
NEW FAMILIES OF STRONGLY REGULAR GRAPHS

YURY J. IONIN AND HADI KHARAGHANI

Abstract. We apply symmetric balanced generalized weighing matrices with zero diagonal to

construct four parametrically new infinite families of strongly regular graphs.

1. Introduction

Let G be a multiplicatively written finite group. A matrix W = [αij ] of order v with entries from

the set G = G ∪ {0} is called a balanced generalized weighing matrix with parameters (v, k, λ), or
a BGW (v, k, λ), over G if each row of W contains exactly k nonzero entries and, for all distinct
i, h ∈ {1, 2, . . . , v}, the multiset {α−1hj αij : 1 ≤ j ≤ v, αij 6= 0, αhj 6= 0} contains exactly λ/|G| copies
of each element of G.

If W is a BGW (v, k, λ) over a group G, then so is WT . If f is a homomorphism from G onto a
group G′, then replacing every nonzero entry of W by its image under f yields a BGW (v, k, λ) over
G′.

Most of the known balanced generalized weighing matrices belong to the family

(1) BGW

(
qd+1 − 1

q − 1
, qd, qd − qd−1

)
over G,

where q is a prime power, d is a positive integer, and G is a cyclic group whose order divides q − 1.
Since such a group G can be regarded as a subgroup of the multiplicative group of the field GF (q),
matrix (1) can be regarded as a matrix over GF (q).

Let ω be a generator of a finite cyclic group G. A matrix W = [αij ] of order v over G is called
ω-circulant if, for i, j = 2, 3, . . . , v, αij = αi−1,j−1 and αi1 = ωαi−1,v. As Jungnickel showed in [6],
there is always an ω-circulant balanced generalized weighing matrix with parameters (1).

Another useful representation of balanced generalized weighing matrices is considering them as
matrices over a group ring. Let R be the group ring of a finite group G over the rationals. For any
x ∈ G, let x∗ = x−1 if x ∈ G and x∗ = 0 if x = 0. For a matrix W = [αij ] of order v with entries

from G, let W ∗ = [α∗ij ]
T . Then W is a BGW (v, k, λ) over G if and only if the following equation

over R is satisfied:

(2) WW ∗ =

(
ke− λ

|G|
G

)
I +

(
λ

|G|
G

)
J,

where e is the identity element of G, G stands for the sum of all elements of G in R, I is the identity
matrix of order v, and J is the matrix of order v with all entries equal to e.

For further details on balanced generalized weighing matrices, see [6] and [4].
A strongly regular graph with parameters (v, k, λ, µ), or an SRG(v, k, λ, µ), is a simple graph Γ

with v vertices, not complete or null, in which the number of common neighbors of vertices x and
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y is k, λ, or µ according as x and y are equal, adjacent, or non-adjacent, respectively. If A is an
adjacency matrix of the graph Γ, then

(3) A2 = (k − µ)I + (λ− µ)A+ µJ

and

(4) AJ = JA = kJ.

Conversely, if an adjacency matrix A of a simple graph Γ (not complete or null) satisfies (3) and
(4), then Γ is strongly regular.

A symmetric (v, k, λ)-design is a pair D = (X,B), where X is a set (of points) of cardinality
v and B is a set of v subsets of X (blocks), each of cardinality k, such that any 2-subset of X is
contained in exactly λ blocks. If X = {x1, x2, . . . , xv} and B = {B1, B2, . . . , Bv}, then the design
D can be described by its incidence matrix, that is a (0, 1) matrix of order v whose (i, j)-entry is
equal to 1 if and only if xi ∈ Bj . A (0, 1) matrix N of order v is an incidence matrix of a symmetric
(v, k, λ)-design if and only if

NNT = (k − λ)I + λJ.

An incidence matrix N of a symmetric (v, k, λ)-design also satisfies the equation NJ = JN = kJ .
Therefore, if it is a symmetric matrix with all diagonal entries equal to 0, then N is an adjacency
matrix of an SRG(v, k, λ, λ). For further information on strongly regular graphs and symmetric
designs see [1], [2], [3], and [8].

In this paper we construct four infinite families of symmetric designs that admit a symmetric
incidence matrix with zero diagonal and thus obtain four infinite families of strongly regular graphs.
Symmetric designs with these parameters were constructed in [5] but the parameters of the strongly
regular graphs are new.

