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Abstract

Two Hadamard matrices are considered equivalent if one is obtained from the other by a
sequence of operations involving row or column permutations or negations. We complete the
classification of Hadamard matrices of order 32. It turns out that there are exactly 13710027
such matrices up to equivalence.
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1 Introduction

A Hadamard matrix of order n is a (−1, 1) square matrix H of order n such that HHt = nI,
where Ht is the transpose of H and I is the identity matrix. It is well known that the order of a
Hadamard matrix is 1, 2 or a multiple of 4. The Hadamard conjecture states that the converse
also holds, i.e. there is a Hadamard matrix for any order which is divisible by 4. Order 668
is the smallest for which the existence of a Hadamard matrix is in doubt [12]. For surveys on
Hadamard matrices, we refer the reader to [2, 7, 20].

Two Hadamard matrices are called equivalent if one is obtained from the other by a sequence
of operations involving row or column permutations or negations. The equivalence classes of
Hadamard matrices for small orders have been determined by several authors. It is well known
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that for any order up to 12, there is a unique Hadamard matrix. For orders 16, 20, 24, 28, there
are 5 [5], 3 [6], 60 [8, 16] and 487 [14, 15, 17, 23] inequivalent Hadamard matrices, respectively.
Order 32 is where a combinatorial explosion occurs on the number of Hadamard matrices.

We continue the work started earlier in [11] to complete the classification of Hadamard
matrices of order 32. Any such matrix is of type 0, 1, 2 or 3, as described in Section 2. In [11],
all equivalence classes of Hadamard matrices of order 32 of types 0 and 1 were determined. Here,
we deal with the remaining types, i.e. types 2 and 3. We apply an orderly algorithm, similar to
the one used in [11], which is based on the notion of canonical form. It turns out that there are
exactly 2900 Hadamard matrices of order 32 and of type 2. We also establish the uniqueness of
type 3 Hadamard matrices of order 32. Consequently, the total number of Hadamard matrices
of order 32 up to equivalence is found to be 13710027.

2 Definition of types

Let H be a Hadamard matrix of order n. Let jm denote the all one column vector of dimension
m. By a sequence of row or column permutations or negations, any four columns of H may be
transformed uniquely to the following form:

ja ja ja ja

jb jb jb −jb

jb jb −jb jb

ja ja −ja −ja

jb −jb jb jb

ja −ja ja −ja

ja −ja −ja ja

jb −jb −jb −jb


, (1)

where a + b = n/4 and 0 ≤ b ≤ bn/8c. Following [15], any set of four columns which is trans-
formed to the above form is said to be of type b. Note that type is an equivalence invariant and
so any permutation or negation of rows and columns leaves the type unchanged. A Hadamard
matrix is of type b (0 ≤ b ≤ bn/8c), if it has a set of four columns of type b and no set of four
columns of type less than b.

In order 32 any Hadamard matrix is necessarily of type 0, 1, 2 or 3, see [11] for details. For
orders less than 32, the number of Hadamard matrices of different types is shown in Table 1.
We have used the library of Hadamard matrices given in [22] to compile this table. Note that
for orders 24 and 28, the transpose of the unique matrix of type 2 is also of type 2. For some
possible types of Hadamard matrices and also the relation between the type of a matrix and its
transpose, see Lemmas 1–4 in [11].
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Table 1 Number of small Hadamard matrices of different types

Order 4 8 12 16 20 24 28

0 1 1 0 5 0 58 0

Type 1 0 0 1 0 3 1 486

2 0 0 0 0 0 1 1

3 Definition of canonicity

The problem of classification of combinatorial objects is an old and still important topic in
combinatorics. The main purpose as it is understood from the name given to the subject, i.e.
isomorph-free exhaustive generation (see [9, 19]), is to produce a unique representative for each
of the isomorphism classes of objects. The objects of interest may belong to various fields of
combinatorics such as design theory, graph theory, coding theory, etc. The use of computers in
such problems is indispensable, because of the nature of problems which deal with a lot of cases
and computation. Hence, the classification is very much related to algorithms and computing.
In the last decades, new developments on algorithmic aspects along with increase in computing
power and capacity have led to many novel classifications of interesting combinatorial objects.

Any general approach to the isomorph-free exhaustive generation involves two parallel rou-
tines with interactions to each other. First one needs a suitable and efficient method to construct
the objects in question and then a procedure to reject the isomorphic copies during the con-
struction phase. The general method for constructing objects, is the backtrack algorithm which
has quite a long history, see for example [4, 25]. The method in its general form can be found in
many textbooks including [9]. For the isomorph rejection phase, the simplest and most natural
method is the so called orderly generation which was independently introduced by Faradžev [3]
and Read [21] in the 1970s. Algorithms based on this scheme are called orderly algorithms.
The method has introduced the notion of canonical form of objects. A canonical form is a
special representative for each isomorphism class. The suitable definition of canonical form is
extremely dependent on the combinatorial properties of objects. As a general rule, it has to
be defined in such a way that the subobjects generated during the construction process inherit
some properties of the canonical form.

