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Abstract. Turyn-type sequences, TT (n), are quadruples of {±1}-
sequences (A;B;C;D), with lengths n, n, n, n−1 respectively, where
the sum of the nonperiodic autocorrelation functions of A,B and
twice that of C,D is a δ-function (i.e., vanishes everywhere except
at 0). Turyn-type sequences TT (n) are known to exist for all even
n not larger than 36. We introduce a definition of equivalence to
construct a canonical form for TT (n) in general. By using this
canonical form, we enumerate the equivalence classes of TT (n) for
n ≤ 32. We also construct the first example of Turyn-type se-
quences TT (38).
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1. Introduction

Let a binary sequence be a sequence A = a1, ..., am whose terms
belong to {±1}. To such a sequence, we associate the polynomial
A(x) = a1 + a2x+ · · ·+ amx

m−1, and refer to the Laurent polynomial
N(A) = A(x)A(x−1) as the norm of A. Denoted TT (n), a Turyn-type

sequence (A;B;C;D) is a quadruple of binary sequences with A,B and
C of length n and D of length n− 1, such that

(1.1) N(A) +N(B) + 2N(C) + 2N(D) = 6n− 2.

Turyn-type sequences should not be confused with the so called “Tu-
ryn Sequences” [7, Definition 5.1, p. 478], which are also quadruples of
{±1}-sequences but now of lengths n, n, n−1, n−1. In addition to the
requirement that the sum of their non-periodic autocorrelation func-
tions is a δ-function, they also have certain desirable symmetry prop-
erties. Unfortunately, there are only a few known Turyn Sequences, all
with n ≤ 14.
Turyn-type sequences play an important role in the construction of

Hadamard matrices [4, 7]. For instance, the discovery of a Hadamard
matrix of order 428 [5] used a TT (36), constructed specifically for that
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1
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purpose. From TT (n), one can construct (as explained in Section 5)
base sequences of lengths 2n − 1, 2n − 1, n, n. If base sequences of
lengths m, m, n, n are known, one can use the Goethals-Seidel array to
construct a Hadamard matrix of order 4(m + n). We refer the reader
to [5, p. 436] for details.
Furthermore, two of the three remaining orders less than 1000 for

which the existence of a Hadamard matrix is not known may be resolved
by using Turyn-type sequences of appropriate lengths (assuming that
they exist). More precisely, Turyn-type sequences TT (56) and TT (60)
may be used to construct Hadamard matrices of orders 668 and 716
respectively.
The discovery of any new Turyn-type sequences leads to an infinite

class of Hadamard matrices, as explained in [5, p. 439]. Despite the
importance of Turyn-type sequences, not much is known about their
existence. All the existing results related to these sequences rely on
increasingly lengthy computer calculations. In order to have a better
understanding of the structure of Turyn-type sequences, it is essential
to classify them for as many values of n as possible. Our main goal is to
provide a classification of TT (n) for even n ≤ 32 (TT (n) do not exist
for odd n > 1) and to modify an existing search method to construct
a TT (38). The new TT (38) can be used to construct an infinite class
of Hadamard matrices; see [5, p. 439].
In Section 2, we define the standard elementary transformations of

TT (n) and use them to introduce an equivalence relation. We also
introduce a canonical form for Turyn-type sequences. Using this, we
are able to compute the representatives of the equivalence classes.
An abstract group of order 210 is introduced in Section 3, which

acts naturally on all sets of TT (n). The orbits of this group are the
equivalence classes of {TT (n)}.
In Section 4, a list of representatives of the equivalence classes of

{TT (n)} (those for even n ≤ 32) are tabulated. Due to their excessive
length, the tables for n > 10 are truncated to 12 members only.
Finally, in Section 5, the search method for finding a TT (38) is

explained.

2. A canonical form for turyn-type sequences

We denote finite sequences of integers by capital letters. If A is such a
sequence of length n, then we denote its elements by the corresponding
lower case letters. Thus,

A = a1, a2, . . . , an.
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The nonperiodic autocorrelation function of A, NA, is defined by:

NA(i) =
∑

j∈Z

ajai+j, i ∈ Z,

where ak = 0 for k < 1 and k > n. (As usual, Z denotes the ring of
integers.) Note that NA(−i) = NA(i) for all i ∈ Z and NA(i) = 0 for
i ≥ n. The integers NA(i) are the coefficients of the norm of A, i.e., we
have

N(A) =
∑

i∈Z

NA(i)x
i.

