R and v⃗ =

[
3/2
1

]}
.



x

y

v⃗

Figure . . : The solu on, as a line, to
Ax⃗ = ⃗ in Example . . .
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We see that the null space of A contains infinitely many solutions to
the equation Ax⃗ = 0⃗; any choice of x2 gives us one of these solutions. For
instance, picking x2 = 2 gives the solution

x⃗ =

[
3
2

]
.

This is a particularly nice solution, since there are no fractions! In fact,
since the parameter t can take on any real value, there is nothing prevent-
ing us from defining a new parameter s = t/2, and then

x⃗ = t

[
3/2
1

]
= t

(
1

2

[
3
2

])
=

t

2

[
3
2

]
= s

[
3
2

]
= sw⃗,

where w⃗ = 2v⃗.
Our solutions are multiples of a vector, and hence we can graph this,

as done in Figure 6.4.1.
In Example 6.4.2, we saw that the solution is a line through the origin,

and thus, we can conclude that null(A) is a subspace! In fact, this is no
coincidence: it is guaranteed by our next theorem.

Theorem 6.4.3 The null space of a matrix is a subspace

For any m× n matrix A, null(A) is a subspace of Rn.

The proof of this theorem is simple. Suppose x⃗, y⃗ ∈ null(A). By
definition, this means Ax⃗ = 0⃗ and Ay⃗ = 0⃗. Using the properties of matrix
multiplication, we have

A(x⃗+ y⃗) = Ax⃗+Ay⃗ = 0⃗ + 0⃗ = 0⃗,

so x⃗+ y⃗ ∈ null(A), and

A(cx⃗) = c(Ax⃗) = c⃗0 = 0⃗,

so cx⃗ ∈ null(A). It follows from the definition of a subspace that null(A)
is a subspace of Rn.

In Section 3.7 we discussed the fact that whenever we have a subspace
of Rn, it can be useful to determine a basis for our subspace. Recall
from Definition 4.6.3 that the general solution to a homogeneous system
of linear equations can be written in terms of certain basic solutions. In
the context of null spaces, these basic solutions are just such a basis.

Although we will not prove it here, the basic solutions to a homoge-
neous system are always linearly independent. Moreover, it follows from
the definition of null(A) that any x⃗ ∈ null(A) can be written as a linear
combination of the basic solutions. In the language of Section 3.7, the
basic solutions to a homogeneous system Ax⃗ = 0⃗ form a basis for the null
space of A. This is an important point to remember, so we emphasize it
in the following Key Idea:
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Key Idea 6.4.1 Basis for the null space of a matrix

The basic solutions to the homogeneous system Ax⃗ = 0⃗ form a
basis for the null space of A. That is, if v⃗1, v⃗2, . . . , v⃗k are the basic
solutions to Ax⃗ = 0⃗, then

null(A) = span{v⃗1, v⃗2, . . . , v⃗k}.

To illustrate Key Idea 6.4.1, let’s revisit an example from Section 4.6
using the language of null space and basis.
Example . . A two-dimensional null space
Find a basis for the null space of A, where

A =

 1 −2 0 4
3 −1 5 2
−2 −6 −10 12

 .

Solution Again, determining null(A) is the same as solving the
homogeneous system Ax⃗ = 0⃗, and by Key Idea 6.4.1, a basis for null(A)
is given by the basic solutions to this system. As usual, to find the basic
solutions, we set up the augmented matrix of the system and reduce: 1 −2 0 4 0

3 −1 5 2 0
−2 −6 −10 12 0

 −→rref

1 0 2 0 0
0 1 1 −2 0
0 0 0 0 0


From the reduced row echelon form of the augmented matrix, we can read
off the following general solution:

x1 = −2s

x2 = −s+ 2t

x3 = s is free
x4 = t is free.

In this case, we have two parameters, so we expect two basic solutions.
To find these, we write our solution in vector form:

x⃗ =


x1

x2

x3

x4

 =


−2s

−s+ 2t
s
t

 = s


−2
−1
1
0

+ t


0
2
0
1

 .

From the above, we see that the general solution can be written as x⃗ =
sv⃗ + tw⃗, where

v⃗ =


−2
−1
1
0

 and w⃗ =


0
2
0
1


are the basic solutions to Ax⃗ = 0⃗. Since the null space of A is equal to
the set of solutions to Ax⃗ = 0⃗, and since every solution to Ax⃗ = 0⃗ can be
written in terms of v⃗ and w⃗, it follows that

null(A) = span{v⃗, w⃗},



Recall that a function f is one-to-one
if no two inputs give the same out-
put. In other words, if f is one-to-
one, then whenever f(a) = f(b), we
can conclude that a = b.

. Null Space and Column Space

and that {v⃗, w⃗} is a basis for null(A).

Another reason the null space is interesting is that it lets us determine
whether or not a linear transformation is one-to-one. Suppose T : Rn →
Rm is a linear transformation defined by T (x⃗) = Ax⃗. We know that
T (⃗0) = 0⃗, so 0⃗ ∈ null(A) (as it must be, since null(A) is a subspace). If we
have any non-zero vector v⃗ ∈ null(A), then T cannot be one-to-one, since
we’d have

T (v⃗) = Av⃗ = 0⃗ = T (⃗0).

Thus, if null(A) ̸= {⃗0}, then T is not one-to-one. On the other hand,
suppose null(A) = {⃗0}, and that T (x⃗) = T (y⃗) for vectors x⃗, y⃗ ∈ Rn. Then
we have

0⃗ = T (x⃗)− T (y⃗) = T (x⃗− y⃗) = A(x⃗− y⃗),

so that x⃗ − y⃗ ∈ null(A) = {0}, which means that x⃗ − y⃗ = 0⃗, and thus
x⃗ = y⃗. We have proved the following:

Theorem 6.4.4 Null space and one-to-one transforma-
tions

Let T : Rn → Rm be defined by T (x⃗) = Ax⃗ for some m× n matrix
A. Then T is one-to-one if and only if null(A) = {⃗0}.

The final result we’ll state provides an interesting (and powerful) re-
lationship between the null and column spaces.

Theorem 6.4.5 The Fundamental Theorem of Linear
Transformations

Let T : Rn → Rm be a linear transformation defined by T (x⃗) = Ax⃗
for some m× n matrix A. Then

dim null(A) + dim col(A) = n.

This result is sometimes known as the “rank-nullity theorem”; it gives
the relationship between the rank of a matrix A, which is equal to the
dimension of its column space, and the nullity of A, which is defined to
be the dimension of its null space.

A formal proof of this result is beyond the scope of this course, but
the intuition we’ve gained from solving systems should make it plausible.
Recall that Item 3 in Theorem 4.6.1 on the relationship between the rank
of a matrix and types of solutions gives us the equation

k + rank(A) = n,

where k is the number of parameters in the general solution of Ax⃗ = b⃗.
Now, we know from Definition 4.6.3 that the number of parameters in the
general solution to Ax⃗ = b⃗ is equal to the number of basic solutions to the
system Ax⃗ = 0⃗, and that the basic solutions to Ax⃗ = ⃗ form a basis for
null(A). From this, we can conclude that

k = dim null(A).
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We also claimed in Theorem 6.4.2 above that the rank of A is equal to
the dimension of its column space. Putting these facts together, we can
see why the rank-nullity theorem must hold. Let’s confirm that the result
holds in one more example.
Example . . Null space and column space
Let

A =

[
1 −1 1 3
4 2 4 6

]
and b⃗ =

[
1
10

]
.

Determine:

1. The null space of A.

2. Whether or not the vector b⃗ belongs to the column space of A.

Solution We’ll tackle the null space first. We form the augmented
matrix for the system Ax⃗ = ⃗ , put it into reduced row echelon form, and
interpret the result.[

1 −1 1 3 0
4 2 4 6 0

]
−→rref

[
1 0 1 2 0
0 1 0 −1 0

]

x1 = −x3 − 2x4

x2 = x4

x3 = s is free
x4 = t is free

We now obtain our vector solution

x⃗ =


x1

x2

x3

x4

 =


−s− 2t

t
s
t

 .

Finally, we “pull apart” this vector into two vectors, one with the “s
stuff” and one with the “t stuff.”

x⃗ =


−x3 − 2x4

x4

x3

x4



=


−x3

0
x3

0

+


−2x4

x4

0
x4



= x3


−1
0
1
0

+ x4


−2
1
0
1


= x3u⃗+ x4v⃗

We use u⃗ and v⃗ simply to give these vectors names (and save some space).
In terms of these names, we can write

null(A) = span{u⃗, v⃗}.
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It is easy to confirm that both u⃗ and v⃗ are solutions to the linear system
Ax⃗ = ⃗ . (Just multiply Au⃗ and Av⃗ and see that both are ⃗ .) Since both
are solutions to a homogeneous system of linear equations, any linear com-
bination of u⃗ and v⃗ will be a solution, too, so the vectors u⃗ and v⃗ form a
basis for the null space of A.

Now let’s tackle the column space. Determining whether or not b⃗
belongs to the column space is the same as solving the system Ax⃗ = b⃗.
Once again we put the associated augmented matrix into reduced row
echelon form and interpret the results.[

1 −1 1 3 1
4 2 4 6 10

]
−→rref

[
1 0 1 2 2
0 1 0 −1 1

]

x1 = 2− s− 2t

x2 = 1 + t

x3 = s is free
x4 = t is free

Since our system is consistent, we can conclude that b⃗ ∈ col(A). Let us
expand on this result a bit.

Writing this solution in vector form gives

x⃗ =


x1

x2

x3

x4

 =


2− s− 2t

1 + t
s
t

 .

Again, we pull apart this vector, but this time we break it into three
vectors: one with “s” stuff, one with “t” stuff, and one with just constants.

x⃗ =


2− s− 2t

1 + t
s
t



=


2
1
0
0

+


−s
0
s
0

+


−2t
t
0
t



=


2
1
0
0

+ s


−1
0
1
0

+ t


−2
1
0
1


= x⃗p︸︷︷︸

particular
solution

+ su⃗+ tv⃗︸ ︷︷ ︸
solution to

homogeneous
equations Ax⃗ = ⃗

Note that Ax⃗p = b⃗; by itself, x⃗p is a solution. The fact that we have at
least one vector x⃗p such that Ax⃗p = b⃗ tells us that b⃗ belongs to the range
of the transformation T (x⃗) = Ax⃗. The fact that there is more than one
solution corresponds to the fact that the null space of A is non-trivial.
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Why don’t we graph this solution as we did in the past? Before we had
only two variables, meaning the solution could be graphed in 2D. Here we
have four variables, meaning that our solution “lives” in 4D. You can draw
this on paper, but it is very confusing.

For further verification of Theorem 6.4.5, the reader is encouraged to
revisit the examples of Section 4.6 and re-interpret them in the context of
null space and column space.



Exercises 6.4
Problems

In Exercises – , determine a basis for the null space and
column space of the given matrix, and verify Theorem . . .

. A =

2 −1 4
1 2 5
3 −4 2



. A =

 1 −3 5
2 −1 2
−3 0 2



. A =

 1 −2 1
−2 −4 6
0 −8 8



. A =

 2 3 −1
−1 5 2
1 8 1



. A =

 1 2 0 3
2 4 −1 6
−3 −6 2 −4



. A =

2 0 3 5
1 −1 4 2
0 3 −6 2



. A =

 1 −2 4 7
2 −4 3 6
−1 2 1 1



. A =

 3 2 0 −5
−1 6 −4 3
2 8 −4 −2







: Opera ons on Matrices
In Chapter 5 we learned about matrix arithmetic: adding, subtracting,
and multiplying matrices, finding inverses, and multiplying by scalars. In
this chapter we learn about some operations that we perform on matrices.
We can think of them as functions: you input a matrix, and you get some-
thing back. One of these operations, the transpose, will return another
matrix. With the other operations, the trace and the determinant, we
input matrices and get numbers in return, an idea that is different than
what we have seen before.

. The Matrix Transpose

AS YOU READ . . .

1. T/F: If A is a 3× 5 matrix, then AT will be a 5× 3 matrix.

2. Where are there zeros in an upper triangular matrix?

3. T/F: A matrix is symmetric if it doesn’t change when you take its
transpose.

4. What is the transpose of the transpose of A?

5. Give 2 other terms to describe symmetric matrices besides “inter-
esting.”

We jump right in with a definition.

Definition 7.1.1 Transpose

Let A be an m×n matrix. The tranpsose of A, denoted AT , is the
n×m matrix whose columns are the respective rows of A.

If we write A = [aij ] to emphasize the entries of A, then the transpose
of A is the matrix AT = [aTij ] where aTij = aji; that is, the (i, j)-entry of
AT is the (j, i)-entry of A. Examples will make this definition clear.

Example . . Taking the transpose of a matrix
Find the transpose of A =

[
1 2 3
4 5 6

]
.

Solution Note that A is a 2 × 3 matrix, so AT will be a 3 × 2
matrix. By the definition, the first column of AT is the first row of A; the
second column of AT is the second row of A. Therefore,

AT =

 1 4
2 5
3 6

 .
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Example . . Computing transposes
Find the transpose of the following matrices.

A =

 7 2 9 1
2 −1 3 0
−5 3 0 11

 B =

 1 10 −2
3 −5 7
4 2 −3

 C =
[
1 −1 7 8 3

]

Solution We find each transpose using the definition without ex-
planation. Make note of the dimensions of the original matrix and the
dimensions of its transpose.

AT =


7 2 −5
2 −1 3
9 3 0
1 0 11

 BT =

 1 3 4
10 −5 2
−2 7 −3

 CT =


1
−1
7
8
3


Notice that with matrix B, when we took the transpose, the diagonal

did not change. We can see what the diagonal is below where we rewrite
B and BT with the diagonal in bold. We’ll follow this by a definition
of what we mean by “the diagonal of a matrix,” along with a few other
related definitions.

B =

 1 10 −2
3 –5 7
4 2 –3

 BT =

 1 3 4
10 –5 2
−2 7 –3


It is probably pretty clear why we call those entries “the diagonal.”

Here is the formal definition.

Definition 7.1.2 The Diagonal, a Diagonal Matrix, Tri-
angular Matrices

Let A be an m × n matrix. The diagonal of A consists of the
entries a11, a22, . . . of A.

A diagonal matrix is an n × n matrix in which the only nonzero
entries lie on the diagonal.

An upper (lower) triangular matrix is a matrix in which any
nonzero entries lie on or above (below) the diagonal.

Example . . Classifying matrices
Consider the matrices A, B, C and I4, as well as their transposes, where

A =

 1 2 3
0 4 5
0 0 6

 B =

 3 0 0
0 7 0
0 0 −1

 C =


1 2 3
0 4 5
0 0 6
0 0 0

 .

Identify the diagonal of each matrix, and state whether each matrix is
diagonal, upper triangular, lower triangular, or none of the above.



Remember, this is what mathemati-
cians do. We learn something new,
and then we ask lots of questions
about it. Often the first questions we
ask are along the lines of “How does
this new thing relate to the old things
I already know about?”
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Solution We first compute the transpose of each matrix.

AT =

 1 0 0
2 4 0
3 5 6

 BT =

 3 0 0
0 7 0
0 0 −1

 CT =

 1 0 0 0
2 4 0 0
3 5 6 0


Note that IT4 = I4.

The diagonals of A and AT are the same, consisting of the entries 1,
4 and 6. The diagonals of B and BT are also the same, consisting of the
entries 3, 7 and −1. Finally, the diagonals of C and CT are the same,
consisting of the entries 1, 4 and 6.

The matrix A is upper triangular; the only nonzero entries lie on or
above the diagonal. Likewise, AT is lower triangular.

The matrix B is diagonal. By their definitions, we can also see that
B is both upper and lower triangular. Likewise, I4 is diagonal, as well as
upper and lower triangular.

Finally, C is upper triangular, with CT being lower triangular.

Make note of the definitions of diagonal and triangular matrices. We
specify that a diagonal matrix must be square, but triangular matrices
don’t have to be. (“Most” of the time, however, the ones we study are.)
Also, as we mentioned before in the example, by definition a diagonal
matrix is also both upper and lower triangular. Finally, notice that by
definition, the transpose of an upper triangular matrix is a lower triangular
matrix, and vice-versa.

There are many questions to probe concerning the transpose opera-
tions. The first set of questions we’ll investigate involve the matrix arith-
metic we learned from last chapter. We do this investigation by way of
examples, and then summarize what we have learned at the end.

Example . . Adding transposed matrices
Let

A =

[
1 2 3
4 5 6

]
and B =

[
1 2 1
3 −1 0

]
.

Find AT +BT and (A+B)T .

Solution We note that

AT =

 1 4
2 5
3 6

 and BT =

 1 3
2 −1
1 0

 .

Therefore

AT +BT =

 1 4
2 5
3 6

+

 1 3
2 −1
1 0


=

 2 7
4 4
4 6

 .
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Also,

(A+B)T =

([
1 2 3
4 5 6

]
+

[
1 2 1
3 −1 0

])T

=

([
2 4 4
7 4 6

])T

=

 2 7
4 4
4 6

 .

It looks like “the sum of the transposes is the transpose of the sum.”
(This is kind of fun to say, especially when said fast. Regardless of how
fast we say it, we should think about this statement. The “is” represents
“equals.” The stuff before “is” equals the stuff afterwards.) This should
lead us to wonder how the transpose works with multiplication.

Example . . Multiplying transposed matrices
Let

A =

[
1 2
3 4

]
and B =

[
1 2 −1
1 0 1

]
.

Find (AB)T , ATBT and BTAT .

Solution We first note that

AT =

[
1 3
2 4

]
and BT =

 1 1
2 0
−1 1

 .

Find (AB)T :

(AB)T =

([
1 2
3 4

] [
1 2 −1
1 0 1

])T

=

([
3 2 1
7 6 1

])T

=

 3 7
2 6
1 1


Now find ATBT :

ATBT =

[
1 3
2 4

] 1 1
2 0
−1 1


= Not defined!

So we can’t compute ATBT . Let’s finish by computing BTAT :

BTAT =

 1 1
2 0
−1 1

[ 1 3
2 4

]

=

 3 7
2 6
1 1
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We may have suspected that (AB)T = ATBT . We saw that this wasn’t
the case, though – and not only was it not equal, the second product wasn’t
even defined! Oddly enough, though, we saw that (AB)T = BTAT . (Then
again, maybe this isn’t all that “odd.” It is reminiscent of the fact that,
when invertible, (AB)−1 = B−1A−1.) To help understand why this is true,
look back at the work above and confirm the steps of each multiplication.

We have one more arithmetic operation to look at: the inverse.

Example . . Inverting a transposed matrix
Let

A =

[
2 7
1 4

]
.

Find (A−1)T and (AT )−1.

Solution We first find A−1 and AT :

A−1 =

[
4 −7
−1 2

]
and AT =

[
2 1
7 4

]
.

Finding (A−1)T :

(A−1)T =

[
4 −7
−1 2

]T
=

[
4 −1
−7 2

]

Finding (AT )−1:

(AT )−1 =

[
2 1
7 4

]−1

=

[
4 −1
−7 2

]

It seems that “the inverse of the transpose is the transpose of the in-
verse.” (Again, we should think about this statement. The part before
“is” states that we take the transpose of a matrix, then find the inverse.
The part after “is” states that we find the inverse of the matrix, then take
the transpose. Since these two statements are linked by an “is,” they are
equal.)

We have just looked at some examples of how the transpose operation
interacts with matrix arithmetic operations. (These examples don’t prove
anything, other than it worked in specific examples.) We now give a
theorem that tells us that what we saw wasn’t a coincidence, but rather
is always true.



Chapter Opera ons on Matrices

Theorem 7.1.1 Properties of the Matrix Transpose

Let A and B be matrices where the following operations are defined.
Then:

1. (A+B)T = AT +BT and (A−B)T = AT −BT

2. (kA)T = kAT

3. (AB)T = BTAT

4. (A−1)T = (AT )−1

5. (AT )T = A

We included in the theorem two ideas we didn’t discuss already. First,
that (kA)T = kAT . This is probably obvious. It doesn’t matter when you
multiply a matrix by a scalar when dealing with transposes.

The second “new” item is that (AT )T = A. That is, if we take the
transpose of a matrix, then take its transpose again, what do we have?
The original matrix.

Now that we know some properties of the transpose operation, we are
tempted to play around with it and see what happens. For instance, if A
is an m× n matrix, we know that AT is an n×m matrix. So no matter
what matrix A we start with, we can always perform the multiplication
AAT (and also ATA) and the result is a square matrix!

Another thing to ask ourselves as we “play around” with the transpose:
suppose A is a square matrix. Is there anything special about A + AT ?
The following example has us try out these ideas.

Example . . The matrices AAT , A+AT , and A−AT

Let

A =

 2 1 3
2 −1 1
1 0 1

 .

Find AAT , A+AT and A−AT .

Solution Finding AAT :

AAT =

 2 1 3
2 −1 1
1 0 1

 2 2 1
1 −1 0
3 1 1


=

 14 6 5
6 4 3
5 3 2


Finding A+AT :

A+AT =

 2 1 3
2 −1 1
1 0 1

+

 2 2 1
1 −1 0
3 1 1


=

 4 3 4
3 −2 1
4 1 2
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Finding A−AT :

A−AT =

 2 1 3
2 −1 1
1 0 1

−

 2 2 1
1 −1 0
3 1 1


=

 0 −1 2
1 0 1
−2 −1 0



Let’s look at the matrices we’ve formed in this example. First, consider
AAT . Something seems to be nice about this matrix – look at the location
of the 6’s, the 5’s and the 3’s. More precisely, let’s look at the transpose
of AAT . We should notice that if we take the transpose of this matrix, we
have the very same matrix. That is, 14 6 5

6 4 3
5 3 2

T

=

 14 6 5
6 4 3
5 3 2

 !

We’ll formally define this in a moment, but a matrix that is equal to
its transpose is called symmetric.

Look at the next part of the example; what do we notice about A+AT ?
We should see that it, too, is symmetric. Finally, consider the last part of
the example: do we notice anything about A−AT ?

We should immediately notice that it is not symmetric, although it
does seem “close.” Instead of it being equal to its transpose, we notice that
this matrix is the opposite of its transpose. We call this type of matrix
skew symmetric. (Some mathematicians use the term antisymmetric) We
formally define these matrices here.

Definition 7.1.3 Symmetric and Skew Symmetric Ma-
trices

A matrix A is symmetric if AT = A.

A matrix A is skew symmetric if AT = −A.

Note that in order for a matrix to be either symmetric or skew sym-
metric, it must be square.

So why was AAT symmetric in our previous example? Did we just
luck out? (Of course not.) Let’s take the transpose of AAT and see what
happens.

(AAT )T = (AT )T (A)T transpose mul plica on rule

= AAT (AT )T = A

We have just proved that no matter what matrix A we start with, the
matrix AAT will be symmetric. Nothing in our string of equalities even
demanded that A be a square matrix; it is always true.

We can do a similar proof to show that as long as A is square, A+AT

is a symmetric matrix. (Why do we say that A has to be square?) We’ll
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instead show here that if A is a square matrix, then A − AT is skew
symmetric.

(A−AT )T = AT − (AT )T transpose subtraction rule

= AT −A

= −(A−AT )

So we took the transpose of A−AT and we got −(A−AT ); this is the
definition of being skew symmetric.

We’ll take what we learned from Example 7.1.7 and put it in a box.
(We’ve already proved most of this is true; the rest we leave to solve in
the Exercises.)

Theorem 7.1.2 Symmetric and Skew Symmetric Matri-
ces

1. Given any matrix A, the matrices AAT and ATA are sym-
metric.

2. Let A be a square matrix. The matrix A+AT is symmetric.

3. Let A be a square matrix. The matrix A− AT is skew sym-
metric.

Why do we care about the transpose of a matrix? Why do we care
about symmetric matrices?

There are two answers that each answer both of these questions. First,
we are interested in the transpose of a matrix and symmetric matrices
because they are interesting. One particularly interesting thing about
symmetric and skew symmetric matrices is this: consider the sum of (A+
AT ) and (A−AT ):

(A+AT ) + (A−AT ) = 2A.

This gives us an idea: if we were to multiply both sides of this equation
by 1

2 , then the right hand side would just be A. This means that

A =
1

2
(A+AT )︸ ︷︷ ︸
symmetric

+
1

2
(A−AT )︸ ︷︷ ︸

skew symmetric

.

That is, any matrix A can be written as the sum of a symmetric and skew
symmetric matrix. That’s interesting.

The second reason we care about them is that they are very useful and
important in various areas of mathematics. The transpose of a matrix
turns out to be an important operation; symmetric matrices have many
nice properties that make solving certain types of problems possible.

Most of this text focuses on the preliminaries of matrix algebra, and the
actual uses are beyond our current scope. One easy to describe example
is curve fitting. Suppose we are given a large set of data points that,
when plotted, look roughly quadratic. How do we find the quadratic that
“best fits” this data? The solution can be found using matrix algebra,
and specifically a matrix called the pseudoinverse. If A is a matrix, the
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pseudoinverse of A is the matrix A† = (ATA)−1AT (assuming that the
inverse exists). We aren’t going to worry about what all the above means;
just notice that it has a cool sounding name and the transpose appears
twice.

In the next section we’ll learn about the trace, another operation that
can be performed on a matrix that is relatively simple to compute but can
lead to some deep results.



Exercises 7.1
Problems
In Exercises – , a matrix A is given. Find AT ; make note
if A is upper/lower triangular, diagonal, symmetric and/or
skew symmetric.

.
[
−7 4
4 −6

]

.
[

3 1
−7 8

]

.
[
1 0
0 9

]

.
[
13 −3
−3 1

]

.

 −5 −9
3 1

−10 −8



.

−2 10
1 −7
9 −2


.
[

4 −7 −4 −9
−9 6 3 −9

]

.
[

3 −10 0 6
−10 −2 −3 1

]
.
[
−7 −8 2 −3

]
.
[
−9 8 2 −7

]
.

−9 4 10
6 −3 −7
−8 1 −1



.

 4 −5 2
1 5 9
9 2 3



.

 4 0 −2
0 2 3
−2 3 6



.

 0 3 −2
3 −4 1
−2 1 0



.

 2 −5 −3
5 5 −6
7 −4 −10



.

 0 −6 1
6 0 4
−1 −4 0



.

 4 2 −9
5 −4 −10
−6 6 9



.

 4 0 0
−2 −7 0
4 −2 5



.

−3 −4 −5
0 −3 5
0 0 −3



.

 6 −7 2 6
0 −8 −1 0
0 0 1 −7



.

 1 0 0
0 2 0
0 0 −1



.

 6 −4 −5
−4 0 2
−5 2 −2



.

 0 1 −2
−1 0 4
2 −4 0



.

 0 0 0
0 0 0
0 0 0
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. The Matrix Trace
AS YOU READ . . .

1. T/F: We only compute the trace of square matrices.

2. T/F: One can tell if a matrix is invertible by computing the trace.

In the previous section, we learned about an operation we can peform
on matrices, namely the transpose. Given a matrix A, we can “find the
transpose of A,” which is another matrix. In this section we learn about
a new operation called the trace. It is a different type of operation than
the transpose. Given a matrix A, we can “find the trace of A,” which is
not a matrix but rather a number. We formally define it here.

Definition 7.2.1 The Trace

Let A be an n × n matrix. The trace of A, denoted tr(A), is the
sum of the diagonal elements of A. That is,

tr(A) = a11 + a22 + · · ·+ ann.

This seems like a simple definition, and it really is. Just to make sure
it is clear, let’s practice.

Example . . Computing the trace of a matrix
Find the trace of A, B, C and I4, where

A =

[
1 2
3 4

]
, B =

 1 2 0
3 8 1
−2 7 −5

 and C =

[
1 2 3
4 5 6

]
.

