Math 1410–Solutions for Assignment 8

Submitted Friday, November 25, 2005

1. Let
$$A = \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 1 & 1 \\ -1 & 2 & 0 & 0 & 2 \end{bmatrix}$$
. Find the dimension of:

(a) the row space of A,

Solution:

We begin by finding the reduced echelon form of *A*:

$$\left[\begin{array}{cccccc}
1 & -1 & 1 & 1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
-1 & 2 & 0 & 0 & 2
\end{array}\right]$$

$$\begin{array}{c} \sim \\ \mathsf{R2} + \mathsf{R1} \\ -\mathsf{R2} + \mathsf{R3} \end{array} \left[\begin{array}{ccccc} \textcircled{1} & 0 & 2 & 2 & 0 \\ 0 & \textcircled{1} & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

There are two leading ones, so any basis of the row space of A contains two vectors. Therefore, the dimension of the row space of A is 2.

(b) the solution set of the equation $A\underline{x} = 0$ (note that \underline{x} is a column vector).

The augmented matrix is
$$\begin{bmatrix} 1 & -1 & 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ -1 & 2 & 0 & 0 & 2 & 0 \end{bmatrix}.$$

Using the work done in part (a), the reduced echelon form of this augmented matrix is

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 2 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right].$$

Using the variables x, y, z, s, and t, the solution to this system is

$$\begin{cases} x = -2z - 2s \\ y = -z - s - t \\ z = z \\ s = s \\ t = t. \end{cases}$$

Then, every solution has the form

$$\begin{bmatrix} x \\ y \\ z \\ s \\ t \end{bmatrix} = \begin{bmatrix} -2z - 2s \\ -z - s - t \\ z \\ s \\ t \end{bmatrix} = z \begin{bmatrix} -2 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

So, the set $\{(-2,-1, 1, 0, 0), (-2,-1, 0, 1, 0), (0,-1, 0, 0, 1)\}$ is a basis of the solution set of this system. Thus, the dimension of the solution set of $A\underline{\mathbf{x}} = 0$ is 3.

- 2. Let $\underline{v} = (-2, 5, 2, 4)$ and $\underline{u} = (1, 1, 0, -1)$.
 - (a) Find the projection of \underline{v} on $\underline{u} = (1, 1, 0, -1)$ and call it \underline{w} .

$$\underline{w} = \operatorname{proj}_{\underline{u}}\underline{v} = \frac{\underline{v} \circ \underline{u}}{\underline{u} \circ \underline{u}}\underline{u}$$

$$= \frac{(-2, 5, 2, 4) \circ (1, 1, 0, -1)}{(1, 1, 0, -1) \circ (1, 1, 0, -1)} (1, 1, 0, -1)$$

$$= \frac{-2+5+0-4}{1+1+0+1} (1, 1, 0, -1)$$

$$= \frac{-1}{3} (1, 1, 0, -1)$$

$$= \left(-\frac{1}{3}, -\frac{1}{3}, 0, \frac{1}{3}\right).$$

(b) Find the vector $\underline{x} = \underline{v} - \underline{w}$.

Solution:

$$\underline{x} = (-2, 5, 2, 4) - \left(-\frac{1}{3}, -\frac{1}{3}, 0, \frac{1}{3}\right) = \left(-\frac{5}{3}, \frac{16}{3}, 2, \frac{11}{3}\right).$$

(c) Find $\underline{u} \circ \underline{x}$.

Solution:

$$\underline{u} \circ \underline{x} = (1, 1, 0, -1) \circ \left(-\frac{5}{3}, \frac{16}{3}, 2, \frac{11}{3}\right) = -\frac{5}{3} + \frac{16}{3} - \frac{11}{3} = 0.$$

3. (a) Show that the two vectors $\underline{u} = (1,1,1)$ and $\underline{v} = (1,-2,1)$ are orthogonal.

Solution:

Two vectors are orthogonal if their dot product is zero, and

$$u \circ v = (1, 1, 1) \circ (1, -2, 1) = 1 - 2 + 1 = 0,$$

so \underline{u} and \underline{v} are orthogonal.