Assume that (A;B;C;D) is a TT (n). From equation (1.1), we have

(2.1) NA(i) +NB(i) + 2NC(i) + 2ND(i) = 0, i 6= 0.

The negated sequence, −A, the reversed sequence, A′, and the alter-

nated sequence, A∗, of the sequence A are defined by

−A = −a1,−a2, . . . ,−an,

A′ = an, an−1, . . . , a1,

A∗ = a1,−a2, a3,−a4, . . . , (−1)n−1an

respectively. Observe that N(−A) = N(A′) = N(A) and NA∗(i) =
(−1)iNA(i) for all i ∈ Z.
We define four types of elementary transformations of Turyn-type

sequences.
The elementary transformations of (A;B;C;D) ∈ {TT (n)} are the

following:
(T1) Negate one of A,B,C or D.
(T2) Reverse one of A,B,C or D.
(T3) Alternate all four sequences A,B,C and D.
(T4) Interchange the sequences A and B.
We say that two TT (n) are equivalent if one can be transformed to

the other by applying a finite sequence of elementary transformations.
One can enumerate the equivalence classes by finding suitable repre-
sentatives of the classes. For that purpose, we introduce a canonical
form.

Definition 2.1. We say that S = (A;B;C;D) ∈ {TT (n)} is in canon-

ical form if the following six conditions hold:

(i) a1 = an = b1 = bn = c1 = d1 = +1;
(ii) If i is the least index such that ai 6= an+1−i, then ai = +1;
(iii) If i is the least index such that bi 6= bn+1−i, then bi = +1;
(iv) If i is the least index such that ci = cn+1−i, then ci = +1;
(v) If i is the least index such that didn−i 6= dn−1, then di = +1;
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(vi) Assume that n > 2. If a2 6= b2 then a2 = +1 and otherwise,
an−1 = +1 and bn−1 = −1.

Note that if n > 1, then (i) and (2.1) imply that cn = −1. We can
now prove that each equivalence class has a member which is in the
canonical form. The uniqueness of this member will be proved in the
next section.

Proposition 2.2. Each equivalence class E ⊆ {TT (n)} has at least

one member having the canonical form.

Proof. Let S = (A;B;C;D) ∈ E be arbitrary. By applying the first
three types of elementary transformations, we can assume that (i)
holds. To satisfy the condition (ii), replace A with A′ (if necessary),
and similarly, we can satisfy the condition (iii). To satisfy the condition
(iv), replace C with −C ′ (if necessary).
To satisfy (v), observe that if i exists, then D is not symmetric

and 1 < i ≤ n/2. If dn−1 = +1, it suffices to replace D with D′ (if
necessary). Otherwise, we replace D with −D′ (if necessary).
To satisfy (vi), observe that the condition (2.1) with i = n−2 implies

that exactly one of the equalities a2 = b2 and an−1 = bn−1 holds. Thus,
it suffices to apply T4 (if necessary). Hence, S is now in the canonical
form. �

3. A symmetry group of {TT (n)}

We shall construct a group G of order 210 which acts naturally on
all {TT (n)}. Our (redundant) generating set for G will consist of 10
involutions. Each of these generators is an elementary transformation,
and we use this information to construct G, i.e., to impose the defining
relations. Let S = (A;B;C;D) be an arbitrary member of {TT (n)}.
To construct G, we start with an elementary abelian group E of

order 28 with generators νi, ρi, i ∈ {1, 2, 3, 4}. It acts on {TT (n)} as
follows:

ν1S = (−A;B;C;D), ρ1S = (A′;B;C;D),

ν2S = (A;−B;C;D), ρ2S = (A;B′;C;D),

ν3S = (A;B;−C;D), ρ3S = (A;B;C ′;D),

ν4S = (A;B;C;−D), ρ4S = (A;B;C;D′).

