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Part I.

On the Heuristics of Guy and Selfridge



Background

I Let n be a positive integer. Let s(n) denote the sum of the
proper divisors of n.

I Example. s(12) = 1 + 2 + 3 + 4 + 6 = 16.

I Let sk(n) denote the k-th iterate of s. An aliquot sequence
starting at n is a sequence of the form

n, s(n), s2(n) = s(s(n)), s3(n) = s(s(s(n))),

and so on.
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Background

I Example. An aliquot sequence starting at 12 is

12, 16, 15, 9, 4, 3, 1, 0.

Thus the sequence terminates.

I Example. An aliquot sequence starting at 790 is

790, 650, 652, 496, 496, . . . .

Thus the sequence is eventually periodic with period 1.

I Both are examples of bounded aliquot sequences.

I Catalan-Dickson Conjecture. Every aliquot sequence is
bounded.



On the Heuristics of Guy and Selfridge

I We do not know any n such that the aliquot sequence starting
at n is unbounded.

I However, up to 1000 there are 12 possible candidates:
276,306,396,552,564,660,696,780,828,888,966,996.

I The aliquot sequences starting at 276,552,564,660 and 966
were studied by Derrik Lehmer.



On the Heuristics of Guy and Selfridge

I Lehmer’s five, as seen at the top from left to right: 660, 966,
552, 276 and 564.1

1Data from www.aliquot.de/lehmer.htm.

www.aliquot.de/lehmer.htm


Conjectures and Heurstics of Guy and Selfridge

I Guy-Selfridge Counter Conjecture. There are infinitely
many aliquot sequences that are unbounded.

I Guy-Selfridge Heuristics. Most of the aliquot sequences
starting with even number are unbounded, while most of the
aliquot sequences starting with an odd number are bounded.



Part II.

On Guides and Drivers



Guides and Drivers

I In their 1975 paper What drives an aliquot sequence? Guy
and Selfridge introduced guides and drivers.

I A guide is a number 2a, together with a subset of the prime
factors of σ(2a).

I A driver is defined as a number 2av with a> 0, v odd,
v | σ(2a) and 2a−1 | σ(v).

I Theorem (Guy and Selfridge, 1975) The only drivers are 2,
233, 233 ·5, 253 ·7, 293 ·11 ·31, and the even perfect numbers.



Examples of Driver Dominated Sequences

I 552 = 233 ·23, s(552) = 233 ·37, s2(552) = 243 ·29, . . . ,
s181(552) = 22325 ·72c .

I 9852 = 223 ·821, s(9852) = 223 ·1097,
s2(9852) = 223 ·5 ·293, . . . , s146(9852) = 243 ·11 ·31 · c .

I Despite the tenacity of these drivers, none is expected to live
for ever.

I 276 = 223 ·23, . . . , s169(276) = 2272p with p a prime
congruent to 1 mod 4. Then

s170(276) = 2 ·5 ·7 ·13 ·829 ·848557 ·p.

I In order to loose a driver, like in the example above, certain
strict conditions have to be satisfied.



Loosing Drivers

I If 2 is a driver of n, then s(n) is odd when n is either a square
or twice-a-square.

I The updriver 2 ·3 can be lost if n = 2 ·d2p, where d is odd
and p = 4k + 1.

I The updriver 227 can only get lost if the term is of shape
227ed2p or 227ed2qr where e is even, d is odd, p = 4k + 1 or
8k + 3, and q ≡ r ≡ 1 (mod 4). By a result of Landau, the
total number o numbers less than n with k or less prime
factors is

n(log logn)k−1

(k−1)! logn
,

so the chances in the above two cases are
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Markov Process

I Using the technique of Devitt (1976), Chum and Jacobson
performed a statistical analysis of aliquot sequences.

I Idea. One can view an aliquot sequence starting at n as a
Markov process. Each guide is viewed as a state. One records
how often aliquot sequences tend to pass from one guide to
the other.

I In total, 4000 aliquot sequences got analyzed: eight sets of
500 sequences, with each sequence starting at 216+32r + 2k ,
where 0≤ r ≤ 7 and 0≤ k < 500.

I Out of 4000 sequences, 799 reached a prime, 3179 passed the
limit of 2288, and 22 entered a cycle. In total, 2779344 terms
got computed.



Data for Each Guide

Guide Times Seen Runs Average Length Amplification by Term
2 634373 20913 30.3339 -0.438682
2 ·3 372308 2478 150.245 0.244404
22 655343 64022 10.2362 0.32637
22 ·7 229949 36446 6.30931 0.0656572
23 131710 22518 5.8491 -0.0243489
23 ·3 102944 5961 17.2696 0.541797
23 ·5 60520 6662 9.08436 0.3272
23 ·3 ·5 68080 1592 42.7638 0.808602
24 156755 32142 4.87695 0.354399
24 ·31 128285 1025 125.156 0.412274
25 40882 16108 2.53799 0.119586
25 ·3 31705 5845 5.42429 0.653538
25 ·7 19529 2384 8.19169 0.356001
25 ·3 ·7 25753 783 32.8902 0.822831
. . .



