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Abstract

Several authors have quantified the modularity of software systems in terms of

coupling and cohesion metrics. Most of these approaches focus on functional and

procedural dependencies in the system. Although highly relevant at the design phase,

these static dependencies alone do not account for how a software product evolves over

time. Instead, this is also dictated by logical and hidden dependencies between system

files. To a large extent, the co-change (co-commit) relation captures these different

types of dependencies. In this paper, we define two measures of co-change-modularity

of a software product based on a weighted design structure matrix (DSM). The first

metric, called the weighted propagation cost, uses matrix exponential to measure how
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changes to one system file potentially affect the whole product. The second metric,

called the weighted clustering cost, uses the output of the first metric to measure the

partitionability of the system based on the co-change relation. In addition, we provide

a visual representation of how the co-change structure of a system evolves over time.

We discuss the theoretical foundation of our work and highlight its advantages over

existing methodologies. We apply our approach to GNU Octave and show the findings

to be consistent with the available literature on the evolution of Octave. Our analysis

is extensible and applicable to a range of scenarios including open source systems.

Keywords: co-change structure, software modularity, software evolution, coupling and

cohesion, design structure matrix, clustering.

1 Introduction

There is a consensus in software engineering community that modularity is a key feature

of good software design [1, 2]. A ‘modular’ software product is one with a high degree of

intra-modular cohesion and a low degree of inter-modular coupling. Most of the cohesion

and coupling metrics in the literature use static dependencies between system elements to

describe modularity [3]. These elements could be system files, classes or other appropriate

units of analysis. Static analysis is a good approach during the development stage of the

software life-cycle. However, during the evolution stage, logical and hidden dependencies

between system elements play a more dominant role [3, 4]. The former type of dependency

exists between two elements that logically serve the same purpose in the system, and the

latter type of dependency is the result of unexpected side-effects of changes.

Given a series of commits during software revision, a co-change relation is said to exist

between two system elements if they are committed together at some point. It has been

argued that logical and hidden dependencies in a software product arise as co-change rela-

tions [3]. In addition, co-change data can be easily mined from software repositories without

analyzing the code-base. This motivated Gall, Hajek and Jazayeri [3], and others [4, 5] to

define coupling and cohesion in terms of co-change relations. Geipel and Schweitzer [6] and
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the subsequent work [7, 8, 9] shows that the nature of the interplay between static depen-

dencies and co-changes is not completely understood although reasonably strong correlation

exists between the two. Nevertheless, co-changes encompass a wide array of dependencies

[8, 3, 6]. Last but not the least, from a software evolution perspective [8] co-change relations

are more relevant than function call dependencies.

A design structure matrix (DSM) [10] provides a useful representation of any dependency

structure. For instance, MacCormack, Rusnack and Baldwin [11] use a function call DSM to

define the propagation and clustered costs of a software product. The lower these costs, the

more cohesive and loosely coupled the files are in the system. In this paper, we significantly

refine the notions of propagation and clustered costs and adapt them to examine the co-

change-modularity of a software product. Moreover, we overcome certain weaknesses of

MacCormack et al.’s measures [11] which we explain in Section 3. Our unit of analysis is

system file and we consider changes committed in a given interval of time. The weighted

propagation cost measures how changes made to one system file are likely to propagate

through the system, whereas the weighted clustering cost determines the clusterability of

the system into cohesive and loosely coupled groups based on the co-change relations. The

lower the two costs, the more modular the system is with respect to the co-change relation.

Our analysis produces numerical and visual data describing the temporal evolution of the

co-change-modularity of a system.

We survey the relevant literature in Section 2. In Section 3, we discuss the motivation and

the mathematics behind our measures, and how they improve on the earlier work. Section 4

presents an application of our approach to Octave [12] - an open source scientific computing

software - and features our results. We choose Octave for the case study as it has evolved

through three distinct phases of initial development, stabilization, and large-scale growth.

Furthermore, we have a first-hand account [12] of its evolution from the primary developer

and maintainer. This allows us to test our approach against real-life verifiable information.