That is, νi negates the ith sequence of S and ρi reverses it.
Next we introduce the involutory generator σ. We declare that σ

commutes with ν3, ν4, ρ3, ρ4, and that

σν1 = ν2σ, σρ1 = ρ2σ.
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The groupH = 〈E, σ〉 is the direct product of the groupH1 = 〈ν1, ρ1, σ〉
of order 32 and H2 = 〈ν3, ν4, ρ3, ρ4〉. The action of E on {TT (n)} ex-
tends to H by defining σS = (B;A;C;D).
Finally, we define G as the semidirect product of H and the group

of order 2 with generator α. By definition, α satisfies αρiα = ρiνi for
i = 1, 2, 3 and commutes with ρ4, σ and each νi. The action of H on
{TT (n)} extends to G by letting α act as the elementary transforma-
tion (T3), i.e., we have

αS = (A∗;B∗;C∗;D∗).

We point out that the definition of G is independent of n.
The following proposition follows immediately from the construction

of G and the description of its action on {TT (n)}.

Proposition 3.1. The orbits of G in {TT (n)} are the same as the

equivalence classes.

We shall need the following lemma.

Lemma 3.2. For S = (A;B;C;D) ∈ {TT (n)}, set ϕ(S) = a1an.
Then we have ϕ(αS) = −ϕ(S) and ϕ(hS) = ϕ(S) for all h ∈ H.

Proof. The first assertion holds because n is even. To prove the second
assertion, it suffices to verify that it holds when h is one of the gen-
erators νj, ρj , j = 1, 2, 3, 4, or σ. This is obvious in the former case.
It is also true in the latter case (h = σ) because equation (2.1) with
i = n− 1 implies that a1an = b1bn. �

The main tool that we use to enumerate the equivalence classes of
{TT (n)} is the following theorem.

Theorem 3.3. For each equivalence class E ⊆ {TT (n)} there is a

unique S = (A;B;C;D) ∈ E having the canonical form.

Proof. In view of Proposition 2.2, we just have to prove the uniqueness
assertion. Let

S(k) = (A(k);B(k);C(k);D(k)) ∈ E , (k = 1, 2)

be in the canonical form. We have to prove that in fact S(1) = S(2).
By Proposition 3.1, we have gS(1) = S(2) for some g ∈ G. We can

write g as g = αth where t ∈ {0, 1} and h ∈ H . The symbols (i)-(vi)
will refer to the corresponding conditions of Definition 2.1.
Since both S(1) and S(2) have the canonical form, the condition (i)

implies that ϕ(S(1)) = ϕ(S(2)) = 1, where ϕ is the function defined in
Lemma 3.2. Now this lemma implies that t = 0, i.e., g = h ∈ H .
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Recall that H = H1 × H2. Thus, g = h = h1h2 with h1 ∈ H1 and
h2 ∈ H2. Consequently, h2C

(1) = C(2) and h2D
(1) = D(2). What we

really mean by these equations is that we have

h2S
(1) = (A(1);B(1);C(2);D(2)).

Hopefully this simplified notation for the action of H2, as well as its
analog for the action ofH1, will not lead to any confusion. We can write
h2 = νp

3ρ
q
3ν

r
4ρ

s
4 for some p, q, r, s ∈ {0, 1}. Then we have νp

3ρ
q
3C

(1) =
C(2) and νr

4ρ
s
4D

(1) = D(2). We shall now prove that C(1) = C(2) and
D(1) = D(2).
Since c

(1)
1 = c

(2)
1 = 1 and c

(1)
n = c

(2)
n = −1, we conclude that p = q.

Now the condition (iv) implies that either p = q = 0 or ν3ρ3C
(1) = C(1).

In both cases we have C(1) = C(2).
Since d

(1)
1 = d

(2)
1 = 1, the equality νr

4ρ
s
4D

(1) = D(2) implies that

d
(1)
1 d

(1)
n−1 = d

(2)
1 d

(2)
n−1. Hence d

(1)
n−1 = d

(2)
n−1 = ε. If ε = +1 we must have

r = 0 and the condition (v) shows that either s = 0 or ρ4D
(1) = D(1).

In both cases, D(1) = D(2). By a similar argument as in the previous
paragraph but using the condition (v) instead of (iv), we can show that
this equality also holds when ε = −1.