2. Symmetric balanced generalized weighing matrices with zero diagonal

In this section we describe a construction of an infinite family of symmetric balanced generalized
weighing matrices with zero diagonal. It is a modification of the construction described in [7]

Let M be a nonempty set of m × n matrices and let S be a group of bijections M → M. If
W = [αij ] is a BGW (w, l, µ) over S, then, for X ∈ M, we denote by W ⊗ X the block matrix
[αijX], where, for αij ∈ S, αijX is the image of X under the bijection αij ; if αij = 0, then αijX is
the m× n zero matrix.

Theorem 2.1. Let v ≥ k ≥ λ be positive integers and let G be a finite group. Let M be a nonempty
set of matrices, each of which is a BGW (v, k, λ) over G, and let S be a group of bijections M→M
such that (σX)(σY )∗ = XY ∗ for all σ ∈ S and all X,Y ∈ M. Suppose there exists a balanced
generalized weighing matrix W over S with parameters (w, l, µ) such that

(5)
∑
σ∈S

σX =

(
λl|S|
kµ|G|

G

)
J

for all X ∈M. Then, for each X ∈M, the matrix W ⊗X is a BGW (vw, kl, λl) over G.

Proof. Let W = [αij ], i, j = 1, 2, . . . , w. If i ∈ {1, 2, . . . , w}, then there exists σ1, σ2, . . . , σl ∈ S such
that

w∑
j=1

(αijX)(αijX)∗ =

l∑
j=1

(σjX)(σjX)∗ = lXX∗ =

(
kle− λl

|G|
G

)
I +

(
λl

|G|
G

)
J.
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If i, h ∈ {1, 2, . . . , w} and i 6= h, then there exist σ1, σ2, . . . , σµ ∈ S and τ1, τ2, . . . , τµ ∈ S such
that

w∑
j=1

(αijX)(αhjX)∗ =

µ∑
j=1

(σjX)(τjX)∗ =

µ∑
j=1

(τ−1j σjX)X∗

=
µ

|S|
∑
σ∈S

(σX)X∗ =

(
λl

k|G|
G

)
JX∗ =

λl

k|G|
J(GX∗) =

(
λl

|G|
G

)
J.

Thus, W ⊗X satisfies (2) and therefore it is a BGW (vw, kl, λl) over G. �

We now describe a possible realization of the conditions of Theorem 2.1.
Let q be a prime power, d a positive integer, n a divisor of q− 1, and G =≺ ω � a cyclic group of

order n. LetM be the set of all BGW (v, qd, qd− qd−1) matrices over G with v = (qd+1−1)/(q−1).
For the remainder of this section, ρ : M→M is the map defined as follows: if X = [xij ] ∈M, then
ρX = [x′ij ] with

x′ij =

{
xi,j−1 if 2 ≤ j ≤ v,
ωxiv if j = 1.

Let S be the cyclic group generated by ρ. Then |S| = nv. Let r = qd+1. Then, for any positive
integer m, there exists a BGW (w, rm, rm − rm−1) over S with w = (rm+1 − 1)/(r − 1). Let W be
such a matrix.

Theorem 2.2. For any X ∈M, the matrix W ⊗X is a BGW (vw, qdrm, (qd − qd−1)rm) over G.

Proof. Let X,Y ∈ M, X = [xij ], Y = [yij ]. The (i, j)-entry of XY ∗ is equal to
∑v
t=1 xity

∗
jt and

the (i, j)-entry of (ρX)(ρY )∗ is equal to
∑v−1
t=1 xity

∗
jt + (ωxiv)(ωxjv)

∗, so (ρX)(ρY )∗ = XY ∗. The
(i, j)-entry of

∑
σ∈S σX is

n∑
s=1

v∑
t=1

ωsxit =

v∑
t=1

Gxit = qdG,

so all the conditions of Theorem 2.1 are satisfied. �

The next theorem is a slight generalization of a result obtained in [7]. It is crucial for subsequent
constructions.

Theorem 2.3. Let q be a prime power, n a divisor of q − 1, and G a cyclic group of order n. If
q(q − 1)/n is even, then, for any positive integer d, there exists a symmetric balanced generalized
weighing matrix

(6) BGW

(
q2d − 1

q − 1
, q2d−1, q2d−1 − q2d−2

)
over G with all diagonal entries equal to 0.