Our numbers successfully explain and distinguish between the three evolutionary phases of

Octave. Finally, we outline some conclusions in Section 5.
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2 Related Work

In recent years, several researchers have used the co-change relation for clustering code

artefacts [13], and detecting fault-proneness [14] and design deficiencies [15] in software.

Here we analyze the co-change-modularity of software.

Geipel and Schweitzer [6] empirically studied the nature of the relationship between static

dependencies among Java classes and co-change. Based on their experiments they conclude

“any metric which uses dependencies alone to pass judgment on the evolvability of a piece of

Java software is thus unreliable”. Their claim is further substantiated by the work of Ajienka

and Capiluppi [7], and Oliva and Gerosa [9]. In particular, Cafeo et al. [8] observed a strong

correlation between co-changes and dependencies. All of this motivates our exploratory

study.

Sullivan et al. [2] identified the problem of evaluating the modularity of a software design

and used the DSM methodology of Baldwin and Clark [1] to attack it. Since then, the

DSM methodology has found uses in the design, modularization, refactoring and evolution

management of software. It has been pointed out that static dependencies lead to the

propagation of change. MacCormack et al. [11] proposed DSM based metrics to capture the

propagation of changes. We significantly enhance the approach of [11] and use it to study

the co-change-modularity of software products.

The use of clustering based on static dependencies to manage the evolution of software

was initiated by Sangal et al. [16]. Gall et al. [3] were the first to study the evolutionary

dependencies based on the commit history. They proposed a scheme to modularize the

system based on such logical and hidden dependencies. Beyer and Noack [17] were the

ones to coin the term ‘co-change graph’, and cluster the co-change graphs with a focus on

visualization. Artifacts that have changed together appear closer to each other in the layout

computed by them. Silva et al. [5] considered the co-change graph as a sparse graph and

retrieved the co-change clusters of system classes using Chameleon clustering [18]. This

direction was further pursued by de Oliviera et al. [4] who provided empirical evidence that

static dependencies across the modules do not truly capture the future maintenance cost.
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They also argued that hidden dependencies have to be considered in any redesign on the

system. They measured the stability of the system in terms of the propagation cost and

clustered cost measures of MacCormack et al. [11]. As pointed out in [7, 8, 6], we still do

not have a deep appreciation of the nature of the static dependencies that translate into

co-change relations. However, since co-changes capture logical and hidden dependencies [3]

as well as a portion of static dependencies [8, 6], we use them in our study of software

modularity.

Zimmerman et al. [19, 20, 21] used association rule mining on co-change graphs to predict

changes and to determine the evolutionary coupling between fine-grained modules. Their

definition of a co-change is albeit different. A co-change is said to have occurred between

two units if they are committed within ∆ time units. A sliding window is used to compute

the co-change relationships. Our definition of co-change agrees with the one used by Ball et

al. [22] and Geipel and Schweitzer [6]. An important conclusion that we use from [6] is that

co-change propagates through a path of static dependencies. This implies that co-change

propagates through a path of co-changes. We believe that the chance of this happening

diminishes as the path length increases.

3 Theoretical Framework and Methodology

In [11], two measures of modularity, namely, the propagation cost and the clustered cost,

are defined. The authors consider a DSM with 1/0 entries representing whether or not a

file makes a function call to another file. The propagation cost is calculated by summing all

the entries of the transitive closure of this binary DSM. The underlying idea is that higher

propagation cost implies a higher degree of coupling through transitive dependencies. The

original DSM (and not its closure) is then clustered in a standard manner using different

penalties for dependencies that (i) run across two clusters, (ii) fall within a cluster (iii)

involve a ‘bus’. Here a bus is a system file to which many other files make function calls

- for example, a header file. A dependency of type (i) incurs a heavy cost, type (ii) has a

lower cost that depends on the cluster size and (iii) is penalized the least. The intuition is
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that a low clustered cost indicates a more cohesive system, and that a function call-modular

system should be making most of its function calls within modules of relatively small sizes.
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Figure 1: Three DSMs with propagation cost (a) 15, (b) 15 and (c) 25 computed as the sum of

entries in the transitive closure of each DSM. Since the DSM (b) is the transitive closure of (a),

the propagation cost is unable to distinguish between them. The weighted propagation costs are

(a) 29.56, (b) 56.74 and (c) 36.94 computed as the sum of entries in the matrix exponential of the

DSM.