It remains to prove that A(1) = A(2) and B(1) = B(2). Since a
(1)
1 =

a
(1)
n = a

(2)
1 = a

(2)
n = +1, we must have h1 ∈ 〈ρ1, ρ2, σ〉, i.e., h1 = ρu1ρ

v
2σ

w

for some u, v, w ∈ {0, 1}. We claim that we can assume, without any
loss of generality, that w = 0. This is clear if A(1) = B(1). Otherwise,

we have n > 2 and the condition (vi) implies that either a
(1)
n−1 = +1,

b
(1)
n−1 = −1 and a

(1)
n−1 = b

(1)
n−1 or a

(1)
n−1 = +1, b

(1)
n−1 = −1 and a

(1)
1 = b

(1)
1 .

It is now easy to see that we must have w = 0. This proves our
claim, and so we may assume that h1 = ρu1ρ

v
2. Consequently, we have

ρu1A
(1) = A(2) and ρv2B

(1) = B(2). The condition (ii) implies that either
u = 0 or ρ1A

(1) = A(1). In both cases we have A(1) = A(2). The proof
of B(1) = B(2) is similar, using (iii) instead of (ii). �

4. Representatives of the equivalence classes

We have computed a set of representatives for the equivalence classes
of Turyn-type sequences for even n ≤ 32. Due to their excessive size,
we tabulate whole sets for only n ≤ 12. Each representative is given
in the canonical form, which is made compact by using the following
standard encoding scheme for Turyn-type sequences.
Let S = (A;B;C;D) ∈ {TT (n)}. For each index i = 1, 2, . . . , n− 1

the number 4(1−ai)+2(1−bi)+(1−ci)+(1−di)/2 is an integer in the
range 0, 1, . . . , 15. We shall replace this integer by the corresponding
hexadecimal digit hi ∈ {0, 1, . . . , 9, a, b, c, d, e, f}. We encode S by the
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sequence h1, h2, . . . , hn of n hexadecimal digits. The hexadecimal digit
hn represents the number 2(1−an)+(1−bn)+(1−cn)/2 ∈ {0, 1, . . . , 7}.
Equivalently, if we apply the substitution +1 → 0, −1 → 1 to the

sequence ai, bi, ci, di for i < n, and the sequence an, bn, cn for i = n,
then we obtain the binary representation of the hexadecimal digit
hi. Clearly, the encoding sequence h1, h2, . . . , hn of S determines S
uniquely.
As an example, the Turyn-type sequence

A = ++ -+ - + - +;

B = + - - - - - - +;

C = + - - ++++ - ;

D = +++ -++ -

is encoded as 06e5c4d1. Note that when displaying a binary sequence,
we shall often write + for +1 and − for −1.
For each n, the representatives are listed in the lexicographic order

of the symbol sequences h1, h2, . . . , hn. Since all representatives have
the canonical form, we always have h1 = 0 and hn = 1. In tables
2-3, the last hexadecimal digit hn = 1 is omitted. However, the first
hexadecimal digit h1 = 0 will always be recorded.
For n ≤ 10 we list all representatives in Table 2. For 12 ≤ n ≤ 32, we

list in each case only the first dozen representatives. For n ≤ 22, the
list of representatives was computed independently by two different
programs, but for the range 24 ≤ n ≤ 32, only the more optimized
program was used. We discuss the search method in the next section.

Table 1: The number of equivalence classes in {TT (n)}

n 2 4 6 8 10 12 14 16
# Eq. cl. 1 1 4 6 43 127 186 739

n 18 20 22 24 26 28 30 32
# Eq. cl. 675 913 3105 3523 3753 4161 4500 6226
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Table 2: Class representatives for n = 2, 4, 6, 8, 10
n = 2