Proof. We begin with the case d = 1. Let GF (q) = {a1, a2, . . . , aq}. Define the matrix U = [αij ] of
order q + 1 by

αij =


ai − aj if 1 ≤ i ≤ q, 1 ≤ j ≤ q,
1 if 1 ≤ i ≤ q, j = q + 1,

−1 if i = q + 1, 1 ≤ j ≤ q,
0 if i = j = q + 1.

It is well known and readily verified that U is a BGW (q + 1, q, q − 1) over GF (q)∗. Let V =

[α
(q−1)/n
ij ]. If q is odd, then (q − 1)/n is even, and therefore V is a symmetric BGW (q + 1, q, q − 1)
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with zero diagonal over a cyclic group of order n. It is true for q even too, since in this case GF (q)
is a field of characteristic 2.

We now consider the general case and let v = (qd+1 − 1)/(q − 1). Let ω be a generator of G and
let Mc be the set of all ω-circulant BGW (v, qd, qd − qd−1) matrices over G. Let R be the matrix
of order v with all back diagonal entries equal to 1 and all other entries equal to 0. Then, for any
X ∈ Mc, XR is a symmetric BGW (v, qd, qd − qd−1) over G. Let Ms = {XR : X ∈ Mc}. Then
ρY ∈ Ms for all Y ∈ Ms, so the cyclic group S of order nv generated by ρ can be regarded as a
group of bijections onMs. Since nv divides qd+1− 1 and qd+1(qd+1− 1)/(nv) is even, there exists a
symmetric BGW (qd+1 + 1, qd+1, qd+1 − 1) over S with zero diagonal. Let W be such a matrix and
let Y ∈Ms. By Theorem 2.2, W ⊗ Y is a BGW with parameters (6) over G. Since both Y and W
are symmetric, so is W ⊗ Y . Since the diagonal entries of W are zeros, so are the diagonal entries
of W ⊗ Y . �

3. Symmetric designs with symmetric incidence matrices

Theorem 2.1 applied to the trivial group G yields the following result first obtained in [5].

Theorem 3.1. Suppose that a nonempty setM of incidence matrices of symmetric (v, k, λ)-designs
and a finite group S of bijections M→M satisfy conditions

(i) (σM)(σN)T = MNT for all M,N ∈M and all σ ∈ S and
(ii) for each M ∈M, the matrix

∑
σ∈S σM is constant.

If W is a BGW (w, l, µ) over S with k2µ = vλl, then, for N ∈M, W ⊗N is an incidence matrix
of a symmetric (vw, kl, λl)-design.

Remark 3.2. Since each matrix M ∈ M has constant row sum k, condition (ii) of Theorem 3.1
implies that

∑
σ∈S σM = (k|S|)/v)J , in agreement with the corresponding condition imposed by

Theorem 2.1.

Using Theorem 2.1, the first author constructed in [5] four infinite families of symmetric de-
signs, where the starting symmetric design is the development of a McFarland difference set or its
complement or a Spence difference set or its complement.

In order to obtain symmetric designs whose incidence matrices can serve as adjacency matrices
of strongly regular graphs, we will need the starting symmetric designs with symmetric incidence
matrices. In this section we develop the tools necessary for obtaining such matrices.

We begin with introducing a certain order on a finite abelian group.

Lemma 3.3. Let G be a finite abelian group. It is possible to order elements of G = {x1, x2, . . . , xn}
so that xi + xn+1−i is the same for i = 1, 2, . . . , n.

Proof. For each a ∈ G, let H(a) = {x ∈ G : 2x = a}. Since the sets H(a) are pairwise disjoint, either
all of them are singletons or at least one of them is empty. Fix a ∈ G such that |H(a)| ≤ 1 and
partition the set G \H(a) into 2-subsets {bi, ci} such that bi + ci = a. For 1 ≤ i ≤ n

2 , put xi = bi
and xn+1−i = ci. If H(a) 6= ∅, then n is odd, and we let x(n+1)/2 be the element of H(a). �

We will call the order on G described in Lemma 3.3 symmetric. From now on, we will always
assume that a finite abelian group G is equipped with a symmetric order, and G = {x1, x2, . . . , xn}
means that xi + xn+1−i is the same for i = 1, 2, . . . , n.