Solution To find the trace of A, note that the diagonal elements
of A are 1 and 4. Therefore, tr(A) = 1 + 4 = 5.

We see that the diagonal elements of B are 1, 8 and -5, so tr(B) =
1 + 8− 5 = 4.

The matrix C is not a square matrix, and our definition states that we
must start with a square matrix. Therefore tr(C) is not defined.

Finally, the diagonal of I4 consists of four 1s. Therefore tr(I4) = 4.
Now that we have defined the trace of a matrix, we should think like

mathematicians and ask some questions. The first questions that should
pop into our minds should be along the lines of “How does the trace
work with other matrix operations?” (Recall that we asked a similar
question once we learned about the transpose.) We should think about
how the trace works with matrix addition, scalar multiplication, matrix
multiplication, matrix inverses, and the transpose.

We’ll give a theorem that will formally tell us what is true in a moment,
but first let’s play with two sample matrices and see if we can see what
will happen. Let

A =

 2 1 3
2 0 −1
3 −1 3

 and B =

 2 0 1
−1 2 0
0 2 −1

 .



This example brings to light many in-
teresting ideas that we’ll flesh out just
a little bit here.

1. Notice that the elements of A
are 1, −2, 1 and 1. Add the
squares of these numbers: 12 +
(−2)2+12+12 = 7 = tr(ATA).
Notice that the elements of B
are 6, 7, 11 and -4. Add
the squares of these numbers:
62 + 72 + 112 + (−4)2 = 222 =
tr(BTB).
Can you see why this is true?
When looking at multiplying
ATA, focus only on where the
elements on the diagonal come
from since they are the only
ones that matter when taking
the trace.

2. You can confirm on your
own that regardless of the di-
mensions of A, tr(ATA) =
tr(AAT ). To see why this
is true, consider the previous
point. (Recall also that ATA
and AAT are always square, re-
gardless of the dimensions of
A.)

3. Mathematicians are actually
more interested in

√
tr(ATA)

than just tr(ATA). The rea-
son for this is a bit compli-
cated; the short answer is that
“it works better.” The reason
“it works better” is related to
the Pythagorean Theorem, all
of all things. If we know that
the legs of a right triangle have
length a and b, we are more in-
terested in

√
a2 + b2 than just

a2 + b2. Of course, this ex-
planation raises more questions
than it answers; our goal here is
just to whet your appetite and
get you to do some more read-
ing. A Numerical Linear Alge-
bra book would be a good place
to start.
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It should be clear that tr(A) = 5 and tr(B) = 3. What is tr(A+B)?

tr(A+B) = tr

 2 1 3
2 0 −1
3 −1 3

+

 2 0 1
−1 2 0
0 2 −1


= tr

 4 1 4
1 2 −1
3 1 2


= 8

So we notice that tr(A + B) = tr(A) + tr(B). This probably isn’t a
coincidence.

How does the trace work with scalar multiplication? If we multiply A
by 4, then the diagonal elements will be 8, 0 and 12, so tr(4A) = 20. Is it
a coincidence that this is 4 times the trace of A?

Let’s move on to matrix multiplication. How will the trace of AB
relate to the traces of A and B? Let’s see:

tr(AB) = tr

 2 1 3
2 0 −1
3 −1 3

 2 0 1
−1 2 0
0 2 −1


= tr

 3 8 −1
4 −2 3
7 4 0


= 1

It isn’t exactly clear what the relationship is among tr(A), tr(B) and
tr(AB). Before moving on, let’s find tr(BA):

tr(BA) = tr

 2 0 1
−1 2 0
0 2 −1

 2 1 3
2 0 −1
3 −1 3


= tr

 7 1 9
2 −1 −5
1 1 −5


= 1

We notice that tr(AB) = tr(BA). Is this coincidental?
How are the traces of A and A−1 related? We compute A−1 and find

that

A−1 =

 1/17 6/17 1/17
9/17 3/17 −8/17
2/17 −5/17 2/17

 .

Therefore tr(A−1) = 6/17. Again, the relationship isn’t clear.
Finally, let’s see how the trace is related to the transpose. We actually

don’t have to formally compute anything. Recall from the previous section
that the diagonals of A and AT are identical; therefore, tr(A) = tr(AT ).
That, we know for sure, isn’t a coincidence.

We now formally state what equalities are true when considering the
interaction of the trace with other matrix operations.



There are many different measure-
ments of a matrix size. In this text,
we just refer to its dimensions. Some
measurements of size refer the mag-
nitude of the elements in the matrix.
The next section describes yet an-
other measurement of matrix size.

. The Matrix Trace

Theorem 7.2.1 Properties of the Matrix Trace

Let A and B be n× n matrices. Then:

1. tr(A+B) = tr(A) + tr(B)

2. tr(A−B) = tr(A)− tr(B)

3. tr(kA) = k · tr(A)

4. tr(AB) = tr(BA)

5. tr(AT ) = tr(A)

One of the key things to note here is what this theorem does not say.
It says nothing about how the trace relates to inverses. The reason for the
silence in these areas is that there simply is not a relationship.

We end this section by again wondering why anyone would care about
the trace of matrix. One reason mathematicians are interested in it is that
it can give a measurement of the “size” of a matrix.

Consider the following 2× 2 matrices:

A =

[
1 −2
1 1

]
and B =

[
6 7
11 −4

]
.

These matrices have the same trace, yet B clearly has bigger elements
in it. So how can we use the trace to determine a “size” of these matrices?
We can consider tr(ATA) and tr(BTB).

tr(ATA) = tr
([

1 1
−2 1

] [
1 −2
1 1

])
= tr

([
2 −1
−1 5

])
= 7

tr(BTB) = tr
([

6 11
7 −4

] [
6 7
11 −4

])
= tr

([
157 −2
−2 65

])
= 222

Our concern is not how to interpret what this “size” measurement
means, but rather to demonstrate that the trace (along with the transpose)
can be used to give (perhaps useful) information about a matrix.



Exercises 7.2
Problems

In Exercises – , find the trace of the given matrix.

.
[
1 −5
9 5

]

.
[
−3 −10
−6 4

]

.
[

7 5
−5 −4

]

.
[

−6 0
−10 9

]

.

−4 1 1
−2 0 0
−1 −2 −5



.

 0 −3 1
5 −5 5
−4 1 0



.

−2 −3 5
5 2 0
−1 −3 1



.

 4 2 −1
−4 1 4
0 −5 5



.
[

2 6 4
−1 8 −10

]

.

 6 5
2 10
3 3



.


−10 6 −7 −9
−2 1 6 −9
0 4 −4 0
−3 −9 3 −10



.


5 2 2 2
−7 4 −7 −3
9 −9 −7 2
−4 8 −8 −2


. I4

. In

. A matrixA that is skew symmetric.

In Exercises – , verify Theorem . . by:

. Showing that tr(A)+tr(B) = tr(A+B) and

. Showing that tr(AB) = tr(BA).

. A =

[
1 −1
9 −6

]
, B =

[
−1 0
−6 3

]

. A =

[
0 −8
1 8

]
, B =

[
−4 5
−4 2

]

. A =

 −8 −10 10
10 5 −6
−10 1 3


B =

−10 −4 −3
−4 −5 4
3 7 3



. A =

−10 7 5
7 7 −5
8 −9 2


B =

−3 −4 9
4 −1 −9
−7 −8 10





Note: we should point out that it’s
not that you can’t give a formula
for the determinant; you can, but
it’s complicated. To write down a
formula, we’d have to use summa-
tion notation, and talk about permu-
tations of the indices of the entries,
and... Let’s just say that if you really
want to see a formula, you can find
one with a Google search.
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. The Determinant
AS YOU READ . . .

1. T/F: The determinant of a matrix is always positive.

2. T/F: To compute the determinant of a 3 × 3 matrix, one needs to
compute the determinants of 3 2× 2 matrices.

3. Give an example of a 2× 2 matrix with a determinant of 3.

In this chapter so far we’ve learned about the transpose (an operation
on a matrix that returns another matrix) and the trace (an operation on a
square matrix that returns a number). In this section we’ll learn another
operation on square matrices that returns a number, called the determi-
nant. The determinant of an n×n matrix A is a number, denoted det(A),
that is determined by A. We had a brief encounter with determinants in
Section 3.4, where we saw that determinants of 2 × 2 and 3 × 3 matrices
are related to the cross product of vectors in R3.

The determinant is kind of a tricky thing to define. Once you know and
understand it, it isn’t that hard, but getting started is a bit complicated.
(It’s similar to learning to ride a bike. The riding itself isn’t hard, it is
getting started that’s difficult.) Unlike many mathematical quantities, we
do not give a single formula to define the determinant of a matrix. Instead,
we define the determinant recursively: first, we’ll explain how to compute
the determinant of a 2 × 2 matrix. Then, we’ll explain how to compute
the determinant of a 3× 3 matrix in terms of 2× 2 determinants, and so
on. Let’s get started, and define the determinant for 2× 2 matrices.

Definition 7.3.1 Determinant of 2× 2 Matrices

Let
A =

[
a b
c d

]
.

The determinant of A, denoted by

det(A) or
∣∣∣∣ a b
c d

∣∣∣∣ ,
is ad− bc.

We’ve seen the expression ad− bc before. In Section 5.4, we saw that
a 2× 2 matrix A has inverse

1

ad− bc

[
d −b
−c a

]
as long as ad − bc ̸= 0; otherwise, the inverse does not exist. We can
rephrase the above statement now: If det(A) ̸= 0, then

A−1 =
1

det(A)

[
d −b
−c a

]
.

A brief word about the notation: notice that we can refer to the deter-
minant by using what looks like absolute value bars around the entries of



Note: If it is necessary for clarity, we
may write Ai, j and Ci, j for minors
and cofactors; usually this is neces-
sary in concrete examples, especially
if we’re dealing with matrices with
ten or more rows and columns. For
example, if we wanted discuss the mi-
nor corresponding to the (12, 3)-entry
of a matrix, writing A123 will cause
confusion, while A12,3 is easily under-
stood. Where there is no risk of con-
fusion, we frequently omit the comma
to reduce clutter.
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a matrix. We discussed at the end of the last section the idea of measuring
the “size” of a matrix, and mentioned that there are many different ways
to measure size. The determinant is one such way. Just as the absolute
value of a number measures its size (and ignores its sign), the determi-
nant of a matrix is a measurement of the size of the matrix. (Be careful,
though: det(A) can be negative!)

Example . . Computing 2× 2 determinants
Find the determinant of A, B and C where

A =

[
1 2
3 4

]
, B =

[
3 −1
2 7

]
and C =

[
1 −3
−2 6

]
.

Solution Finding the determinant of A:

det(A) =

∣∣∣∣ 1 2
3 4

∣∣∣∣
= 1(4)− 2(3)

= −2.

Similar computations show that det(B) = 3(7) − (−1)(2) = 23 and
det(C) = 1(6)− (−3)(−2) = 0.

Finding the determinant of a 2×2 matrix is pretty straightforward. It
is natural to ask next “How do we compute the determinant of matrices
that are not 2× 2?” We first need to define some terms.

Definition 7.3.2 Matrix Minor, Cofactor

Let A be an n × n matrix. The (i, j)-minor of A, denoted Aij , is
the determinant of the (n− 1)× (n− 1) matrix formed by deleting
the ith row and jth column of A.

The (i, j)-cofactor of A is the number

Cij = (−1)i+jAij .

Notice that this definition makes reference to taking the determinant
of a matrix, while we haven’t yet defined what the determinant is beyond
2 × 2 matrices. We recognize this problem, and we’ll see how far we can
go before it becomes an issue.

Example . . Computing minors and cofactors
Let

A =

 1 2 3
4 5 6
7 8 9

 and B =


1 2 0 8
−3 5 7 2
−1 9 −4 6
1 1 1 1

 .

Find A1,3, A3,2, B2,1, B4,3 and their respective cofactors.

Solution To compute the minor A1,3, we remove the first row and
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third column of A then take the determinant.

A =

 1 2 3
4 5 6
7 8 9

⇒

 1 2 3
4 5 6
7 8 9

⇒
[
4 5
7 8

]

A1,3 =

∣∣∣∣ 4 5
7 8

∣∣∣∣ = 32− 35 = −3.

The corresponding cofactor, C1,3, is

C1,3 = (−1)1+3A1,3 = (−1)4(−3) = −3.

The minor A3,2 is found by removing the third row and second column
of A then taking the determinant.

A =

 1 2 3
4 5 6
7 8 9

⇒

 1 2 3
4 5 6
7 8 9

⇒
[
1 3
4 6

]

A3,2 =

∣∣∣∣ 1 3
4 6

∣∣∣∣ = 6− 12 = −6.

The corresponding cofactor, C3,2, is

C3,2 = (−1)3+2A3,2 = (−1)5(−6) = 6.

The minor B2,1 is found by removing the second row and first column
of B then taking the determinant.

B =


1 2 0 8
−3 5 7 2
−1 9 −4 6
1 1 1 1

⇒


1 2 0 8
-3 5 7 2
-1 9 −4 6
1 1 1 1

⇒

 2 0 8
9 −4 6
1 1 1



B2,1 =

∣∣∣∣∣∣
2 0 8
9 −4 6
1 1 1

∣∣∣∣∣∣ !
= ?

We’re a bit stuck. We don’t know how to find the determinant of this
3×3 matrix. We’ll come back to this later. The corresponding cofactor is

C2,1 = (−1)2+1B2,1 = −B2,1,

whatever this number happens to be. The minor B4,3 is found by removing
the fourth row and third column of B then taking the determinant.

B =


1 2 0 8
−3 5 7 2
−1 9 −4 6
1 1 1 1

⇒


1 2 0 8
−3 5 7 2
−1 9 -4 6
1 1 1 1

⇒

 1 2 8
−3 5 2
−1 9 6



B4,3 =

∣∣∣∣∣∣
1 2 8
−3 5 2
−1 9 6

∣∣∣∣∣∣ !
= ?

Again, we’re stuck. We won’t be able to fully compute C4,3; all we know
so far is that

C4,3 = (−1)4+3B4,3 = (−1)B4,3.

Once we learn how to compute determinants for matrices larger than 2×2
we can come back and finish this exercise.



The reader may find it helpful to re-
view the determinant formula for the
cross product in Section 3.4. Our
method for computing the cross prod-
uct follows exactly the same pattern
as the cofactor expansion of a 3 × 3
matrix along the first row.
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In our previous example we ran into a bit of trouble. By our definition,
in order to compute a minor of an n×n matrix we needed to compute the
determinant of a (n− 1)× (n− 1) matrix. This was fine when we started
with a 3 × 3 matrix, but when we got up to a 4 × 4 matrix (and larger)
we run into trouble.

We are almost ready to define the determinant for any square matrix;
we need one last definition.

Definition 7.3.3 Cofactor Expansion

Let A = [aij ] be an n× n matrix.

The cofactor expansion of A along the ith row is the sum

ai,1Ci,1 + ai,2Ci,2 + · · ·+ ai,nCi,n.

The cofactor expansion of A down the jth column is the sum

a1,jC1,j + a2,jC2,j + · · ·+ an,jCn,j .

The notation of this definition might be a little intimidating, so let’s
look at an example.

Example . . Computing cofactor exapansions
Let

A =

 1 2 3
4 5 6
7 8 9

 .

Find the cofactor expansions along the second row and down the first
column.

Solution By the definition, the cofactor expansion along the sec-
ond row is the sum

a2,1C2,1 + a2,2C2,2 + a2,3C2,3.

(Be sure to compare the above line to the definition of cofactor expansion,
and see how the “i” in the definition is replaced by “2” here.)

We’ll find each cofactor and then compute the sum.

C2,1 = (−1)2+1

∣∣∣∣ 2 3
8 9

∣∣∣∣ = (−1)(−6) = 6

(
we removed the second row and
first column ofA to compute the

minor

)
C2,2 = (−1)2+2

∣∣∣∣ 1 3
7 9

∣∣∣∣ = (1)(−12) = −12

(
we removed the second row and
second column ofA to compute

the minor

)
C2,3 = (−1)2+3

∣∣∣∣ 1 2
7 8

∣∣∣∣ = (−1)(−6) = 6

(
we removed the second row and
third column ofA to compute the

minor

)
Thus the cofactor expansion along the second row is

a2,1C2,1 + a2,2C2,2 + a2,3C2,3 = 4(6) + 5(−12) + 6(6)

= 24− 60 + 36

= 0
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At the moment, we don’t know what to do with this cofactor expansion;
we’ve just successfully found it.

We move on to find the cofactor expansion down the first column. By
the definition, this sum is

a1,1C1,1 + a2,1C2,1 + a3,1C3,1.

(Again, compare this to the above definition and see how we replaced the
“j” with “1.”)

We find each cofactor:

C1,1 = (−1)1+1

∣∣∣∣ 5 6
8 9

∣∣∣∣ = (1)(−3) = −3
(
we removed the first row and first
column ofA to compute the minor

)
C2,1 = (−1)2+1

∣∣∣∣ 2 3
8 9

∣∣∣∣ = (−1)(−6) = 6 ( we computed this cofactor above )

C3,1 = (−1)3+1

∣∣∣∣ 2 3
5 6

∣∣∣∣ = (1)(−3) = −3
(
we removed the third row and first
column ofA to compute the minor

)
The cofactor expansion down the first column is

a1,1C1,1 + a2,1C2,1 + a3,1C3,1 = 1(−3) + 4(6) + 7(−3)

= −3 + 24− 21

= 0

Is it a coincidence that both cofactor expansions were 0? We’ll answer
that in a while. Now that we’ve gotten the hang of minors and cofactors,
we’re ready to finally define the determinant.

Definition 7.3.4 The Determinant

The determinant of an n× n matrix A, denoted det(A) or |A|, is a
number given by the following:

• if A is a 1× 1 matrix A = [a], then det(A) = a.

• if A is a 2× 2 matrix

A =

[
a b
c d

]
,

then det(A) = ad− bc.

• if A is an n×n matrix, where n ≥ 2, then det(A) is the number
found by taking the cofactor expansion along the first row of
A. That is,

det(A) = a1,1C1,1 + a1,2C1,2 + · · ·+ a1,nC1,n.

Notice that in order to compute the determinant of an n × n matrix,
we need to compute the determinants of n (n−1)× (n−1) matrices. This
can be a lot of work. We’ll later learn how to shorten some of this. First,
let’s practice.
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Example . . Computing a 3× 3 determinant
Find the determinant of

A =

 1 2 3
4 5 6
7 8 9

 .

Solution Notice that this is the matrix from Example 7.3.3. The
cofactor expansion along the first row is

det(A) = a1,1C1,1 + a1,2C1,2 + a1,3C1,3.

We’ll compute each cofactor first then take the appropriate sum.

C1,1 = (−1)1+1A1,1

= 1 ·
∣∣∣∣ 5 6
8 9

∣∣∣∣
= 45− 48

= −3

C1,2 = (−1)1+2A1,2

= (−1) ·
∣∣∣∣ 4 6
7 9

∣∣∣∣
= (−1)(36− 42)

= 6

C1,3 = (−1)1+3A1,3

= 1 ·
∣∣∣∣ 4 5
7 8

∣∣∣∣
= 32− 35

= −3

Therefore the determinant of A is

det(A) = 1(−3) + 2(6) + 3(−3) = 0.

Example . . Another 3× 3 determinant
Find the determinant of

A =

 3 6 7
0 2 −1
3 −1 1

 .

Solution We’ll compute each cofactor first then find the determi-
nant.

C1,1 = (−1)1+1A1,1

= 1 ·
∣∣∣∣ 2 −1
−1 1

∣∣∣∣
= 2− 1

= 1

C1,2 = (−1)1+2A1,2

= (−1) ·
∣∣∣∣ 0 −1
3 1

∣∣∣∣
= (−1)(0 + 3)

= −3

C1,3 = (−1)1+3A1,3

= 1 ·
∣∣∣∣ 0 2
3 −1

∣∣∣∣
= 0− 6

= −6

Thus the determinant is

det(A) = 3(1) + 6(−3) + 7(−6) = −57.

Example . . Computing a 4× 4 determinant
Find the determinant of

A =


1 2 1 2
−1 2 3 4
8 5 −3 1
5 9 −6 3

 .
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Solution This, quite frankly, will take quite a bit of work. In
order to compute this determinant, we need to compute 4 minors, each
of which requires finding the determinant of a 3× 3 matrix! Complaining
won’t get us any closer to the solution, (But it might make us feel a little
better. Glance ahead: do you see how much work we have to do?!?) so
let’s get started. We first compute the cofactors:

C1,1 = (−1)1+1A1,1

= 1 ·

∣∣∣∣∣∣
2 3 4
5 −3 1
9 −6 3

∣∣∣∣∣∣
(

we must compute the deter-
minant of this 3 × 3 matrix

)
= 2 · (−1)1+1

∣∣∣∣ −3 1
−6 3

∣∣∣∣+ 3 · (−1)1+2

∣∣∣∣ 5 1
9 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣ 5 −3
9 −6

∣∣∣∣
= 2(−3) + 3(−6) + 4(−3)

= −36

C1,2 = (−1)1+2A1,2

= (−1) ·

∣∣∣∣∣∣
−1 3 4
8 −3 1
5 −6 3

∣∣∣∣∣∣
(

we must compute the deter-
minant of this 3 × 3 matrix

)
= (−1)

[
(−1) · (−1)1+1

∣∣∣∣ −3 1
−6 3

∣∣∣∣+ 3 · (−1)1+2

∣∣∣∣ 8 1
5 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣ 8 −3
5 −6

∣∣∣∣]︸ ︷︷ ︸
the determinant of the 3 × 3 matrix

= (−1) [(−1)(−3) + 3(−19) + 4(−33)]

= 186

C1,3 = (−1)1+3A1,3

= 1 ·

∣∣∣∣∣∣
−1 2 4
8 5 1
5 9 3

∣∣∣∣∣∣
(

we must compute the deter-
minant of this 3 × 3 matrix

)
= (−1) · (−1)1+1

∣∣∣∣ 5 1
9 3

∣∣∣∣+ 2 · (−1)1+2

∣∣∣∣ 8 1
5 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣ 8 5
5 9

∣∣∣∣
= (−1)(6) + 2(−19) + 4(47)

= 144

C1,4 = (−1)1+4A1,4

= (−1) ·

∣∣∣∣∣∣
−1 2 3
8 5 −3
5 9 −6

∣∣∣∣∣∣
(

we must compute the deter-
minant of this 3 × 3 matrix

)
= (−1)

[
(−1) · (−1)1+1

∣∣∣∣ 5 −3
9 −6

∣∣∣∣+ 2 · (−1)1+2

∣∣∣∣ 8 −3
5 −6

∣∣∣∣+ 3 · (−1)1+3

∣∣∣∣ 8 5
5 9

∣∣∣∣]︸ ︷︷ ︸
the determinant of the 3 × 3 matrix

= (−1) [(−1)(−3) + 2(33) + 3(47)]

= −210



It is common for mathematicians, sci-
entists and engineers to consider lin-
ear systems with thousands of equa-
tions and variables.

Chapter Opera ons on Matrices

We’ve computed our four cofactors. All that is left is to compute the
cofactor expansion.

det(A) = 1(−36) + 2(186) + 1(144) + 2(−210) = 60.

As a way of “visualizing” this, let’s write out the cofactor expansion
again but including the matrices in their place.

det(A) = a1,1C1,1 + a1,2C1,2 + a1,3C1,3 + a1,4C1,4

= 1(−1)2

∣∣∣∣∣∣
2 3 4
5 −3 1
9 −6 3

∣∣∣∣∣∣︸ ︷︷ ︸
= −36

+ 2(−1)3

∣∣∣∣∣∣
−1 3 4
8 −3 1
5 −6 3

∣∣∣∣∣∣︸ ︷︷ ︸
= −186

+

1(−1)4

∣∣∣∣∣∣
−1 2 4
8 5 1
5 9 3

∣∣∣∣∣∣︸ ︷︷ ︸
= 144

+ 2(−1)5

∣∣∣∣∣∣
−1 2 3
8 5 −3
5 9 −6

∣∣∣∣∣∣︸ ︷︷ ︸
= 210

= 60

That certainly took a while; it required more than 50 multiplications
(we didn’t count the additions). To compute the determinant of a 5 × 5
matrix, we’ll need to compute the determinants of five 4 × 4 matrices,
meaning that we’ll need over 250 multiplications! Not only is this a lot
of work, but there are just too many ways to make silly mistakes. (The
author made three when the above example was originally typed.) There
are some tricks to make this job easier, but regardless we see the need to
employ technology. Even then, technology quickly bogs down. A 25× 25
matrix is considered “small” by today’s standards, but it is essentially im-
possible for a computer to compute its determinant by only using cofactor
expansion; it too needs to employ “tricks.”

In the next section we will learn some of these tricks as we learn some
of the properties of the determinant. Right now, let’s review the essentials
of what we have learned.

1. The determinant of a square matrix is a number that is determined
by the matrix.

2. We find the determinant by computing the cofactor expansion along
the first row.

3. To compute the determinant of an n×n matrix, we need to compute
n determinants of (n− 1)× (n− 1) matrices.



Exercises 7.3
Problems
In Exercises – , find the determinant of the 2× 2matrix.

.
[
10 7
8 9

]

.
[

6 −1
−7 8

]

.
[
−1 −7
−5 9

]

.
[
−10 −1
−4 7

]

.
[
8 10
2 −3

]

.
[

10 −10
−10 0

]

.
[
1 −3
7 7

]

.
[
−4 −5
−1 −4

]
In Exercises – , a matrixA is given.

(a) Construct the submatrices used to compute the mi-
norsA1,1,A1,2 andA1,3.

(b) Find the cofactors C1,1, C1,2, and C1,3.

.

−7 −3 10
3 7 6
1 6 10



.

 −2 −9 6
−10 −6 8
0 −3 −2



.

−5 −3 3
−3 3 10
−9 3 9



.

 −6 −4 6
−8 0 0
−10 8 −1


In Exercises – , find the determinant of the given matrix
using cofactor expansion along the first row.

.

 3 2 3
−6 1 −10
−8 −9 −9



.

 8 −9 −2
−9 9 −7
5 −1 9



.

−4 3 −4
−4 −5 3
3 −4 5



.

 1 −2 1
5 5 4
4 0 0



.

 1 −4 1
0 3 0
1 2 2



.

 3 −1 0
−3 0 −4
0 −1 −4



.

−5 0 −4
2 4 −1
−5 0 −4



.

 1 0 0
0 1 0
−1 1 1



.


0 0 −1 −1
1 1 0 1
1 1 −1 0
−1 0 1 0



.


−1 0 0 −1
−1 0 0 1
1 1 1 0
1 0 −1 −1



.


−5 1 0 0
−3 −5 2 5
−2 4 −3 4
5 4 −3 3



.


2 −1 4 4
3 −3 3 2
0 4 −5 1
−2 −5 −2 −5


. LetA be a 2× 2matrix;

A =

[
a b
c d

]
.

Show why det(A) = ad − bc by compu ng the cofactor
expansion ofA along the first row.



Note: Theorem 7.4.1 is sometimes
called the Laplace Expansion Theo-
rem, after Pierre-Simon, Marquis de
Laplace (1749-1827), a French math-
ematician and physicist whose im-
portance and influence rivals that of
Newton. The reader may be wonder-
ing why we have not included a proof
of this result, which is one of the more
important computational facts about
the determinant. The answer is that
in most textbooks we checked that
included the proof, the complete de-
tails take up some four pages or so,
and don’t really add all that much to
the understanding of what’s going on.
In a course like Math 1410, we try
to stick to proofs that are short and
simple, and that teach us something
about the mathematics involved.
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. Proper es of the Determinant

AS YOU READ . . .