Although widely cited by DSM and software communities, the above approach has its

drawbacks, which we address here.

1. The measures do not distinguish whether a file calls another once or multiple times.

2. A transitive dependency resulting from multiple static dependencies has the same

weight as a direct static dependency. For instance, the same propagation cost of 15 is

attributed to the DSMs in Fig. 1 (a) and (b) despite one of them corresponding to a

directed path and the other to a complete directed acyclic graph.

3. The existence of a symmetric pair of dependencies can drastically change the propaga-

tion cost. For example, adding the dependency (E,A) to the DSM in Fig. 1 (a) gives

the DSM in Fig. 1 (c). This changes the propagation cost to 25.

4. The two measures are independent of each other.
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3.1 Weighted Propagation Cost

The matrix exponential of a square matrix M, denoted by eM, is defined using the power

series expansion

eM =
∞∑
k=0

Mk

k!
.

Any square matrix M with non-negative integral entries can be thought of as the adjacency

matrix of a directed graph GM with the (i, j)-entry, (M)ij, equal to the number of edges

directed from node i to j. With this interpretation, for any non-negative power Mk of M,

(Mk)ij counts the number of walks of length k in GM directed from node i to j. Therefore,

the (i, j)-entry of the matrix exponential eM counts the total number of walks of all lengths

directed from i to j while dampening the effect of longer walks. Estrada and Hatano [23]

initiated the use of matrix exponential for measuring propagation in physical networks ar-

guing that longer walks contribute less. Moreover, Geipel and Schwitzer [6] have empirically

justified the diminishing effect of long walks in co-change and dependency graphs. This

justifies the use of matrix exponential in our study. In practice, eM is approximated using

Padé approximation or other suitable methods [24, 25] and contains valuable information as

to how changes might propagate in GM.

Given a software product, we form a symmetric DSM, D, with diagonal entries equal to

1 and any off-diagonal (i, j)-entry equal to the number of times files i and j are committed

together in a given time interval. For the purpose of our study we chose one-year intervals.

We call D the co-change DSM. If n is the total number of files committed over the given

time interval, then D is an n× n matrix. We define the weighted propagation cost over that

time interval as

WtProp =
n∑

i,j=1

(E)ij, (1)

where E = eD. Intuitively, the quantity WtProp measures how co-changes propagate through

a path of co-changes and affect the whole system. Thus we enrich the notion of propagation

cost [11] at two levels, first, by using an integral DSM rather than a binary one, and second,

by using matrix exponential instead of the transitive closure. This addresses items 1-3) raised
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above. For instance, the DSMs in Fig. 1 (a), (b) and (c) have distinct weighted propagation

costs of 29.56, 56.74 and 36.94, respectively, clearly differentiating between their dependency

structure.

3.2 Weighted Clustering Cost

A ‘greedy’ clustering algorithm is an iterative procedure that makes the best local move

during each iteration to improve the quality of clustering. The quality of clustering is deter-

mined by some measure of clustering error or cost. We apply such a procedure to the DSM

E of order n × n. This provides a bridge between our measures and takes care of item 4)

above.

We begin with each file in its own cluster. At each step, the algorithm moves a file

between clusters that reduces the cost. The possible moves are considered in a random order

and the first improving move is accepted. We adopt the cost function of MacCormack et

al. [11] with some adjustment. At each iteration, a pair (i, j) of files is assigned a cost of

(E)ij m
2 if both the files belong to the same cluster of order m×m, and a cost of (E)ij n

2

otherwise. The algorithm terminates when no local move can decrease the cost beyond a

change threshold δ. Let C denote the resulting clustered matrix and costij denote the cost

associated to a pair (i, j) at the terminal stage. Then the weighted clustering cost is

WtClust =
n∑

i,j=1

costij. (2)

Clearly, WtProp ≤ WtClust ≤ n2 WtProp. Overall, the objective is to determine a clus-

tering of system files into a relatively large number of small clusters such that WtClust is

minimized. The DSM, C, can be visualized to observe the co-change clusters of a software

product at any given time.