We begin by defining a natural canonical form in the context of Hadamard matrices. First
we need to define a lexicographical order < on the set of all m by n (−1, 1) matrices where m

and n are two positive integers. Let A = [aij ] and B = [bij ] be two (−1, 1) matrices of order
m × n. We say that A < B if for some 1 ≤ i ≤ m, the initial corresponding i − 1 rows are the
same in the two matrices and there is a j, 1 ≤ j ≤ n such that aij = −bij = −1 and aik = bik

for all 1 ≤ k < j. A (−1, 1) matrix M of order m×n is said to be in the natural canonical form
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if M ′ ≤ M for any matrix M ′ which is obtained from permutations and/or negations of rows
and columns of M .

The computational implementation of the natural canonical form is not hard and so it is the
first choice in the classification of Hadamard matrices of a given order. In fact, we will use this
form in classifying Hadamard matrices of order 32 when both the matrix and its transpose are
for type 3. Spence [23] applied the general approach described above to confirm the classification
of Hadamard matrices of order at most 28. He used a backtrack algorithm to generate matrices
(in fact, incidence matrices of the corresponding designs) row by row along with an orderly
algorithm to eliminate equivalent solutions. In orderly algorithm he made use of the natural
canonical form. Here, we use a similar method to complete the classification of Hadamard
matrices of order 32 started in [11]. Our method in this paper and [11] is essentially standard
and somehow comparable to the one used in [23]. However, our experience showed that using
the natural canonical form for Hadamard matrices of order 32 leads to prohibitive computations.
Thus we were forced to consider a modified definition of the natural canonical form. The main
novelty in our method is the introduction of a new canonical form which seems quite efficient
for our purpose. The new form relies on the type of the matrices to be classified. For example,
in [11], we introduced a new definition to make the computation feasible for type 0 Hadamard
matrices. Here, we adopt it, with some necessary modifications, for type 2 Hadamard matrices.
Note that while the new canonical form makes the formidable task of classification possible, it
causes the implementation of the canonicity test to be much more complicated; a price to be
paid for success

Let H be a type 2 Hadamard matrix of order n = 4m + 8. We may assume that the first
four columns of H are in the following form:

j2 j2 j2 j2

j2 j2 −j2 −j2

j2 −j2 j2 −j2

j2 −j2 −j2 j2

jm jm jm −jm

jm jm −jm jm

jm −jm jm jm

jm −jm −jm −jm


. (2)

Now delete the first four columns of H and denote the resulting matrix by VH . We say that H

is in the canonical form if
VQ ≤ VH

for any matrix Q which is equivalent to H and its deleted first four columns are identical to
those of (2). The following lemma gives the main features of this canonical form.
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Lemma 1 Let H be a Hadamard matrix of order 4m + 8 (m even) and of type 2 which is in
canonical form. Then

(i) Rows 9, 10, . . . , 4m + 8 are in decreasing order. Also columns 5, 6, . . . , 4m + 8 are in de-
creasing order. (The order is as defined above).

(ii) The first four columns of H are identical to those of (2).

(iii) The first three rows of VH are in the following form: jt
m jt

m jt
m+2 jt

m+2

jt
m jt

m −jt
m+2 −jt

m+2

jt
m −jt

m jt
m+2 −jt

m+2

 .

(iv) Let H = (hij) and let a = h1j + h2j − h3j − h4j − h5j − h6j + h7j + h8j for j > 4. Then
a ∈ {0,±4,±8} and h1j + h2j +

∑m+8
i=9 hij = a/2.

Proof. Since the first three parts are straightforward, we only present the proof of Part (iv).
Let x, y, z, w, p, q, r, s be the inner products of column j with the blocks of rows of column 1 in
(2), that is, the first 4 blocks consist of 2 rows each, and the last 4 blocks consist of m rows
each. Since every block has an even number of rows, each of x, y, z, w, p, q, r, s is even. The fact
that the inner product of column j and any of the columns 1, 2, 3, 4 must be 0 gives

x + y + z + w + p + q + r + s = 0, (3)

x + y − z − w + p + q − r − s = 0, (4)

x− y + z − w + p− q + r − s = 0, (5)

x− y − z + w − p + q + r − s = 0. (6)

Taking the sum of (3)-(6) and dividing by 2, we conclude that 2x + p + q + r − s = 0, that is,

p + q + r − s ≡ 0 (mod 4), (7)

since x is even. Adding (7) to (6), we obtain x− y − z + w + 2(q + r − s) ≡ 0 (mod 4), which
implies a = x− y − z + w ≡ 0 (mod 4), since q, r, s are even.