1. Having the choice to compute the determinant of a matrix using
cofactor expansion along any row or column is most useful when
there are lots of what in a row or column?

2. Which elementary row operation does not change the determinant
of a matrix?

3. Why do mathematicians rarely smile?

4. T/F: When computers are used to compute the determinant of a
matrix, cofactor expansion is rarely used.

In the previous section we learned how to compute the determinant.
In this section we learn some of the properties of the determinant, and this
will allow us to compute determinants more easily. In the next section we
will see one application of determinants.

We start with a theorem that gives us more freedom when computing
determinants.

Theorem 7.4.1 Cofactor Expansion Along Any Row or
Column

Let A be an n×n matrix. The determinant of A can be computed
using cofactor expansion along any row or column of A.

We alluded to this fact way back after Example 7.3.3. We had just
learned what cofactor expansion was and we practised along the second
row and down the third column. Later, we found the determinant of
this matrix by computing the cofactor expansion along the first row. In
all three cases, we got the number 0. This wasn’t a coincidence. The
above theorem states that all three expansions were actually computing
the determinant.

How does this help us? By giving us freedom to choose any row or
column to use for the expansion, we can choose a row or column that
looks “most appealing.” This usually means “it has lots of zeros.” We
demonstrate this principle below.

Example . . Computing a 4× 4 determinant
Find the determinant of

A =


1 2 0 9
2 −3 0 5
7 2 3 8
−4 1 0 2

 .

Solution Our first reaction may well be “Oh no! Not another
4 × 4 determinant!” However, we can use cofactor expansion along any
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row or column that we choose. The third column looks great; it has lots
of zeros in it. The cofactor expansion along this column is

det(A) = a1,3C1,3 + a2,3C2,3 + a3,3C3,3 + a4,3C4,3

= 0 · C1,3 + 0 · C2,3 + 3 · C3,3 + 0 · C4,3

The wonderful thing here is that three of our cofactors are multiplied
by 0. We won’t bother computing them since they will not contribute to
the determinant. Thus

det(A) = 3 · C3,3

= 3 · (−1)3+3 ·

∣∣∣∣∣∣
1 2 9
2 −3 5
−4 1 2

∣∣∣∣∣∣
= 3 · (−147)

(
we computed the determinant of the 3 × 3

matrix without showing our work; it is −147

)
= −447

Wow. That was a lot simpler than computing all that we did in Exam-
ple 7.3.6. Of course, in that example, we didn’t really have any shortcuts
that we could have employed. Our next example involves a 5 × 5 deter-
minant. At first, this looks like trouble, until we realize that the matrix
is triangular. As we’ll see, this makes our job much easier.

Example . . Computing the determinant of a 5× 5 (triangu-
lar) matrix
Find the determinant of

A =


1 2 3 4 5
0 6 7 8 9
0 0 10 11 12
0 0 0 13 14
0 0 0 0 15

 .

Solution Since we can expand along any row or column, things
are not as bad as they might at first seem. In fact, this problem is very
easy. What row or column should we choose to find the determinant
along? There are two obvious choices: the first column or the last row.
Both have 4 zeros in them. We choose the first column. We omit most of
the cofactor expansion, since most of it is just 0:

det(A) = 1 · (−1)1+1 ·

∣∣∣∣∣∣∣∣
6 7 8 9
0 10 11 12
0 0 13 14
0 0 0 15

∣∣∣∣∣∣∣∣ .
Similarly, this determinant is not bad to compute; we again choose

to use cofactor expansion along the first column. Note: technically, this
cofactor expansion is 6 · (−1)1+1A1,1; we are going to drop the (−1)1+1

terms from here on out in this example (it will show up a lot...).

det(A) = 1 · 6 ·

∣∣∣∣∣∣
10 11 12
0 13 14
0 0 15

∣∣∣∣∣∣ .
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You can probably can see a trend. We’ll finish out the steps without
explaining each one.

det(A) = 1 · 6 · 10 ·
∣∣∣∣13 14
0 15

∣∣∣∣
= 1 · 6 · 10 · 13 · 15
= 11700

We see that the final determinant is the product of the diagonal entries.
This works for any triangular matrix (and since diagonal matrices are
triangular, it works for diagonal matrices as well). This is an important
enough idea that we’ll put it into a box.

Key Idea 7.4.1 The Determinant of Triangular Matri-
ces

The determinant of a triangular matrix is the product of its diag-
onal elements.

It is now again time to start thinking like a mathematician. Remember,
mathematicians see something new and often ask “How does this relate to
things I already know?” So now we ask, “If we change a matrix in some
way, how is its determinant changed?”

The standard way that we change matrices is through elementary row
operations. If we perform an elementary row operation on a matrix, how
will the determinant of the new matrix compare to the determinant of the
original matrix?

Let’s experiment first and then we’ll officially state what happens.
Example . . Row operations and determinants
Let

A =

[
1 2
3 4

]
.

Let B be formed from A by doing one of the following elementary row
operations:

1. 2R1 +R2 → R2

2. 5R1 → R1

3. R1 ↔ R2

Find det(A) as well as det(B) for each of the row operations above.

Solution It is straightforward to compute det(A) = −2.
Let B be formed by performing the row operation in 1) on A; thus

B =

[
1 2
5 8

]
.

It is clear that det(B) = −2, the same as det(A).
Now let B be formed by performing the elementary row operation in

2) on A; that is,

B =

[
5 10
3 4

]
.
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We can see that det(B) = −10, which is 5 · det(A).
Finally, let B be formed by the third row operation given; swap the

two rows of A. We see that

B =

[
3 4
1 2

]
and that det(B) = 2, which is (−1) · det(A).

We’ve seen in the above example that there seems to be a relationship
between the determinants of matrices “before and after” being changed by
elementary row operations. Certainly, one example isn’t enough to base a
theory on, and we have not proved anything yet. Regardless, the following
theorem is true.

Theorem 7.4.2 The Determinant and Elementary Row
Operations

Let A be an n× n matrix and let B be formed by performing one
elementary row operation on A.

1. If B is formed from A by adding a scalar multiple of one row
to another, then det(B) = det(A).

2. If B is formed from A by multiplying one row of A by a scalar
k, then det(B) = k · det(A).

3. If B is formed from A by interchanging two rows of A, then
det(B) = −det(A).

Let’s put this theorem to use in a couple of examples.
Example . . Using row operations to compute a determinant
Let

A =

 1 2 1
0 1 1
1 1 1

 .

Compute det(A), then find the determinants of the following matrices by
inspection using Theorem 7.4.2.

B =

 1 1 1
1 2 1
0 1 1

 C =

 1 2 1
0 1 1
7 7 7

 D =

 1 −1 −2
0 1 1
1 1 1


Solution Computing det(A) by cofactor expansion down the first

column or along the second row seems like the best choice, utilizing the
one zero in the matrix. We can quickly confirm that det(A) = 1.

To compute det(B), notice that the rows of A were rearranged to form
B. There are different ways to describe what happened; saying R1 ↔ R2

was followed by R1 ↔ R3 produces B from A. Since there were two row
swaps, det(B) = (−1)(−1)det(A) = det(A) = 1.

Notice that C is formed from A by multiplying the third row by 7.
Thus det(C) = 7 · det(A) = 7.
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It takes a little thought, but we can form D from A by the operation
−3R2+R1 → R1. This type of elementary row operation does not change
determinants, so det(D) = det(A).

Example . . Effect of elementary row operations on the de-
terminant
The matrix B was formed from A using the following elementary row op-
erations, though not necessarily in this order. Find det(A).

B =

 1 2 3
0 4 5
0 0 6

 2R1 → R1
1
3R3 → R3

R1 ↔ R2

6R1 +R2 → R2

Solution It is easy to compute detB = 24. In looking at our
list of elementary row operations, we see that only the first three have an
effect on the determinant. Therefore

24 = det(B) = 2 · 1
3
· (−1) · det(A)

and hence
det(A) = −36.

In the previous example, we may have been tempted to “rebuild” A
using the elementary row operations and then computing the determinant.
This can be done, but in general it is a bad idea; it takes too much work
and it is too easy to make a mistake.

Let’s continue to think like mathematicians; mathematicians tend to
remember “problems” they’ve encountered in the past, and when they
learn something new, in the backs of their minds they try to apply their
new knowledge to solve their old problem. (This is why mathematicians
rarely smile: they are remembering their problems)

What “problem” did we recently uncover? We stated in the last chap-
ter that even computers could not compute the determinant of large ma-
trices with cofactor expansion. How then can we compute the determinant
of large matrices?

We just learned two interesting and useful facts about matrix determi-
nants. First, the determinant of a triangular matrix is easy to compute:
just multiply the diagonal elements. Secondly, we know that given any
square matrix, we can use elementary row operations to put the matrix
in triangular form. We can then find the determinant of the new matrix
(which is easy), and adjust that number by recalling what elementary
operations we performed.
Example . . Reducing a determinant to triangular form
Find the determinant of A by first putting A into a triangular form, where

A =

 2 4 −2
−1 −2 5
3 2 1

 .

Solution In putting A into a triangular form, we need not worry
about getting leading 1s, but it does tend to make our life easier as we
work out a problem by hand. So let’s scale the first row by 1/2:



Note: If you want to get really fancy,
since det(AT ) = det(A), and since
performing row operations on AT is
the same as performing column oper-
ations on A, you can also add a multi-
ple of one column to another without
changing the determinant!

. Proper es of the Determinant

1
2
R1 → R1

 1 2 −1
−1 −2 5
3 2 1

 .

Now let’s get 0s below this leading 1:

R1 +R2 → R2

−3R1 +R3 → R3

 1 2 −1
0 0 4
0 −4 4

 .

We can finish in one step; by interchanging rows 2 and 3 we’ll have our
matrix in triangular form.

R2 ↔ R3

 1 2 −1
0 −4 4
0 0 4

 .

Let’s name this last matrix B. The determinant of B is easy to com-
pute as it is triangular; det(B) = −16. We can use this to find det(A).

Recall the steps we used to transform A into B. They are:

1
2R1 → R1

R1 +R2 → R2

−3R1 +R3 → R3

R2 ↔ R3

The first operation multiplied a row of A by 1
2 . This means that the

resulting matrix had a determinant that was 1
2 the determinant of A.

The next two operations did not affect the determinant at all. The
last operation, the row swap, changed the sign. Combining these effects,
we know that

−16 = det(B) = (−1)
1

2
det(A).

Solving for det(A) we have that det(A) = 32.

In practice, we don’t need to keep track of operations where we add
multiples of one row to another; they simply do not affect the determinant.
Also, in practice, these steps are carried out by a computer, and computers
don’t care about leading 1s. Therefore, row scaling operations are rarely
used. The only things to keep track of are row swaps, and even then
all we care about are the number of row swaps. An odd number of row
swaps means that the original determinant has the opposite sign of the
triangular form matrix; an even number of row swaps means they have
the same determinant.

If you find yourself needing to compute a determinant by hand (say,
on an exam), it’s a good idea to keep the following principles in mind:

1. Stick to row operations of the type Ri + kRj → Ri as much as
possible: they don’t change the determinant.

2. Getting all the way to triangular form isn’t really necessary. Use
row operations of the above type to create as many zeros as possible
in one of the columns, and then expand along that column.

To see how these principles work in practice, let’s repeat Example
7.4.6. This time we’ll focus on creating zeros, but we won’t worry about
getting to triangular form. Since adding a multiple of one row to another
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doesn’t change the determinant, we can compute det(A) with a string of
equalities, as follows:∣∣∣∣∣∣

2 4 −2
−1 2 5
3 2 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 0 8
−1 2 5
3 2 1

∣∣∣∣∣∣ (Add 2R2 toR1)

= 0 + 0 + 8(−1)1+3

∣∣∣∣−1 −2
3 2

∣∣∣∣ (Expand along Row )

= 8((−1)(2)− (−2)(3))

= 8(4) = 32.

Of course, in this case we got lucky and ended up with two zeros in the
first row after one row operation. However, had this not been the case,
we would have simply done one more row operation (R3 + 3R2 → R3)
to create a second zero in the first column, and then done a cofactor
expansion along that column.

For larger determinants, we can follow the same routine: create zeros
in one column, expand along that column to get a smaller determinant,
and repeat.

Let’s think some more like a mathematician. How does the determi-
nant work with other matrix operations that we know? Specifically, how
does the determinant interact with matrix addition, scalar multiplication,
matrix multiplication, the transpose and the trace? We’ll again do an
example to get an idea of what is going on, then give a theorem to state
what is true.

Example . . Determinants and matrix operations
Let

A =

[
1 2
3 4

]
and B =

[
2 1
3 5

]
.

Find the determinants of the matrices A, B, A − B, 3A, AB, AT , A−1.
Can you find any connections between these values?

Solution We can quickly compute that det(A) = −2 and det(B) =
7.

det(A−B) = det
([

1 2
3 4

]
−
[
2 1
3 5

])
=

∣∣∣∣ −1 1
0 −1

∣∣∣∣
= 1

It’s tough to find a connection between det(A−B), det(A) and det(B).

det(3A) =

∣∣∣∣ 3 6
9 12

∣∣∣∣
= −18

We can figure this one out; multiplying one row of A by 3 increases the
determinant by a factor of 3; doing it again (and hence multiplying both
rows by 3) increases the determinant again by a factor of 3. Therefore
det(3A) = 3 · 3 · det(A), or 32 · det(A).



Seeing that expansion along the first
row agrees with expansion along the
first column can be a bit tricky to
think out in your head. Try it with a
3×3 matrix A and see how it works.
All the 2×2 submatrices that are cre-
ated in AT are the transpose of those
found in A; this doesn’t matter since
it is easy to see that the determinant
isn’t affected by the transpose in a
2× 2 matrix.

. Proper es of the Determinant

det(AB) = det
([

1 2
3 4

] [
2 1
3 5

])
=

∣∣∣∣ 8 11
18 23

∣∣∣∣
= −14

This one seems clear; det(AB) = det(A)det(B).

det(AT ) =

∣∣∣∣ 1 3
2 4

∣∣∣∣
= −2

Obviously det(AT ) = det(A); is this always going to be the case? If
we think about it, we can see that the cofactor expansion along the first
row of A will give us the same result as the cofactor expansion along the
first column of AT .

det(A−1) =

∣∣∣∣ −2 1
3/2 −1/2

∣∣∣∣
= 1− 3/2

= −1/2

It seems as though

det(A−1) =
1

det(A)
.

We now state a few theorems that confirm our conjectures from the
previous example.

Theorem 7.4.3 The determinant of a non-invertible ma-
trix

If an n× n matrix A is not invertible, then det(A) = 0.

To see that Theorem 7.4.3 is true, note that if A is not invertible, then
the reduced row echelon form R of A must have a row of zeros. Performing
a cofactor expansion along this row, we immediately see that det(R) = 0.
Since R is obtained from A by a series of elementary row operations, we
know from Theorem 7.4.2 that det(A) is a multiple of det(R), and thus
det(A) = 0.

It follows from Theorem 7.4.3 (using the logical principle known as the
contrapositive) that if det(A) ̸= 0, we’re guaranteed that A is invertible.

At this point, we naturally should ask whether or not the converse to
Theorem 7.4.3 is true as well: suppose we know det(A) = 0. Does that
imply that A is not invertible? (Or equivalently, if we know A is invertible,
does this imply that det(A) ̸= 0?) The answer is yes, but to see this, we
first need a more general result.



Proving that det(AB) =
det(A) det(B) is most easily done
using elementary matrices. (See
Section 5.6.) Recall that multiplying
a matrix on the left by an elementary
matrix is the same as doing the
corresponding row operation: if A is
any 3 × 3 matrix, then EA can be
obtained from A using the same row
operation used to create E.
Theorem 7.4.2 then tells us that

det(EB) = det(E) det(B)

for any matrix B and elementary ma-
trix E. The rest boils down to two
cases: either det(A) = 0, in which
case A is not invertible, so neither
is AB, and thus det(AB) = 0 =
0 det(B), or det(A) ̸= 0. In the lat-
ter case, A is invertible, and can be
written as a product of elementary
matrices. We can then prove that
det(AB) = det(A) det(B) by apply-
ing Theorem 7.4.2 repeatedly.
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Theorem 7.4.4 Determinant Properties

Let A and B be n×n matrices and let k be a scalar. The following
are true:

1. det(kA) = kn · det(A)

2. det(AT ) = det(A)

3. det(AB) = det(A)det(B)

From Theorem 7.4.4, we see that det(AB) = det(A)det(B) for any
matrices A and B. What does this tell us in the case of an invertible
matrix? Recall that if A is invertible, then we can determine the inverse
matrix A−1 such that

AA−1 = In.

Now, the identity matrix is triangular, and all of its diagonal entries are
equal to 1, so we immediately see that det(In) = 1. Thus, taking the
determinant of both sides of the above equation, we have

det(AA−1) = det(A)det(A−1) = 1.

We have a product of two numbers equal to one, which tells us that neither
of these numbers can be zero. (Otherwise, the product would be zero as
well.) Thus, if A is invertible, it must be the case that det(A) ̸= 0, so a
matrix A is invertible if and only if det(A) ̸= 0.

As an added bonus, we can rearrange the above equation to give us
one more property of the determinant:

Theorem 7.4.5 The determinant of an inverse

If A is an invertible matrix, then det(A) ̸= 0, and

det(A−1) =
1

det(A)
.

Combining Theorems 7.4.3 and 7.4.5 allows us to add on to our In-
vertible Matrix Theorem.

Theorem 7.4.6 Invertible Matrix Theorem

Let A be an n×n matrix. The following statements are equivalent.

(a) A is invertible.

(g) det(A) ̸= 0.

This new addition to the Invertible Matrix Theorem is very useful;
we’ll refer back to it in Chapter 8 when we discuss eigenvalues.

In the next section we’ll see how the determinant can be used to solve
systems of linear equations.



Exercises 7.4
Problems
In Exercises – , find the determinant of the given ma-
trix using cofactor expansion along any row or column you
choose.

.

 1 2 3
−5 0 3
4 0 6



.

−4 4 −4
0 0 −3
−2 −2 −1



.

−4 1 1
0 0 0
−1 −2 −5



.

 0 −3 1
0 0 5
−4 1 0



.

−2 −3 5
5 2 0
−1 0 0



.

−2 −2 0
2 −5 −3
−5 1 0



.

−3 0 −5
−2 −3 3
−1 0 1



.

 0 4 −4
3 1 −3
−3 −4 0



.


5 −5 0 1
2 4 −1 −1
5 0 0 4
−1 −2 0 5



.


−1 3 3 4
0 0 0 0
4 −5 −2 0
0 0 2 0



.


−5 −5 0 −2
0 0 5 0
1 3 3 1
−4 −2 −1 −5



.


−1 0 −2 5
3 −5 1 −2
−5 −2 −1 −3
−1 0 0 0



.


4 0 5 1 0
1 0 3 1 5
2 2 0 2 2
1 0 0 0 0
4 4 2 5 3



.


2 1 1 1 1
4 1 2 0 2
0 0 1 0 0
1 3 2 0 3
5 0 5 0 4


In Exercises – , amatrixM anddet(M) are given. Matri-
cesA,B and C are formed by performing opera ons onM .
Determine the determinants of A, B and C using Theorems
. . and . . , and indicate the opera ons used to form A,
B and C.

. M =

 0 3 5
3 1 0
−2 −4 −1

,
det(M) = −41.

(a) A =

 0 3 5
−2 −4 −1
3 1 0


(b) B =

 0 3 5
3 1 0
8 16 4


(c) C =

 3 4 5
3 1 0
−2 −4 −1



. M =

 9 7 8
1 3 7
6 3 3

,
det(M) = 45.

(a) A =

 18 14 16
1 3 7
6 3 3


(b) B =

 9 7 8
1 3 7
96 73 83


(c) C =

 9 1 6
7 3 3
8 7 3



. M =

 5 1 5
4 0 2
0 0 4

,
det(M) = −16.

(a) A =

 0 0 4
5 1 5
4 0 2


(b) B =

−5 −1 −5
−4 0 −2
0 0 4





(c) C =

 15 3 15
12 0 6
0 0 12



. M =

 5 4 0
7 9 3
1 3 9

,
det(M) = 120.

(a) A =

 1 3 9
7 9 3
5 4 0


(b) B =

 5 4 0
14 18 6
3 9 27


(c) C =

−5 −4 0
−7 −9 −3
−1 −3 −9


In Exercises – , matrices A and B are given. Verify
part of Theorem . . by compu ng det(A), det(B) and
det(AB).

. A =

[
2 0
1 2

]
,

B =

[
0 −4
1 3

]

. A =

[
3 −1
4 1

]
,

B =

[
−4 −1
−5 3

]

. A =

[
−4 4
5 −2

]
,

B =

[
−3 −4
5 −3

]

. A =

[
−3 −1
2 −3

]
,

B =

[
0 0
4 −4

]
In Exercises – , find the determinant of the given ma-
trix.

.

 3 2 3
−6 1 −10
−8 −9 −9



.

 8 −9 −2
−9 9 −7
5 −1 9



.

−4 3 −4
−4 −5 3
3 −4 5



.

 1 −2 1
5 5 4
4 0 0



.

 1 −4 1
0 3 0
1 2 2



.

 3 −1 0
−3 0 −4
0 −1 −4



.

−5 0 −4
2 4 −1
−5 0 −4



.

 1 0 0
0 1 0
−1 1 1





The closest we came to motivating
the determinant is that if det(A) = 0,
then we know that A is not invertible.
But it seems that there may be easier
ways to check.
It is interesting to note that despite
the presentation given here, deter-
minants actually pre-date the mod-
ern usage of matrices by more than
a century. Cramer’s rule was pub-
lished by Cramer in 1750, and the
term matrix was introduced by James
Joseph Sylvester in 1850. (Even
then, Sylvester’s description of matri-
ces was in terms of minors – that’s
right, determinants.) The interested
reader is encouraged to read up on the
history of the subject. (Wikipedia is
not a bad place to start.)

. Applica ons of the Determinant

. Applica ons of the Determinant

AS YOU READ . . .

1. T/F: Cramer’s Rule is another method to compute the determinant
of a matrix.

2. T/F: Cramer’s Rule is often used because it is more efficient than
Gaussian elimination.

3. Mathematicians use what word to describe the connections between
seemingly unrelated ideas?

4. T/F: Computing an inverse using the adjugate formula takes less
work than using row operations.

In the previous sections we have learned about the determinant, but
we haven’t given a really good reason why we would want to compute it.
This section shows two applications of the determinant: solving systems
of linear equations and computing the inverse of a matrix.

Cramer’s Rule

Theorem 7.5.1 Cramer’s Rule

Let A be an n × n matrix with det(A) ̸= 0 and let b⃗ be an n × 1
column vector. Then the linear system

Ax⃗ = b⃗

has solution
xi =

det(Ai(⃗b))

det(A)
,

where Ai(⃗b) is the matrix formed by replacing the ith column of A
with b⃗.

Example . . Using Cramer’s Rule
Use Cramer’s Rule to solve the linear system Ax⃗ = b⃗ where

A =

 1 5 −3
1 4 2
2 −1 0

 and b⃗ =

−36
−11
7

 .

Solution We first compute the determinant of A to see if we can
apply Cramer’s Rule.

det(A) =

∣∣∣∣∣∣
1 5 −3
1 4 2
2 −1 0

∣∣∣∣∣∣ = 49.

https://en.wikipedia.org/wiki/Cramer's_rule
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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Since det(A) ̸= 0, we can apply Cramer’s Rule. Following Theorem
7.5.1, we compute det(A1(⃗b)), det(A2(⃗b)) and det(A3(⃗b)).

det(A1(⃗b)) =

∣∣∣∣∣∣
−36 5 −3
−11 4 2
7 −1 0

∣∣∣∣∣∣ = 49.

(We used a bold font to show where b⃗ replaced the first column of A.)

det(A2(⃗b)) =

∣∣∣∣∣∣
1 −36 −3
1 −11 2
2 7 0

∣∣∣∣∣∣ = −245.

det(A3(⃗b)) =

∣∣∣∣∣∣
1 5 −36
1 4 −11
2 −1 7

∣∣∣∣∣∣ = 196.

Therefore we can compute x⃗:

x1 =
det(A1(⃗b))

det(A)
=

49

49
= 1

x2 =
det(A2(⃗b))

det(A)
=

−245

49
= −5

x3 =
det(A3(⃗b))

det(A)
=

196

49
= 4

Therefore

x⃗ =

 x1

x2

x3

 =

 1
−5
4

 .

Example . . Using Cramer’s Rule
Use Cramer’s Rule to solve the linear system Ax⃗ = b⃗ where

A =

[
1 2
3 4

]
and b⃗ =

[
−1
1

]
.

Solution The determinant of A is −2, so we can apply Cramer’s
Rule.

det(A1(⃗b)) =

∣∣∣∣ −1 2
1 4

∣∣∣∣ = −6.

det(A2(⃗b)) =

∣∣∣∣ 1 −1
3 1

∣∣∣∣ = 4.

Therefore

x1 =
det(A1(⃗b))

det(A)
=

−6

−2
= 3

x2 =
det(A2(⃗b))

det(A)
=

4

−2
= −2

and
x⃗ =

[
x1

x2

]
=

[
3
−2

]
.



A version of Cramer’s Rule is of-
ten taught in introductory differen-
tial equations courses as it can be
used to find solutions to certain lin-
ear differential equations. In this
situation, the entries of the matri-
ces are functions, not numbers, and
hence computing determinants is eas-
ier than using Gaussian elimination.
Again, though, as the matrices get
large, other solution methods are re-
sorted to.

. Applica ons of the Determinant

We learned in Section 7.4 that when considering a linear system Ax⃗ = b⃗
where A is square, if det(A) ̸= 0 then A is invertible and Ax⃗ = b⃗ has
exactly one solution. We also stated in Key Idea 5.5.1 that if det(A) = 0,
then A is not invertible and so therefore either Ax⃗ = b⃗ has no solution
or infinite solutions. Our method of figuring out which of these cases
applied was to form the augmented matrix

[
A b⃗

]
, put it into reduced

row echelon form, and then interpret the results.

Cramer’s Rule specifies that det(A) ̸= 0 (so we are guaranteed a so-
lution). When det(A) = 0 we are not able to discern whether infinite
solutions or no solution exists for a given vector b⃗. Cramer’s Rule is only
applicable to the case when exactly one solution exists.

We end this section with a practical consideration. We have mentioned
before that finding determinants is a computationally intensive operation.
To solve a linear system with 3 equations and 3 unknowns, we need to
compute 4 determinants. Just think: with 10 equations and 10 unknowns,
we’d need to compute 11 really hard determinants of 10 × 10 matrices!
That is a lot of work!

The upshot of this is that Cramer’s Rule makes for a poor choice in
solving numerical linear systems. It simply is not done in practice; it is
hard to beat Gaussian elimination.

So why include it? Because its truth is amazing. The determinant
is a very strange operation; it produces a number in a very odd way. It
should seem incredible to the reader that by manipulating determinants
in a particular way, we can solve linear systems.

The Adjugate Formula

Recall that Theorem 5.4.4 in Section 5.4 gave us a “shortcut” for comput-
ing the inverse of a 2 × 2 matrix A =

[
a b
c d

]
: as long as det(A) ̸= 0, we

have

A−1 =
1

det(A)

[
d −b
−c a

]
.

