
On the real unbiased Hadamard matrices

W. H. Holzmann, H. Kharaghani∗

Department of Mathematics & Computer Science
University of Lethbridge

Lethbridge, Alberta, T1K 3M4
Canada

email: holzmann@uleth.ca, kharaghani@uleth.ca
W. Orrick

Department of Mathematics
Indiana University

Bloomington, Indiana 47405
USA

email: worrick@indina.edu

February 8, 2010

Abstract

The class of mutually unbiased Hadamard (MUH) matrices is studied. We show that
the number of MUH matrices of order 4n2, n odd is at most 2 and that the bound is attained
for n = 1,3. Furthermore, we find a lower bound for the number of MUH matrices of order
16n2, assuming the existence of a Hadamard matrix of order 4n. An extension to unbiased
weighing matrices is also presented.
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1 Preliminaries

A Hadamard matrix is a matrix H of order n with entries in {−1,1} and orthogonal rows in
the usual inner product on Rn. Such matrices exist only if n is a multiple of 4, n ≥ 3. It is
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conjectured that for each natural number k, there is a Hadamard matrix of order 4k. The first
order for which the existence of a Hadamard matrix is not known is 668. We refer the reader to
[6, 8] for more information. Two Hadamard matrices H and K of order n are called unbiased
if HKt =

√
nL, where Kt denotes the transpose of the matrix H and L is a Hadamard matrix

of order n. While there is considerable interest in unbiased unit Hadamard matrices, matrices
where the entries of the matrices are complex numbers of absolute value one, [2, 4, 9], it is
only recently that some attention has been given to unbiased Hadamard matrices subsequent to
which interesting applications have emerged [7]. In this paper we concentrate only on unbiased
Hadamard matrices.

2 Unbiased Hadamard matrices of order 4n2, n odd

We start this section with a characterization of Hadamard matrices.

Theorem 1 (Kharaghani 1985 [5]). There is a Hadamard matrix H of order 2n if and only if
there are 2n (−1,1)-matrices C0, C1, C2, . . ., C2n−1 of order 2n such that:

1. Ct
i = Ci,

2. CiC j = 0, i 6= j,

3. C2
i = 2nCi,

4. C0 +C1 +C2 + · · ·+C2n−1 = 2nI2n,

5. C0 may be chosen to be the matrix of all ones.

Proof. Let ri be the i-th row of H, and let Ci = rt
iri, for i = 0,1, . . . ,2n−1.

Theorem 2. Let U = {H1,H2, · · · ,Hm} be a set of mutually unbiased real (respectively complex)
Hadamard matrices of order 2n. Then m ≤ n.

Proof. For 1 ≤ j ≤ m, let C1 j,C2 j, . . . ,C(2n) j, be the matrices corresponding to the Hadamard
matrix H j. Let S j = {Ci j − I2n | 1 ≤ i ≤ 2n−1}. Then {S j | 1 ≤ j ≤ 2n} forms a set of linearly
independent matrices. To see this, one needs to consider the matrices as a subset of all matrices
of order 2n, say M2n, equipped with the inner product defined by 〈A,B〉= trace(AB∗), for A and
B in M2n. The span of all Sl’s is contained in the set of all symmetric (respectively Hermitian)
matrices with zero diagonal. So m(2n− 1) ≤ (1 + 2 + · · ·+ 2n− 1) = n(2n− 1) (respectively
m(2n−1)≤ 2(1+2+ · · ·+2n−1) = 2n(2n−1)).

The upper bound in previous theorem is attained for Hadamard matrices of order 4k, see [3].

Lemma 3. If H and K are two regularly unbiased Hadamard matrices of order 4n2, n odd, then
at least one of the two matrices is not regular.
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Proof. Suppose on the contrary both H and K are regular and HKt = 2nL, where L is a Hadamard
matrix. Then L is regular and (1/2)(J+H) and (1/2)(J−K) are integer valued matrices. How-
ever, (1/4)(J +H)(J−K) = (1/4)(4n2J−HKt) = n2J− (n/2)L is only integer valued if n is
even.