With any subset A of a finite abelian group G = {x1, x2, . . . , xn} we associate a (0, 1) matrix
M(A) = [mij(A)] of order n, where

mij(A) =

{
1 if xn+1−i − xj ∈ A,
0 if xn+1−i − xj 6∈ A.
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The definition of symmetric order implies that matrices M(A) are symmetric. Importance of this
fact is demonstrated by the following theorem.

Theorem 3.4. Let v > k > λ be positive integers and let M me a non-empty set of symmetric
incidence matrices of symmetric (v, k, λ)-designs. Let S be a group of bijections M → M that
satisfies conditions (i) and (ii) of Theorem 3.1. Let W be a symmetric BGW(w, l, µ) over S with
zero diagonal. If k2µ = vλl, then, for N ∈M, W ⊗N is an adjacency matrix of a strongly regular
graph with parameters (vw, kl, λl, λl).

Proof. Let W = [αij ], i, j = 1, 2, . . . , w. By Theorem 3.1, W ⊗N is an incidence matrix of a sym-
metric (vw, kl, λl)-design. Since each matrix αijN is symmetric and αij = αji for i, j = 1, 2, . . . , w,
W ⊗N is a symmetric matrix. Since αii = 0 for i = 1, 2, . . . , w, the diagonal entries of W ⊗N are
equal to 0. Therefore, W ⊗N is an adjacency matrix of a strongly regular graph with parameters
(vw, kl, λl, λl). �

Remark 3.5. If parameters (w, l, µ) of the matrix W in Theorem 3.4 are those given by Theorem
2.3, then the condition k2µ = vλl is equivalent to q = k2/(k − λ).

We conclude this section with the following technical lemma.

Lemma 3.6. If A and B are subsets of a finite abelian group G = {x1, x2, . . . , xn}, then (i) for
i, j = 1, 2, . . . , n, the (i, j)-entry of the matrix M(A)M(B)T is equal to |(A+xi)∩ (B+xj)| and (ii)
M(A)J = |A|J .

Proof. The (i, j)-entry of M(A)M(B)T is equal to the number of indices k such that xn+1−k−xi ∈ A
and xn+1−k − xj ∈ B. This implies (i). The statement (ii) is immediate. �

4. McFarland and Spence designs

In this section, we construct designs with parameters of McFarland and Spence difference sets,
which have symmetric incidence matrices.

Let q be a prime power, d a positive integer, and V the (d+ 1)-dimensional vector space over the
field GF (q). We will call subspaces of V of dimension d hyperplanes and their cosets d-flats. If H
is a hyperplane and x, y ∈ V , we will call d-flats H + x and H + y parallel. The space V contains
r = (qd+1 − 1)/(q− 1) hyperplanes, which we denote H1, H2, . . . ,Hr. All d-flats parallel to Hi form
a parallel class Πi, |Πi| = q. For i = 1, 2, . . . , r, we fix a cyclic permutation πi of the parallel class
Πi.

Let F be the set consisting of all d-flats, their complements, the empty set, and the entire space
V (so |F| = 2(qr + 1)). We define a bijection π : F → F as follows: if F ∈ Πi, then π(F ) = πi(F )
and π(V \ F ) = V \ πi(F ); π(∅) = ∅; π(V ) = V .

We will regard V as an abelian group equipped by a symmetric order, so, for any subset A of V ,
a symmetric matrix M(A) is defined .

Lemma 4.1. For A,B ∈ F , (i) M(πA)M(πB)T = M(A)M(B)T and (ii)
∑q
k=1M(πkA) is a

constant matrix.

Proof. Statement (i) follows immediately from Lemma 3.6. To prove (ii) note that if A is a d-flat,
then the d-flats πkA, k = 1, 2, . . . , q, partition V . Therefore,

∑q
j=1M(πkA) = J and

∑q
j=1M(πk(V \

A)) = (q − 1)J . Of course,
∑q
j=1M(πk(∅)) = O and

∑q
j=1M(πkV ) = qJ . �

Let n be a positive integer and let Fn be the set of all ordered n-tuples of elements of F . For
A = (A1, A2, . . . , An) ∈ Fn, we define a symmetric (0, 1) matrix N(A) of order nqd+1 as a block
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matrix [Nij(A)], i, j = 1, 2, . . . , n, where

Nij(A) =

{
M(Ai+j−1) if i+ j ≤ n+ 1,

M(π(Ai+j−n−1)) if i+ j ≥ n+ 2.
.

