Math 1410–Assignment 6

Due Friday (Nov. 4, 2005) before the lecture in the class

- 1. Given the vectors $\underline{a} = \{(1,1,1), \underline{b} = (-2,-1,2)\}$, and $\underline{v} = (3,4,7)$. Express the vector \underline{v} as a linear combination of \underline{a} and \underline{b}
- 2. Show that the $span\{(-1,0,1),(-2,0,-2)\}$ consists of all three dimensional vectors with the second component 0.
- 3. Given $S = \{(1,0,1,1), (0,1,1,1), (1,1,0,1)\},\$
 - (a) Determine whether the vector $\underline{\mathbf{v}} = (-2, -3, 3, -1)$ is in the span of *S*, and
 - (b) if the vector is in the sapn, write it as a linear combination of elements of *S*.
- 4. Which of the following subsets are subspaces of \mathbb{R}^3 ? You need to justify your claim.
 - (a) $\{(x,0,z): x=3z\}$
 - (b) $\{(x, y, z): x + 3y 2z = 5\}$
 - (c) {(x, y, z): 3x + 3y z = 0}
 - (d) $\{(x, y, z): xy + z = 0\}$
 - (e) $\{(x, y, z): x^2 = 0\}$
 - (f) $\{(x, y, z): x+3y-z=0 \text{ and } 2x-3y+z=0\}$
- 5. Consider the system of the linear equations AX = 0, where A is any $n \times m$ matrix and X a column vector of dimension m. Show that

$$S = \{X : AX = 0\},\$$

the solution set of the system, is a subspace of \mathbb{R}^m .

6. (Bonus) A plane in \mathbb{R}^3 is the set of all vectors (x, y, z) satisfying an equation like ax + by + cz = d. Show that a plane is a subsapce if and only if it contains the origin.