Corollary 4. Let m be the number of regularly mutually unbiased Hadamard matrices of order
4n2, n odd, then m ≤ 2.

Theorem 5. There are two regularly unbiased Hadamard matrices of order 36, consequently
the upper bound of the preceding Corollary is attained for n = 3.

Proof. A pair H and K of unbiased Hadamard matrices of order 36 are given in Tables 1 and
2.

To search for the unbiased Hadamard matrices of order 36, we examined over 3,000,000
Hadamard matrices of order 36, looking for unbiased mates. Only a small percentage of matri-
ces had unbiased mates. The interesting part was that most of those admitting unbiased mates
had many mates and most of the mates were not included in the library of known Hadamard
matrices of order 36.

Conjecture 6. Let m be the number of elements in a set of regularly mutually unbiased Hadamard
matrices (RMUH) of order 4n2, n odd, then m = 2.

3 Unbiased Hadamard matrices of order 16n2

Definition 7. Two Latin squares L1 and L2 of size n on the symbol set {0, 1, 2, . . . , n−1} are
called suitable if every superimposition of each row of L1 on each row of L2 results in only one
element of the form (a,a).

Example 8. The following are three mutually suitable Latin squares of size 4:
0 2 3 1
2 0 1 3
3 1 0 2
1 3 2 0

 ,


0 3 1 2
3 0 2 1
1 2 0 3
2 1 3 0

 ,


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

 .

Next we show that given a pair of mutually orthogonal Latin squares (see [1]), one can
construct a pair of mutually suitable Latin square and vice versa.

Lemma 9. There are m MOLS (Mutually Orthogonal Latin Squares) of size n if and only if
there are m MSLS (Mutually Suitable Latin Squares) of size n.

Proof. Let L1,L2 be two orthogonal Latin squares on {1,2, · · · ,n} both having their row and
columns labeled by the set. Let ((i, j),k) denote the entry at (i, j) position of a Latin square.
Then the transformation ((i, j),k) =⇒ ((k, j), i) results in a pair of suitable Latin squares. Re-
versing the transformation would imply the reverse implication.
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Table 1: H, the first of a pair of unbiased Hadamard matrices of order 36