Next, observe that h1j +h2j +
∑m+8

i=9 hij = x+p and that a = x−y−z+w. Solve (3) through
(6) for x, y, z, w to obtain 2x = −p− q − r + s, 2y = −p− q + r − s, 2z = −p + q − r − s, 2w =
p− q − r − s. We conclude that a = 2(x + p) as required. �

Remark 1 Note that with this definition of canonical form one of the basic properties of the
natural canonical form, namely, the canonicity of the submatrices formed from the initial rows
of H is no longer valid.
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4 Type 2 Hadamard matrices of order 32

In this section we present an orderly algorithm to generate all equivalence classes of type 2
Hadamard matrices of order 32. The algorithm will eventually produce the canonical form, as
defined in the previous section, for every equivalence class. Since Hadamard matrices of order
32 of types 0 and 1 are already known [11], we may assume that the transpose of the matrices
are not of type 0 or 1. Therefore, we only need to search for Hadamard matrices of type 2
with their transpose being of type 2 or 3. Before starting the main search, we need to do some
preliminary computations.

For the remainder of this section, let H denote the canonical form of a Hadamard matrix
of order 32 and of type 2 whose transpose is of type 2 or 3. Let H8 be the partial Hadamard
submatrix consisting of the first eight rows of H. We find all possible candidates for H8. From
Lemma 1 the first four columns and the first three rows of H8 are uniquely determined. We
then fill in the rest of H8, using Lemma 1(i) and the fact that H8 should be a partial Hadamard
matrix. The resulting solutions are filtered through the condition (iv) of Lemma 1. Finally, the
remaining solutions are tested (as explained below) to be in the canonical form. As a result, we
find a total of 10319 candidates for H8. There is also a need to find and retain the automorphisms
of (2) assuming m = 1. We find a total of 3072 such automorphisms. For each automorphism,
we retain the row permutation and the corresponding row negation vector. We do not need to
keep the column permutation or the corresponding column negation vector.

We are now ready to describe the search method. Each candidate of H8, obtained above,
should be extended to all possible choices of H. This process involves two ingredients; the
generation of the matrix and the canonicity test. These two parts of the extension process must
be executed simultaneously. There are 24 rows to fill in the generation phase. At each generation
step all possible candidates for the corresponding row of H are obtained. The candidates are
chosen in such a fashion that they fulfill the properties provided by Lemma 1. At each step we
also check that the added new row keeps the type of the transpose of the constructed matrix
to be 2 or 3. More precisely, we consider the new row with any three of the previous rows and
find the type of the four rows constituted. If their type is 0 or 1, then we ignore that candidate
and proceed to the next one. Similarly, at rows 14, 20 and 26 we check if the partial matrix is
extendable to a matrix of type 2. This check is necessary because sometimes one recognizes in
advance the type of a set of four partial columns before proceeding to the next stage.

Next we explain the canonicity test. The basic idea of the canonicity test we use here first
appeared in [13]. The general scheme, bypassing the details, for the canonicity test of the
constructed matrix H is as follows. Choose any set of four columns of H. If it is of type 2, label
them as the first four columns and transform the first four columns to the form (2) by suitable
row/column permutations/negations. Subsequently, we apply the automorphisms of (2) to H

and check if the resulting matrix is a larger matrix (which means that H is not in the canonical
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form). If for all possible choices of four columns and all automorphisms of (2), the resulting
matrices are equal or smaller than H, then we conclude that H is in the canonical form and
retain it as a representative of its equivalence class. The above method also works for partial
matrices generated during the construction phase with some minor modifications and so it can
be used to eliminate some intermediate solutions. Here is a brief explanation. One finds that
a set S of four partial columns is going to be of type 2 independent of the values we will set
for the entries of the remaining rows of S afterwards. Label them as the first four columns and
transform some rows (say i rows) of the first four columns to the i initial rows of the form (2)
by suitable row/column permutations/negations. Let H ′ be the matrix consisting of the new i

rows. Apply those automorphisms of (2) to H ′ which leave the first four columns unchanged
and check if the resulting matrix is a larger matrix (which means that H is not in the canonical
form). If for all possible choices of four columns and all automorphisms of (2), the resulting
matrices are equal or smaller than H, then we conclude that the partial matrix H is in the
canonical form and proceed to the next step. The canonicity test is time consuming and thus is
not feasible to be applied at each row. We only apply the test when rows 9, 10, 14, 20, 26 and
32 are chosen.