If A = (A1, A2, . . . , An) ∈ Fn, we denote by A the complementary n-tuple (V \A1, V \A2, . . . , V \
An). Clearly, N(A) = J −N(A).

We will now introduce McFarland and Spence symmetric designs with symmetric incidence ma-
trices. Recall that r = (qd+1 − 1)/(q − 1) is the number of hyperplanes in V .

Definition 4.2. A McFarland (r+ 1)-tuple is an (r+ 1)-tuple A = (A1, A2, . . . , Ar+1) ∈ Fr+1 such
that one of the sets A1, A2, . . . , Ar+1 is empty and the other r are pairwise non-parallel d-flats. A
Spence r-tuple is an r-tuple A = (A1, A2, . . . , Ar) ∈ Fr such that one of the sets A1, A2, . . . , Ar is
the complement of a d-flat parallel to H1 and the other r are pairwise non-parallel d-flats, which are
not parallel to H1.

Theorem 4.3. Let [Aij ], i, j = 1, 2, . . . , r+ 1, be an array of subsets of V , all rows and all columns
of which are McFarland (r+ 1)-tuples. Then the block matrix N = [M(Aij)] is an incidence matrix
of a symmetric ((r + 1)qd+1, rqd, (r − 1)qd−1)-design.

Proof. For i, h = 1, 2, . . . , r + 1, let Sih =
∑r+1
j=1M(Aij)M(Ahj)

T . By Lemma 3.6, for k, l =

1, 2, . . . , qd+1, the (k, l)-entry of Sih is equal to
∑r+1
j=1 |(Aij + xk) ∩ (Ahj + xl)|.

Let i = h. If Aij is a d-flat, then let it be parallel to a hyperplane H. In this case, Aij + xk =
Aij + xl or (Aij + xk) ∩ (Ahj + xl) = ∅ depending on whether xk − xl is or is not in H. Therefore,
the (k, l)-entry of Sih is equal to rqd if k = l, and it is equal to qd(qd − 1)/(q − 1) = (r − 1)qd−1 if
k 6= l.

Let i 6= h. Then either Aij + xk and Ahj + xl are non-parallel d-flats, which meet in qd−1 points,
or one of these sets is empty. Therefore, the (k, l)-entry of Sih is equal to (r − 1)qd−1. The proof is
now complete. �

Corollary 4.4. If A is a McFarland (r + 1)-tuple, then N(A) is a symmetric incidence matrix of
a symmetric ((r + 1)qd+1, rqd, (r − 1)qd−1)-design.

Symmetric designs constructed in Theorem 4.3 have parameters of McFarland difference sets.
Symmetric designs with parameters of Spence difference sets can be obtained in a similar manner.

Theorem 4.5. Let V be the (d+ 1)-dimensional vector space over GF (3) and let r = (3d+1− 1)/2.
Let [Aij ], i, j = 1, 2, . . . , r, be an array of subsets of V , all rows and all columns of which are Spence
r-tuples. Then the block matrix N = [M(Aij)] is an incidence matrix of a symmetric (3d+1(3d+1 −
1)/2, 3d(3d+1 + 1)/2, 3d(3d + 1)/2)-design.

Corollary 4.6. If A is a Spence r-tuple over GF (3), then N(A) is a symmetric incidence matrix
of a symmetric (3d+1(3d+1 − 1)/2, 3d(3d+1 + 1)/2, 3d(3d + 1)/2)-design.

5. Constructing strongly regular graphs

In this section we apply Theorem 3.4 to the set of matrices {N(A) : A ∈ M}, where M is the
set of McFarland (r + 1)-tuples or the set of their complements or the set of Spence r-tuples or the
set of their complements.

