Math 1410–Assignment 7

Due Friday Nov. 18, 2005 before the lecture in the class

- 1. Determine if the following two sets of vectors span the same vector space: $S = \{(1,1,1,2), (0,1,1,1), (1,0,0,1)\}, T = \{(-1,1,1,0), (2,1,1,3), (1,2,2,3)\}.$
- 2. Let *A* be an invertible 3×3 matrix.
 - (a) Show that the reduced echelon form of *A* is the identity matrix of order 3.
 - (b) Explain why the row space of A is all of \mathbb{R}^3 .
- 3. Given that $S = \{(-1, 1, 1, 1), (-1, -1, 1, 1), (-1, -1, -1, 1)\}$. Determine which of the vectors $\underline{v} = (2, 3, 4, -2), \underline{u} = (1, 2, 3, 4)$, are in the span of S?
- 4. Which of the following sets of vectors are linearly independent?
 - (a) {(0,1,-1), (-1,0,1), (1,-1,0)}
 - (b) $\{(-1,1,1,1), (-1,-1,1,1), (-1,-1,-1,1)\}$
- 5. Select a linearly independent subset of

 $S = \{(1,1,1,1), (0,2,-1,0), (1,3,0,1), (3,3,1,3)\}$

that spans the same subspace of \mathbb{R}^4 as *S* does.

- 6. Find a basis for the span of the set of vectors {(-1,1,1,1),(0,1,-1,1),(1,0,-2,0),(1,1,-1,0)}
- 7. Determine if the set of vectors $\{(-1,1,1), (-1,1,-1), (-1,-1,1)\}$ is a basis for \mathbb{R}^3 .

8. Let $A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix}$. Find the dimension of:

- (a) the row space of A,
- (b) the solution set of the equation $A\underline{x} = 0$ (note that \underline{x} is a column vector).