1 0

n = 4
1 016

n = 6
1 006d6 2 01396 3 045ec 4 0608d

n = 8
1 001c6a5 2 0049e25 3 005e5c6 4 00c1786

5 06e054d 6 06e5c4d

n = 10
1 0001f4a96 2 00036c796 3 0006f8365 4 000ef86a5

5 00134e696 6 001ce8965 7 0047e4f16 8 0049a13c6

9 0057c6e16 10 0076f4ee5 11 007809cd6 12 007b393e5

13 007cc94d6 14 007cca8e5 15 00870bec6 16 008f4dac6

17 00b6fa2e5 18 00c5c7e85 19 00e063895 20 00f6e8ea5

21 012408f96 22 01402b8e5 23 014308ae5 24 0401368bc

25 044a18fec 26 04932a63c 27 05176df5c 28 052bb137c

29 05716d9dc 30 0588caf1c 31 05a82aedc 32 05b7b13dc

33 05bf1b5dc 34 05fb71f5c 35 061137b4d 36 06113b58d

37 0614aec8d 38 061ae6e8d 39 061b3738d 40 061d7f54d

41 06a1058cd 42 06bcd84cd 43 074625ccd
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Table 3: First twelve class representatives

for n = 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32
n = 12

1 0004f90bc96 2 0006b8c1da5

3 0007c918e96 4 0008bd43c96

5 0009e0a7c95 6 000b0f68d66

7 000b8d50e96 8 000d26db4a6

9 000d2e974a6 10 000d2e978a6

11 000e471ea96 12 000f0736695

n = 14
1 00036ac71c765 2 00041f906bca5

3 000497813eca5 4 0006698fc23a5

5 0007b2af4e3a5 6 0007b2b343e95

7 0008e783d62a5 8 000a07d41ad96

9 000af2175a396 10 000b31c7563a5

11 000b6283acd65 12 000b679e32ea5

n = 16
1 0000778e52de556 2 00007e4b0e53956

3 0000f0d734a5966 4 0000f5461f2a965

5 0000fdc397459a5 6 0000fdc397499a5

7 00018f07d45ea95 8 0001c39c6e95965

9 00023e1c6748795 10 00023e1c6b48755

11 00049b15e4d3ca5 12 0004fe172b471a6

n = 18
1 00006758b30d1e9a5 2 0000b7c117952e9a5

3 0000f87341bd29956 4 000149f0b259ee595

5 00017c2183a68f655 6 0001897a4c3df0596

7 0001b465432e0fa95 8 0001cb44731d2a9a5

9 00030e9bb21da8b65 10 000363645f0e52b95

11 000366969e231c755 12 0004b350d6918f1a6

n = 20
1 000038e2739c7a0b695 2 00004ef0b7c0b6bc5a6

3 00006bcab161e913a65 4 000077078d6f2433a95

5 0000bb0754e3e523695 6 0000bf40b3a3938d696

7 0000cb30fe68a5f86a5 8 0000e8af34cb43e95a6

9 0000f04b72a1f196a65 10 0000f0b27acca39a695

11 0000f0f216c9ba59aa6 12 0000f0f4ce7a15aa966

n = 22
1 00000f702c71a9ad56596 2 00000f7a12bd68e36a596

3 00000f8b358d263c5aa56 4 00000fb60539ea1ea69a5

5 000032f0f792e9665b966 6 000032f87f835e2a57966

7 00003609cf34a6d81b9a5 8 0000376a43258e2dcb965

9 00003fa2c8bc24bd47a56 10 00004f1acf9149e8b2596

11 0000538b4dea91227c696 12 000058782f506bd31c966
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n = 24
1 00000b7c2cb2bc4b6cd9a96 2 00000dfc0c3f86787589a56

