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Abstract

The energy of a matrix is the sum of its singular values. We study the energy of (0, 1)-
matrices and present two methods for constructing balanced incomplete block designs
whose incidence matrices have the maximum possible energy amongst the family of
all (0, 1)-matrices of given order and total number of ones. We also find a new upper
bound for the energy of (p, q)-bipartite graphs.
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1 Introduction

The energy of a graph is defined to be the sum of the absolute values of its eigenvalues.
This notion was introduced by Gutman and is related to the concept of the total π-electron
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energy of a molecule in chemistry, see [3, 6, 7]. Recently, Nikiforov studied the energy of
matrices in [13, 14]. Let M be a p× q real matrix, 2 ≤ p ≤ q. Then all the eigenvalues of
MM t are non-negative. Let λ2

i (1 ≤ i ≤ p) be the eigenvalues of MM t. The energy of M

is defined as E(M) =
∑p

i=1 |λi|.
A Balanced Incomplete Block Design BIBD(v, b, r, k, λ) is a pair (V,B), where V is a

v-set of points and B is a collection of k-subsets of V called blocks such that any pair of
distinct points occurs in exactly λ blocks. Here b denotes the number of blocks and r is the
number of blocks containing each point. The incidence matrix of a BIBD is a (0, 1)-matrix
whose rows and columns are indexed by the points and the blocks, respectively, and the
entry (p,B) is 1 if and only if p ∈ B.

Koolen and Moulton obtained an upper bound in [11] for the energy of graphs and
proved that the upper bound is achieved only by strongly regular graphs. The same
authors studied the energy of bipartite graphs in [10]. The upper bound was extended by
Nikiforov in [14] to matrices. In this paper we study (0, 1)-matrices and show that the
upper bound given by Nikiforov is attained only by the incidence matrices of balanced
incomplete block designs. We also present two methods to construct balanced incomplete
block designs with maximum possible energy. As an application we improve Koolen and
Moulton’s upper bound for the energy of bipartite graphs.

We refer the reader to [1, 8, 12, 15, 16] for other works related to the maximum energy
of matrices and graphs.

2 The energy of matrices

Koolen and Moulton [11] gave an upper bound for the energy of graphs which was then
extended by Nikiforov [14] to matrices. In the following theorem we present Nikiforov’s
bound for (0, 1)-matrices and provide a characterization of matrices attaining the bound.

Theorem 1 Let M be a p× q (0, 1)-matrix with m ones, where m ≥ q ≥ p. Then

E(M) ≤ m√
pq

+

√
(p− 1)(m− m2

pq
). (1)

The equality is attained if and only if M is the incidence matrix of a BIBD.
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Proof. We adapt the proofs in [11, 14]. Let λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
p (λi ≥ 0) be the

eigenvalues of MM t. Then, by the Cauchy-Schwartz inequality

E(M) =
p∑

i=1

λi

= λ1 +
p∑

i=2

λi

≤ λ1 +

√√√√(p− 1)
p∑

i=2

λ2
i (2)

= λ1 +
√

(p− 1)(m− λ2
1).

The function f(x) = x +
√

(p− 1)(m− x2) is decreasing on the interval
√

m/p ≤ x ≤√
m. Using the Rayleigh quotient and the Cauchy-Schwartz inequality, we have

λ2
1 ≥

jtMM tj
jtj

(3)

≥
∑q

i=1 c2
i

p

≥ (
∑q

i=1 ci)2

pq
(4)

=
m2

pq

≥ m

p
,

where ci is the ith column sum of M and j is the column vector of all one. Thus m ≥
λ1 ≥ m/

√
pq ≥

√
m/p. From this we conclude that

E(M) ≤ f(λ1) ≤ f(
m√
pq

) =
m√
pq

+

√
(p− 1)(m− m2

pq
).

We now pay attention to the case when the equality happens in (1). In order to have
equality it is necessary and sufficient to have the following three conditions:

(i) M has constant column sums,
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(ii) MM t has constant row sums,

(iii) MM t has at most two distinct eigenvalues.

(i) follows from the fact that equality occurs in (4). (ii) is a consequence of the occurrence
of the equality in (3). Finally, (iii) follows from the equality in (2). Now we deduce from
(ii) and (iii) that MM t = αI + βJ , for some positive integers α and β. Noting (i) it is
easy to see that M is the incidence matrix of a BIBD (for convenience, we assume that
the identity matrix represents a BIBD). ¤

Theorem 2 Let M be a p× q (0, 1)-matrix, where q ≥ p. Then

E(M) ≤ (
√

p + 1)
√

pq

2
.

The equality is attained if and only if M is the incidence matrix of a

BIBD(p, q, q(p +
√

p)/2p, (p +
√

p)/2, q(p + 2
√

p)/4p).