The lower the weighted propagation and clustering costs, the more co-change-modular

the system is. The following points are worth noting.

(i) Lack of buses: If we focus on system files, excluding text and log files, we do not observe

any buses (in the sense of [11]) in the co-change DSM. The reason is that a single system

8



file is not likely to be repeatedly co-committed with a large number of other files.

(ii) Metrics as functions of time: The measures WtProp and WtClust are functions of time.

As a software product evolves, these function values indicate if the product is becoming more

or less modular.

(iii) Normalizing the co-change DSM: Numerical blow-up is a likely prospect in handling

real-life data. Normalizing or scaling a matrix is a standard way of getting around this

problem [24]. In our case study, we divide each entry of the co-change DSM, D, by the

maximum column sum of D. Our measures are computed afterward.

(iv) Computational complexity: Computing (approximately) the matrix exponential of an

n × n matrix requires O(n3) operations [25] and the same is needed to calculate WtProp.

The expensive local search algorithm to compute WtClust can be sped up considerably

by increasing the change threshold δ or by using the fully polynomial time approximation

scheme (FPTAS) introduced in [26]. However, we do neither.

4 Case Study: The Evolution of GNU Octave

Octave is a popular open source numerical computing platform. It got its first alpha release

in 1993 and has been under active development and maintenance since. Our choice of Octave

for this case study is dictated by several considerations.

In a 2001 article [12], John Eaton - the primary developer of Octave - gave a detailed

account of the history, development, maintenance and foreseeable future of Octave. Based

on this, the evolutionary cycle of Octave can be divided into three phases: (i) the early

development with Eaton as the sole/chief developer, (ii) maintenance and stabilization by

Eaton around the turn of the century, and (iii) open development as Eaton stepped back

and a large number of developers got involved. We wanted to see if our approach could

distinguish between these phases. Secondly, Octave source code and historical commit data

are easily accessible.The source is sizeable and mainly consists of three types of files: header

files with .h extension, core C/C++ files with .cc or .cp extensions, and module files with a
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Table 1: Octave: weighted propagation cost over the years.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

.c Files 268.23 218.88 310.55 384.19 674.62 158.29 164.57 338.42 118.91 452.47 323.26 375.74 754.02 393.60 966.64 566.81 847.96 611.48 895.66 2432.53 2040.65 1226.52 1096.28 1341.37 1276.12

.h Files 186.18 175.44 393.26 381.04 645.79 130.61 93.13 307.35 111.87 342.96 274.32 297.28 674.83 284.83 729.09 299.98 470.36 606.42 967.20 1842.56 1488.48 994.16 1034.78 1118.16 1059.11

.m Files 174.87 354.61 357.52 1922.92 2253.57 807.55 593.47 1157.25 120.79 1000.97 1429.29 580.59 1597.84 1267.16 2332.17 4123.28 1475.90 1128.36 1897.04 2344.32 2995.97 3507.82 2371.76 2712.68 2691.30

Table 2: Octave: weighted clustering cost (in millions) over the years. An ‘x’ indicates that

clustering did not finish within 24 hours.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

.c Files 2.42 1.42 3.83 8.13 4.37 0.51 0.54 5.24 0.20 12.94 3.68 7.58 56.17 8.50 97.86 23.02 86.62 33.30 103.62 x 1279.56 244.30 190.89 308.72 259.92

.h Files 0.82 0.75 7.77 7.82 37.70 0.28 0.09 4.08 0.18 5.47 2.07 3.81 42.37 2.84 39.18 2.70 15.16 31.35 132.54 919.82 496.56 117.14 128.54 172.22 144.28

.m Files 0.53 5.02 5.68 714.22 1631.68 76.42 30.55 226.58 0.21 140.30 355.58 27.72 532.08 282.56 1419.05 8429.75 473.78 204.54 997.28 1802.77 3478.16 x 1763.66 2320.71 2229.39

.m extension. At least in the later stages of the evolutionary cycle, one would expect a lot

more commits for .m files than .c and .h files. Furthermore, .h files would potentially form

the most stable part of the system. Here, we analyze the three file types independently and

ignore the other less frequently occurring file types.