3 00000dfc0c3f8a747985a96 4 00000f9e90729c9f4ca55a6

5 00000fb24bcf48d26e55a56 6 00002671f06b3c7a41d7a96

7 00003ba5d1f0b55ac1c7956 8 000044bb0787c2d92ed1596

9 00004996a5f086ef03dc965 10 00004b67a135ca713cf2a56

11 00004f2b6038d5ac19bc695 12 00004fe0fdc0a7a498b1695

n = 26
1 000000ff0f846f1ca5a5aa955 2 00000b70c5f25257c69c39966

3 00000b70cb54b0f1ea6239965 4 00000bab68f0da58e311d6a95

5 00000c7e12e4391b865f8a596 6 00000f8f50cb26da9e51a9996

7 00001477c0bed592960f39a55 8 000014bcf58a5f11269f05966

9 0000178b0f2d9285badc19a66 10 000017ac6234e90b6d7d25966

11 00002372d8f4a1ead7827b966 12 000027696c2491f88d3e0ba55

n = 28
1 0000067cde3e50639ab46135aa5 2 000007f4038fa4d1529b16da656

3 00000ab877e0a8fd862df0396a5 4 00000b344e59ca17f29216e5695

5 00000df479ad14dab0c1f986a56 6 0000137872534b30ae5c2f69996

7 000013847ef03e69586e2e96596 8 000015c86f122d54bb8fc4da5a5

9 0000190ffe11a35f8695b709a96 10 00002799e66d6c8ebc25cf07aa5

11 00003065e3788a2e1d693e4b556 12 00003a6b92877521ef412d1b956

n = 30
1 000000f70b106f9d427a25e9a9695 2 000003f0ed871781d5d2a65876956

3 000003f403872d2ba6cd5b1876a96 4 0000065f298b853ac3c2d86e39566

5 000007e6883ca99f22570f0ae55a5 6 000007f701bd8f28b1a2583ae9a56

7 00000bf4a07ab28c7dcd63e8da696 8 00000e3a785942359c33e0f669aa5

9 00000f0f1c3a662b3dc6a59669aa5 10 00000fb507b6a1c5b03ec70e69aa6

11 00000fe87624da3ac70bdeda59a66 12 00000ff118f947513c26d8a565a56

n = 32
1 00000138f64f1c1e77844f26d95a596 2 0000067c7a5e84b6c1deb0cd71eaa65

3 000006d074e9e0fb056835f289d55a6 4 00000718f80fcfd24abb8925c9e6a95

5 0000077403f8b0791e4ed89713e9565 6 000007f30b587fc61bbe123969355a6

7 0000093c5353ce49d36a4f50b516a96 8 000009f4306ad6f086f92cb7d8c96a6

9 00000b34d13a7d09c960d6790ada566 10 00000d3dc8b2c4afaf078dd8678a596

11 00000e6780dc4bb702f1b441fc96965 12 00000eb38c5f53827c9e70716156995

In addition to the canonical TT (n), the maximum number of ini-
tial zeroes in our canonical form is also of interest (Note that a zero
in the canonical form represents a column of 1s in the Turyn-type se-
quences). If a method for predicting the number of preceding zeroes
could be brought to light, it could greatly decrease future computation
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for individual Turyn-type sequences, since the first portion of each se-
quence would be pre-computed. Note that the first entry in each table
listed above for n ≤ 32 represents the maximal number of preceding
zeroes for their respective lengths. There seems to be little correlation
between n and the maximum number of initial zeros.
By setting x = 1 in (1.1), we see that 6n− 2 is necessarily a sum of

six (integer) squares as follows:

A(1)2 +B(1)2 + 2C(1)2 + 2D(1)2 = 6n− 2.

It is noteworthy that our computation shows that for all even n ≤ 32,
any choice of four squares A(1)2, B(1)2, C(1)2, D(1)2 satisfying this
equation can be realized by some TT (n).
For the sake of completeness, let us mention that TT (n) for n =

26, 28, 30, 32, 34 were constructed in [6], and for n = 36 in [5]. When
transformed to the canonical form (and encoded) these six sequences
are:

0560110f0f9ec89d54a6867dc

0005189b4d2e583e5571efc9196

00788193c52741c99e060a73a22d5

005088b3dc4d69db0a13438a6c2e916

052351540cf016cfbe5809958b32825bc

000f0f51c9bbd750cb048e3902185ca6a96

The first four of them indeed occur in our complete listings of class
representatives for n = 26, 28, 30, 32.

5. The Computational Method

As we have observed, there is compelling computational evidence
that TT (n) exist for all even n. While our computational findings
positively confirm the existence of TT (n), they also show the difficulty
in finding these sequences for large n.
In this section, we describe our method of finding a TT (38) and

set the stage for more computational work in trying to find TT (n) for
n ≥ 40.
In order to search for TT (38), we modified the search method in

[5]. For the sake of completeness, we will briefly describe our modified
search method below.