Proof. The maximum value of the upper bound given in Theorem 1 is attained at m =
q(p +

√
p)/2. Hence the inequality holds. The rest also follows from the same Theorem.¤

Remark 1 Since the parameters of a BIBD(p, q, q(p+
√

p)/2p, (p+
√

p)/2, q(p+2
√

p)/4p)
must be all integers, there are two possible subclasses of these designs, namely,

BIBD(a2, 2ab, b(a + 1), (a2 + a)/2, b(a + 2)/2),

if a is even and
BIBD(a2, 4ab, 2b(a + 1), (a2 + a)/2, b(a + 2)),

if a is odd.

We now show how one can construct many infinite classes with the above parameters
for a a multiple of 4 and b even. We need a couple of definitions first. A (−1, 1)-matrix
H of order m × n, m ≤ n for which HHt = Im is called a partial Hadamard matrix. A
square partial Hadamard matrix is a Hadamard matrix. Many infinite classes of Hadamard
matrices are known and 668 is the smallest order for which the existence of such matrices
is in question, see [9] for details.
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Theorem 3 If there is a partial Hadamard matrix of order m×n, m ≤ n, and a Hadamard
matrix of order m, then there is a

BIBD(m2, mn, n(m + 1)/2, m(m + 1)/2, n(m + 2)/4).

Proof. Let ri, i = 1, 2, . . . ,m be the rows of a partial Hadamard matrix of order m× n

and assume that r1 is the all one vector. Let ci, i = 1, 2, . . . , m be the m columns of a
Hadamard matrix of order m and assume that c1 is the all one vector. Let Ei = ciri,
i = 1, 2, . . . , m. Then we have

(i) E1 = J ,

(ii) EiE
t
j = 0, i 6= j,

(iii)
∑m

i=1 EiE
t
i = mnI.

Let L be any Latin square on the elements of {1, 2, . . . , m}. Replacing each i by Ei for
i = 1, 2, . . . , m, we obtain a matrix of order m2×mn. Replacing all minus ones with zeros
gives the desired BIBD. ¤

Remark 2 It is conjectured that Hadamard matrices of all orders 4n, n a positive integer
exist. While the validity of this conjecture is yet to be established, there has been a
number of constructions for partial Hadamard matrices. We refer the reader to [4, 5] for
details.

For a = 4n− 1 and b = n we have the following construction. A Hadamard matrix H

is called to be skew-type if H = I + P and P t = −P .

Theorem 4 Let 4n be the order of a skew-type Hadamard matrix. Then there is a

BIBD((4n− 1)2, 4n(4n− 1), 8n2, 2n(4n− 1), n(4n + 1)).

Proof. Let H = [hij ] be a skew-type Hadamard matrix of order 4n. We may assume
that h11 = −1, h1j = hi1 = 1 for i, j = 2, 3, . . . , 4n. Let C be the matrix remaining after
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removing the first row and column of H. Then C = I + Q, Qt = −Q and Q has zero row
and column sums. Deleting the first row of H we have the following matrix:

(
j Q + I

)
.

Consider the matrix (
j⊗ C Q⊗ C + I ⊗ J

)
,

and change −1 to zero to get the incidence matrix of the required BIBD. ¤

Remark 3 It is conjectured that there is a skew-type Hadamard matrix of order 4n for
every positive integer n. One of the known classes of these matrices includes all orders
4n = qk + 1, where q ≡ 3 (mod 4) is a prime power and k is an odd integer, see [2].

3 Application to bipartite graphs

We now apply Theorems 1 and 2 to obtain a new upper bound for the energy of bipartite
graphs. A (p, q)-bipartite graph is a graph with the vertex set U ∪ V , |U | = p, |V | = q,
and the edges only between U and V . The incidence graph of a BIBD is a bipartite graph
whose vertices are the points and the blocks of the BIBD and there is an edge between a
point and a block, if the point belongs to the block.

Theorem 5 Let G be a (p, q)-bipartite graph with m edges, m ≥ q ≥ p. Then

E(G) ≤ 2m√
pq

+ 2

√
(p− 1)(m− m2

pq
).

The equality is attained if and only if G is the incidence graph of a BIBD.

Proof. Let

A =

(
0 M

M t 0

)
,

be the adjacency matrix of G, where M is a p× q (0, 1) matrix. Then

AAt =

(
MM t 0

0 M tM

)
.
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Since MM t and M tM have the same non-zero eigenvalues, it follows that E(G) = E(A) =
2E(M) and so the inequality is a consequence of Theorem 1. The rest also follows from
the same Theorem. ¤

Theorem 6 Let G be a (p, q)-bipartite graph. Then

E(G) ≤ (
√

p + 1)
√

pq. (5)

The equality is attained if and only if G is the incidence graph of a

BIBD(p, q, q(p +
√

p)/2p, (p +
√

p)/2, q(p + 2
√

p)/4p).

Proof. This follows from the previous theorem and Theorem 2. ¤

Remark 4 Koolen and Moulton [10] have proven that if G is a bipartite graph of order n,
then E(G) ≤ n(

√
n/2+1)/2. This bound follows from the bound in Theorem 6 by noting

that p ≤ n/2 and
√

pq ≤ n/2. The constructions given in Theorems 3 and 4 can be used
to find many infinite classes of bipartite graphs meeting the upper bound (5).
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