We ran our program on a cluster of 48 2.2 GHz CPU. It took about nine months to
accomplish the job. Our program produced 1478 matrices. We tested the matrices obtained in
[11] and found 1422 and 0, type 2 Hadamard matrices of order 32 such that their transposes are
of type 0 or 1, respectively. We have the following result.

Theorem 1 There are exactly 2900 equivalence classes of type 2 Hadamard matrices of order
32.

5 Type 3 and the main result

In this section we classify type 3 Hadamard matrices of order 32. Since we already know all
Hadamard matrices of order 32 which are of type 0, 1, 2, it suffices to look for type 3 matrices
whose transpose are also of type 3. In [1], the authors showed by a computer search that the
Paley Hadamard matrix of order 32 is the unique such matrix. We confirmed their result by
a different approach. We used the natural canonical form defined in Section 3 to perform our
search. The solutions were constructed row by row. At every step, each candidate for the new
row is checked for the following constraints: (i) it must be orthogonal to the previous rows, (ii)
it must be smaller than the previous row, (iii) the columns must be in decreasing order, (iv) the
type of the new row with any three of the previous rows must be 3 or 4, (v) the type of any four
partial columns must be 3 or 4, if the type is known, and finally (vi) the partial matrix must
be in the natural canonical form. For time saving, the canonicity test is carried out at selected
rows, i.e. rows 1–16, 24, 32.
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Our program on a single computer found a unique solution in just a few hours. We checked
the transposes of all type 0, 1, and 2 matrices and none was of type 3. Consequently, we have
the following.

Theorem 2 There is only one type 3 Hadamard matrix of order 32.

We summarize the results of the classification of Hadamard matrices of order 32 in the
following theorem. The number of matrices of each type is presented in Table 2. The complete
list of Hadamard matrices of order 32 is available electronically at [10, 24].

Theorem 3 There are exactly 13710027 equivalence classes of Hadamard matrices of order 32.

Table 2 Number of Hadamard matrices of different types

Type 0 1 2 3

0 13652966 26369 1422 0

Type of 1 26369 0 0 0

the transpose 2 1422 0 1478 0

3 0 0 0 1

Total 13680757 26369 2900 1

6 Automorphism groups

Brendan McKay, the nauty master, based on our findings [10, 24], has calculated the order of
automorphism group of Hadamard matrices of order 32. We present his results [18] in Table 3.
Using these results he finds that there are

6326348471771854942942254850540801096975599808403992777086201935659972458534005637120000000000000

Hadamard matrices of order 32 altogether (not considering equivalence).

He also confirmed that all matrices given in [10, 24] are inequivalent. Furthermore, he found
that there are 3993 equivalence classes which are equivalent to their transposes. Following Ian
Wanless’ terminology [26] this means that there are 6857010 resemblance classes of Hadamard
matrices of order 32. Finally, using a result of Spence [23] and the 13710027 matrices in [10,
24] he computed that there are 10374196953 nonisomorphic 2-(31,15,7) designs and 355293682
nonisomorphic 3-(32,16,7) designs. We greatly appreciate and acknowledge his contributions to
our work.
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Table 3 Number of automorphisms of Hadamard matrices of order 32 [18]

#Automorphisms #Matrices #Automorphisms #Matrices

2 7943811 2048 832
4 2855780 2304 4
6 3066 2688 6
8 1644201 3072 134
10 19 3840 2
12 3315 4096 315
16 789232 4608 8
18 32 6144 85
20 44 7168 2
24 2433 8064 2
32 316427 8192 177
36 82 9216 2
40 9 10240 8
42 6 10752 4
48 2320 12288 43
56 14 14336 6
60 9 16384 71
64 83914 24576 41
72 31 29760 1
96 1141 32768 22
112 18 36864 2
120 20 49152 8
128 40037 65536 12
144 44 73728 2
192 850 98304 8
224 2 122880 3
256 13949 131072 8
288 6 172032 1
320 9 196608 6
336 5 294912 2
384 619 393216 6
448 10 516096 4
512 4502 589824 5
576 12 688128 4
768 267 786432 5
896 4 917504 1
1024 1766 1048576 1
1152 15 16515072 2
1344 4 18874368 1
1536 155 20478689280 1
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Remark 2 This has been a huge undertaking, we have been very careful in our computations and
a major part of the computations were double checked. However, considering the complexities
involved and the possibility of hardware errors, it would be more reassuring if our data is
confirmed by other researchers.
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