H =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1−−−−−−−−−−−−−−−−−−
1 1 1 1 1 1 1 1 1−−−−−−−−−1 1 1 1 1 1 1 1 1−−−−−−−−−
1 1 1 1 1−−−−1 1 1 1−−−−−1 1 1 1−−−−−1 1 1 1 1−−−−
−−1 1 1−−−−−1 1−1 1 1−1 1−1−1−1 1 1−−−1 1−−−1
1 1−−−−1 1−−1 1 1 1−1−−1 1 1−−−1−1−−−1−1 1 1−
1 1−−−1−−1 1 1 1−−1−−1 1−1 1 1−−1−−−−−1 1 1 1−
1−−−−−−1 1 1−1 1 1−−1 1−1 1 1 1 1−−1−−−1 1−−−1
−1−−−1 1−−1 1−1−1 1 1−1 1−1−1 1 1−−−−1 1−−−1
−1 1−1 1−1−−−1 1 1−−1−1 1−−1−−1−−1−−1−1 1 1
1 1−1 1−1−−−1−−−−1 1 1−1−1 1−−−1 1−−−1−1 1 1
1−1 1−−−−1−−−1 1 1 1 1−−1 1 1−−1 1−−−1−1−1 1−
−−1−1−1−1−1−1 1 1−−1 1 1−1−1−−1−1−−1 1−1−
1−1 1−1 1 1−−−1−−1−1−1−−1−−−−1−−1 1 1 1−1 1
−−−1 1−1−1 1−1 1−1−1−1 1 1−1−1−−1−−−−1−1 1
−1 1 1−−−1−−1 1−−1−1 1−1 1 1−1 1−−−1−−−1 1−1
−−−1 1 1 1 1 1−1−1−−−−1−1 1−−−−1−−−1 1 1 1 1−1
−−1−1 1−1−1−−1−−1 1 1 1−1 1−−1−1 1−−−1 1 1−−
1−−1 1 1−−1−−1 1−−1−1 1−−1−1 1−−−1−1−−1 1 1
−1 1−1−−1 1 1 1−1−1−−−−−−1 1−1−1−−1 1−−1 1 1
−−1 1−1 1−−1 1 1 1 1−−−−−−1 1−1−1 1 1−−−−−1 1 1
−1 1−1−1−−−−1 1−−1 1 1−−1 1 1 1−1−−−1 1−1−1−
1 1−1 1−−1−1−−1−1 1−−−−1−−1−1 1−1−−1 1−1 1
−1 1 1−−−1 1 1−−−1−1−1 1 1−1−−−1−1−−1−1−1 1
−1 1 1−1−−1−−1 1−1 1−−−1−−1 1−−1 1−−1 1 1 1−−
1−1−1−−−1 1 1 1−−−1 1−1 1−−−1−1 1−−1−−1 1−1
−1−1 1−1−1 1−1−1−−1−−−−1−−1 1 1−1−1 1 1 1−−
1−−1 1−−1−−1−1 1 1−1−1−−1 1 1−1−1−−1−1 1−−
1 1 1 1−−1−−1−−1 1−−−1 1−−−1 1 1−−−−1−1 1 1−1
1−1−1 1 1−−1−−−1 1 1−−−1 1 1 1−−−−−1−1−1 1−1
1 1 1−1 1−−1−1−−1−−1−−−1−−1 1−−1−−1 1 1−1 1
−−−1 1 1−1−1 1 1−1−1−−−1−1 1 1 1−−−−1−1 1−1−
1−1 1−1−−−1 1−1−−−1 1−1−−1−1 1 1−1−1−1−1−
−−1 1−−1 1 1 1 1−−−−1 1−1−1−1 1−−−−1−1 1−1 1−
−1−1 1 1−−−1−−−1 1−1 1 1 1 1−−1−−1−−1 1−−1 1−
1−1−1−1 1−1−1−−1−−1−1−−−1 1 1−1−−1 1−1 1−


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Table 2: K, the second of a pair of unbiased Hadamard matrices of order 36