We downloaded the source code from https://www.gnu.org/software/octave/. We

extracted all commit logs from 1993-2017 and formed normalized co-change DSMs over each

year for each file type. In all, this resulted in 75 DSMs with the number of files (nodes) in the

range 60-2,000 and number of commits (dependencies) ranging from 150-11,000. We coded

our weighted propagation and clustering algorithms in julia (version 0.6.0). We ran our

programs on a cluster (with theoretical CPU performance of 936 teraflops), in a massively

parallel fashion, where each input instance ran on a separate CPU simultaneously. We use

δ = 0 as the change threshold (see Section 3.2). We set a 24-hour time limit for processing

a single DSM and found that the process was completed within 1-6 hours in 73 out of 75
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Figure 2: Evolution of co-change modules of Octave. The blank cell corresponds to an instance of

clustering algorithm requiring more than 24 hours of processing time.

instances, with the clustering part unfinished for the remaining instances. We collect the

values of the weighted propagation and clustering costs in Table 1 and 2, respectively. The

resulting clustered DSMs for selected years are presented in Fig. 2. Note that for a co-

change-modular system we should observe relatively small dark-coloured diagonal blocks

and few off-diagonal dark patches (cross-relations).

The results provide a clear demarcation between the three phases of evolution. From

1993-97, the weighted propagation and clustering costs mostly increase - rather drastically

for .m files. This is understandable as Octave was in its infancy and a lot of new files must

have been added and bugs fixed. Although Eaton was the only developer with little help

from others, he developed the system very actively during this period [12]. Both the metrics

sharply decrease in 1998. This can probably be attributed to Octave moving to GNU in

1997 [12]. From 1998-2001 our metrics remain in the lower-bracket except for some surges

in 2000. This is the period when Eaton was contemplating taking a break from Octave and

was focusing more on maintenance than development [12]. The surges in the year 2000 can

be attributed to bug fixes related to Y2K. We also observe the sharpest clusters during these

years. From 2002 onwards, the metrics progressively increase with weighted clustering cost

blowing up for .m files. After 2001, Octave has undergone a lot of open source development
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and maintenance. The lack of a single primary developer and a loose organizational structure

have led to changes and commits being made in an unstructured fashion. We observe that

almost throughout, .m files demonstrate the least co-change-modularity, while .h files exhibit

it the most. Overall, the results match our expectations based on Eaton’s article [12] and

the Octave file structure quite well. The authors will make the case study data and the code

generating it available to anyone interested.

5 Concluding Remarks

For our exploratory study on measuring co-change-modularity we build on the work of Mac-

Cormack et al. [11]. This has motivations in the study by Geipel and Schweitzer [6], who

showed that dependencies based metrics alone cannot be used to study the evolution of a

Java software. Often, the co-change data for software products is more readily accessible

than the source code. Our paper exploits this information to measure the modularity of any

software product based on its co-change structure and without examining the source code.

We represent the historical co-change data as a weighted DSM and propose two metrics,

weighted propagation, and weighted clustering costs. The first determines how changes to

one file impact the rest of the system, and the second measures the clusterability of the

source files based on the co-change relation. Our approach provides a numerical as well as

a visual representation of the evolution of the co-change-modularity of any software system

over time. We apply our approach to GNU Octave [12], a fairly large open source project

with a strong developer and user base. We analyze its evolution over 25 years and show that

after a modular phase, Octave has progressively become less modular. As a test for validity,

we demonstrate that our approach can correctly identify certain watershed moments in the

evolution history of Octave [12]. The insight gained from our approach can help developers

in optimizing their software development and maintenance processes.
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