Part III.

On Geometric Means of k-th Iterates



Previous Results

I In 2003, Bosma and Kane proved that the geometric mean of
s(n)/n taken over the first N even integers converges to a
constant µ ≈ 0.9672875 < 1 when N tends to infinity. The
value µ is called the Bosma-Kane constant.

I In 2015, Pomerance proved that the geometric mean of
s2(n)/s(n) taken over the first N even integers excluding 2
converges to the Bosma-Kane constant µ as N tends to
infinity.

I Because µ < 1, both results give a strong probabilistic
evidence that most of the aliquot sequences starting at an
even number are bounded.



Results

I We showed that the geometric means of sk(n)/sk−1(n) for
n ≤ X exceed 1 for X = 237 and k = 6,7,8,9,10 when
averaged over all even n such that sk(n) > 0. Moreover, as k
increases, the geometric means grow, too.

I However, as k remains fixed, the geometric means decrease
with the growth of X , possibly approaching the geometric
mean of s(n)/n.



Results
I Let Ak(X ) denote the number of even n ≤ X such that

sk(n) > 0. The graphs display the function

Σk(X ) =
1

Ak(X ) ∑
n≤X
2|n

log
sk(n)

sk−1(n)

for different values of k as X varies through 230,231, . . . ,237.

I Red line: k = 1;

I Green line: k = 2;

I Blue lines: from
bottom to top
correspond to
k = 3,4, . . . ,10.
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Pomerance’s Conjecture

I The following conjecture was suggested by Carl Pomerance:

Conjecture. Let k be a positive integer and define s0(n) := n.
The geometric mean of sk(n)/sk−1(n) taken over the first N
even integers with sk(n) > 0 converges to the Bosma-Kane
constant µ ≈ 0.9672875 when N tends to infinity.



Outline of the Algorithm

1. Setup. Suppose we want to iterate through sk(n) for all even
n ≤ X and k = 1,2, . . . ,K . Use the algorithm of Moews and
Moews to compute σ(n) for all n ≤ X . Store all σ(n) into the
file Sigma.

2. Tabulating s(n). Load Sigma into memory. Compute
s(n) = σ(n)−n for each n. If s(n)≤ X , store it into the file
Small1. If s(n) > X , store it into the file Large1.

3. Tabulating s2(n).

a) Load Sigma into memory.
b) For each n in Small1, compute s(n) = σ(n)−n by taking σ(n)

from Sigma.
c) For each n in Large1 (in parallel), compute its prime factorization

in order to evaluate s(n) = σ(n)−n.
d) If s(n) = 0, disregard it. If 1≤ s(n)≤ X , store it into the file

Small2. If s(n) > X , store it into the file Large2.

4. Repeat steps 3a) – 3d) to tabulate s3(n), s4(n), and so on.



Tabulating sk(n) for even n ≤ X = 40 and k = 1,2,3

k Small Large

0 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30, 32, 34, 36, 38, 40

1 1, 3, 6, 7, 8, 16, 10, 15, 21, 22, 14,
36, 16, 28, 31, 20, 22

42, 55, 50

2 1, 6, 1, 7, 15, 8, 9, 11, 14, 10, 15, 28,
1, 22, 14, 17

55, 54, 43

3 6, 1, 9, 7, 4, 1, 10, 8, 9, 28, 14, 10,
1, 17, 1

66

I For our computations, we used Westgrid’s supercomputer
Hungabee.



Part IV.

On the Tabulation of Untouchable Numbers



Background

I A number n is called untouchable if there is no m such that
n = s(m). It is called touchable otherwise.

I Pollack-Pomerance Conjecture. The set of nonaliquot
numbers has asymptotic density ∆, where

∆ = lim
y→∞

1

logy ∑
a≤y
2|a

1

a
e−a/s(a).

I For y = 1010, the summation above yields ∆≈ 0.17.

I Richard Guy suggested that the Bosma-Kane constant µ

might be less than one because the geometric mean is taken
over all even numbers, rather than over all touchable even
numbers.



Variant of a Goldbach’s Conjecture

I Variant of a Goldbach’s Conjecture. For any odd n ≥ 9
there exist two distinct odd primes p and q such that
n = 1 +p+q = s(pq).

I As a consequence, the number 5 is the only odd untouchable
number, since 1 = s(2), 3 = s(4), 7 = s(8), but no such
expression exists for 5.

I This variant of a Goldbach’s conjecture has been verified
computationally by Oliveira e Silva to 4×1018.



Pomerance-Yang Algorithm

The algorithm of Pomerance and Yang allows to tabulate all even
touchable/untouchable numbers up to X .