The search method:

We first find and retain all partial sequences
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A∗ = (a1, . . . , a6, a7, ∗, . . . , ∗, a32, . . . , a38);
B∗ = (b1, . . . , b6, b7, ∗, . . . , ∗, b32, . . . , b38);
C∗ = (c1, . . . , c6, c7, ∗, . . . , ∗, c32, . . . , c38);
D∗ = (d1, . . . , d6, ∗, ∗, . . . , ∗, d32, . . . , d37)

for which

(NA∗ +NB∗ + 2NC∗ + 2ND∗)(s) = 0 for s ≥ 31,

and which have the canonical form detailed in Definition 2.1. In order
to maintain a feasible number of cases, we precomputed 14, 14, 14, 12
entries in A,B,C,D respectively. There are 23472940 solutions in total.
The set S of all of these solutions is input for the (modified) algorithm
described in [5, p. 438].
To begin: Select a, b, c, d such that

a2 + b2 + 2c2 + 2d2 = 226.

Generate all sequences C with the sum of entries equal to c and for
which fC(θ) = NC(0)+2

∑n−1
j=1 NC(j) cos jθ ≤ 113 for all θ ∈ { jπ

600
| j =

1, 2, . . . , 600} and save proper sequences according to their identical
first and last seven entries. We do the same for the sequences D with
the sum d.
The rest of the procedure is similar to the algorithm in [5]. Choose

a solution {A∗, B∗, C∗, D∗} in S. Let C and D be the sets of those
sequences C and D whose first and last seven entries are identical to
the first and last seven entries of C∗ and D∗, respectively. For any
C ∈ C and D ∈ D for which fC(θ) + fD(θ) ≤ 113 for all θ ∈ { jπ

600
| j =

1, 2, . . . , 600}, we proceed to fill in partial sequences A∗ and B∗ step
by step (see [5] for details) until we find appropriate sequences A,B. If
we do not find such sequences, then we start again from the beginning.
Our search with a = 8, b = −4, c = 8 and d = −3 resulted in the

following solution:

A = ++++ - - +++++ - +++ - - - + - ++ - +++++ - ++ - - - - - - +
B = + -+++ - - - - ++ - + - ++ - - - - - - - - + - - - +++ -+ -++ - +
C = +++ - + - +++++ - +++ -+ - - - - +++ - + - - + - - +++ - ++ -
D = + - - ++ - - - ++ - - ++ -+ - - - - + - + - - - + - ++++ -+ - - +

In encoded form: 05128f55401f041adf7f65c53567822c9cb9c.
The same algorithm was used to find all representatives of canonical

forms. To give a feel of computation time, all TT (20) in canonical form
took under five minutes, whereas, all canonical TT (32) took approxi-
mately 50000 hours of computations on a single computer.
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For the sake of completeness we recall the following known facts.
Base sequences (A;B;C;D) are quadruples of {±1}-sequences, with A
and B of length m and C and D of length n, and such that

(5.1) N(A) +N(B) +N(C) +N(D) = 2(m+ n).

See [1, 2, 3] for details and the classification of these sequences.
Four {0,±1}-sequences A, B, C, D of length n are called T -sequences

if
(NA +NB +NC +ND)(s) = 0, for s ≥ 1,

and in each position, exactly one of the entries of A, B, C, D is nonzero.
If (A;B;C;D) are TT (n), then (C,D;C,−D;A;B) are base se-

quences of lengths 2n−1,2n−1,n,n, respectively. (Here we use comma
as the concatenation operator.) Hence, the existence of TT (38) implies
the existence of base sequences of lengths 75, 75, 38, 38.
If (A;B;C;D) are base sequences of lengths m,m,n,n respectively,

then

((A+B)/2, 0n; (A− B)/2, 0n; 0m, (C +D)/2; 0m, (C −D)/2)

are T -sequences of length m+ n. (Here, the addition and subtraction
of two sequences is component-wise, and say 0m denotes a sequence of
m zeroes.) Consequently, T -sequences of length 75 + 38 = 113 exist
and we have the following corollary.

Corollary 5.1. There are base sequences of lengths 75, 75, 38, 38 and

therefore T -sequences of length 113.

The existence of T -sequences of length 113 implies the existence of
an infinite number of Hadamard matrices; see [5] for details.
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