K =



−−1 1 1 1 1 1 1−1 1 1−1−−1 1−1 1−−1−1 1 1 1−−−−−1
1 1−1 1 1 1 1−1−1−−1 1 1−1 1 1 1−−1−−−1−−1−1 1−
1 1 1−1−1 1 1−1 1 1−−−1 1 1 1 1−1 1−−−1−−−1 1 1−−
1 1 1 1 1−1 1−1−−−1 1 1−1 1−1−1 1−1−1 1 1 1−−−−−
1 1 1 1 1 1−−1−1 1−1−1 1−−1−−1−1 1 1 1 1 1−1−−−−
−1 1 1−1−1 1 1 1−1−1 1 1−−−1 1 1 1 1 1−1−−−−1−1−
1−−1 1 1 1 1 1 1 1 1−−−−1 1−−−1 1 1−1 1−−1 1−−1 1−
1−1 1−1 1 1 1 1−1 1 1−1−−1 1−−1 1−−1−1−−−1−1 1
1 1 1−1 1 1−1−−−1 1 1 1 1−1−−1−1 1−1−−1 1−1 1−−
−1 1−−−1 1 1 1 1 1 1 1−1 1−−1 1 1−−−1−−1 1 1−−1−1
1 1−−1 1−−1 1 1−1 1 1−1 1 1 1−1 1−−−−1 1−1−−−1 1
−1 1−1 1−1−1 1 1 1−1 1−1 1 1−−−−−1 1−−1 1 1 1−1−
1 1 1 1−−−−1 1 1 1 1 1 1−−1−−1−−1 1−1−1−1 1−1 1−
−1−1−1 1 1 1 1−1−1 1−1 1−1−−−1 1−−1−1 1 1 1−−1
1−−1 1−−1−1 1−1 1 1 1 1 1−1 1−1−1−1−−1−−1 1−1
1−1−1−1−1 1−1−1 1 1 1 1−−1 1−−−1 1 1−−−1 1−1 1
−1−1 1 1 1−−−1 1 1 1 1 1−1−−−1 1 1−1−−1−−1 1 1−1
1−1 1−1 1 1−−1−1 1−1 1 1 1−−−−−1 1−1−−1 1−1 1 1
1−−−1 1 1 1−1 1−1 1−−−−−1 1 1−1 1 1 1 1 1−1 1 1−−−
1 1−1−1−−1 1−−1−−1−1 1 1 1 1−1−1 1 1−1−1−1−1
1 1 1 1−−1−−1 1 1−−1−−−1 1−1 1−1 1 1 1−−1−1 1−1
1 1−1 1−−1 1−−1 1 1−−−−1−1 1 1−1 1−−−1 1 1 1−1 1
−−1 1−1−1 1−−−−1 1−1 1 1 1 1 1 1−−1 1−1−1 1 1 1−−
−−1−1 1 1−1 1 1−−1 1−−−1 1 1−1 1 1 1−−−1−1−1 1 1
1 1 1−−−1 1−−−−1−1−1 1−1−1 1 1 1 1 1−1 1−1−−1 1
−1 1−1 1−1−−−1−1−1−1−1 1 1 1 1 1−1 1−−1−−1 1 1
−1−1 1−1−1−1−−−−1 1 1 1 1 1−−1 1 1 1−1−1−1−1 1
−−−1−−1−−−1 1 1 1 1 1 1−1 1 1 1 1 1−−1 1−1 1 1−−1−
1−1−−1−−−1 1 1−−−1 1 1 1−1 1 1 1 1−−−1 1 1 1 1−−1
−−1 1 1−1−1 1−−1−−1−1−1−1 1−1−−1 1 1 1 1 1 1 1−
1−1 1 1 1−−−−−1 1−1−1−−1 1−−1−1−1 1 1 1−1 1 1 1
−1 1 1 1−−1−1 1−−1−−1−1−−1−1−−1 1 1 1−1 1 1 1 1
1−−−−−−1 1−1 1−1 1 1−1 1 1−1−1 1 1−1 1 1−−1 1 1−
−−−−1−−1 1 1−1 1−1 1 1−1−−−1 1 1 1 1 1 1−1 1−1−1
−1−−−1 1−−1−1 1 1−−1 1 1−1−1−1 1 1 1 1 1−−1 1 1−
1 1−−−1 1 1 1−1−−−1 1−−−−1−1−−−1 1 1 1 1 1 1 1 1 1


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Lemma 10. Let q be a prime power. Then there are q− 1 mutually suitable Latin squares of
size q.

Definition 11. A Bush-type Hadamard matrix is a block matrix H = [Hi j] of order 4n2 with
block size 2n, Hii = J2n and Hi jJ2n = J2nHi j = 0, i 6= j, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n where J2n is the
2n by 2n matrix of all 1 entries.

Example 12. Let

H4 =


1 1 1 1
1 1 − −
1 − 1 −
1 − − 1

 .

The matrices corresponding to this Hadamard matrix are:

C0 = rt
0r0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , C1 = rt
1r1 =


1 − − 1
− 1 1 −
− 1 1 −
1 − − 1

 ,

C2 = rt
2r2 =


1 − 1 −
− 1 − 1
1 − 1 −
− 1 − 1

 , C3 = rt
3r3 =


1 1 − −
1 1 − −
− − 1 1
− − 1 1

 .