This result can be easily verified by checking that AA−1 = I2 as required.
The reader may have wondered if there is a similar formula for A−1 for
a general n × n matrix A, and whether or not such a formula would
still constitute a “shortcut”. The results here are mixed. Yes, there’s a
formula, and we will present it shortly. However, as with Cramer’s rule,
it is not a shortcut. The reasons are the same as those we just mentioned
for Cramer’s rule: as long as we’re dealing with a matrix whose entries
are numbers, computing the inverse using row operations is vastly more
efficient.

We begin with a definition.



Here we see exactly why we want to
take the transpose in our definition
of adj(A): when we multiply matri-
ces, we multiply rows times columns,
and taking the transpose ensures that
each column of adj(A) is the corre-
sponding row of cof(A).
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Definition 7.5.1 The adjugate of a matrix

Let A be an n× n matrix.

• The matrix of cofactors of A is the n× n matrix

cof(A) = [Cij ]

whose (i, j)-entry is given by the (i, j)-cofactor of A.

• The adjugate of A is the n× n matrix

adj(A) = (cof(A))T = [Cij ]
T .

Thus to obtain the matrix of cofactors for A, we replace each entry
of A by the corresponding cofactor. Taking the transpose of this matrix
produces the adjugate of A.

Why do we care about the adjugate matrix? Consider the product
A · adj(A):

A · adj(A) =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann



C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
... . . . ...

C1n C2n · · · Cnn


(Notice that the indices for adj(A) are reversed, since we took the trans-
pose of the cofactor matrix. What is the (i, j) entry of this product?
Consider first the case where i = j. We find that the (i, i)-entry is

ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

But this is just the cofactor expansion of det(A) along the ith row! Thus,
the (i, i) entry of A · adj(A) is simply det(A). This tells us what the
diagonal is. What about the off-diagonal entries?

When i ̸= j, we have the (i, j)-entry

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn.

This is no longer a cofactor expansion for the determinant of A, since
we’re taking entries from one row of A, and cofactors from another. This
is, however, a cofactor expansion for the determinant of the matrix B that
we obtain if we replace Row j of A with another copy of Row i. (Take a
moment to think about why this is true.) But this means that the matrix
B has two identical rows, and using Theorem 7.4.2, we can see that we
must have det(B) = 0. This means that all of the off-diagonal entries of
our product are zero! We have

A · adj(A) =


det(A) 0 · · · 0

0 det(A) · · · 0
...

... . . . ...
0 0 · · · det(A)

 = det(A)In.

Now, we know that A is invertible if and only if det(A) ̸= 0, and as long as
det(A) ̸= 0, we can multiply both sides of the above equation by 1

det(A)
.



Notice that Theorem 5.4.4 is a spe-
cial case of Theorem 7.5.2. The co-
factors of a 2 × 2 matrix are sim-
ply numbers, and it’s easy to check

that the adjugate of A =

[
a b
c d

]
is

adj(A) =

[
d −b
−c a

]
.

Caution: The entries of adj(A) are
the cofactors Cij , and not the prod-
ucts aijCij that appear in the cofac-
tor expansion theorem.

. Applica ons of the Determinant

With a bit of rearranging, we find

A ·
(

1

det(A)
adj(A)

)
= In.

But we know that if we can find any matrix B such that AB = In, then B
is necessarily the inverse of A. We have established the following theorem.

Theorem 7.5.2 The adjugate formula for the inverse

Let A be an n× n matrix. If det(A) ̸= 0, then A is invertible, and

A−1 =
1

det(A)
adj(A).

Let us repeat our words of caution from the beginning of this discus-
sion. Just because we have a formula for the inverse does not mean we
need to use it! Consider the case of a 5× 5 matrix (remember that this is
a relatively small matrix by practical standards). Would you want to use
Theorem 7.5.2 to compute the inverse? What would this require? Well,
we’d need to compute det(A), since that appears in the formula, so there’s
already a 5 × 5 determinant to deal with. But don’t forget what adj(A)
is: a matrix of cofactors. In this case, adj(A) would consist of twenty-five
different 4 × 4 determinants that would all need to be computed. What
do you think would be less work? Computing one 5× 5 determinant and
25 4× 4 determinants, or using row operations? Now consider doing this
for 10× 10, or 100× 100 matrices. Sometimes the first method is also the
best!

Let’s do one example to see that even for a 3× 3 matrix, there’s a fair
amount of work involved.

Example . . Using the adjugate formula
Use Theorem 7.5.2 to compute the inverse of the matrix

A =

2 −1 3
4 0 −2
1 5 −3

 .

Solution We begin by computing det(A), to make sure that the
inverse exists. Using the −1 in the first row to create a zero in the (3, 2)
spot below it, we have

det(A) =

∣∣∣∣∣∣
2 −1 3
4 0 −2
1 5 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 −1 3
4 0 −2
11 0 12

∣∣∣∣∣∣
= (−1)(−1)1+2

∣∣∣∣ 4 −2
11 12

∣∣∣∣ = 1(4(12)− 11(−2)) = 70.
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Next, we set about computing all nine cofactors of A. We have

C11 = (+1)

∣∣∣∣0 −2
5 −3

∣∣∣∣ = 10

C12 = (−1)

∣∣∣∣4 −2
1 −3

∣∣∣∣ = 10

C13 = (+1)

∣∣∣∣4 0
1 5

∣∣∣∣ = 20

C21 = (−1)

∣∣∣∣−1 3
5 −3

∣∣∣∣ = 12

C22 = (+1)

∣∣∣∣2 3
1 −3

∣∣∣∣ = −9

C23 = (−1)

∣∣∣∣2 −1
1 5

∣∣∣∣ = −11

C31 = (+1)

∣∣∣∣−1 3
0 −2

∣∣∣∣ = 2

C32 = (−1)

∣∣∣∣2 3
4 −2

∣∣∣∣ = 16

C33 = (+1)

∣∣∣∣2 −1
4 0

∣∣∣∣ = 4.

Thus, we obtain

adj(A) =

10 10 20
12 −9 −11
2 16 4

T

=

10 12 2
10 −9 16
20 −11 4

 .

If we haven’t made any computational errors (and there’s a good chance
that we have!) then Theorem 7.5.2 tells us that

A−1 =
1

det(A)
adj(A) =

1

70

10 12 2
10 −9 16
20 −11 4

 =

1/7 6/35 1/35
1/7 −9/70 8/35
2/7 −11/70 2/35

 .

The reader should verify that AA−1 = I to make sure that we haven’t
made any mistakes. (The author made two mistakes that were caught
doing this verification!)

In the next chapter we’ll see another use for the determinant. Mean-
while, try to develop a deeper appreciation of math: odd, complicated
things that seem completely unrelated often are intricately tied together.
Mathematicians see these connections and describe them as “beautiful.”



Exercises 7.5
Problems
In Exercises – , matricesA and b⃗ are given.

(a) Give det(A) and det(Ai) for all i.

(b) Use Cramer’s Rule to solve Ax⃗ = b⃗. If Cramer’s
Rule cannot be used to find the solu on, then state
whether or not a solu on exists.

. A =

[
7 −7
−7 9

]
, b⃗ =

[
28
−26

]

. A =

[
9 5
−4 −7

]
, b⃗ =

[
−45
20

]

. A =

[
−8 16
10 −20

]
, b⃗ =

[
−48
60

]

. A =

[
0 −6
9 −10

]
, b⃗ =

[
6

−17

]

. A =

[
2 10
−1 3

]
, b⃗ =

[
42
19

]

. A =

[
7 14
−2 −4

]
, b⃗ =

[
−1
4

]

. A =

 3 0 −3
5 4 4
5 5 −4

, b⃗ =

 24
0
31



. A =

 4 9 3
−5 −2 −13
−1 10 −13

,
b⃗ =

−28
35
7



. A =

 4 −4 0
5 1 −1
3 −1 2

, b⃗ =

 16
22
8



. A =

 1 0 −10
4 −3 −10
−9 6 −2

,

b⃗ =

−40
−94
132



. A =

 7 −4 25
−2 1 −7
9 −7 34

,
b⃗ =

−1
−3
5



. A =

−6 −7 −7
5 4 1
5 4 8

,
b⃗ =

 58
−35
−49


In Exercises – , use Theorem . . to compute the inverse
ofA, if it exists.

. A =

2 −1 4
3 −5 7
0 3 −2



. A =

3 2 −5
1 0 −1
7 4 2



. A =

 2 −4 7
−3 1 5
5 −5 2



. A =

5 2 0
0 −2 3
5 −2 6



. A =


1 −4 3 2
5 0 −3 6
2 −3 1 4
7 2 −5 1



. A =


3 1 0 −1
6 4 2 0
−3 −1 −5 2
1 0 −1 4







: Eigenvalues and
Eigenvectors
We have often explored new ideas in Linear Algebra by making connections
to our previous algebraic experience. Adding two numbers, x + y, led
us to adding vectors x⃗ + y⃗ and adding matrices A + B. We explored
multiplication, which then led us to solving the matrix equation Ax⃗ = b⃗,
which was reminiscent of solving the algebra equation ax = b.

This chapter is motivated by another analogy. Consider: when we
multiply an unknown number x by another number such as 5, what do we
know about the result? Unless, x = 0, we know that in some sense 5x will
be “5 times bigger than x.” Applying this to vectors, we would readily
agree that 5x⃗ gives a vector that is “5 times bigger than x⃗”; we know from
Theorem 3.2.1 that ∥5x⃗∥ = 5 ∥x⃗∥.

Within the linear algebra context, though, we have two types of mul-
tiplication: scalar and matrix multiplication. What happens to x⃗ when
we multiply it by a matrix A? Our first response is likely along the lines
of “You just get another vector. There is no definable relationship.” We
might wonder if there is ever the case where a matrix – vector multipli-
cation is very similar to a scalar – vector multiplication. That is, do we
ever have the case where Ax⃗ = ax⃗, where a is some scalar? That is the
motivating question of this chapter.

. Eigenvalues and Eigenvectors
AS YOU READ . . .

1. T/F: Given any matrix A, we can always find a vector x⃗ where
Ax⃗ = x⃗.

2. When is the zero vector an eigenvector for a matrix?

3. If v⃗ is an eigenvector of a matrix A with eigenvalue of 2, then what
is Av⃗?

4. T/F: If A is a 5 × 5 matrix, to find the eigenvalues of A, we would
need to find the roots of a 5th degree polynomial.

We start by considering the matrix A and vector x⃗ as given below.

A =

[
1 4
2 3

]
x⃗ =

[
1
1

]
Multiplying Ax⃗ gives:

Ax⃗ =

[
1 4
2 3

] [
1
1

]
=

[
5
5

]
= 5

[
1
1

]
!



We frequently make claims about top-
ics in this text having “many ap-
plications to the real world.” You
don’t need to take our word for it
on this. The reader is encouraged
to look up the Wikipedia page on
eigenvalues and eigenvectors. (This is
one of the better written and accessi-
ble Wikipedia pages on a mathemat-
ics topic we’ve encountered, by the
way!) Scrolling down to the section
on applications reveals an extensive
list of applications, from Physics (an-
alyzing inertial tensors in Mechanics,
the Schrödinger equation in Quantum
Mechanics, ...), Engineering, Chem-
istry and Geology, to image process-
ing, data analysis, and epidemiol-
ogy. Even Google’s famous “Page
Rank” algorithm involves eigenvalues
and eigenvectors. For information on
this, search (on Google?) for the
“$25,000,000,000 Eigenvector”.

Chapter Eigenvalues and Eigenvectors

Wow! It looks like multiplying Ax⃗ is the same as 5x⃗! This makes us
wonder lots of things: Is this the only case in the world where something
like this happens? (Probably not.) Is A somehow a special matrix, and
Ax⃗ = 5x⃗ for any vector x⃗ we pick? (Probably not.) Or maybe x⃗ was a
special vector, and no matter what 2 × 2 matrix A we picked, we would
have Ax⃗ = 5x⃗. (Again, probably not.)

A more likely explanation is this: given the matrix A, the number 5
and the vector x⃗ formed a special pair that happened to work together in
a nice way. It is then natural to wonder if other “special” pairs exist. For
instance, could we find a vector x⃗ where Ax⃗ = 3x⃗?

This equation is hard to solve at first; we are not used to matrix equa-
tions where x⃗ appears on both sides of “=.” Therefore we put off solving
this for just a moment to state a definition and make a few comments.

Definition 8.1.1 Eigenvalues and Eigenvectors

Let A be an n× n matrix, x⃗ a nonzero n× 1 column vector and λ
a scalar. If

Ax⃗ = λx⃗,

then x⃗ is an eigenvector of A and λ is an eigenvalue of A.

The word “eigen” is German for “proper” or “characteristic.” There-
fore, an eigenvector of A is a “characteristic vector of A.” This vector tells
us something about A.

Why do we use the Greek letter λ (lambda)? It is pure tradition.
Above, we used a to represent the unknown scalar, since we are used to
that notation. We now switch to λ because that is how everyone else does
it. (An example of mathematical peer pressure.) Don’t get hung up on
this; λ is just a number.

Note that our definition requires that A be a square matrix. If A isn’t
square then Ax⃗ and λx⃗ will have different sizes, and so they cannot be
equal. Also note that x⃗ must be nonzero. Why? What if x⃗ = ⃗? Then
no matter what λ is, Ax⃗ = λx⃗. This would then imply that every number
is an eigenvalue; if every number is an eigenvalue, then we wouldn’t need
a definition for it. Therefore we specify that x⃗ ̸= ⃗ .

Our last comment before trying to find eigenvalues and eigenvectors
for given matrices deals with “why we care.” Did we stumble upon a
mathematical curiosity, or does this somehow help us build better bridges,
heal the sick, send astronauts into orbit, design optical equipment, and
understand quantum mechanics? The answer, of course, is “Yes.” (Except
for the “understand quantum mechanics” part. Nobody truly understands
that stuff; they just probably understand it.) This is a wonderful topic in
and of itself: we need no external application to appreciate its worth. At
the same time, it has many, many applications to “the real world.”

Back to our math. Given a square matrix A, we want to find a nonzero
vector x⃗ and a scalar λ such that Ax⃗ = λx⃗. We will solve this using the
skills we developed in Chapter 5.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Ax⃗ = λx⃗ original equa on

Ax⃗ − λx⃗ = ⃗ subtract λx⃗ from both sides

(A− λI)x⃗ = ⃗ factor out x⃗

Think about this last factorization. We are likely tempted to say

Ax⃗ − λx⃗ = (A− λ)x⃗,

but this really doesn’t make sense. After all, what does “a matrix minus
a number” mean? We need the identity matrix in order for this to be
logical.

Let us now think about the equation (A − λI)x⃗ = ⃗ . While it looks
complicated, it really is just matrix equation of the type we solved in
Section 4.6. We are just trying to solve Bx⃗ = ⃗ , where B = (A− λI).

We know from our previous work that this type of equation always
has a solution, namely, x⃗ = ⃗ . (Recall this is a homogeneous system
of equations.) However, we want x⃗ to be an eigenvector and, by the
definition, eigenvectors cannot be ⃗ .

This means that we want solutions to (A−λI)x⃗ = ⃗ other than x⃗ = ⃗ .
Recall that Theorem 5.4.5 says that if the matrix (A − λI) is invertible,
then the only solution to (A − λI)x⃗ = ⃗ is x⃗ = ⃗ . Therefore, in order to
have other solutions, we need (A− λI) to not be invertible.

Finally, recall from Theorem 7.4.4 that noninvertible matrices all have
a determinant of 0. Therefore, if we want to find eigenvalues λ and eigen-
vectors x⃗, we need det(A− λI) = 0.

Let’s start our practice of this theory by finding λ such that det(A −
λI) = 0; that is, let’s find the eigenvalues of a matrix.

Example . . Computing the eigenvalues of a matrix
Find the eigenvalues of A, that is, find λ such that det(A−λI) = 0, where

A =

[
1 4
2 3

]
.

Solution (Note that this is the matrix we used at the beginning
of this section.) First, we write out what A− λI is:

A− λI =

[
1 4
2 3

]
− λ

[
1 0
0 1

]
=

[
1 4
2 3

]
−
[
λ 0
0 λ

]
=

[
1− λ 4
2 3− λ

]
Therefore,

det(A− λI) =

∣∣∣∣ 1− λ 4
2 3− λ

∣∣∣∣
= (1− λ)(3− λ)− 8

= λ2 − 4λ− 5
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Since we want det(A − λI) = 0, we want λ2 − 4λ − 5 = 0. This is a
simple quadratic equation that is easy to factor:

λ2 − 4λ− 5 = 0

(λ− 5)(λ+ 1) = 0

λ = −1, 5

According to our above work, det(A−λI) = 0 when λ = −1, 5. Thus,
the eigenvalues of A are −1 and 5.

Earlier, when looking at the same matrix as used in our example, we
wondered if we could find a vector x⃗ such that Ax⃗ = 3x⃗. According to
this example, the answer is “No.” With this matrix A, the only values of
λ that work are −1 and 5.

Let’s restate the above in a different way: It is pointless to try to find
x⃗ where Ax⃗ = 3x⃗, for there is no such x⃗. There are only 2 equations of
this form that have a solution, namely

Ax⃗ = −x⃗ and Ax⃗ = 5x⃗.

As we introduced this section, we gave a vector x⃗ such that Ax⃗ = 5x⃗.
Is this the only one? Let’s find out while calling our work an example;
this will amount to finding the eigenvectors of A that correspond to the
eigenvector of 5.

Example . . Computing an eigenvector corresponding to a
given eigenvalue
Find x⃗ such that Ax⃗ = 5x⃗, where

A =

[
1 4
2 3

]
.

Solution Recall that our algebra from before showed that if

Ax⃗ = λx⃗ then (A− λI)x⃗ = ⃗.

Therefore, we need to solve the equation (A−λI)x⃗ = ⃗ for x⃗ when λ = 5.

A− 5I =

[
1 4
2 3

]
− 5

[
1 0
0 1

]
=

[
−4 4
2 −2

]
To solve (A − 5I)x⃗ = ⃗ , we form the augmented matrix and put it into

reduced row echelon form:[
−4 4 0
2 −2 0

]
−→rref

[
1 −1 0
0 0 0

]
.

Thus

x1 = t

x2 = t is free

and
x⃗ =

[
x1

x2

]
= t

[
1
1

]
.
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We have infinitely many solutions to the equation Ax⃗ = 5x⃗; any nonzero
scalar multiple of the vector

[
1
1

]
is a solution. We can do a few examples

to confirm this: [
1 4
2 3

] [
2
2

]
=

[
10
10

]
= 5

[
2
2

]
;[

1 4
2 3

] [
7
7

]
=

[
35
35

]
= 5

[
7
7

]
;[

1 4
2 3

] [
−3
−3

]
=

[
−15
−15

]
= 5

[
−3
−3

]
.

Of course, this works in general. For any t, we have

[
1 4
2 3

](
t

[
1
1

])
= t

([
1 4
2 3

] [
1
1

])
= t

(
5

[
1
1

])
= 5

(
t

[
1
1

])
.

Our method of finding the eigenvalues of a matrix A boils down to
determining which values of λ give the matrix (A− λI) a determinant of
0. In computing det(A − λI), we get a polynomial in λ whose roots are
the eigenvalues of A. This polynomial is important and so it gets its own
name.

Definition 8.1.2 Characteristic Polynomial

Let A be an n × n matrix. The characteristic polynomial of A is
the nth degree polynomial p(λ) = det(A− λI).

Our definition just states what the characteristic polynomial is. We
know from our work so far why we care: the roots of the characteristic
polynomial of an n× n matrix A are the eigenvalues of A.

In Examples 8.1.1 and 8.1.2, we found eigenvalues and eigenvectors,
respectively, of a given matrix. That is, given a matrix A, we found values
λ and vectors x⃗ such that Ax⃗ = λx⃗. The steps that follow outline the
general procedure for finding eigenvalues and eigenvectors; we’ll follow this
up with some examples.

Key Idea 8.1.1 Finding Eigenvalues and Eigenvectors

Let A be an n× n matrix.

1. To find the eigenvalues of A, compute p(λ), the characteristic
polynomial of A, set it equal to 0, then solve for λ.

2. To find the eigenvectors of A, for each eigenvalue solve the
homogeneous system (A− λI)x⃗ = ⃗ .
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Example . . Computing eigenvalues and eigenvectors
Find the eigenvalues of A, and for each eigenvalue, find an eigenvector
where

A =

[
−3 15
3 9

]
.

Solution To find the eigenvalues, we must compute det(A− λI)
and set it equal to 0.

det(A− λI) =

∣∣∣∣ −3− λ 15
3 9− λ

∣∣∣∣
= (−3− λ)(9− λ)− 45

= λ2 − 6λ− 27− 45

= λ2 − 6λ− 72

= (λ− 12)(λ+ 6)

Therefore, det(A− λI) = 0 when λ = −6 and 12; these are our eigen-
values. (We should note that p(λ) = λ2 − 6λ − 72 is our characteristic
polynomial.)

It sometimes helps to give them “names,” so we’ll say λ1 = −6 and
λ2 = 12. Now we find eigenvectors.

For λ1 = −6, we need to solve the equation (A− (−6)I)x⃗ = ⃗ . To do
this, we form the appropriate augmented matrix and put it into reduced
row echelon form.[

3 15 0
3 15 0

]
−→rref

[
1 5 0
0 0 0

]
.

Our solution is

x1 = −5t

x2 = t is free;

in vector form, we have
x⃗ = t

[
−5
1

]
.

We may pick any nonzero value for t to get an eigenvector; a simple option
is x2 = 1. Thus we have the eigenvector

x⃗1 =

[
−5
1

]
.

(We used the notation x⃗1 to associate this eigenvector with the eigenvalue
λ1.)

We now repeat this process to find an eigenvector for λ2 = 12. In
solving (A− 12I)x⃗ = ⃗ , we find[

−15 15 0
3 −3 0

]
−→rref

[
1 −1 0
0 0 0

]
.

In vector form, we have

x⃗ = t

[
1
1

]
.
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Again, we may pick any nonzero value for t, and so we choose t = 1. Thus
an eigenvector for λ2 is

x⃗2 =

[
1
1

]
.

To summarize, we have:

eigenvalue λ1 = −6 with eigenvector x⃗1 =

[
−5
1

]
and

eigenvalue λ2 = 12 with eigenvector x⃗2 =

[
1
1

]
.

We should take a moment and check our work: is it true that Ax⃗1 =
λ1x⃗1?

Ax⃗1 =

[
−3 15
3 9

] [
−5
1

]
=

[
30
−6

]
= (−6)

[
−5
1

]
= λ1x⃗1.

Yes; it appears we have truly found an eigenvalue/eigenvector pair for the
matrix A.

Example . . Computing eigenvalues and eigenvectors
Let A =

[
−3 0
5 1

]
. Find the eigenvalues of A and an eigenvector for each

eigenvalue.

Solution We first compute the characteristic polynomial, set it
equal to 0, then solve for λ.

det(A− λI) =

∣∣∣∣ −3− λ 0
5 1− λ

∣∣∣∣
= (−3− λ)(1− λ)

From this, we see that det(A − λI) = 0 when λ = −3, 1. We’ll set
λ1 = −3 and λ2 = 1.

Finding an eigenvector for λ1:
We solve (A − (−3)I)x⃗ = ⃗ for x⃗ by row reducing the appropriate

matrix: [
0 0 0
5 4 0

]
−→rref

[
1 4/5 0
0 0 0

]
.

Our solution, in vector form, is

x⃗ = t

[
−4/5
1

]
.

Again, we can pick any nonzero value for t; a nice choice would eliminate
the fraction. Therefore we pick t = 5, and find

x⃗1 =

[
−4
5

]
.

Finding an eigenvector for λ2:



x

y
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Figure . . : A horizontal shear by a factor
of k
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We solve (A−(1)I)x⃗ = ⃗ for x⃗ by row reducing the appropriate matrix:[
−4 0 0
5 0 0

]
−→rref

[
1 0 0
0 0 0

]
.

We’ve seen a matrix like this before, but we may need a bit of a refresh-
ing. (See page 154.) Our first row tells us that x1 = 0, and we see that
no rows/equations involve x2. We conclude that x2 is free. Therefore, our
solution, in vector form, is

x⃗ = t

[
0
1

]
.

We pick t = 1, and find
x⃗2 =

[
0
1

]
.

To summarize, we have:

eigenvalue λ1 = −3 with eigenvector x⃗1 =

[
−5
4

]
and

eigenvalue λ2 = 1 with eigenvector x⃗2 =

[
0
1

]
.

Notice that in both of our examples so far, we were able to completely
factor the characteristic polynomial and obtain two distinct eigenvalues.
For 2×2 matrices, the characteristic polynomial will always be quadratic,
and we know that finding roots of quadratic polynomials falls into three
categories: those with two distinct roots, like in the examples above, those
with one repeated root (for example, x2 − 2x + 1 = (x − 1)2), and those
with no real roots (for example, x2+1). In the case of a repeated root, we
will have only one eigenvalue. Will we have only one eigenvector, or could
there be two? (We’ll have more to say about this later.) What if there are
no real roots? Then there are no (real) eigenvalues, so presumably there
are no eigenvectors, either. What if we allow for complex roots? Let’s
look at some examples.

Example . . A matrix with only one eigenvalue
Find the eigenvalues and eigenvectors of the matrix

A =

[
1 4
0 1

]
.

Solution The transformation T (x⃗) = Ax⃗ defined by A is an ex-
ample of a horizontal shear. Such a transformation leaves horizontal
vectors unaffected, but vectors with a nonzero vertical component get
pulled to the right: see Figure 8.1.1.

From the diagram we can probably guess that the horizontal vector[
1
0

]
will be an eigenvector with eigenvalue 1, since it is left untouched by

the shear transformation. Let’s confirm this analytically.
We begin as usual by finding the characteristic polynomial. We have

det(A− λI) =

∣∣∣∣1− λ 41
0 1− λ

∣∣∣∣ = (1− λ)2.
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Here, we see that we have only one eigenvalue; namely, λ = 1. Let’s look
for a corresponding eigenvector. We have

A− λ =

[
0 4
0 0

]
−→rref

[
0 1
0 0

]
.

The corresponding system (A − 1 · I)x⃗ = ⃗ has augmented matrix with
reduced row echelon form [

0 1 0
0 0 0

]
,

which tells us that in our solution, x1 = t is free, and x2 = 0. Setting
t = 1, we get the single eigenvector

x⃗1 =

[
1
0

]
,

as expected.
In each of our examples to this point, every eigenvalue corresponded

to a single (independent) eigenvector. Is this always the case? We will not
prove it in this textbook, but it turns out that in general, the power to
which the factor (λ − x) appears in the characteristic polynomial (called
the multiplicity of the eigenvalue) places an upper limit on the number of
independent eigenvectors that can correspond to that eigenvalue.

In Example 8.1.4, we had det(A − λI) = (−3 − λ)1(1 − λ)1, so the
two eigenvalues λ = −3 and λ = 1 each have multiplicity one, and there-
fore they each have one corresponding eigenvector. In Example 8.1.5,
the eigenvalue λ = 3 has multiplicity two, but we still had only one cor-
responding eigenvector. Can we ever have such an eigenvalue with two
corresponding eigenvectors?
Example . . An eigenvalue of multiplicity two
Find the eigenvalues and eigenvectors of the matrix

A =

[
4 0
0 4

]
.