(b) Let $\underline{w} = (1,0,1)$. Find $\text{proj}_{\underline{u}}\underline{w}$ and $\text{proj}_{\underline{v}}\underline{w}$.

Solution:

$$\operatorname{proj}_{\underline{u}}\underline{w} = \frac{\underline{w} \circ \underline{u}}{\underline{u} \circ \underline{u}} \underline{u} = \frac{(1, 0, 1) \circ (1, 1, 1)}{(1, 1, 1) \circ (1, 1, 1)} (1, 1, 1)$$
$$= \frac{1 + 0 + 1}{1 + 1 + 1} (1, 1, 1) = \frac{2}{3} (1, 1, 1) = \left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right).$$

Next,

$$\operatorname{proj}_{\underline{\nu}}\underline{w} = \frac{\underline{w} \circ \underline{v}}{\underline{v} \circ \underline{v}} \underline{v} = \frac{(1, 0, 1) \circ (1, -2, 1)}{(1, -2, 1) \circ (1, -2, 1)} (1, -2, 1)$$
$$= \frac{1 + 0 + 1}{1 + 4 + 1} (1, -2, 1) = \frac{2}{6} (1, -2, 1) = \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right).$$

(c) Verify that $\underline{w} = \text{proj}_{\underline{u}}\underline{w} + \text{proj}_{\underline{v}}\underline{w}$.

Solution:

$$\operatorname{proj}_{\underline{u}}\underline{w} + \operatorname{proj}_{\underline{v}}\underline{w} = \left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right) + \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$
$$= \left(\frac{3}{3}, \frac{0}{3}, \frac{3}{3}\right) = (1, 0, 1) = \underline{w}.$$

4. (a) Verify that the set of vectors

$$S = \{(1, 1, 1, 1), (1, -1, 1, -1), (1, -1, -1, 1), (1, 1, -1, -1)\}$$
 forms an orthogonal basis for \mathbb{R}^4 .

Let
$$\underline{v}_1 = (1, 1, 1, 1)$$
, $\underline{v}_2 = (1, -1, 1, -1)$, $\underline{v}_3 = (1, -1, -1, 1)$, and $\underline{v}_4 = (1, 1, -1, -1)$, so that $S = \{\underline{v}_1, \underline{v}_2, \underline{v}_3, \underline{v}_4\}$.

Then,

so S is an orthogonal set.

A nonempty orthogonal set of nonzero vectors is linearly independent, so S is linearly independent. Consequently, S is a basis of its span. Since S contains 4 vectors, the dimension of the span of S is 4. In other words, the span of S is all of \mathbb{R}^4 .

Hence, S is an orthogonal basis of \mathbb{R}^4 .

(b) Use part (a) to express the vector (1,2,3,4) as a linear combination of the vectors in S.

Let
$$\underline{u} = (1, 2, 3, 4)$$
. Since S is orthogonal,

$$\begin{array}{lll} \underline{u} & = & \mathrm{proj}_{\underline{\nu}_{1}}\underline{u} + \mathrm{proj}_{\underline{\nu}_{2}}\underline{u} + \mathrm{proj}_{\underline{\nu}_{3}}\underline{u} + \mathrm{proj}_{\underline{\nu}_{4}}\underline{u} \\ \\ & = & \frac{\underline{u} \circ \underline{\nu}_{1}}{\underline{\nu}_{1}} \, \underline{\nu}_{1} + \frac{\underline{u} \circ \underline{\nu}_{2}}{\underline{\nu}_{2} \circ \underline{\nu}_{2}} \, \underline{\nu}_{2} + \frac{\underline{u} \circ \underline{\nu}_{3}}{\underline{\nu}_{3} \circ \underline{\nu}_{3}} \, \underline{\nu}_{3} + \frac{\underline{u} \circ \underline{\nu}_{4}}{\underline{\nu}_{4} \circ \underline{\nu}_{4}} \, \underline{\nu}_{4} \\ \\ & = & \frac{(1, \, 2, \, 3, \, 4) \circ (1, \, 1, \, 1, \, 1)}{(1, \, 1, \, 1, \, 1) \circ (1, \, 1, \, 1, \, 1)} \, \underline{\nu}_{1} + \frac{(1, \, 2, \, 3, \, 4) \circ (1, -1, \, 1, -1)}{(1, -1, \, 1, -1) \circ (1, -1, \, 1, -1)} \, \underline{\nu}_{2} \\ \\ & + & \frac{(1, \, 2, \, 3, \, 4) \circ (1, -1, -1, \, 1)}{(1, -1, -1, \, 1) \circ (1, -1, -1, \, 1)} \, \underline{\nu}_{3} + \frac{(1, \, 2, \, 3, \, 4) \circ (1, \, 1, -1, -1)}{(1, \, 1, -1, -1) \circ (1, \, 1, -1, -1)} \, \underline{\nu}_{4} \end{array}$$