1. Compute σ(n) for all odd n ≤ X such that n is not a perfect square.

2. If σ(n) = n+ 1, i.e. n is prime, mark n+ 1 as touchable, since
n+ 1 = s(n2).

3. Compute s(2n) = 3σ(n)−2n, s(2j+1n) = 2s(2jn) + σ(n) for all
j = 1,2, . . . such that s(2jn)≤ X . Mark them all as touchable.

4. For all composite odd n ≤ X 2/3, mark every s(n2)≤ X as touchable.



Tabulating Even Untouchable numbers up to X = 40

n σ(n) s n σ(n) s

1 21 32
3 4 4, 6, 16, 36 23 24 24, 26
5 6 6, 8, 22 25
7 8 8, 10, 28 27 40
9 40 29 30 30, 32
11 12 12, 14, 40 31 32 32, 34
13 14 14, 16 33 48
15 24 35 48
17 18 18, 20 37 38 38, 40
19 20 20, 22 39 56

I Red: touchable numbers of the form s(p2)≤ X for p prime;

I Green: touchable numbers of the form s(2jn)≤ X for n 6=�;

I Blue: touchable numbers of the form s(n2)≤ X for n composite
and ≤ X 2/3;

I The only untouchable numbers up to 40 are 2 and 5.



Pomerance-Yang Algorithm on the Larger Scale

I Let K be the number of files (K divides X ). Each file
contains touchable numbers from kX/K + 2 to (k + 1)X for
k = 1,2, . . . ,K .

I Compute s(n) using the Pomerance-Yang Algorithm (in
parallel). For each s(n) determine k such that

kX/K + 2≤ s(n)≤ (k + 1)X/K

and write s(n) into a k-th buffer.

I When the k-th buffer gets filled, write its contents into the
k-th file.

I Run the computation of s(n2) for composite n ≤ X 2/3

separately.



Counts of Untouchable Numbers to 240

I U(X ) denotes the total count of untouchable numbers ≤ X .

X U(X ) U(X )/X X U(X ) U(X )/X

1011 16988116409 0.1699 7 ·1011 119670797251 0.1710
2 ·1011 34059307043 0.1703 8 ·1011 136818383894 0.1710
3 ·1011 51156680233 0.1705 9 ·1011 153971157176 0.1711
4 ·1011 68270208722 0.1707 1012 171128671374 0.1711
5 ·1011 85395279511 0.1708 240 188206399403 0.1712
6 ·1011 102529360015 0.1709

I For X = 240, 1
bX/2c−U(X )+1 ∑

even n ≤ X
n is touchable

log s(n)
n ≈−0.08852.

I For X = 240, 1
U(X )−1 ∑

even n ≤ X
n is untouchable

log s(n)
n ≈ 0.07290.



Part V.

On the Tabulation of k-untouchable

Numbers



Background

I Let k be a positive integer. A number n is called
k-untouchable if there is no m such that n = sk(m).

I Note that if a number is k-untouchable, it is
(k + 1)-untouchable, (k + 2)-untouchable and so on.

I All k-untouchable numbers occur in the aliquot sequences
which start with an untouchable number.



Example

I First aliquot sequences which start with an untouchable
number (excluding 2 and 5):

52 46 26 16 15
88 92 76 64 63
96 156 236 184 176
120 240 504 1056 1968

I For example, 46 is a candidate for a 2-untouchable number.
However, 46 = s(86) = s2(166), so 46 is not 2-untouchable.

I In fact, the first 2-untouchable number which is not
untouchable is 208.

I We propose a simple recursive algorithm to tabulate
k-untouchable numbers for all 1≤ k ≤ K and even n ≤ X .

I Our algorithm assumes that the variant of a Goldbach’s
conjecrure discussed above is true.



Example for k ≤ 2 and X ≤ 40

When using the Pomerance-Yang Algorithm, along with the
touchable numbers we will also store their preimages:
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Example for k ≤ 2 and X ≤ 40
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To determine whether 26 and 34 are 2-touchable, we need to
compute the preimages of 46 and 62 under s.



Example for k ≤ 2 and X ≤ 40

We use the Pomeance-Yang Algorithm again to expand our table
of touchable numbers to 62:
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42

412 30

44

432 82
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532 42
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612 118

Thus all the numbers up to 40, except for 2 and 5, are 2-touchable.



To Do List

I Up to some bound X , tabulate all the even k-untouchable
numbers and compute

1

bX/2c−Uk(X ) + 1 ∑
even n ≤ X

n is k-touchable

log
s(n)

n
,

where Uk(X ) denotes the total number of k-untouchable
numbers up to X . Will this influence Guy’s heuristics?

I Perhaps, weighted sums makes more sense? For example,

s(192) = s(304) = s(344) = s(412) = 316,

so the number 316 should be considered with the weight 4,
while untouchable numbers should be assigned weight zero.

I Come up with the heuristic argument for the density of the
k-untouchable numbers.



Happy 100th Birthday, Professor Guy!
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