Solution Here, we notice that A is a scalar multiple of the iden-
tity. As a transformation of the Cartesian plane, the transformation
T (x⃗) = Ax⃗ is a dilation: it expands the size of every vector in the plane
by a factor of 4. Knowing that this is a transformation that stretches,
but does not rotate, we might expect that every nonzero vector is an
eigenvector of A! Indeed, given x⃗ ̸= ⃗ , we have

Ax⃗ = (4I)x⃗ = 4(Ix⃗) = x⃗,

so x⃗ is an eigenvector corresponding to the eigenvalue 4.
Of course, this is pretty much the end of the story here, but let’s get

some practice with our algorithm for finding eigenvalues and eigenvectors
and confirm our results. We can immediately see that

det(A− λI) = (4− λ)2,

so that λ = 4 is an eigenvalue of multiplicity 2. What about the eigenvec-
tors? Well, computing A− 4I is somewhat interesting: we get

A− 4I =

[
4− 4 0
0 4− 4

]
=

[
0 0
0 0

]
,
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the zero matrix. Again, we see that literally any nonzero vector x⃗ ∈
R2 qualifies as an eigenvector. We know that we can find at most two
independent vectors in R2, so a simple choice is to take the standard basis
vectors e⃗1 and e⃗2.

Notice that we could have proceeded as usual and attempted to solve
the system (A−4I)x⃗ = ⃗ . In this case we get a rather strange augmented
matrix: [

A ⃗
]
=
[
0 ⃗

]
=

[
0 0 0
0 0 0

]
!

It might seem like there’s absolutely nothing to do here, but we can read off
a solution. In this case neither row places any conditions on the variables
x1 and x2, so both are free: x1 = s and x2 = t are both parameters, and

x⃗ =

[
x1

x2

]
=

[
s
t

]
= s

[
1
0

]
+ t

[
0
1

]
.

Setting s = 1 and t = 0 gives us the eigenvector e⃗1, and setting s = 0,
t = 1 gives us the eigenvector e⃗2.

We mentioned above that another possibility is that the characteristic
polynomial has no real zeros at all, in which case our matrix has no (real)
eigenvalues. Let’s see what we can say in such a situation.
Example . . A matrix with complex eigenvalues
Find the eigenvalues and eigenvectors of the matrix

A =

[
0 −1
1 0

]
.

Solution Before we proceed, let’s pause and think about this in
the context of matrix transformations. If we define the transformation
T (x⃗) = Ax⃗, we have

T

([
x1

x2

])
=

[
0 −1
1 0

] [
x1

x2

]
=

[
−x2

x1

]
.

Notice that T (x⃗) is orthogonal to x⃗:

T (x⃗) · x⃗ =

[
−x2

x1

]
·
[
x1

x2

]
= −x2x1 + x1x2 = 0.

This is because the transformation T represents a rotation through an
angle of π

2 (90 degrees). Indeed, A is a rotation matrix of the form

A =

[
cos θ − sin θ
sin θ cos θ

]
,

where θ = π
2 .

Now, think about the eigenvalue equation Ax⃗ = λx⃗. In this case, an
eigenvector x⃗ would be a vector in the plane such that rotating it by 90
degrees produces a parallel vector! Clearly, this is nonsense, and indeed,
we find that

det(A− λI) =

∣∣∣∣−λ −1
1 −λ

∣∣∣∣ = λ2 + 1,

which has no real roots, so the matrix A has no eigenvalues, which makes
sense from a geometric point of view.
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However, this is not the end of the story, provided that we’re willing
to work with complex numbers. Over the complex numbers, we do have
two eigenvalues:

λ2 + 1 = (λ+ i)(λ− i),

so λ = i and λ = −i are eigenvalues. What are the eigenvectors? We
proceed as always, except that the arithmetic in the row operations is
a bit trickier with complex numbers. For λ = i, we have the system
(A− iI)x⃗ = ⃗ . We set up the augmented matrix below, and in this case,
we’ll proceed step-by-step to the reduced row echelon form. We have

A− iI =

[
0 −1
1 0

]
−
[
i 0
0 i

]
=

[
−i −1
1 −i

]
,

so we get the augmented matrix[
−i −1 0
1 −i 0

]
R1↔R2−−−−−→

[
1 −i 0
−i −1 0

]
R2+iR1→R2−−−−−−−−→

[
1 −i 0
0 0 0

]
.

Notice in the last step that −i+i(1) = 0 gives the zero in the first column,
and −1 + i(−i) = −1 + 1 = 0 gives the zero in the second column. This
tells us that x2 = t is a free (complex!) parameter while x1 − ix2 = 0, so
x1 = ix2 = it. Our vector solution is thus

x⃗1 =

[
it
t

]
= t

[
i
1

]
,

and we can check that

Ax⃗1 =

[
0 −1
1 0

] [
i
1

]
=

[
−1
i

]
=

[
i(i)
i(1)

]
= i

[
i
1

]
= ix⃗,

as expected. We can similarly set up and solve[
(A+ iI) ⃗

]
=

[
i −1 0
1 i 0

]
−→rref

[
1 i 0
0 0 0

]
,

giving us x2 = t as a free parameter, and x1 = −ix2 = −it, so

x⃗2 =

[
−it
t

]
= t

[
−i
1

]
.

In this context we’re free to chose any complex value for t. Choosing t = i

gives us the solution x⃗2 =

[
1
i

]
.

Our last few examples provided interesting departures from the earlier
ones where we had two distinct eigenvalues; they also provided examples
where we were able to analyze the situation geometrically, by considering
the linear transformations defined by the matrix. The reader is encouraged
to consider the other examples of transformations given in Section 6.1 and
attempt a similar analysis.

So far, our examples have involved 2×2 matrices. Let’s do an example
with a 3 × 3 matrix. The only real additional complication here is that
our characteristic polynomial will now be a cubic polynomial, so factoring
it is going to take some more work.
Example . . Eigenvalues and eigenvectors for a 3× 3 matrix
Find the eigenvalues of A, and for each eigenvalue, give one eigenvector,
where

A =

−7 −2 10
−3 2 3
−6 −2 9

 .



You should have learned the basics of
factoring degree three polynomials in
high school. As a reminder, possible
roots can be found by factoring the
constant term (in this case, −6) of the
polynomial. That is, the roots of this
equation could be ±1,±2,±3 and ±6.
That’s 12 things to check.
One could also graph this polynomial
to find the roots. Graphing will show
us that λ = 3 looks like a root, and
a simple calculation will confirm that
it is.
If your factoring skills are a bit rusty,
you may want to consult the resources
on the Math Basics Moodle page.
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Solution We first compute the characteristic polynomial, set it
equal to 0, then solve for λ. A warning: this process is rather long. We’ll
use cofactor expansion along the first row; don’t get bogged down with
the arithmetic that comes from each step; just try to get the basic idea of
what was done from step to step.

det(A− λI) =

∣∣∣∣∣∣
−7− λ −2 10
−3 2− λ 3
−6 −2 9− λ

∣∣∣∣∣∣
= (−7− λ)

∣∣∣∣ 2− λ 3
−2 9− λ

∣∣∣∣ − (−2)

∣∣∣∣ −3 3
−6 9− λ

∣∣∣∣ + 10

∣∣∣∣ −3 2− λ
−6 −2

∣∣∣∣
= (−7− λ)(λ2 − 11λ+ 24) + 2(3λ− 9) + 10(−6λ+ 18)

= −λ3 + 4λ2 − λ− 6

= −(λ+ 1)(λ− 2)(λ− 3)

In the last step we factored the characteristic polynomial −λ3+4λ2−λ−6.
Factoring polynomials of degree > 2 is not trivial; we’ll assume the reader
has access to methods for doing this accurately.

Our eigenvalues are λ1 = −1, λ2 = 2 and λ3 = 3. We now find corre-
sponding eigenvectors.

For λ1 = −1:

We need to solve the equation (A− (−1)I)x⃗ = ⃗ . To do this, we form
the appropriate augmented matrix and put it into reduced row echelon
form. −6 −2 10 0

−3 3 3 0
−6 −2 10 0

 −→rref

 1 0 −1.5 0
0 1 −.5 0
0 0 0 0


Our solution, in vector form, is

x⃗ = x3

 3/2
1/2
1

 .

We can pick any nonzero value for x3; a nice choice would get rid of

the fractions. So we’ll set x3 = 2 and choose x⃗1 =

 3
1
2

 as our eigenvector.

For λ2 = 2:

We need to solve the equation (A− 2I)x⃗ = ⃗ . To do this, we form the
appropriate augmented matrix and put it into reduced row echelon form.−9 −2 10 0

−3 0 3 0
−6 −2 7 0

 −→rref

 1 0 −1 0
0 1 −.5 0
0 0 0 0


Our solution, in vector form, is

x⃗ = x3

 1
1/2
1

 .
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We can pick any nonzero value for x3; again, a nice choice would get

rid of the fractions. So we’ll set x3 = 2 and choose x⃗2 =

 2
1
2

 as our

eigenvector.

For λ3 = 3:

We need to solve the equation (A− 3I)x⃗ = ⃗ . To do this, we form the
appropriate augmented matrix and put it into reduced row echelon form.

−10 −2 10 0
−3 −1 3 0
−6 −2 6 0

 −→rref

 1 0 −1 0
0 1 0 0
0 0 0 0


Our solution, in vector form, is (note that x2 = 0):

x⃗ = x3

 1
0
1

 .

We can pick any nonzero value for x3; an easy choice is x3 = 1, so

x⃗3 =

 1
0
1

 as our eigenvector.

To summarize, we have the following eigenvalue/eigenvector pairs:

eigenvalue λ1 = −1 with eigenvector x⃗1 =

 3
1
2


eigenvalue λ2 = 2 with eigenvector x⃗2 =

 2
1
2


eigenvalue λ3 = 3 with eigenvector x⃗3 =

 1
0
1



Example . . Computing eigenvalues and eigenvectors
Find the eigenvalues of A, and for each eigenvalue, give one eigenvector,
where

A =

 2 −1 1
0 1 6
0 3 4

 .

Solution We first compute the characteristic polynomial, set it
equal to 0, then solve for λ. We’ll use cofactor expansion down the first
column (since it has lots of zeros).
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det(A− λI) =

∣∣∣∣∣∣
2− λ −1 1
0 1− λ 6
0 3 4− λ

∣∣∣∣∣∣
= (2− λ)

∣∣∣∣ 1− λ 6
3 4− λ

∣∣∣∣
= (2− λ)(λ2 − 5λ− 14)

= (2− λ)(λ− 7)(λ+ 2)

Notice that while the characteristic polynomial is cubic, we never ac-
tually saw a cubic; we never distributed the (2− λ) across the quadratic.
Instead, we realized that this was a factor of the cubic, and just factored
the remaining quadratic. (This makes this example quite a bit simpler
than the previous example.)

Our eigenvalues are λ1 = −2, λ2 = 2 and λ3 = 7. We now find corre-
sponding eigenvectors.

For λ1 = −2:

We need to solve the equation (A− (−2)I)x⃗ = ⃗ . To do this, we form
the appropriate augmented matrix and put it into reduced row echelon
form.  4 −1 1 0

0 3 6 0
0 3 6 0

 −→rref

 1 0 3/4 0
0 1 2 0
0 0 0 0


Our solution, in vector form, is

x⃗ = x3

−3/4
−2
1

 .

We can pick any nonzero value for x3; a nice choice would get rid of the

fractions. So we’ll set x3 = 4 and choose x⃗1 =

−3
−8
4

 as our eigenvector.

For λ2 = 2:

We need to solve the equation (A− 2I)x⃗ = ⃗ . To do this, we form the
appropriate augmented matrix and put it into reduced row echelon form. 0 −1 1 0

0 −1 6 0
0 3 2 0

 −→rref

 0 1 0 0
0 0 1 0
0 0 0 0


This looks funny, so we’ll look remind ourselves how to solve this. The

first two rows tell us that x2 = 0 and x3 = 0, respectively. Notice that no
row/equation uses x1; we conclude that it is free. Therefore, our solution
in vector form is

x⃗ = x1

 1
0
0

 .
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We can pick any nonzero value for x1; an easy choice is x1 = 1 and

choose x⃗2 =

 1
0
0

 as our eigenvector.

For λ3 = 7:

We need to solve the equation (A− 7I)x⃗ = ⃗ . To do this, we form the
appropriate augmented matrix and put it into reduced row echelon form.−5 −1 1 0

0 −6 6 0
0 3 −3 0

 −→rref

 1 0 0 0
0 1 −1 0
0 0 0 0


Our solution, in vector form, is (note that x1 = 0):

x⃗ = x3

 0
1
1

 .

We can pick any nonzero value for x3; an easy choice is x3 = 1, so

x⃗3 =

 0
1
1

 as our eigenvector.

To summarize, we have the following eigenvalue/eigenvector pairs:

eigenvalue λ1 = −2 with eigenvector x⃗1 =

−3
−8
4


eigenvalue λ2 = 2 with eigenvector x⃗2 =

 1
0
0


eigenvalue λ3 = 7 with eigenvector x⃗3 =

 0
1
1


In this section we have learned about a new concept: given a matrix

A we can find certain values λ and vectors x⃗ where Ax⃗ = λx⃗. In the next
section we will continue to the pattern we have established in this text:
after learning a new concept, we see how it interacts with other concepts
we know about. That is, we’ll look for connections between eigenvalues
and eigenvectors and things like the inverse, determinants, the trace, the
transpose, etc.



Exercises 8.1
Problems
In Exercises – , a matrix A and one of its eigenvectors are
given. Find the eigenvalue ofA for the given eigenvector.

. A =

[
9 8
−6 −5

]
x⃗ =

[
−4
3

]

. A =

[
19 −6
48 −15

]
x⃗ =

[
1
3

]

. A =

[
1 −2
−2 4

]
x⃗ =

[
2
1

]

. A =

−11 −19 14
−6 −8 6
−12 −22 15


x⃗ =

 3
2
4



. A =

 −7 1 3
10 2 −3
−20 −14 1


x⃗ =

 1
−2
4



. A =

−12 −10 0
15 13 0
15 18 −5


x⃗ =

−1
1
1


In Exercises – , a matrix A and one of its eigenvalues are
given. Find an eigenvector ofA for the given eigenvalue.

. A =

[
16 6
−18 −5

]
λ = 4

. A =

[
−2 6
−9 13

]
λ = 7

. A =

−16 −28 −19
42 69 46
−42 −72 −49


λ = 5

. A =

 7 −5 −10
6 2 −6
2 −5 −5


λ = −3

. A =

 4 5 −3
−7 −8 3
1 −5 8


λ = 2

In Exercises – , find the eigenvalues of the given matrix.
For each eigenvalue, give an eigenvector.

.
[
−1 −4
−3 −2

]

.
[
−4 72
−1 13

]

.
[
2 −12
2 −8

]

.
[
3 12
1 −1

]

.
[

5 9
−1 −5

]

.
[

3 −1
−1 3

]

.
[

0 1
25 0

]

.
[
−3 1
0 −1

]

.

 1 −2 −3
0 3 0
0 −1 −1



.

 5 −2 3
0 4 0
0 −1 3



.

 1 0 12
2 −5 0
1 0 2



.

 1 0 −18
−4 3 −1
1 0 −8



.

−1 18 0
1 2 0
5 −3 −1





.

 5 0 0
1 1 0
−1 5 −2



.

 2 −1 1
0 3 6
0 0 7



.

 3 5 −5
−2 3 2
−2 5 0



.

 1 2 1
1 2 3
1 1 1
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. Proper es of Eigenvalues and Eigenvectors

AS YOU READ . . .

1. T/F: A and AT have the same eigenvectors.

2. T/F: A and A−1 have the same eigenvalues.

3. T/F: Matrices with a trace of 0 are important, although we haven’t
seen why.

4. T/F: A matrix A is invertible only if 1 is an eigenvalue of A.

In this section we’ll explore how the eigenvalues and eigenvectors of a
matrix relate to other properties of that matrix. This section is essentially
a hodgepodge of interesting facts about eigenvalues; the goal here is not
to memorize various facts about matrix algebra, but to again be amazed
at the many connections between mathematical concepts.

We’ll begin our investigations with an example that will give a foun-
dation for other discoveries.

Example . . Eigenvalues of a triangular matrix

Let A =

 1 2 3
0 4 5
0 0 6

. Find the eigenvalues of A.

Solution To find the eigenvalues, we compute detA− λI:

detA− λI =

∣∣∣∣∣∣
1− λ 2 3
0 4− λ 5
0 0 6− λ

∣∣∣∣∣∣
= (1− λ)(4− λ)(6− λ)

Since our matrix is triangular, the determinant is easy to compute; it
is just the product of the diagonal elements. Therefore, we found (and
factored) our characteristic polynomial very easily, and we see that we
have eigenvalues of λ = 1, 4, and 6.

This examples demonstrates a wonderful fact for us: the eigenvalues
of a triangular matrix are simply the entries on the diagonal. Finding the
corresponding eigenvectors still takes some work, but finding the eigenval-
ues is easy.

With that fact in the backs of our minds, let us proceed to the next
example where we will come across some more interesting facts about
eigenvalues and eigenvectors.
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Example . . Exploring properties of eigenvalues

Let A =

[
−3 15
3 9

]
and let B =

−7 −2 10
−3 2 3
−6 −2 9

 (as used in Examples

8.1.3 and 8.1.8, respectively). Find the following:

1. The eigenvalues and eigenvectors of A and B

2. The eigenvalues and eigenvectors of A−1 and B−1

3. eigenvalues and eigenvectors of AT and BT

4. The trace of A and B

5. The determinant of A and B

Solution We’ll answer each in turn.

1. We already know the answer to these for we did this work in previous
examples. Therefore we just list the answers.
For A, we have eigenvalues λ = −6 and 12, with eigenvectors

x⃗ = x2

[
−5
1

]
and x2

[
1
1

]
, respectively.

For B, we have eigenvalues λ = −1, 2, and 3 with eigenvectors

x⃗ = x3

 3
1
2

 , x3

 2
1
2

 and x3

 1
0
1

 , respectively.

2. We first compute the inverses of A and B. They are:

A−1 =

[
−1/8 5/24
1/24 1/24

]
and B−1 =

 −4 1/3 13/3
−3/2 1/2 3/2
−3 1/3 10/3

 .

Finding the eigenvalues and eigenvectors of these matrices is not
terribly hard, but it is not “easy,” either. Therefore, we omit showing
the intermediate steps and go right to the conclusions.
For A−1, we have eigenvalues λ = −1/6 and 1/12, with eigenvectors

x⃗ = x2

[
−5
1

]
and x2

[
1
1

]
, respectively.

For B−1, we have eigenvalues λ = −1, 1/2 and 1/3 with eigenvectors

x⃗ = x3

 3
1
2

 , x3

 2
1
2

 and x3

 1
0
1

 , respectively.

3. Of course, computing the transpose of A and B is easy; computing
their eigenvalues and eigenvectors takes more work. Again, we omit
the intermediate steps.
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For AT , we have eigenvalues λ = −6 and 12 with eigenvectors

x⃗ = x2

[
−1
1

]
and x2

[
5
1

]
, respectively.

For BT , we have eigenvalues λ = −1, 2 and 3 with eigenvectors

x⃗ = x3

−1
0
1

 , x3

−1
1
1

 and x3

 0
−2
1

 , respectively.

4. The trace of A is 6; the trace of B is 4.

5. The determinant of A is −72; the determinant of B is −6.

Now that we have completed the “grunt work,” let’s analyze the results
of the previous example. We are looking for any patterns or relationships
that we can find.

The eigenvalues and eigenvectors of A and A−1.

In our example, we found that the eigenvalues of A are −6 and 12; the
eigenvalues of A−1 are −1/6 and 1/12. Also, the eigenvalues of B are −1,
2 and 3, whereas the eigenvalues of B−1 are −1, 1/2 and 1/3. There is
an obvious relationship here; it seems that if λ is an eigenvalue of A, then
1/λ will be an eigenvalue of A−1. We can also note that the corresponding
eigenvectors matched, too.

Why is this the case? Consider an invertible matrix A with eigenvalue
λ ̸= 0 and eigenvector x⃗. Then, by definition, we know that Ax⃗ = λx⃗.
Now multiply both sides by A−1:

Ax⃗ = λx⃗

A−1Ax⃗ = A−1λx⃗

x⃗ = λA−1x⃗

1

λ
x⃗ = A−1x⃗

We have just shown that A−1x⃗ = 1/λx⃗; this, by definition, shows that
x⃗ is an eigenvector of A−1 with eigenvalue 1/λ. This explains the result
we saw above. Of course, this all falls apart if λ = 0, but this is impossible
for an invertible matrix: see Theorem 8.2.2 below.

The eigenvalues and eigenvectors of A and AT .

Our example showed that A and AT had the same eigenvalues but
different (but somehow similar) eigenvectors; it also showed that B and
BT had the same eigenvalues but unrelated eigenvectors. Why is this?

We can answer the eigenvalue question relatively easily; it follows from
the properties of the determinant and the transpose. Recall the following
two facts:

1. (A+B)T = AT +BT (Theorem 7.1.1) and

2. detA = detAT (Theorem 7.4.4).



Note: the reader would be justified
in wondering about the case where A
is a real matrix with complex eigen-
values. Any such eigenvalues will
arise from irreducible quadratic fac-
tors of the characteristic polynomial,
and we know from Theorem 2.1.3 that
the complex zeros of a quadratic with
real coefficients occur in conjugate
pairs. That is, if λ is a complex eigen-
value of A, so is the complex conju-
gate λ. When we multiply the eigen-
values of A together, the product will
contain λ · λ = |λ|2, which is always
a real number. Thus, it is always
true that det(A) is equal to the prod-
uct of the eigenvalues of A, provided
that we include any possible complex
eigenvalues.

. Proper es of Eigenvalues and Eigenvectors

We find the eigenvalues of a matrix by computing the characteristic
polynomial; that is, we find detA− λI. What is the characteristic poly-
nomial of AT ? Consider:

detAT − λI = detAT − λIT since I = IT

= det (A− λI)T Theorem . .

= detA− λI Theorem . .

So we see that the characteristic polynomial of AT is the same as that
for A. Therefore they have the same eigenvalues.

What about their respective eigenvectors? Is there any relationship?
The simple answer is “No.”
The eigenvalues and eigenvectors of A and The Trace.

Note that the eigenvalues of A are −6 and 12, and the trace is 6; the
eigenvalues of B are −1, 2 and 3, and the trace of B is 4. Do we notice
any relationship?

It seems that the sum of the eigenvalues is the trace! Why is this the
case?

The answer to this is a bit out of the scope of this text; we can justify
part of this fact, and another part we’ll just state as being true without
justification.

Suppose A is an n×n matrix with no complex eigenvalues (that is, the
characteristic polynomial can be completely factored over the real num-
bers). When this is the case, it turns out that we can find a square matrix
P such that P−1AP is an upper triangular matrix with the eigenvalues of
A on the diagonal. (We unfortunately do not have the time to prove this,
or to explain how the matrix P is determined.)

Now, recall from Theorem 7.2.1 that tr(AB) = tr(BA). Since P−1AP
is upper-triangular, we know that tr(P−1AP ) is the sum of the eigenvalues;
also, using our Theorem 7.2.1, we know that tr(P−1AP ) = tr(P−1PA) =
tr(A). Thus the trace of A is the sum of the eigenvalues. It turns out that
this result remains true when A has complex eigenvalues, and the proof
is similar, except that the entries of the matrix P will be complex numbers.

The eigenvalues and eigenvectors of A and The Determinant.

Again, the eigenvalues of A are −6 and 12, and the determinant of A
is −72. The eigenvalues of B are −1, 2 and 3; the determinant of B is −6.
It seems as though the product of the eigenvalues is the determinant.

This is indeed true; we defend this with our argument from above. We
know that the determinant of a triangular matrix is the product of the
diagonal elements. Therefore, given a matrix A, we can find P such that
P−1AP is upper triangular with the eigenvalues of A on the diagonal.
Thus detP−1AP is the product of the eigenvalues. Using Theorem 7.4.4,
we know that detP−1AP = detP−1PA = detA. Thus the determinant
of A is the product of the eigenvalues.

We summarize the results of our example with the following theorem.
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Theorem 8.2.1 Properties of Eigenvalues and Eigenvec-
tors

Let A be an n× n invertible matrix. The following are true:

1. If A is triangular, then the diagonal elements of A are the
eigenvalues of A.

2. If λ is an eigenvalue of A with eigenvector x⃗, then 1
λ is an

eigenvalue of A−1 with eigenvector x⃗.

3. If λ is an eigenvalue of A then λ is an eigenvalue of AT .

4. The sum of the eigenvalues of A is equal to tr(A), the trace
of A.

5. The product of the eigenvalues of A is the equal to detA, the
determinant of A.

There is one more concept concerning eigenvalues and eigenvectors
that we will explore. We do so in the context of an example.

Example . . Eigenvalues of a non-invertible matrix
Find the eigenvalues and eigenvectors of the matrix A =

[
1 2
1 2

]
.

Solution To find the eigenvalues, we compute detA− λI:

detA− λI =

∣∣∣∣ 1− λ 2
1 2− λ

∣∣∣∣
= (1− λ)(2− λ)− 2

= λ2 − 3λ

= λ(λ− 3)

Our eigenvalues are therefore λ = 0, 3.
For λ = 0, we find the eigenvectors:[

1 2 0
1 2 0

]
−→rref

[
1 2 0
0 0 0

]
This shows that x1 = −2x2, and so our eigenvectors x⃗ are

x⃗ = x2

[
−2
1

]
.

For λ = 3, we find the eigenvectors:[
−2 2 0
1 −1 0

]
−→rref

[
1 −1 0
0 0 0

]
This shows that x1 = x2, and so our eigenvectors x⃗ are

x⃗ = x2

[
1
1

]
.
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One interesting thing about the above example is that we see that 0
is an eigenvalue of A; we have not officially encountered this before. Does
this mean anything significant?

Think about what an eigenvalue of 0 means: there exists an nonzero
vector x⃗ where Ax⃗ = 0x⃗ = ⃗ . That is, we have a nontrivial solution to
Ax⃗ = ⃗ . We know this only happens when A is not invertible.

So if A is invertible, there is no nontrivial solution to Ax⃗ = ⃗ , and
hence 0 is not an eigenvalue of A. If A is not invertible, then there is a
nontrivial solution to Ax⃗ = ⃗ , and hence 0 is an eigenvalue of A. This
leads us to our final addition to the Invertible Matrix Theorem.

Theorem 8.2.2 Invertible Matrix Theorem

Let A be an n×n matrix. The following statements are equivalent.

(a) A is invertible.

(h) A does not have an eigenvalue of 0.

This section is about the properties of eigenvalues and eigenvectors.
Of course, we have not investigated all of the numerous properties of
eigenvalues and eigenvectors; we have just surveyed some of the most
common (and most important) concepts. One of the more important
topics – which you will encounter if you continue on to Math 3410 – is
the question of diagonalization. For some n× n matrices A, it is possible
to find an invertible matrix P such that P−1AP is a diagonal matrix,
and the diagonal entries of this matrix are precisely the eigenvalues of A.
When is this possible? When is it not? To a large extent, this comes down
to the question of multiplicity: when we have a repeated eigenvalue, how
many independent eigenvectors are associated with it?

Finally, we have found the eigenvalues of matrices by finding the
roots of the characteristic polynomial. We have limited our examples to
quadratic and cubic polynomials; one would expect for larger sized matri-
ces that a computer would be used to factor the characteristic polynomials.
However, in general, this is not how the eigenvalues are found. Factoring
high order polynomials is too unreliable, even with a computer – round off
errors can cause unpredictable results. Also, to even compute the charac-
teristic polynomial, one needs to compute the determinant, which is also
expensive (as discussed in the previous chapter).

So how are eigenvalues found? There are iterative processes that can
progressively transform a matrix A into another matrix that is almost an
upper triangular matrix (the entries below the diagonal are almost zero)
where the entries on the diagonal are the eigenvalues. The more iterations
one performs, the better the approximation is.

These methods are so fast and reliable that some computer programs
convert polynomial root finding problems into eigenvalue problems!