$$= \frac{1+2+3+4}{1+1+1+1} \underline{v}_1 + \frac{1-2+3-4}{1+1+1+1} \underline{v}_2 + \frac{1-2-3+4}{1+1+1+1} \underline{v}_3 + \frac{1+2-3-4}{1+1+1+1} \underline{v}_4$$

$$= \frac{10}{4} \underline{v}_1 + \frac{-2}{4} \underline{v}_2 + \frac{0}{4} \underline{v}_3 + \frac{-4}{4} \underline{v}_4$$

$$= \frac{5}{2} \underline{v}_1 - \frac{1}{2} \underline{v}_2 + 0 \underline{v}_3 - 1 \underline{v}_4.$$

- 5. Let $\underline{a} = (-3,2,1)$, $\underline{b} = (1,1,1)$, and $\underline{c} = (9,-4,7)$ be vectors in \mathbb{R}^3 .
 - (a) Show that vector \underline{a} is orthogonal to the vector \underline{b} .

Solution:

$$a \circ b = (-3, 2, 1) \circ (1, 1, 1) = -3 + 2 + 1 = 0,$$

so the vectors \underline{a} and \underline{b} are orthogonal.

(b) Let $\underline{u} = \text{proj}_{\underline{a}\underline{c}}$ and $\underline{v} = \text{proj}_{\underline{b}\underline{c}}$. Find the vector $\underline{w} = \underline{c} - \underline{u} - \underline{v}$.

Solution:

$$\underline{u} = \frac{\underline{c} \circ \underline{a}}{\underline{a} \circ \underline{a}} \underline{a} = \frac{(9, -4, 7) \circ (-3, 2, 1)}{(-3, 2, 1) \circ (-3, 2, 1)} (-3, 2, 1)$$

$$= \frac{-27 - 8 + 7}{9 + 4 + 1} (-3, 2, 1) = \frac{-28}{14} (-3, 2, 1)$$

$$= -2 (-3, 2, 1) = (6, -4, -2).$$

Next,

$$\underline{v} = \frac{\underline{c} \circ \underline{b}}{\underline{b} \circ \underline{b}} \, \underline{b} = \frac{(9, -4, \, 7) \circ (1, \, 1, \, 1)}{(1, \, 1, \, 1) \circ (1, \, 1, \, 1)} \, (1, \, 1, \, 1)$$

$$= \frac{9-4+7}{1+1+1} (1, 1, 1) = \frac{12}{3} (1, 1, 1)$$
$$= 4 (1, 1, 1) = (4, 4, 4).$$

Finally,

$$\underline{w} = \underline{c} - \underline{u} - \underline{v} = (9, -4, 7) - (6, -4, -2) - (4, 4, 4)$$
$$= (9 - 6 - 4, -4 + 4 - 4, 7 + 2 - 4) = (-1, -4, 5).$$

(c) Show that vector \underline{w} is orthogonal to both vectors \underline{a} and \underline{b} .

Solution:

$$\underline{w} \circ \underline{a} = (-1, -4, 5) \circ (-3, 2, 1) = 3 - 8 + 5 = 0,$$

so \underline{w} is orthogonal to \underline{a} . Next,

$$\underline{w} \circ \underline{b} = (-1, -4, 5) \circ (1, 1, 1) = -1 - 4 + 5 = 0,$$

so \underline{w} is also orthogonal to \underline{b} .