PRELIMINARIES:

The basic kinds of statements about sets are: "Element x is in set A", "Element y is not in set B". We denote these by $x \in A$ and $y \notin B$, respectively.

Convention: Use capital letters A, B, C, etc. for set names; use small letters a, b, c, x, y, etc. for element names.

DEFINITIONS:

There are two kinds of definitions here: definitions of relationships between sets and definitions which construct new sets from given ones.

Throughout, let U be the universal set or the universe of discourse, let A, and B be sets and let C_{α} be an indexed collection of sets.

DEFINITION 1: "A is a subset of B" is abbreviated as $A \subseteq B$. $A \subseteq B$ iff $(\forall x)(x \in A \Rightarrow x \in B)$ iff every element of A is also in B.

DEFINITION 2: "A is equal to B" is abbreviated as A = B. A = B iff $(A \subseteq B)$ and $(B \subseteq A)$; iff $(\forall x)(x \in A \Leftrightarrow x \in B)$. iff Every element of A is in B and vice versa.

DEFINITION 3: Some Set Constructions:

 $A \cup B = \{x \in U : x \in A \text{ or } x \in B\};$ Union.

 $A \cap B = \{x \in U : x \in A \text{ and } x \in B\};$ Intersection.

 $A - B = \{x \in U : x \in A \text{ and } x \notin B\};$ Set difference.

 $A \times B = \{(x, y) \in U : x \in A \text{ and } y \in B\};$ Cartesian product.

 $P(A) = \{B : B \subseteq A\};$ Power set.

 $\overline{A} = \{x \in U : x \notin A\};$ Complement (sometimes also A^C).

 $\emptyset = \{ \}$, the set with no elements; called the empty set.

 $\bigcup_{\alpha \in A} C_{\alpha} = \{ x \in U \mid x \in C_{\alpha} \text{ for some } \alpha \in A \}; \text{ Union of a collection of sets.}$

 $\bigcap_{\alpha \in A} C_{\alpha} = \{x \in U \mid x \in C_{\alpha} \text{ for all } \alpha \in A\};$ Intersection of a collection of sets.

DEFINITION 4:

- a) Two sets A and B are said to be **disjoint** if $A \cap B = \emptyset$.
- b) Let S be a collection of sets.

S is said to be **pairwise disjoint** if $\forall A, B \in S, A \neq B; A \cap B = \emptyset$ that is, every distinct pair of elements in S are disjoint

c) Let A be any set and S be a collection of subsets of A.

S is said to be a **partition** of A if it satisfies:

- 1. $\forall X \in S, X \neq \emptyset$
- 2. $\forall X, Y \in S$, either X = Y or $X \cap Y = \emptyset$
- 3. $\bigcup_{X \in S} X = A$

STANDARD PROPERTIES FOR SET OPERATIONS:

These include De Morgan's laws, associativity, commutativity, distributive laws, etc:

 $\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}.$ $\overline{A \cap B} = \overline{A} \cup \overline{B}.$ $A \cup (B \cup C) = (A \cup B) \cup C.$ $A \cap (B \cap C) = (A \cap B) \cap C.$ $A \cup B = B \cup A.$ $A \cap B = B \cap A.$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

STRATEGIES FOR SET THEORY PROOFS:

- the set-ups can be more complicated, with more layers to deal with; but there are 4 basic types, and a framework to use for each type.

- once the type is identified and the framework set up, the actual proof can often be done symbolically.

- very often the assumptions and/or goals with be For-all statements. General rule to follow:

- - - SAVE a for-all assumption to use at the appropriate point in the proof; don't start your proof here.

- - - when the goal is a For-all-if-then or a For-all-iff, start with "Let $x \in U$ " and then do a direct, symbolic proof of the if-then or iff statement.

SET THEORY PROOF TECHNIQUES AND FRAMEWORKS

TYPE I: Subset Type: $Set1 \subseteq Set2$.

Goal: To Prove $(\forall x)(x \in Set1 \Rightarrow x \in Set2)$. This is a For-all-if-then statement!

Framework: Let $x \in U$. Then direct proof of if-then:

$$x \in Set1 \Rightarrow [USE DEFINITIONS] \\ \Rightarrow \\ \vdots \\ \Rightarrow x \in Set2.$$

TYPE II: Set Equality Type: Set1 = Set2.

Goal: To prove $(\forall x)(x \in Set1 \Leftrightarrow x \in Set2)$. This is a For-all-iff statement!

Method 1: Split the \Leftrightarrow into two \Rightarrow s, and do two Type I proofs.

Method 2: Do the \Leftrightarrow directly. Framework: Let $x \in U$. Then direct \Leftrightarrow proof:

$$x \in Set1 \Leftrightarrow \quad [\text{USE DEFINITIONS}] \\ \Leftrightarrow \\ \vdots \\ \Leftrightarrow x \in Set2.$$

Warning: Make sure your implications work in both directions at each step. Sometimes you need a different explanation for each direction!

Method 3. Use previously proven set result and the = operator : Set1 = [USE PREVIOUSLY PROVEN RESULTS]= \vdots = Set2.

TYPE III: If-Then Type: If [statement1] then [statement2].

Proceed as for standard direct proof of an if-then statement. Assume: Statement1. Goal: Statement2.

The assumption will be a statement of Type I or II; that is, a For-all-if-then or a For-all-iff. In either case, you can't start directly from this assumption. Keep the assumption to use at the appropriate point in the proof!

The goal will be a statement of Type I or II. Set up the proof to prove this goal, with the framework for Type I or II as appropriate. At some point in the sequence of steps you will need to use the assumption.

TYPE IV: Iff Type: [Statement1] iff [Statement2].

This should NOT be done directly (in both directions at once) unless you are very good at manipulating quantifiers. Instead, break this kind of proof into two Type III if-then sentences:

If [Statement1] then [Statement2] and If [Statement2] then [Statement1].

Now do two Type III proofs.