Most textbooks on Linear Algebra will provide direction on exploring
the above topics and give further insight to what is going on. We have
mentioned all the eigenvalue and eigenvector properties in this section for
the same reasons we gave in the previous section. First, knowing these
properties helps us solve numerous real world problems, and second, it is
fascinating to see how rich and deep the theory of matrices is.



Exercises 8.2
Problems
In Exercises – , a matrixA is given. For each,

(a) Find the eigenvalues of A, and for each eigenvalue,
find an eigenvector.

(b) Do the same forAT .

(c) Do the same forA−1.

(d) Find tr(A).

(e) Find detA.

Use Theorem . . to verify your results.

.
[

0 4
−1 5

]

.
[
−2 −14
−1 3

]

.
[

5 30
−1 −6

]

.
[
−4 72
−1 13

]

.

 5 −9 0
1 −5 0
2 4 3



.

 0 25 0
1 0 0
1 1 −3
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Up to now we have concentrated primarily on finding eigenvalues and
eigenvectors, and while we may have claimed that this is a particularly
useful endeavour, we haven’t offered much to back up this claim, aside
from referring the reader to a Wikipedia page. While a complete treatment
of the theory and applications of eigenvalues and eigenvectors goes well
beyond the scope of this book, we can offer a brief taste of what’s to come
(should the reader choose to further their studies in linear algebra).

Similar matrices

Definition 8.3.1 Similar Matrices

Let A and B be n × n matrices. We say that A is similar to B,
and write A ∼ B, if there exists an invertible n× n matrix P such
that

A = P−1BP.

Although our definition above is not symmetric (it defines what it
means for A to be similar to B, but not vice-versa), there is in fact no
ambiguity in using a statement such as “A and B are similar matrices,”
as the next theorem demonstrates.

Theorem 8.3.1 Properties of matrix similarity

Let A, B, and C be n× n matrices. Then:

1. A ∼ A

2. If A ∼ B, then B ∼ A

3. If A ∼ B and B ∼ C, then A ∼ C.

Let’s see why these results are true.

1. Setting P = I, the n× n identity matrix, we have A = I−1AI, and
thus A ∼ A.

2. Suppose A ∼ B. Then we know that A = P−1BP for some invertible
matrix P . Setting Q = P−1, (and noting Q−1 = P ) we have

B = (PP−1)B(PP−1) = P (P−1BP )P−1 = Q−1AQ,

so B ∼ A.

3. Suppose that A ∼ B and B ∼ C. Then there exist n × n matrices
P and Q such that A = P−1BP and B = Q−1CQ. But then

A = P−1BP = P−1(Q−1CQ)P = (P−1Q−1)C(QP ) = (QP )−1C(QP ),

which shows that A ∼ C.
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The fact that the definition of matrix similarity satisfies the three prop-
erties in the theorem above tells us that matrix similarity is an example
of what is called an equivalence relation. This equivalence relation breaks
the set of all n × n matrices into sets of “equivalent” matrices. Similar
matrices are so-called because, although they often have very different en-
tries, they share many of the same properties. (At the end of this section,
we’ll discuss the fact that from the point of view of linear transformations,
similar matrices describe the same linear transformation, if we represent
that linear transformation using different choices of basis.) The following
theorem gives some of the properties similar matrices share.

Theorem 8.3.2 Shared properties of similar matrices

Let A and B be n× n matrices. If A ∼ B, then:

1. tr(A) = tr(B)

2. det(A) = det(B)

3. A and B have the same eigenvalues.

Let us again check the details on each of the points in the above the-
orem to see why they’re true.

1. Recall that the trace satisfies tr(AB) = tr(BA) for any n×n matrices
A and B. Thus, if A = P−1BP , we have

tr(A) = tr(P−1BP ) = tr(B(P−1P )) = tr(BI) = tr(B).

2. Recall that the determinant satisfies det(AB) = det(A)det(B) for
any n×n matrices A and B, and det(A−1) =

1

det(A)
for any invert-

ible matrix A. Thus, if A = P−1BP , we have

det(A) = det(P−1BP ) = det(P−1)det(B)det(P )

=
1

det(P )
det(B)det(P ) = det(B).

3. Suppose that λ is an eigenvalue of A, and that A ∼ B. Since λ is
an eigenvalue of A, we have

Av⃗ = λv⃗

for some nonzero vector v⃗. But if A ∼ B, then A = P−1BP for
some invertible matrix P , so

P−1BPv⃗ = λv⃗.

Multiplying both sides on the left by P , we have

B(P v⃗) = P (λv⃗) = λ(P v⃗).

Since P is invertible and v⃗ ̸= 0⃗, we know that w⃗ = P v⃗ is nonzero,
and thus λ is an eigenvalue of B with corresponding eigenvector P v⃗.
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Mul plicity of an eigenvalue
To clarify the presentation in this section, we will shift our notation some-
what from what we’ve been using so far in the textbook. Previously, we
used the definition

pA(λ) = det(A− λI)

for the characteristic polynomial of a matrix A. We will adjust this in two
ways: first, we will use x as the variable in our polynomial; second, we
will shift the sign of the characteristic polynomial and make the following
definition:

Definition 8.3.2 Characteristic Polynomial (revised def-
inition)

The characteristic polynomial of an n×n matrix A is the degree-
n polynomial pA(x) defined by

pA(x) = det(xI −A).

Notice that we are using xI −A rather than A− xI. This guarantees
that the highest-degree term in pA(x) is always xn (with coefficient 1),
whereas before this term was ±xn, depending on whether n is even or
odd. We are using x as our variable to make it easier to talk about factors
of the characteristic polynomial: with this change, the statements “λ is
an eigenvalue of A” and “(x− λ) is a factor of pA(x)” are equivalent.

In the previous sections, we saw examples of matrices whose charac-
teristic polynomial had a repeated root. In such cases, it is sometimes
possible (but not guaranteed) that there is more than one independent
eigenvector associated with the repeated eigenvalue. Indeed, consider the
matrices

A =

2 0 0
0 2 0
0 0 2

 , B =

2 0 0
0 2 1
0 0 2

 , C =

2 1 0
0 2 1
0 0 2

 .

All three matrices are upper-triangular, so they have the same character-
istic polynomial, namely:

p(x) = (x− 2)3.

Notice that the eigenvalue λ = 2 is “repeated”, in the sense that it is a
repeated root of the characteristic polynomial. This leads to the following
definition:

Definition 8.3.3 Algebraic Multiplicity of an Eigenvalue

We say that λ is an eigenvalue with algebraic multiplicity k if
(x− λ)k is a factor of pA(x), but (x− λ)k+1 is not.

In other words, the algebraic multiplicity of an eigenvalue λ is the
(largest) power to which the corresponding factor (x − λ) appears in the
characteristic polynomial. In our example above, all three of the matrices
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A, B, and C have the eigenvalue 2 with algebraic multiplicity 3. However,
consider the corresponding eigenvectors in each case:

For A =

2 0 0
0 2 0
0 0 2

, we have A − 2I = 0, so every non-zero vector x⃗

is an eigenvector. Indeed, A = 2I, so

Ax⃗ = (2I)x⃗ = I(2x⃗) = 2x⃗

for every vector. In particular, we can choose the standard unit basis
vectors

e⃗1 =

10
0

 , e⃗2 =

01
0

 , e⃗3 =

00
1


as our basic eigenvectors, and we see that there are three independent
eigenvectors corresponding to the eigenvalue λ = 2.

For B =

2 0 0
0 2 1
0 0 2

, we have B − 2I =

0 0 0
0 0 1
0 0 0

, which is row-

equivalent to

0 0 1
0 0 0
0 0 0

. The general solution to the equation (B−2I)x⃗ =

0⃗ is thus given by

x⃗ =

st
0

 = s

10
0

+ t

01
0

 ,

since the reduced row-echelon form of B − 2I tells us that we must have
z = 0, while x and y are free. Thus, in this case we have two independent
basic eigenvectors, given by the standard unit basis vectors e⃗1 and e⃗2.

Finally, for C =

2 1 0
0 2 1
0 0 2

 have have C − 2I =

0 1 0
0 0 1
0 0 0

, which

is already in reduced-row echelon form. From this, we can see that the
system (C − 2I)x⃗ = 0⃗ has general solution

x⃗ =

t0
0

 = te⃗1,

so we have only one independent eigenvector associated to λ = 2; namely,
e⃗1.

The above shows us that when the algebraic multiplicity of an eigen-
value is greater than one, we might have multiple independent eigenvectors
associated to that eigenvalue, but this is not guaranteed. To quantify this
situation, we introduce further terminology. First, we make a definition:
the null space of an n× n matrix A is the set defined by

null(A) = {x⃗ ∈ Rn |Ax⃗ = 0⃗}.

In this language, we note that every eigenvector associated to an eigenvalue
λ belongs to the null space of A−λI. Indeed, null(A−λI) is equal to the
set of all eigenvectors associated to the eigenvalue λ, along with the zero
vector. This leads to another definition:
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Definition 8.3.4 Eigenspace

Let A be an n × n matrix, and let λ be any real number. The
λ-eigenspace of A, denoted by E(A, λ), is defined by

E(A, λ) = null(A− λI).

A couple of remarks on this definition are in order. First, notice that
λ is not assumed to be an eigenvalue in the definition above. However, for
any real number λ which is not an eigenvalue, we have

E(A, λ) = {⃗0}.

The eigenvalues of A can thus be described as those real numbers for which
E(A, λ) ̸= {⃗0}. When λ is an eigenvalue, the basic eigenvectors associated
to λ (that is, the basic solutions to the system (A − λI)x⃗ = 0⃗) form a
basis for E(A, λ). This tells us that the dimension of each eigenspace is
given by the number of independent basic eigenvectors associated to the
corresponding eigenvalue, and gives us one more definition:

Definition 8.3.5 Geometric Multiplicity of an Eigen-
value

Let A be an n × n matrix. The geometric multiplicity of an
eigenvalue λ of A is defined to be the dimension of the eigenspace
E(A, λ).

Example . . Computing eigenvalues and their multiplicities

Determine the eigenvalues of the matrix A =

0 1 1
1 0 1
1 1 0

, along with their

algebraic and geometric multiplicities.

Solution We first compute the eigenvalues of A. The character-
istic polynomial of A is given by

cA(x) =

∣∣∣∣∣∣
x −1 −1
−1 x −1
−1 −1 x

∣∣∣∣∣∣
= x

∣∣∣∣ x −1
−1 x

∣∣∣∣+ ∣∣∣∣−1 −1
−1 x

∣∣∣∣− ∣∣∣∣−1 x
−1 −1

∣∣∣∣
= x(x2 − 1)− (x+ 1)− (x+ 1)

= x(x− 1)(x+ 1)− 2(x+ 1)

= (x2 − x− 2)(x+ 1)

= (x− 2)(x+ 1)2.

We see that the roots of cA(x) are λ1 = 2, which has algebraic multiplicity
1, and λ2 = −1, which has algebraic multiplicity 2. To determine the
geometric multiplicities, we compute the corresponding eigenvectors. For
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λ = 2, we have

A− 2I =

−2 1 1
1 −2 1
1 1 −2

 RREF−−−−→

1 0 −1
0 1 −1
0 0 0

 .

Thus, (A − 2I)x⃗ = 0⃗ for x⃗ =

tt
t

 = t

11
1

, so x⃗1 =

11
1

 is the (single)

basic eigenvector associated to λ = 2. This gives us

E(A, 2) = span


11
1

 ,

so the geometric multiplicity of λ = 2 is dimE(A, 2) = 1. For λ = −1, we
find

A− (−1)I =

1 1 1
1 1 1
1 1 1

 RREF−−−−→

1 1 1
0 0 0
0 0 0

 .

This tells us that the general solution to (A+ I)x⃗ = 0⃗ is

x⃗ =

−s− t
s
t

 = s

−1
1
0

+ t

−1
0
1

 ,

so

E(A,−1) = span


−1

1
0

 ,

−1
0
1

 ,

and the geometric multiplicity of λ = −1 is dimE(A,−1) = 2.

Diagonaliza on
One common application of matrix algebra is to a class of dynamical
systems known as linear recurrences. A linear recurrence is a process that
occurs in discrete steps, such that the state of the system at any step k
depends linearly on the state of the system after the previous step. An
example might be a population model for an ecosystem involving several
species. For a simple two-species “predator-prey” model, we might have
two populations P1 (of rabbits, perhaps?) and P2 (let’s say these are
foxes) where the populations at a time tk satisfy a relationship such as

P1(tk) = aP1(tk−1) + bP2(tk−1)

P2(tk) = cP1(tk−1) + dP2(tk−1).

A reasonable model would probably have positive values for the coefficients
a and d (absent competition, predators, etc. we expect the populations to
increase), while b would be negative (more foxes mean fewer rabbits) and
c would be positive (more rabbits provide more fox food). If we introduce

a “population vector” P⃗ (t) =

[
P1(t)
P2(t)

]
to describe the situation at a time

t, then the above system can be written in the form P⃗ (tk) = AP⃗ (tk−1),

where A =

[
a b
c d

]
.
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Now, given an initial population state P⃗ (t0), we might want to know
what to expect after several generations (or seasons, or some other rea-
sonable unit of time). Notice that we have

P⃗ (t1) = AP⃗ (t0)

P⃗ (t2) = AP⃗ (t1) = A(AP⃗ (t0)) = A2P⃗ (t0)

P⃗ (t3) = AP⃗ (t2) = A(A2P⃗ (t0)) = A3P⃗ (t0)

...
...

P⃗ (tk) = AkP⃗ (t0).

Thus, to model the time evolution of our system, it suffices to compute
powers of our matrix A. If we want to study a system over long periods of
time, we need to be able to compute large powers of our matrix, and for
complex systems, being able to do so efficiently will become increasingly
important. (For example, we may be interested in whether or not the
system settles into an equilibrium state. This would be the case, for
example, if we were able to show that Ak was approximately equal to the
identity matrix for large values of k.)

One case where this is easily done is when the initial state P⃗0 = P⃗ (t0)

is an eigenvector for our matrix: if AP⃗0 = λP⃗0, then we have

A2P⃗0 = A(AP⃗0) = A(λP⃗0) = λ(AP⃗0) = λ(λP⃗0) = λ2P⃗0

A3P⃗0 = A(A2P⃗0) = A(λ2P⃗0) = λ2(AP⃗0) = λ2(λP⃗0) = λ3P⃗0,

and so on: in general, AkP⃗0 = λkP⃗0. This is useful, since computing
powers of a number is much simpler than computing powers of a matrix.

What if the initial state is not an eigenvector? It turns out that the
same trick works as long as P⃗0 can be written as a linear combination of
eigenvectors: suppose that

P⃗0 = c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k,

where x⃗1, x⃗2, . . . , x⃗k are eigenvectors of A with eigenvalues λ1, λ2, . . . , λk,
respectively. (Note that at this point we’ve moved away from the original
premise of a 2× 2 matrix A to consider a more general situation.) In this
case, for any natural number n, we have

AnP⃗0 = An(c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k)

= c1(A
nx⃗1) + c2(A

nx⃗2) + · · ·+ ck(A
nx⃗k)

= c1(λ
n
1 x⃗1) + c2(λ

n
2 x⃗2) + · · ·+ ck(λ

n
k x⃗k),

using our previous result. Again, we only need to be able to compute
powers of the eigenvalues, and not of the original matrix.

With the above in mind, we will clearly be in an advantageous situation
if we can guarantee that every vector in our space can be written as a
linear combination of eigenvectors. We know from our earlier work that
in order to guarantee this, we would need to be able to construct a basis
of eigenvectors. We will see how such a basis can be used after we make
a definition.



Suppose that c1x⃗1 + c2x⃗2 +
· · · + ckx⃗k = 0⃗ for some scalars
c1, c2, . . . , ck. Then we have

0⃗ = c1P e⃗1+· · ·+cnP e⃗n = P (c1e⃗1+· · ·+cne⃗n).

Since P is invertible, we can conclude
that c1e⃗1 + · · · + cne⃗n = 0⃗, and thus
c1 = c2 = · · · = cn = 0, as required.
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Definition 8.3.6 Diagonalizable Matrix

We say that an n × n matrix A is diagonalizable (can be diag-
onalized) if A ∼ D for some diagonal matrix D. In other words,
A is diagonalizable if there exists an invertible matrix P such that
D = P−1AP is a diagonal matrix.

Theorem 8.3.3 A matrix with a basis of eigenvectors is
diagonalizable

An n × n matrix A is diagonalizable if and only if there exists a
basis for Rn consisting of eigenvectors of A.

We will now proceed with a proof of this theorem. We will see that in
addition to the theoretical interest in providing a proof, the ideas in this
proof will have practical use as well.

First, suppose that A can be diagonalized. Then there exists an in-
vertible matrix P such that P−1AP = D, where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 ,

where λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues of A.
Letting e⃗1, . . . , e⃗n denote the standard basis for Rn we have, for each
j = 1, 2, . . . , n:

De⃗j = λj e⃗j

(P−1AP )e⃗j = λj e⃗j

(AP )e⃗j = P (λj e⃗j)

A(P e⃗j)λj(P e⃗j),

so x⃗j = P e⃗j is an eigenvector for A with eigenvalue λj . Moreover, since P
is invertible, we know that the vectors x⃗1, . . . , x⃗n are linearly independent,
and thus form our desired basis of eigenvectors. (See the margin note for
a proof of this fact.)

Conversely, suppose that we have a basis x⃗1, x⃗2, . . . , x⃗n of eigenvectors
for A, with corresponding eigenvalues λ1, λ2, . . . , λn. Let P be the matrix
whose columns are given by these vectors. Then P is invertible, since its
columns are linearly independent. Let D be defined as above. Then

PD =
[
x⃗1 x⃗2 · · · x⃗n

]

λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 =
[
λ1x⃗1 λ2x⃗2 · · · λnx⃗n

]
,

while

AP = A
[
x⃗1 x⃗2 · · · x⃗n

]
=
[
Ax⃗1 Ax⃗2 · · · Ax⃗n

]
=
[
λ1x⃗1 λ2x⃗2 · · · λnx⃗n

]
.
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Thus, PD = AP , and since P is invertible, this gives us D = P−1AP , as
required.

As we discussed above, the diagonalizability of A makes it easy to
compute powers of A. Indeed, suppose P−1AP = D is diagonal, for some
invertible matrix P . Then A = PDP−1, and

An = (PDP−1)n = (PDP−1) · · · (PDP−1) = PD(P−1P )D · · · (P−1P )DP−1 = PDnP−1.

This makes it easy to compute An, since it’s easy to compute Dn:

If D =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 , then Dn =


λn
1 0 · · · 0
0 λn

2 · · · 0
...

... . . . ...
0 0 · · · λn

n

 .

The proof Theorem 8.3.3 is quite useful, since it tells us two things:
first, we now know what it takes to diagonalize a matrix: for an n × n
matrix, we need to be able to find n independent eigenvectors. Second,
the proof of the theorem tells us how to diagonalize: once we’ve found
our eigenvectors, we construct the matrix P whose columns are given by
the eigenvectors of A; the matrix P−1AP will then be a diagonal matrix
with the eigenvalues of A on the main diagonal. This leaves us with the
question: when can we be sure we have enough eigenvectors? To answer
this, we begin with a theorem:

Theorem 8.3.4 Linear independence of eigenvectors

The eigenvectors x⃗1, . . . , x⃗k corresponding to distinct eigenvalues
of A are linearly independent.

The above theorem leads to the following corollary:

Theorem 8.3.5 Distinct eigenvalues and diagonalization

If an n × n matrix A has n distinct eigenvalues, then A is diago-
nalizable.

Let us first see how the above corollary follows from our theorem. We
know that every eigenvalue has at least one associated eigenvector. If
there are n distinct eigenvalues, then we have n associated eigenvectors
which, by the theorem above, are linearly independent, and we know that
any set of n linearly independent vectors in Rn forms a basis for Rn.

As for the proof of the theorem, we use an argument by contradiction:
suppose, to the contrary, that the eigenvectors x⃗1, . . . , x⃗k are linearly de-
pendent. Then there is some m, 2 ≤ m ≤ k − 1, such that the vectors
x⃗1, . . . , x⃗m are linearly independent, but x⃗m+1 can be written as a linear
combination of the vectors x⃗1, . . . , x⃗m; that is,

x⃗m+1 = c1x⃗1 + c2x⃗2 + · · ·+ cmx⃗m, ( . )
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for some scalars c1, . . . , cm. Then, multiplying both sides of ( . ) on the
left by A, we must have

Ax⃗m+1 = A(c1x⃗1+c2x⃗2+· · ·+cmx⃗m) = c1(Ax⃗1)+c2(Ax⃗2)+· · ·+cm(Ax⃗m),

but each vector x⃗i is an eigenvector of A with eigenvalue λi. Thus,

λm+1x⃗m+1 = c1λ1x⃗1 + c2λ2x⃗2 + · · ·+ cmλmx⃗m.

On the other hand, if we multiply both sides of ( . ) by the scalar λm+1,
we have

λm+1x⃗m+1 = c1λm+1x⃗1 + c2λm+1x⃗2 + · · ·+ cmλm+1x⃗m+1.

Subtracting these last two equations, we find:

0⃗ = c1(λm+1 − λ1)x⃗1 + c2(λm+1 − λ2)x⃗2 + · · ·+ cm(λm+1 − λm)x⃗m.

Now, we are assuming that our eigenvalues are all distinct. Thus, λm+1 −
λi ̸= 0 for all i = 1, 2, . . . ,m. On the other hand, the vectors x⃗1, x⃗2, . . . , x⃗m

are assumed to be linearly independent, so we must have

c1(λm+1 − λ1) = 0, c2(λm+1 − λ2) = 0, . . . , cm(λm+1 − λm) = 0.

Since none of the λm+1 − λi terms vanish, it must be the case that c1 =
c2 = · · · = cm = 0. But if that is true, then

x⃗m+1 = 0x⃗1 + 0x⃗2 + · · ·+ 0x⃗m = 0⃗,

which is impossible, since x⃗m+1 was assumed to be an eigenvector, and
eigenvectors are nonzero. Thus, it must be the case that all of our eigen-
vectors are linearly independent.

The above tells us that any n×n matrix A with n distinct eigenvalues
is automatically diagonalizable. There are two other possibilities. One
is that the characteristic polynomial of A cannot be completely factored
over the real numbers. In this case, diagonalization is impossible, unless
we are willing to consider complex eigenvalues. Recall (from way back
in Chapter 2) that over the complex numbers, every polynomial can be
completely factored. (This is the Fundamental Theorem of Algebra.) In
this case, we may still be able to diagonalize, but the eigenvectors corre-
sponding to the complex eigenvalues may well be complex themselves, so
the matrix P used to diagonalize A could have complex entries.

The other possibility is that we have repeated eigenvalues. Here, it
is possible that we encounter truly insurmountable obstacles. First, we
have the following theorem, which we will state without proof. The inter-
ested reader can easily find the details in other linear algebra textbooks
or online.

Theorem 8.3.6 Algebraic versus geometric multiplicity

Let A be an n× n matrix, and for each real number λ, let mλ(A)
denote the algebraic multiplicity of λ. (If λ is not an eigenvalue of
A, we set mλ(A) = 0.) Then for all numbers λ, we have

dim null(A− λI) ≤ mλ(A).
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In other words, the geometric multiplicity of an eigenvalue is always
less than or equal to the algebraic multiplicity. Note that the sum of the
algebraic multiplicities is always equal to the degree of the characteristic
polynomial, which, in turn, is equal to n, for an n× n matrix A. On the
other hand, the total number of independent eigenvectors for A is equal
to the sum of the geometric multiplicities. (We know that eigenvectors for
different eigenvalues are independent, and the geometric multiplicity tells
us how many independent eigenvectors we’ll have for a single eigenvalue.)
As a result, we have the following:

Theorem 8.3.7 Diagonalization and multiplicities

An n × n matrix A is diagonalizable if and only if dim null(A) =
mλ(A) for each eigenvalue λ of A; that is, if the geometric multi-
plicity of each eigenvalue is equal to its algebraic multiplicity.

This also tells us exactly when we can expect a matrix to fail to be
diagonalizable: this will be the case if A has an eigenvalue of algebraic
multiplicity greater than 1 for which the geometric multiplicity is less
than the algebraic multiplicity. (That is, if we don’t get “enough” basic
eigenvectors corresponding to a repeated eigenvalue.)

The reader may wonder if there is anything further that can be said in
the case that a matrix A is not diagonalizable, and indeed, there is. As long
as we are willing to work over the complex numbers (to avoid situations
where the characteristic polynomial cannot be factored), one can prove
that in the worst-case scenario, there exists an invertible matrix P such
that the matrix P−1AP is triangular. (If we can’t get a diagonal matrix,
upper or lower-triangular is the next best thing.) The standard form of
such a matrix is called the Jordan Canonical Form; it is obtained using
what are called generalized eigenvectors. The Jordan Canonical Form of
a matrix is studied in more advanced courses in linear algebra.

One last important result that we do not have time to study concerns
the case of symmetric matrices. Recall that an n × n matrix A is sym-
metric if AT = A. An important result called the Spectral Theorem
guarantees that every symmetric matrix A is diagonalizable. In fact, the
spectral theorem goes one step further. Recall that two vectors u⃗ and v⃗

are orthogonal if u⃗⃗⃗ · v⃗ = 0. We say that a set of vectors {x⃗1, x⃗2, . . . , x⃗k} is
orthogonal if x⃗i ̸= 0⃗ for each i, and x⃗i⃗⃗ ·x⃗j = 0 for all i ̸= j. Orthogonality
is a “stronger” condition than linear independence. Indeed, if the vectors
x⃗1, . . . , x⃗k are orthogonal and

c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k = 0⃗

for some scalars c1, c2, . . . , ck, taking the dot product of both sides of the
above equation with x⃗1 gives us

c1(x⃗1⃗⃗ · x⃗1) + c2(0) + · · ·+ ck(0) = 0,

and since x⃗1⃗⃗ · x⃗1 = ∥x⃗1∥2 ̸= 0, it must be that c1 = 0, and similarly, all
the other scalars must be zero as well.

For a symmetric matrix, eigenvectors corresponding to distinct eigen-
values are not just independent, they’re orthogonal. Indeed, since x⃗1⃗⃗ · x⃗2
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can be written as the matrix product x⃗T
1 x⃗2, we have (using the fact that

AT = A):

λ1(x⃗1⃗⃗·x⃗2) = (λ1x⃗1)
T x⃗2 = (Ax⃗1)

T x⃗2 = (x⃗T
1 A

T )x⃗2 = x⃗T
1 (Ax⃗2) = x⃗T

1 (λ2x⃗2) = λ2(x⃗1⃗⃗·x⃗2),

Thus, (λ1 −λ2)(x⃗1⃗⃗ · x⃗2) = 0, and since λ1 ̸= λ2, we must have x⃗1⃗⃗ · x⃗2 = 0.
It is possible to prove that for a symmetric matrix, one can find an

orthogonal basis of eigenvectors. This observation has a number of
important applications. (Try an online search for “orthogonal diagonal-
ization” and you should be able to find several examples.)