We begin with defining bijections π, σ : Fn → Fn as follows:

π(A1, A2, . . . , An) = (πA1, πA2, . . . , πAn);

σ(A1, A2, . . . , An) = (A2, A3, . . . , An, A1).
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Observe that πσ = σπ and that π and σ generate cyclic groups of orders q and n, respectively. If
n = r = (qd+1− 1)/(q− 1), then q and n are relatively prime; if n = r+ 1 and q is odd, then again q
and n are relatively prime. From now on, we assume that q is an odd prime power, n = r or r + 1,
and G is the cyclic group of order nq generated by π and σ.

Lemma 5.1. For A,B ∈ Fn and α ∈ G,
(i) N(αA)N(αB)> = N(A)N(B)>,
(ii)

∑q
k=1

∑n
l=1N(πkσlA) is a constant matrix.

Proof. (i) is straightforward for α = π and α = σ and therefore it is true for any α ∈ G.
If A = (A1, A2, . . . , An), then

q∑
k=1

n∑
l=1

N(πkσlA) = [Sij ],

where each block Sij is equal to
∑n
j=1

∑q
k=1M(πkAj), and we apply Lemma 4.1(ii). �

Let P be the set of all matrices N(A), where A is a McFarland (r+ 1)-tuple. For P = N(A) ∈ P
and α ∈ G, let αP = N(αA). The set P and the cyclic group G of bijections P → P satisfy
conditions (i) and (ii) of Theorem 3.4. If (v, k, λ) = ((r+1)qd+1, rqd, (r−1)qd−1), then k2/(k−λ) =
r2. We have r2(r2 − 1)/|S| = r2(r − 1)/q. Therefore, if r is a prime power and r(r − 1)/q is even,
Theorem 2.3 yields, for any positive integer m, a symmetric BGW ((r4m−1)/(r2−1), r4m−2, r4m−2−
r4m−4) with zero diagonal. This leads to the following result.

Theorem 5.2. Let q be an odd prime power and d a positive integer. If r = (qd+1 − 1)/(q− 1) is a
prime power, then, for any positive integer m, there exists a strongly regular graph with parameters(

qd+1(r4m − 1)

r − 1
, qdr4m−1, qd−1r4m−2(r − 1), qd−1r4m−2(r − 1)

)
.

Let P be the set of all matrices N(A), where A is the complement of a McFarland (r+ 1)-tuple.
Then again any α ∈ G can be regarded as a bijection P → P. The complement of a McFarland
symmetric design has parameters ((r + 1)qd+1, qd(qd+1 + q − 1), qd(qd + 1)(q − 1)). In this case we
want s = qd+1 + q − 1 to be a prime power and s2(qd + 1)(q − 1) to be even.

Theorem 5.3. Let q is an odd prime power and d a positive integer. If s = qd+1 + q− 1 is a prime
power, then, for any positive integer m, there exists a strongly regular graph with parameters(

qd+1(s4m − 1)

(q − 1)(s+ 1)
, qds4m−1, qds4m−2(qd + 1)(q − 1), qds4m−2(qd + 1)(q − 1)

)
.

Let P be the set of all matrices N(A), where A is a Spence r-tuple over GF (3) with r =
(3d+1 − 1)/2. In this case, |S| = 3r, and we want q = (3d+1 + 1)/2 to be a prime power.

Theorem 5.4. Let d be a positive integer. If q = (3d+1 + 1)/2 is a prime power, then, for any
positive integer m, there exists a strongly regular graph with parameters(

2 · 3d+1(q4m − 1)

q + 1
, 3dq4m−1,

3d(3d + 1)q4m−2

2
,

3d(3d + 1)q4m−2

2

)
.

The complement of a Spence symmetric design has parameters (3d+1(3d+1−1)/2, 3d(3d+1−2), 2 ·
3d(3d − 1)), and we obtain

Theorem 5.5. Let d be a positive integer. If q = 3d+1 − 2 is a prime power, then, for any positive
integer m, there exists a strongly regular graph with parameters(

3d+1(q4m − 1)

2(q − 1)
, 3dq4m−1, 2 · 3d(3d − 1)q4m−2, 2 · 3d(3d − 1)q4m−2

)
.
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Remark 5.6. All strongly regular graphs obtained in Theorems 5.2, 5.3, 5.4, and 5.5 are paramet-
rically new. The smallest of these graphs has parameters (765, 192, 48, 48). (Put d = m = 1 and
q = 3 in Theorem 5.2.)
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