Math 1410–Midterm Practice Sheet

Solutions will be posted on the evening of Thursday, October 27

1. Solve each system using Gaussian or Gauss Jordan elimination.

(a)
$$\begin{cases} x^2 + y^3 - z^4 = 0\\ x^2 + 2y^3 - 2z^4 = -9\\ -x^2 - y^3 - z^4 = -2 \end{cases}$$

(b)
$$\begin{cases} x - 2y = b\\ -2x + 4y = -6 \end{cases}$$

2. Solve the following matrix equation for *A*:

$$2A^{-1} - \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix}^{t} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{t} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}^{-1}$$

3. Find elementary matrices $E_1, E_2, ... E_n$ such that $E_n E_{n-1} ... E_2 E_1 A$ is the reduced echelon form of *A*. Also, find the products $E_n E_{n-1} ... E_2 E_1 A$ and $E_n E_{n-1} ... E_2 E_1$.

$$A = \left[\begin{array}{rrrr} 0 & -2 & 6 & -8 \\ -1 & 1 & -1 & 3 \end{array} \right]$$

4. If $A = \begin{bmatrix} 0 & 0 & -2 \\ -2 & 0 & 0 \\ 0 & -2 & 0 \end{bmatrix}$, show that $A^3 + 8I = 0$. Use this to find A^{-1} . 5. Let $A = \begin{bmatrix} 1 & 5 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 3 & 1 & 4 \end{bmatrix}$. (a) Find the cofactors $A_{1,3}$ and $A_{4,3}$.

- (b) Use the results above to find |A|.
- (c) What is the (3, 1)-entry of adj(A)?
- (d) What is the (3,4)-entry of A^{-1} ?

6. Use each technique below to solve the system $\begin{cases} x + y = 1\\ 3x + 2y = -1 \end{cases}$

- (a) Form the augmented matrix and find its reduced echelon form.
- (b) Form the matrix equation AX = B and use A^{-1} to find X.
- (c) Use Cramer's rule.