Matrix similarity and change of basis for transforma ons

We end this section with the promised explanation of how similar matrices
can be viewed as different representations of the same linear transforma-
tion. If we think of matrices in terms of the matrix transformations they
define, then two matrix transformations obtained from similar matrices
should be viewed as two descriptions of the same linear transformation
using different “coordinate systems”. Let us explain what we mean here.
Suppose

T : Rn → Rn

is a matrix transformation defined by T (x⃗) = Ax⃗ for some n × n matrix
A. Let us consider this to be a transformation defined in terms of the
standard basis vectors e⃗1, e⃗2, . . . , e⃗n for Rn. We can then write

x⃗ =
[
x1 x2 · · · xn

]T
= x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n

and think of T as a function of the variables x1, x2, . . . , xn. To put this
another way, when we speak of a matrix transformation with standard
matrix A, that matrix A is defined with respect to the standard basis. In
general, let A = {e⃗1, . . . , e⃗n} denote our standard basis, and suppose

B = {⃗b1, b⃗2, . . . , b⃗n}

is another basis for Rn. Recall that when we say that the set B is a basis,
we mean that spanB = Rn, so that every vector in Rn can be written as
a linear combination of the vectors in B, and B is linearly independent,
which means that every vector in Rn can be written uniquely as a linear
combination of the vectors in B.

Let v⃗ = y1⃗b1 + y2⃗b2 + · · · + ynb⃗n any vector in Rn. Using the same
linear transformation T as above, we have

T (v⃗) = T (y1⃗b1 + y2⃗b2 + · · ·+ ynb⃗n) = y1T (⃗b1) + y2T (⃗b2) + · · ·+ ynT (⃗bn).

Now, each of the vectors T (⃗bi) can, in turn, be written in terms of the
basis B: we have

T (⃗b1) = b11⃗b1 + b21⃗b2 + · · ·+ bn1⃗bn

T (⃗b2) = b12⃗b1 + b22⃗b2 + · · ·+ bn2⃗bn

...
...

...
...

T (⃗bn) = b1nb⃗1 + b2nb⃗2 + · · ·+ bnnb⃗n.
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The coefficients bij obtained above determine a new matrix B, which we
define to be the matrix of T with respect to the basis B. Notice that
if we write y⃗ =

[
y1 y2 · · · yn

]T , we have

By⃗ =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · nnn



y1
y2
...
yn

 =


b11y1 + b12y2 + · · · b1nyn

b21y1 + b22y2 + · · ·+ b2nyn
...

bn1y1 + bn2y2 + · · · bnnyn

 .

Let’s introduce some notation: for any vector w⃗ in Rn, we will let [w⃗]B
denote the n× 1 column vector defined as follows:

If w⃗ = w1⃗b1 + w2⃗b2 + · · ·+ wnb⃗n, then [w⃗]B =


w1

w2

...
wn

 .

In this notation, we have y⃗ = [v⃗]B, and [T (v⃗)]B =


b11y1 + b12y2 + · · · b1nyn

b21y1 + b22y2 + · · ·+ b2nyn
...

bn1y1 + bn2y2 + · · · bnnyn

,

since

(b11y1 + · · · b1nyn)⃗b1 + · · ·+ (bn1y1 + · · ·+ bnnyn)⃗bn

= y1(b11⃗b1 + · · ·+ bn1⃗bn) + · · ·+ yn(b1nb⃗1 + · · ·+ bnnb⃗n)

= y1T (⃗b1) + · · ·+ ynT (⃗bn)

= T (y1⃗b1 + · · ·+ ynb⃗n)

= T (v⃗).

Let’s tie everything together. First, let P be the n × n matrix whose
columns are the vectors in B. Then we know that

b⃗1 = P e⃗1, b⃗2 = P e⃗2, . . . , b⃗n = P e⃗n,

and conversely,

e⃗1 = P−1⃗b1, e⃗2 = P−1⃗b2, . . . , e⃗n = P−1⃗bn.

If [v⃗]B =


v1
v2
...
vn

, then we have

v⃗ = v1⃗b1+· · ·+vnb⃗n = v1P e⃗1+· · ·+vnP e⃗n = P (v1e⃗1+· · ·+vne⃗n) = P [v⃗]B.

Note that we can also write v⃗ = [v⃗]A, where A is the standard basis, since
by default, all of our vectors are written in terms of the standard basis.
Thus, we can conclude that

[v⃗]A = P [v⃗]B ( . )

defines the relationship between the column vector representations of our
vector with respect to the two bases. Similarly, we can write

[T (v⃗)]A = P [T (v⃗)]B ( . )
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for the column representations of the output of our linear transformation
T . However, we also know that our transformation was originally defined
using the matrix A according to

[T (v⃗)]A = A[v⃗]A ( . )

and that the matrix B above was defined such that

[T (v⃗)]B = B[v⃗]B. ( . )

Equating the two expressions above for [T (v⃗)]A, in Equations ( . ) and
( . ) we have

P [T (v⃗)]B = A[v⃗]A.

Plugging in Equations ( . ) on the left and ( . ) on the right, we have

PB[v⃗]B = AP [v⃗]B.

Since this must be true for any vector, we conclude that PB = AP , and
thus

B = P−1AP,

so B is similar to A.



Exercises 8.3
Problems

In Exercises – , compute the characteris c polynomial of
the given matrix, and the eigenvalues of the matrix, along
with their algebraic and geometric mul plici es. If possible,
construct amatrixP such thatP−1AP is diagonal, and verify
your result. If no such matrix P exists, explain why.

.
[
3 −2
1 0

]

.
[
2 −1
1 0

]

.
[
4 −2
1 3

]

.
[

9 −7
−6 20

]

.

 7 0 0
10 −3 0
10 −8 5



.

 1 1 0
3 0 3
2 −1 3



.

 3 2 −2
2 2 −2
2 2 −1



.

 0 1 1
1 0 1
1 1 0
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1. The required points A(−3,−7), B(1.3,−2), C(π,
√
10),

D(0, 8), E(−5.5, 0), F (−8, 4), G(9.2,−7.8), and H(7, 5)
are plotted in the Cartesian Coordinate Plane below.
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H(7, 5)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

3. d = 4
√
10, M = (1,−4)

5. d =
√
37
2

, M =
(
5
6
, 7
4

)
7. d = 3

√
5, M =

(
−

√
2

2
,−

√
3

2

)
9. d =

√
x2 + y2, M =

(
x
2
, y
2

)
11. (0, 3)

13.
(√

2
2
,−

√
2

2

)
,
(
−

√
2
2
,
√

2
2

)
15.

17. (a) The distance from A to B is |AB| =
√
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distance from B to C is |BC| =
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13
)2
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(√

52
)2

=
(√

65
)2

, we are guaranteed
by the converse of the Pythagorean Theorem that
the triangle is a right triangle.

(b) Show that |AC|2 + |BC|2 = |AB|2

19.
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1. For z = 2 + 3i and w = 4i
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• z
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√
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• zz = 4

• (z)2 = 4i

9. For z = 1
2
+

√
3

2
i and w = − 1

2
+

√
3

2
i

• z + w = i
√
3

• zw = −1

• z2 = − 1
2
+

√
3

2
i

• 1
z
= 1

2
−

√
3

2
i

• z
w

= 1
2
−

√
3

2
i

• w
z

= 1
2
+

√
3

2
i

• z = 1
2
−

√
3
2

i

• zz = 1

• (z)2 = − 1
2
−

√
3

2
i

11. 7i

13. −10

15. −12

17. 3

19. i5 = i4 · i = 1 · i = i

21. i7 = i4 · i3 = 1 · (−i) = −i

23. i15 =
(
i4
)3 · i3 = 1 · (−i) = −i

25. i117 =
(
i4
)29 · i = 1 · i = i

27. x =
2± i

√
14

3

29. y = ±2,±i

31. y = ±
3i
√
2

2

33. x =

√
5± i

√
3

2

35. z = ±2,±2i

Sec on .

1.
(
2,−

5π

3

)
,

(
2,

7π

3

)

x

y

−1 1 2

1

2

3.
(
1

3
,−

π

2

)
,

(
1

3
,
7π

2

)

x

y

1

1

5.
(
12,−

19π

6

)
,

(
12,

17π

6

)

x

y

−12 −9 −6 −3

3

6

7.
(
2
√
2,−3π

)
,
(
2
√
2, 3π

)

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

9.
(
5
√
2

2
,−

5
√
2

2

)

11.
(
−
11

√
3

2
,
11

2

)
13. (0,−9)

15.
(
6
√
5

5
,
12

√
5

5

)
17. (3,−4)

19.
(
−
2

9
,−

4
√
2

9

)
21. (5, 12)

23.
(
2
√
3,

π

6

)
25.

(
2
√
3,

7π

6

)
27.

(
2,

3π

4

)
29.

(
1

2
,
11π

6

)

A.



31.
(√

10,
5π

4

)
33. (5, arctan (2))

35. (20, π − arctan(3))

37.
(
1

3
, π + arctan (2)

)
39.

(
15, 2π − arctan

(
3

4

))
41.

(√
13, π − arctan(2)

)
Sec on .

1. z = 9 + 9i = 9
√
2 cis

(
π
4

)
, Re(z) = 9, Im(z) = 9,

|z| = 9
√
2, arg(z) =

{
π
4
+ 2πk | k is an integer

}
and

Arg(z) = π
4

.

3. z = 6i = 6 cis
(
π
2

)
, Re(z) = 0, Im(z) = 6, |z| = 6,

arg(z) =
{

π
2
+ 2πk | k is an integer

}
and Arg(z) = π

2
.

5. z = −6
√
3 + 6i = 12 cis

(
5π
6

)
, Re(z) = −6

√
3,

Im(z) = 6, |z| = 12,
arg(z) =

{
5π
6

+ 2πk | k is an integer
}

and Arg(z) = 5π
6

.

7. z = −
√
3

2
− 1

2
i = cis

(
7π
6

)
, Re(z) = −

√
3

2
, Im(z) = − 1

2
,

|z| = 1, arg(z) =
{

7π
6

+ 2πk | k is an integer
}

and
Arg(z) = − 5π

6
.

9. z = −5i = 5 cis
(
3π
2

)
, Re(z) = 0, Im(z) = −5, |z| = 5,

arg(z) =
{

3π
2

+ 2πk | k is an integer
}

and Arg(z) = −π
2

.

11. z = 6 = 6 cis (0), Re(z) = 6, Im(z) = 0, |z| = 6,
arg(z) = {2πk | k is an integer} and Arg(z) = 0.

13. z = 3 + 4i = 5 cis
(
arctan

(
4
3

))
, Re(z) = 3, Im(z) = 4,

|z| = 5, arg(z) =
{

arctan
(
4
3

)
+ 2πk | k is an integer

}
and Arg(z) = arctan

(
4
3

)
.

15. z = −7 + 24i = 25 cis
(
π − arctan

(
24
7

))
, Re(z) = −7,

Im(z) = 24, |z| = 25,
arg(z) =

{
π − arctan

(
24
7

)
+ 2πk | k is an integer

}
and

Arg(z) = π − arctan
(
24
7

)
.

17. z = −12− 5i = 13 cis
(
π + arctan

(
5
12

))
, Re(z) = −12,

Im(z) = −5, |z| = 13,
arg(z) =

{
π + arctan

(
5
12

)
+ 2πk | k is an integer

}
and

Arg(z) = arctan
(

5
12

)
− π.

19. z = 4− 2i = 2
√
5 cis

(
arctan

(
− 1

2

))
, Re(z) = 4,

Im(z) = −2, |z| = 2
√
5,

arg(z) =
{

arctan
(
− 1

2

)
+ 2πk | k is an integer

}
and

Arg(z) = arctan
(
− 1

2

)
= − arctan

(
1
2

)
.

21. z = 6 cis(0) = 6

23. z = 7
√
2 cis

(
π
4

)
= 7 + 7i

25. z = 4 cis
(
2π
3

)
= −2 + 2i

√
3

27. z = 9 cis (π) = −9

29. z = 7 cis
(
− 3π

4

)
= − 7

√
2

2
− 7

√
2

2
i

31. z = 1
2

cis
(
7π
4

)
=

√
2

4
− i

√
2

4

33. z = 8 cis
(

π
12

)
= 4
√

2 +
√
3 + 4i

√
2−

√
3

35. z = 5 cis
(
arctan

(
4
3

))
= 3 + 4i

37. z = 15 cis (arctan (−2)) = 3
√
5− 6i

√
5

39. z = 50 cis
(
π − arctan

(
7
24

))
= −48 + 14i

41. Since z = − 3
√
3

2
+ 3

2
i = 3 cis

(
5π
6

)
and

w = 3
√
2− 3i

√
2 = 6 cis

(
−π

4

)
, we have zw = 18 cis

(
7π
12

)
43. Since z = 3 cis

(
5π
6

)
and w = 6 cis

(
−π

4

)
, w

z
= 2 cis

(
11π
12

)
45. Since z = 3 cis

(
5π
6

)
and w = 6 cis

(
−π

4

)
,

w3 = 216 cis
(
− 3π

4

)
47. Since z = 3 cis

(
5π
6

)
and w = 6 cis

(
−π

4

)
,

z3w2 = 972 cis(0)
49. Since z = 3 cis

(
5π
6

)
and w = 6 cis

(
−π

4

)
, w

z2
= 2

3
cis
(

π
12

)
51. Since z = 3 cis

(
5π
6

)
and w = 6 cis

(
−π

4

)
, w2

z3
= 4

3
cis(π)

53.
(
−2 + 2i

√
3
)3

= 64

55. (−3 + 3i)4 = −324

57.
(
5
2
+ 5

2
i
)3

= − 125
4

+ 125
4

i

59.
(
3
2
− 3

2
i
)3

= − 27
4

− 27
4
i

61.
(√

2
2

+
√
2

2
i
)4

= −1

63. (
√
3− i)5 = −16

√
3− 16i

65. Since z = 4i = 4 cis
(
π
2

)
we have

w0 = 2 cis
(
π
4

)
=

√
2 + i

√
2

w1 = 2 cis
(
5π
4

)
= −

√
2− i

√
2

67. Since z = 1 + i
√
3 = 2 cis

(
π
3

)
we have

w0 =
√
2 cis

(
π
6

)
=

√
6

2
+

√
2

2
i

w1 =
√
2 cis

(
7π
6

)
= −

√
6

2
−

√
2

2
i

69. Since z = 64 = 64 cis (0) we have
w0 = 4 cis (0) = 4
w1 = 4 cis

(
2π
3

)
= −2 + 2i

√
3

w2 = 4 cis
(
4π
3

)
= −2− 2i

√
3

71. Since z = i = cis
(
π
2

)
we have

w0 = cis
(
π
6

)
=

√
3

2
+ 1

2
i

w1 = cis
(
5π
6

)
= −

√
3
2

+ 1
2
i

w2 = cis
(
3π
2

)
= −i

73. Since z = 16 = 16 cis (0) we have
w0 = 2 cis (0) = 2
w1 = 2 cis

(
π
2

)
= 2i

w2 = 2 cis (π) = −2
w3 = 2 cis

(
3π
2

)
= −2i

75. Since z = 64 = 64 cis(0) we have
w0 = 2 cis(0) = 2
w1 = 2 cis

(
π
3

)
= 1 +

√
3i

w2 = 2 cis
(
2π
3

)
= −1 +

√
3i

w3 = 2 cis (π) = −2
w4 = 2 cis

(
− 2π

3

)
= −1−

√
3i

w5 = 2 cis
(
−π

3

)
= 1−

√
3i

77. Note: In the answers for w0 and w2 the first rectangular
form comes from applying the appropriate Sum or
Difference Identity ( π

12
= π

3
− π

4
and 17π

12
= 2π

3
+ 3π

4
,

respectively) and the second comes from using the
Half-Angle Identities.
w0 = 3

√
2 cis

(
π
12

)
= 3

√
2
(√

6+
√
2

4
+ i
(√

6−
√
2

4

))
=

3
√
2

(√
2+

√
3

2
+ i

√
2−

√
3

2

)
w1 = 3

√
2 cis

(
3π
4

)
= 3

√
2
(
−

√
2

2
+

√
2
2
i
)

w2 = 3
√
2 cis

(
17π
12

)
= 3

√
2
(√

2−
√
6

4
+ i
(

−
√
2−

√
6

4

))
=

3
√
2

(√
2−

√
3

2
+ i

√
2+

√
3

2

)
79.

A.



81.

Chapter
Sec on .

1. right hand

3. curve (a parabola); surface (a cylinder)

5. a hyperboloid of two sheets

7. ∥ AB ∥ =
√
6; ∥ BC ∥ =

√
17; ∥ AC ∥ =

√
11. Yes, it is a

right triangle as ∥ AB ∥2 + ∥ AC ∥2 = ∥ BC ∥2.

9. Center at (4,−1, 0); radius = 3

11. Interior of a sphere with radius 1 centered at the origin.

13. The first octant of space; all points (x, y, z) where each of
x, y and z are positive. (Analogous to the first quadrant
in the plane.)

Sec on .

1. Answers will vary.

3. A vector with magnitude 1.

5. It stretches the vector by a factor of 2, and points it in
the opposite direction.

7. −−→
PQ = ⟨4,−4⟩ = 4⃗i− 4⃗j

9. −−→
PQ = ⟨2, 2, 0⟩ = 2⃗i+ 2⃗j

11. (a) u⃗+ v⃗ = ⟨3, 2, 1⟩; u⃗− v⃗ = ⟨−1, 0,−3⟩;
πu⃗−

√
2v⃗ =

⟨
π − 2

√
2, π −

√
2,−π − 2

√
2
⟩

.

(c) x⃗ = ⟨−1, 0,−3⟩.

13.

.....

u⃗

.

v⃗

.

u⃗ + v⃗

.

u⃗−
v⃗

.

x

.

y

Sketch of u⃗− v⃗ shifted for clarity.

15.

...

..
u⃗

.

v⃗

.
u⃗ + v⃗

.

u⃗ − v⃗

.

x

.

y

.

z

17. ∥ u⃗ ∥ =
√
17, ∥ v⃗ ∥ =

√
3, ∥ u⃗+ v⃗ ∥ =

√
14,

∥ u⃗− v⃗ ∥ =
√
26

19. ∥ u⃗ ∥ = 7, ∥ v⃗ ∥ = 35, ∥ u⃗+ v⃗ ∥ = 42, ∥ u⃗− v⃗ ∥ = 28

21. u⃗ =
⟨
3/

√
30, 7/

√
30
⟩

23. u⃗ = ⟨1/3,−2/3, 2/3⟩

25. u⃗ = ⟨cos 50◦, sin 50◦⟩ ≈ ⟨0.643, 0.766⟩.

27.

∥ u⃗ ∥ =

√
sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ

=
√

sin2 θ(cos2 φ+ sin2 φ) + cos2 θ

=
√

sin2 θ + cos2 θ
= 1.

29. The force on each chain is 100lb.
31. The force on each chain is 50lb.
33. θ = 5.71◦; the weight is lifted 0.005 ft (about 1/16th of

an inch).
35. θ = 84.29◦; the weight is lifted 9 ft.

Sec on .

1. Scalar
3. By considering the sign of the dot product of the two

vectors. If the dot product is positive, the angle is acute;
if the dot product is negative, the angle is obtuse.

5. −22

7. 3

9. not defined
11. Answers will vary.
13. θ = 0.3218 ≈ 18.43◦

15. θ = π/4 = 45◦

17. Answers will vary; two possible answers are ⟨−7, 4⟩ and
⟨14,−8⟩.

19. Answers will vary; two possible answers are ⟨1, 0,−1⟩ and
⟨4, 5,−9⟩.

21. proj v⃗ u⃗ = ⟨−1/2, 3/2⟩.
23. proj v⃗ u⃗ = ⟨−1/2,−1/2⟩.
25. proj v⃗ u⃗ = ⟨1, 2, 3⟩.
27. u⃗ = ⟨−1/2, 3/2⟩+ ⟨3/2, 1/2⟩.
29. u⃗ = ⟨−1/2,−1/2⟩+ ⟨−5/2, 5/2⟩.
31. u⃗ = ⟨1, 2, 3⟩+ ⟨0, 3,−2⟩.

33. 1.96lb
35. 141.42ft–lb
37. 500ft–lb
39. 500ft–lb

Sec on .

1. vector
3. “Perpendicular” is one answer.
5. Torque
7. u⃗× v⃗ = ⟨11, 1,−17⟩

9. u⃗× v⃗ = ⟨47,−36,−44⟩

11. u⃗× v⃗ = ⟨0, 0, 0⟩

13. i⃗× k⃗ = −j⃗

15. Answers will vary.
17. 5
19. 0
21.

√
14

23. 3

25. 5
√
2/2

27. 1A.



29. 7

31. 2

33. ± 1√
6
⟨1, 1,−2⟩

35. ⟨0,±1, 0⟩
37. 87.5ft–lb
39. 200/3 ≈ 66.67ft–lb
41. With u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, we have

u⃗ · (u⃗× v⃗) = ⟨u1, u2, u3⟩ · (⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩)
= u1(u2v3 − u3v2)− u2(u1v3 − u3v1) + u3(u1v2 − u2v1)

= 0.

Sec on .

1. A point on the line and the direction of the line.
3. parallel, skew
5. vector: ℓ(t) = ⟨2,−4, 1⟩+ t ⟨9, 2, 5⟩

parametric: x = 2 + 9t, y = −4 + 2t, z = 1 + 5t
symmetric: (x− 2)/9 = (y + 4)/2 = (z − 1)/5

7. Answers can vary: vector: ℓ(t) = ⟨2, 1, 5⟩+ t ⟨5,−3,−1⟩
parametric: x = 2 + 5t, y = 1− 3t, z = 5− t
symmetric: (x− 2)/5 = −(y − 1)/3 = −(z − 5)

9. Answers can vary; here the direction is given by d⃗1 × d⃗2:
vector: ℓ(t) = ⟨0, 1, 2⟩+ t ⟨−10, 43, 9⟩
parametric: x = −10t, y = 1 + 43t, z = 2 + 9t
symmetric: −x/10 = (y − 1)/43 = (z − 2)/9

11. Answers can vary; here the direction is given by d⃗1 × d⃗2:
vector: ℓ(t) = ⟨7, 2,−1⟩+ t ⟨1,−1, 2⟩
parametric: x = 7 + t, y = 2− t, z = −1 + 2t
symmetric: x− 7 = 2− y = (z + 1)/2

13. vector: ℓ(t) = ⟨1, 1⟩+ t ⟨2, 3⟩
parametric: x = 1 + 2t, y = 1 + 3t
symmetric: (x− 1)/2 = (y − 1)/3

15. parallel
17. intersecting; ℓ⃗1(3) = ℓ⃗2(4) = ⟨9,−5, 13⟩
19. skew
21. same
23.

√
41/3

25. 5
√
2/2

27. 3/
√
2

29. Since both P and Q are on the line, −−→PQ is parallel to d⃗.
Thus −−→

PQ× d⃗ = 0⃗, giving a distance of 0.
31. (a) The distance formula cannot be used because since

d⃗1 and d⃗2 are parallel, c⃗ is 0⃗ and we cannot divide
by ∥ 0⃗ ∥.

(b) Since d⃗1 and d⃗2 are parallel, −−−→P1P2 lies in the plane
formed by the two lines. Thus −−−→

P1P2 × d⃗2 is
orthogonal to this plane, and c⃗ = (

−−−→
P1P2 × d⃗2)× d⃗2

is parallel to the plane, but still orthogonal to both
d⃗1 and d⃗2. We desire the length of the projection of
−−−→
P1P2 onto c⃗, which is what the formula provides.

(c) Since the lines are parallel, one can measure the
distance between the lines at any location on either
line (just as to find the distance between straight
railroad tracks, one can use a measuring tape
anywhere along the track, not just at one specific
place.) Let P = P1 and Q = P2 as given by the
equations of the lines, and apply the formula for
distance between a point and a line.

Sec on .

1. A point in the plane and a normal vector (i.e., a
direction orthogonal to the plane).

3. Answers will vary.

5. Answers will vary.

7. Standard form: 3(x− 2)− (y − 3) + 7(z − 4) = 0
general form: 3x− y + 7z = 31

9. Answers may vary;
Standard form: 8(x− 1) + 4(y − 2)− 4(z − 3) = 0
general form: 8x+ 4y − 4z = 4

11. Answers may vary;
Standard form: −7(x− 2) + 2(y − 1) + (z − 2) = 0
general form: −7x+ 2y + z = −10

13. Answers may vary;
Standard form: 2(x− 1)− (y − 1) = 0
general form: 2x− y = 1

15. Answers may vary;
Standard form: 2(x− 2)− (y + 6)− 4(z − 1) = 0
general form: 2x− y − 4z = 6

17. Answers may vary;
Standard form: (x− 5) + (y − 7) + (z − 3) = 0
general form: x+ y + z = 15

19. Answers may vary;
Standard form: 3(x+ 4) + 8(y − 7)− 10(z − 2) = 0
general form: 3x+ 8y − 10z = 24

21. Answers may vary:

ℓ =


x = 14t

y = −1− 10t

z = 2− 8t

23. (−3,−7,−5)

25. No point of intersection; the plane and line are parallel.

27.
√

5/7

29. 1/
√
3

31. If P is any point in the plane, and Q is also in the plane,
then −−→

PQ lies parallel to the plane and is orthogonal to n⃗,
the normal vector. Thus n⃗ ·

−−→
PQ = 0, giving the distance

as 0.

Sec on .

1.


−9
−8
16
12



3.


−22
2
12
39


5.

√
71

7. 15

9. True. Suppose S = {v⃗1, v⃗2, . . . , v⃗n} is linearly
independent. Let T ⊆ S be a subset. By re-ordering the
vectors we can assume T = {v⃗1, v⃗2, . . . , v⃗m} for some
m ≤ n. It T were linearly dependent, then there would
exist scalars c1, . . . , cm, not all zero, such that
c1v⃗1 + · · ·+ cmv⃗m = 0⃗. But if this is the case, then we
would have c1v⃗1 + · · ·+ cmv⃗m + 0v⃗m+1 + · · ·+ 0v⃗n = 0⃗,
which is impossible if S is independent.

A.



11. True, since we can add any scalar multiple of the zero
vector to a linear combination without affecting the
value of that linear combination.

13. False. The set
{[

1
0

]
,

[
0
1

]
,

[
0
0

]}
is linearly dependent,

since
[
0
0

]
= 0

[
1
0

]
+ 0

[
0
1

]
, but

[
1
0

]
does not belong to the

span of the set
{[

0
1

]
,

[
0
0

]}
.

Chapter
Sec on .

1. y
3. y
5. n
7. y
9. y

11. x = 1, y = −2

13. x = −1, y = 0, z = 2

15. 29 chickens and 33 pigs

Sec on .

1.

 3 4 5 7
−1 1 −3 1
2 −2 3 5


3.

 1 3 −4 5 17
−1 0 4 8 1
2 3 4 5 6


5. x1 + 2x2 = 3

−x1 + 3x2 = 9

7. x1 + x2 − x3 − x4 = 2
2x1 + x2 + 3x3 + 5x4 = 7

9. x1 + x3 + 7x5 = 2
x2 + 3x3 + 2x4 = 5

11.

 2 −1 7
5 0 3
0 4 −2


13.

 2 −1 7
0 4 −2
5 8 −1


15.

 2 −1 7
0 4 −2
0 5/2 −29/2


17. R1 +R2 → R2

19. R1 ↔ R2

21. x = 2, y = 1

23. x = −1, y = 0

25. x1 = −2, x2 = 1, x3 = 2

Sec on .

1. (a) yes
(b) no

(c) no
(d) yes

3. (a) no
(b) yes

(c) yes
(d) yes

5.
[
1 0
0 1

]
7.
[
1 3
0 0

]
9.
[
1 0 3
0 1 7

]
11.

[
1 −1 2
0 0 0

]

13.

 1 0 0
0 1 0
0 0 1


15.

 1 0 0
0 1 0
0 0 1


17.

 1 0 0 1
0 1 1 1
0 0 0 0


19.

 1 0 1 3
0 1 −2 4
0 0 0 0


21.

[
1 1 0 0 0 0
0 0 1 3 1 4

]
Sec on .

1. x1 = 1− 2x2; x2 is free. Possible solutions: x1 = 1,
x2 = 0 and x1 = −1, x2 = 1. Geometrically, both
equations describe the same line, and every point on this
line is a solution to the system.

3. x1 = 1; x2 = 2. Geometrically, the system represents two
lines intersecting in a single point.

5. No solution; the system is inconsistent. Geometrically,
the system represents two parallel lines.

7. x1 = −11 + 10x3; x2 = −4 + 4x3; x3 is free. Possible
solutions: x1 = −11, x2 = −4, x3 = 0 and x1 = −1,
x2 = 0 and x3 = 1. Geometrically, the system represents
two planes that intersect in a line.

9. x1 = 1− x2 − x4; x2 is free; x3 = 1− 2x4; x4 is free.
Possible solutions: x1 = 1, x2 = 0, x3 = 1, x4 = 0 and
x1 = −2, x2 = 1, x3 = −3, x4 = 2. Since there are four
variables, a geometric description is more difficult (but
see if you can come up with one!).

11. No solution; the system is inconsistent. Geometrically,
the system describes three planes, any two of which
intersect along a line. However, there is no point
common to all three.

13. x1 = 1
3
− 4

3
x3; x2 = 1

3
− 1

3
x3; x3 is free. Possible

solutions: x1 = 1
3

, x2 = 1
3

, x3 = 0 and x1 = −1, x2 = 0,
x3 = 1. Geometrically, the system represents three
planes that all intersect along a common line.

15. Never exactly 1 solution; infinite solutions if k = 2; no
solution if k ̸= 2.

17. Exactly 1 solution if k ̸= 2; no solution if k = 2; never
infinite solutions.

Sec on .

1. 29 chickens and 33 pigs

3. 42 grande tables, 22 venti tables

5. 30 men, 15 women, 20 kids

A.



7. f(x) = −2x+ 10

9. f(x) = 1
2
x2 + 3x+ 1

11. f(x) = 3

13. f(x) = x3 + 1

15. f(x) = 3
2
x+ 1

17. The augmented matrix from this system is 1 1 1 1 8
6 1 2 3 24
0 1 −1 0 0

. From this we find the solution

t =
8

3
−

1

3
f

x =
8

3
−

1

3
f

w =
8

3
−

1

3
f.

The only time each of these variables are nonnegative
integers is when f = 2 or f = 8. If f = 2, then we have 2
touchdowns, 2 extra points and 2 two point conversions
(and 2 field goals); this doesn’t make sense since the
extra points and two point conversions follow
touchdowns. If f = 8, then we have no touchdowns,
extra points or two point conversions (just 8 field goals).
This is the only solution; all points were scored from field
goals.

19. Let x1, x2 and x3 represent the number of free throws, 2
point and 3 point shots taken. The augmented matrix

from this system is
[
1 1 1 30
1 2 3 80

]
. From this we find

the solution

x1 = −20 + x3

x2 = 50− 2x3.

In order for x1 and x2 to be nonnegative, we need
20 ≤ x3 ≤ 25. Thus there are 6 different scenerios: the
“first” is where 20 three point shots are taken, no free
throws, and 10 two point shots; the “last” is where 25
three point shots are taken, 5 free throws, and no two
point shots.

21. Let y = ax+ b; all linear functions through (1,3) come in
the form y = (3− b)x+ b. Examples: b = 0 yields y = 3x;
b = 2 yields y = x+ 2.

23. Let y = ax2 + bx+ c; we find that a = − 1
2
+ 1

2
c and

b = 1
2
− 3

2
c. Examples: c = 1 yields y = −x+ 1; c = 3

yields y = x2 − 4x+ 3.
25. Yes. x⃗ = 2v⃗1 + 3v⃗2

27. No.
29. No. v⃗3 = −2w⃗1 + 2w⃗2.
31. Yes.

Sec on .

1. Multiply Au⃗ and Av⃗ to verify.
3. Multiply Au⃗ and Av⃗ to verify.
5. Multiply Au⃗ and Av⃗ to verify.
7. Multiply Au⃗, Av⃗ and A(u⃗+ v⃗) to verify.
9. Multiply Au⃗, Av⃗ and A(u⃗+ v⃗) to verify.

11. (a) x⃗ =

[
0
0

]
(b) x⃗ =

[
2/5

−13/5

]

13. (a) x⃗ =

[
0
0

]
(b) x⃗ =

[
−2

−9/4

]

15. (a) x⃗ = x3

 5/4
1
1


(b) x⃗ =

 1
0
0

+ x3

 5/4
1
1


17. (a) x⃗ = x3

 6
−4
1


(b) x⃗ =

 −12
8
0

+ x3

 6
−4
1



19. (a) x⃗ = x3


2

2/5
1
0

+ x4


−1
2/5
0
1



(b) x⃗ =


−2
2/5
0
0

+ x3


2

2/5
1
0

+ x4


−1
2/5
0
1



21. (a) x⃗ = x2


−1/2
1
0
0
0

+ x4


1/2
0

−1/2
1
0

+ x5


13/2
0
−2
0
1


(b) x⃗ =

−5
0

3/2
0
0

+ x2


−1/2
1
0
0
0

+ x4


1/2
0

−1/2
1
0

+ x5


13/2
0
−2
0
1



23. (a) x⃗ = x4


1

13/9
−1/3
1
0

+ x5


0
−1
−1
0
1



(b) x⃗ =


1

1/9
5/3
0
0

+ x4


1

13/9
−1/3
1
0

+ x5


0
−1
−1
0
1


25. x⃗ = x2

[
−2
1

]
= x2v⃗

x

y

v⃗

27. x⃗ =

[
0.5
0

]
+ x2

[
2.5
1

]
= x⃗p + x2v⃗

x

y

x⃗p

v⃗

A.
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Sec on .

1.
[
−2 −1
12 13

]
3.
[

2 −2
14 8

]
5.
[

9 −7
11 −6

]
7.
[
−14
6

]
9.
[
−15
−25

]
11. X =

[
−5 9
−1 −14

]
13. X =

[
−5 −2

−9/2 −19/2

]
15. a = 2, b = 1

17. a = 5/2 + 3/2b

19. No solution.

21. No solution.

Sec on .

1. −22

3. 0

5. 5

7. 15

9. −2

11. Not possible.

13. AB =

[
8 3
10 −9

]
BA =

[
−3 24
4 2

]
15. AB =

[
−1 −2 12
10 4 32

]
BA is not possible.

17. AB is not possible.

BA =

[
27 −33 39
−27 −3 −15

]

19. AB =

 −32 34 −24
−32 38 −8
−16 21 4


BA =

[
22 −14
−4 −12

]

21. AB =

 −56 2 −36
20 19 −30
−50 −13 0


BA =

[
−46 40
72 9

]
23. AB =

[
−15 −22 −21 −1
16 −53 −59 −31

]
BA is not possible.

25. AB =

 0 0 4
6 4 −2
2 −4 −6


BA =

 2 −2 6
2 2 4
4 0 −6


27. AB =

 21 −17 −5
19 5 19
5 9 4


BA =

 19 5 23
5 −7 −1

−14 6 18


29. DA =

[
4 −6
4 −6

]
AD =

[
4 8
−3 −6

]

31. DA =

 2 2 2
−6 −6 −6
−15 −15 −15

 AD =

 2 −3 5
4 −6 10
−6 9 −15


33. DA =

 d1a d1b d1c
d2d d2e d2f
d3g d3h d3i

 AD =

 d1a d2b d3c
d1d d2e d3f
d1g d2h d3i


35. Ax⃗ =

[
−6
11

]

37. Ax⃗ =

 −5
5
21


39. Ax⃗ =

 x1 + 2x2 + 3x3

x1 + 2x3

2x1 + 3x2 + x3


41. A2 =

[
4 0
0 9

]
; A3 =

[
8 0
0 27

]

43. A2 =

 0 0 1
1 0 0
0 1 0

; A3 =

 1 0 0
0 1 0
0 0 1


45. (a)

[
0 −2
−5 −1

]
(b)

[
10 2
5 11

]
(c)

[
−11 −15
37 32

]
(d) No.
(e) (A+B)(A+B) = AA+AB +BA+BB =

A2 +AB +BA+B2.
Sec on .

1. X =

[
1 −9
−4 −5

]
3. X =

[
−2 −7
7 −6

]
5. X =

[
−5 2 −3
−4 −3 −2

]
7. X =

[
1 0
3 −1

]

9. X =

 3 −3 3
2 −2 −3
−3 −1 −2


11. X =

 5/3 2/3 1
−1/3 1/6 0
1/3 1/3 0


Sec on .
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1.
[
−24 −5
5 1

]

3.
[
1/3 0
0 1/7

]
5. A−1 does not exist.

7.
[
1 0
0 1

]

9.
[
−5/13 3/13
1/13 2/13

]

11.
[
−2 1
3/2 −1/2

]

13.

 1 2 −2
0 1 −3
6 10 −5



15.

 1 0 0
52 −48 7
8 −7 1


17. A−1 does not exist.

19.

 25 8 0
78 25 0
−30 −9 1



21.

 0 1 0
0 0 1
1 0 0



23.


1 0 0 0
−3 −1 0 −4
−35 −10 1 −47
−2 −2 0 −9



25.


28 18 3 −19
5 1 0 −5
4 5 1 0
52 60 12 −15



27.


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


29. x⃗ =

[
2
3

]

31. x⃗ =

[
−8
1

]

33. x⃗ =

 −7
1
−1



35. x⃗ =

 3
−1
−9


Sec on .

1. (AB)−1 =

[
−2 3
1 −1.4

]

3. (AB)−1 =

[
29/5 −18/5
−11/5 7/5

]

5. A−1 =

[
−2 −5
−1 −3

]
,

(A−1)−1 =

[
−3 5
1 −2

]

7. A−1 =

[
−3 7
1 −2

]
,

(A−1)−1 =

[
2 7
1 3

]
9. Solutions will vary.

11. Likely some entries that should be 0 will not be exactly
0, but rather very small values.

Sec on .

1. R1 − 3R2 → R1

3. R2 − 4R1 → R2

5.
[
1 −3
0 1

]
7.
[
1 0
0 7

]
9.
[
1 3
0 1

]
R1 + 3R2 → R1

11.

1 0 0
4 1 0
0 0 1

, R2 + 4R1 → R2

13. Answers may vary. One possibility:

A−1 =

[
1 0
−3 1

] [
0 1
1 0

]
A =

[
0 1
1 0

] [
1 0
3 1

]
15. Answers may vary. One possibility:

A−1 =1 0 0
0 1 2
0 0 1

1 0 −1
0 1 0
0 0 1

 1 0 0
−3 1 0
0 0 1

 1
2

0 0
0 1 0
0 0 1


A =

2 0 0
0 1 0
0 0 1

1 0 0
3 1 0
0 0 1

1 0 1
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1


Chapter
Sec on .

1. x

y

x⃗

y⃗

Ax⃗
Ay⃗

3. x

y

x⃗

y⃗
Ax⃗

Ay⃗

5. A =

[
1 2
3 4

]
7. A =

[
1 2
1 2

]
9. A =

[
5 2
2 1

]
11. A =

[
0 1
3 0

]
13. A =

[
0 −1
−1 −1

]

A.



15. Yes, these are the same; the transformation matrix in
each is

[
−1 0
0 −1

]
.

17. Yes, these are the same. Each produces the
transformation matrix

[
1/2 0
0 3

]
.

Sec on .

1. Yes
3. No; cannot add a constant.
5. Yes.

7. [T ] =

 1 2
3 −5
0 2


9. [T ] =

 1 0 3
1 0 −1
1 0 1


11. [T ] =

[
1 2 3 4

]
Sec on .

1. Not a subspace. The vector v⃗ =

[
2
0

]
belongs to S, but 2v⃗

does not.
3. Subspace. If y = 2x, we have[

x
y

]
=

[
x
2x

]
= x

[
1
2

]
,

so U is equal to the span of the vector
[
1
2

]
, and therefore

a subspace.

Sec on .

1. null(A) = {0⃗} has dimension 0;

col(A) = span


21
3

 ,

−1
2
−4

 ,

45
2

 has dimension 3;

3 = 0 + 3.

3. null(A) = span


11
1

 has dimension 1;

col(A) = span


 1
−2
0

 ,

−2
−4
−8

 has dimension 2;

3 = 1 + 2.

5. null(A) = span



−2
1
0
0


 has dimension 1;

col(A) = span


 1

2
−3

 ,

 0
−1
2

 ,

 3
6
−4

 has dimension 3;

4 = 1 + 3.

7. null(A) = span



2
1
0
0

 ,


−3
0
−8
5


 has dimension 2;

col(A) = span


 1

2
−1

 ,

43
1

 has dimension 2; 4 = 2+2.

Chapter
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1. A is symmetric.
[
−7 4
4 −6

]
3. A is diagonal, as is AT .

[
1 0
0 9

]
5.
[
−5 3 −10
−9 1 −8

]

7.


4 −9
−7 6
−4 3
−9 −9



9.


−7
−8
2
−3


11.

 −9 6 −8
4 −3 1
10 −7 −1


13. A is symmetric.

 4 0 −2
0 2 3
−2 3 6


15.

 2 5 7
−5 5 −4
−3 −6 −10


17.

 4 5 −6
2 −4 6
−9 −10 9


19. A is upper triangular; AT is lower triangular. −3 0 0

−4 −3 0
−5 5 −3


21. A is diagonal, as is AT .

 1 0 0
0 2 0
0 0 −1


23. A is skew symmetric.

 0 −1 2
1 0 −4
−2 4 0


Sec on .

1. 6

3. 3

5. −9

7. 1

9. Not defined; the matrix must be square.

11. −23

13. 4

15. 0

17. (a) tr(A)=8; tr(B)=−2; tr(A+B)=6

(b) tr(AB) = 53 = tr(BA)

19. (a) tr(A)=−1; tr(B)=6; tr(A+B)=5

(b) tr(AB) = 201 = tr(BA)

Sec on .

1. 34

3. −44

5. −44

A.



7. 28

9. (a) The submatrices are
[
7 6
6 10

]
,
[
3 6
1 10

]
, and[

3 7
1 6

]
, respectively.

(b) C1,2 = 34, C1,2 = −24, C1,3 = 11

11. (a) The submatrices are
[
3 10
3 9

]
,
[
−3 10
−9 9

]
, and[

−3 3
−9 3

]
, respectively.

(b) C1,2 = −3, C1,2 = −63, C1,3 = 18

13. −59

15. 15

17. 3

19. 0

21. 0

23. −113

25. Hint: C1,1 = d.

Sec on .

1. 84

3. 0

5. 10

7. 24

9. 175

11. −200

13. 34

15. (a) det(A) = 41; R2 ↔ R3

(b) det(B) = 164; −4R3 → R3

(c) det(C) = −41; R2 +R1 → R1

17. (a) det(A) = −16; R1 ↔ R2 then R1 ↔ R3

(b) det(B) = −16; −R1 → R1 and −R2 → R2

(c) det(C) = −432; C = 3 ∗M

19. det(A) = 4, det(B) = 4, det(AB) = 16

21. det(A) = −12, det(B) = 29, det(AB) = −348

23. −59

25. 15

27. 3

29. 0

Sec on .

1. (a) det(A) = 14, det(A1) = 70, det(A2) = 14

(b) x⃗ =

[
5
1

]
3. (a) det(A) = 0, det(A1) = 0, det(A2) = 0

(b) Infinite solutions exist.

5. (a) det(A) = 16, det(A1) = −64, det(A2) = 80

(b) x⃗ =

[
−4
5

]
7. (a) det(A) = −123, det(A1) = −492, det(A2) = 123,

det(A3) = 492

(b) x⃗ =

 4
−1
−4


9. (a) det(A) = 56, det(A1) = 224, det(A2) = 0,

det(A3) = −112

(b) x⃗ =

 4
0
−2


11. (a) detA = 0, detA1 = 147, detA2 = −49,

detA3 = −49

(b) No solution exists.

13. A−1 = 1
8

−11 10 13
6 −4 −2
9 −6 −7


15. A is not invertible.

17. A−1 = 1
10


9 5 −12 0
15 13 −26 −4
19 13 −28 −4
2 4 −4 −2


Chapter
Sec on .

1. λ = 3

3. λ = 0

5. λ = 3

7. x⃗ =

[
−1
2

]

9. x⃗ =

 3
−7
7


11. x⃗ =

 −1
1
1


13. λ1 = 4 with x⃗1 =

[
9
1

]
;

λ2 = 5 with x⃗2 =

[
8
1

]
15. λ1 = −3 with x⃗1 =

[
−2
1

]
;

λ2 = 5 with x⃗2 =

[
6
1

]
17. λ1 = 2 with x⃗1 =

[
1
1

]
;

λ2 = 4 with x⃗2 =

[
−1
1

]
19. λ1 = −1 with x⃗1 =

[
1
2

]
;

λ2 = −3 with x⃗2 =

[
1
0

]

21. λ1 = 3 with x⃗1 =

 −3
0
2

;

λ2 = 4 with x⃗2 =

 −5
−1
1


λ3 = 5 with x⃗3 =

 1
0
0



A.



23. λ1 = −5 with x⃗1 =

 24
13
8

;

λ2 = −2 with x⃗2 =

 6
5
1


λ3 = 3 with x⃗3 =

 0
1
0


25. λ1 = −2 with x⃗1 =

 0
0
1

;

λ2 = 1 with x⃗2 =

 0
3
5


λ3 = 5 with x⃗3 =

 28
7
1


27. λ1 = −2 with x⃗ =

 1
0
1

;

λ2 = 3 with x⃗ =

 1
1
1

;

λ3 = 5 with x⃗ =

 0
1
1


Sec on .

1. (a) λ1 = 1 with x⃗1 =

[
4
1

]
;

λ2 = 4 with x⃗2 =

[
1
1

]
(b) λ1 = 1 with x⃗1 =

[
−1
1

]
;

λ2 = 4 with x⃗2 =

[
−1
4

]
(c) λ1 = 1/4 with x⃗1 =

[
1
1

]
;

λ2 = 1 with x⃗2 =

[
4
1

]
(d) 5
(e) 4

3. (a) λ1 = −1 with x⃗1 =

[
−5
1

]
;

λ2 = 0 with x⃗2 =

[
−6
1

]
(b) λ1 = −1 with x⃗1 =

[
1
6

]
;

λ2 = 0 with x⃗2 =

[
1
5

]
(c) Ais not invertible.
(d) -1
(e) 0

5. (a) λ1 = −4 with x⃗1 =

 −7
−7
6

;

λ2 = 3 with x⃗2 =

 0
0
1


λ3 = 4 with x⃗3 =

 9
1
22


(b) λ1 = −4 with x⃗1 =

 −1
9
0

;

λ2 = 3 with x⃗2 =

 −20
26
7


λ3 = 4 with x⃗3 =

 −1
1
0


(c) λ1 = −1/4 with x⃗1 =

 −7
−7
6

;

λ2 = 1/3 with x⃗2 =

 0
0
1


λ3 = 1/4 with x⃗3 =

 9
1
22


(d) 3

(e) −48

Sec on .

1. cA(x) = (x− 1)(x− 2)
Eigenvalue λ1 = 1 has algebraic and geometric
multiplicity 1.
Eigenvalue λ2 = 2 has algebraic and geometric
multiplicity 1.

P =

[
1 2
1 1

]
3. cA(x) = x2 − 7x+ 14

Eigenvalue λ1 = 1
2
(7 + i

√
7) has algebraic and geometric

multiplicity 1.
Eigenvalue λ2 = 1

2
(7− i

√
7) has algebraic and geometric

multiplicity 1.
The matrix cannot be diagonalized over the real
numbers. Over the complex numbers, we have

P =

[
(1 + i

√
7)/2 (1− i

√
7)/2

1 1

]
.

5. cA(x) = (x− 7)(x− 5)(x+ 3)
Eigenvalue λ1 = 7 has algebraic and geometric
multiplicity 1.
Eigenvalue λ2 = 5 has algebraic and geometric
multiplicity 1.
Eigenvalue λ3 = −3 has algebraic and geometric
multiplicity 1.

P =

1 0 0
1 0 1
1 1 1

.

7. cA(x) = (x− 1)2(x− 2)
Eigenvalue λ1 = 1 has algebraic multiplicity 2 and
geometric multiplicity 1.
Eigenvalue λ2 = 2 has algebraic and geometric
multiplicity 1.
Since the geometric multiplicity of λ1 is less than its
algebraic multiplicity, no such P exists; the matrix
cannot be diagonalized.

A.



Index

∈, 2
/∈, 2
nth Roots of Unity, 49
nth root

of a complex number, 44, 45
x-axis, 12
x-coordinate, 12
y-axis, 12
y-coordinate, 12

abscissa, 12
absolute value, 14
adjugate, 337
antisymmetric, 305
argument

of a complex number
definition of, 35
properties of, 38

augmented matrix, 129

back substitution, 138
basic solution, 177
basic variable, 150
basis, 282
basis

of a null space, 291

Cartesian coordinate plane, 12
Cartesian coordinates, 12
characteristic polynomial, 346, 369
cis(θ), 39
cofactor, 314

expansion, 316, 322
matrix, 337

column
pivot, 288

column space, 287
column vector, 191
Complex Factorization Theorem, 26
complex number

nth root, 44, 45
nth Roots of Unity, 49
argument

definition of, 35
properties of, 38

complex conjugate
definition of, 21

conjugate
properties of, 22

definition of, 19, 35
imaginary part, 35
imaginary unit, i, 19

modulus
definition of, 35
properties of, 37

polar form
cis-notation, 39

principal argument, 35
real part, 35
rectangular form, 35

complex numbers, 19
complex numbers

addition, 20
equality, 20
multiplication, 20

complex plane, 35
conjugate

complex conjugate
definition of, 21

conjugate of a complex number
properties of, 22

consistent, 147, 180, 181
coordinates

Cartesian, 12
polar, 29
rectangular, 29

Cramer’s Rule, 334
cross product

applications, 82
area of parallelogram, 83
torque, 85
volume of parallelepiped, 84

definition, 77
properties, 80, 81

DeMoivre’s Theorem, 40
dependent

linear, 117
determinant

and elementary row operations, 326
definition, 317
of 2× 2 matrices, 313
of triangular matrices, 325
properties, 331

diagonal, 235
definition, 300

diagonalizable matrix, 374
diagonalization, 372

orthogonal, 377
diagram

Venn Diagram, 3
dimension, 282
distance

A.



between points in space, 52
distance

definition, 14
distance formula, 14

dot product
definition, 67
properties, 68

eigenspace, 371
eigenvalue

definition, 342
finding, 346
properties, 364

eigenvector, see eigenvalue
elementary matrix, 238
elementary operation, 130
elementary row operation, 130
elementary row operations, 135

and determinants, 326
empty set, 3
equivalence relation, 368

factorization
over the complex numbers, 26

free variable, 148, 150
Fundamental Theorem of Algebra, 26

Gaussian elimination, 137, 140
backward steps, 139
forward steps, 139

Head To Tail Rule, 58
homogeneous, 176, 180, 181

identity matrix, 207
imaginary axis, 35
imaginary part of a complex number, 35
imaginary unit, i, 19
inconsistent, 147
independent

linear, 117
initial point, 55
intersection of two sets, 2
inverse

computing, 224
definition, 220
Invertible Matrix Theorem, 230
properties, 230, 235
uniqueness, 222

Invertible Matrix Theorem, 230, 331, 365

Jordan Canonical Form, 377

leading one, 136, 150, 151
linear combination, 113, 194
linear equation, 125
linear transformation

and ⃗ , 268
conditions on, 272
definition, 263
standard matrix of, 267, 269

linearly dependent, 117
linearly independent, 117
lines, 89

equations for, 90
intersecting, 91
parallel, 91
skew, 91

magnitude of vector, 55
matrix

addition, 192
adjugate, 337
arithmetic properties, 196
augmented, 129
cofactor, 314, 337
definition, 190
determinant, 313, 317
diagonal, 300
diagonalizable, 374
equality, 191
identity matrix, 207
inverse, 220, 224
minor, 314
multiplication, 201

properties, 208
scalar multiplication, 193
similar, 367
the zero matrix, 196
transpose, 299
triangular, 300

matrix
elementary, 238
of coefficients, 129

matrix transformation, 245
midpoint

definition of, 15
midpoint formula, 16

minor, 314
modulus of a complex number

definition of, 35
properties of, 37

multiplicity
algebraic, 369
and diagonalization, 377
geometric, 371
of an eigenvalue, 369

norm, 55
normal vector, 101
null space, 290
numbers

complex, 19

ordered pair, 12
ordinate, 12
origin, 12
orthogonal, 70

decomposition, 73
orthogonal decomposition of vectors, 73
orthogonal projection, 72



parallel vectors, 59, 61
Parallelogram Law, 58
parameter, 148
particular solution, 152
perpendicular, see orthogonal
pivot column, 288
planes

coordinate plane, 52
equations of, 102
introduction, 52
normal vector, 101

polar coordinates
conversion into rectangular, 32
definition of, 29
polar axis, 29
pole, 29

polar form of a complex number, 39
power rule

for complex numbers, 40
for the modulus of a complex number, 37

principal argument of a complex number, 35
problem solving, 159
product rule

for complex numbers, 40
for the modulus of a complex number, 37

pseudoinverse, 306

quadrants, 14
quotient rule

for complex numbers, 40
for the modulus of a complex number, 37

R, 55
range

of a linear transformation, 286
rank

in terms of column space, 293
in terms of leading 1s, 182

real axis, 35
real part of a complex number, 35
rectangular coordinates

also known as Cartesian coordinates, 29
conversion into polar, 32

rectangular form of a complex number, 35
reduced echelon form, 136
reduced row echelon form, 136
relatively prime, 7
right hand rule

of Cartesian coordinates, 51
Roots of Unity, 49
row echelon form, 136
row vector, 191

scalar, 193
set

definition of, 1
empty, 3
exclusion, 2
inclusion, 2
intersection, 2
roster method, 1

set-builder notation, 1
union, 2
verbal description, 1

set-builder notation, 1
similar matrices, 367

properties of, 368
skew symmetric, 305

definition, 305
theorem, 306

solution, 125
basic, 177
general, 149
infinite, 147
infinitely many, 150, 181
none, 147
particular, 149, 152
types, 147
unique, 147, 181, 226

span, 115
standard unit vector, 268
subset

definition of, 2
subspace, 275
subspace

span, 280
trivial, 281

symmetric, 305
definition, 305
theorem, 306

system of linear equations
consistent, 147, 150, 180, 181
definition, 125
homogeneous, 176
inconsistent, 147, 151
solution, 125

terminal point, 55
theorem

Fundamental Theorem of Algebra, 26
trace

definition, 309
properties, 311

transformation
matrix, 245

transpose, 299
definition, 299
properties, 304
skew-symmetric, 305
symmetric, 305

triangular matrix
definition, 300
determinant, 325

union of two sets, 2
unit vector, 60

properties, 62
standard unit vector, 63

variable
basic, 150
dependent, 150



free, 148, 150
independent, 150
leading, 148

vector
column, 111, 191
row, 191

vector space, 111
vector space

of column vectors, 112
vectors, 55

algebra of, 57
algebraic properties, 60
component form, 56
cross product, 77, 80, 81
definition, 55
dot product, 67, 68
Head To Tail Rule, 58
magnitude, 55
norm, 55
normal vector, 101
orthogonal, 70
orthogonal decomposition, 73
orthogonal projection, 72
parallel, 59, 61
Parallelogram Law, 58
resultant, 58
standard unit vector, 63
unit vector, 60, 62
zero vector, 58

Venn Diagram, 3

work, 75

zero matrix, 196
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