The matrix

L =


C0 C1 C2 C3
C1 C0 C3 C2
C2 C3 C0 C1
C3 C2 C1 C0


is a Bush-type Hadamard matrix of order 16.

Theorem 13. If there are m mutually suitable Latin squares of size 2n, where 2n is the order
of a Hadamard matrix, then there are m mutually unbiased Bush-type Hadamard matrices of
order 4n2.

Proof. Let C0,C1, . . . ,C2n−1, be the matrices corresponding to the normalized Hadamard matrix
of order 2n. We can assume that all Latin squares are on the set {0,1, · · · ,2n−1} and their row
and columns are all labeled by the set. Replace the entry i in each of the Latin squares by the
matrix Ci, 0≤ i≤ 2n−1 would result in m mutually unbiased Bush-type Hadamard matrices of
order 4n2.

Example 14. Let

H1 =


C0 C2 C3 C1
C2 C0 C1 C3
C3 C1 C0 C2
C1 C3 C2 C0

 , H2 =


C0 C3 C1 C2
C3 C0 C2 C1
C1 C2 C0 C3
C2 C1 C3 C0

 , and
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H3 =


C0 C1 C2 C3
C1 C0 C3 C2
C2 C3 C0 C1
C3 C2 C1 C0

 .

These are remarkable matrices. The three matrices are symmetric and{
1
4

H1,
1
4

H2,
1
4

H3, I16

}
forms a group under matrix multiplication. The blocks are not sign sensitive, i.e., one can
change the block signs without changing the unbiasedness of the matrices.

Corollary 15. There are 4n−1 mutually unbiased Bush-type Hadamard matrices of order 42n,
n any positive integer.

Next we give a lower bound for the number of MUH matrices.

Theorem 16. Let m be the number of mutually suitable Latin squares of size 2n, where 2n is
the order of a Hadamard matrix H, then there are m+1 mutually unbiased Hadamard matrices
of order 4n2.

Proof. Let ri be the i-th row of H, and let K be the block matrix defined by K = [ki j] = [rt
jri],

i, j = 0,1, · · · ,2n− 1. It is easy to see that K is a Hadamard matrix of order 4n2 which is
unbiased with all the Bush-type Hadamard matrices constructed in Theorem 13.

The lower bound in Theorem 16 has appeared in a number of papers, see for example [2, 7].
Next we show that our method above extends to weighing matrices.

Definition 17. A matrix W = [wi j] of order n and wi j ∈ {−1,0,1} is called a weighing matrix
with weight p, if WW t = pIn, where In is the identity matrix of order n, see [8]. Two weighing
matrices W1,W2 of order n and weight p are called unbiased, if W1W t

2 =
√

pW, where W is a
weighing matrix of order n and weight p.

Theorem 18. Let m be the number of mutually suitable Latin squares of size n, where n is the
order of a weighing matrix W with weight p, then there are m+1 mutually unbiased weighing
matrices of order n2 with weight p2.

Proof. The construction and the proof of Theorem 16 works here too.

Example 19. Let

W =


0 1 1 1
− 0 1 −
− − 0 1
− 1 − 0

 .
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The matrices corresponding to this weighing matrix are:

C0 = rt
0r0 =


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 , C1 = rt
1r1 =


1 0 − 1
0 0 0 0
− 0 1 −
1 0 − 1

 ,

C2 = rt
2r2 =


1 1 0 −
1 1 0 −
0 0 0 0
− − 0 1

 , C3 = rt
3r3 =


1 − 1 0
− 1 − 0
1 − 1 0
0 0 0 0

 .

Substituting these in the matrices of Example 8 gives

W1 =



0 0 0 0 1 1 0−1−1 0 1 0−1
0 1 1 1 1 1 0−−1−0 0 0 0 0
0 1 1 1 0 0 0 0 1−1 0−0 1−
0 1 1 1−−0 1 0 0 0 0 1 0−1
1 1 0−0 0 0 0 1 0−1 1−1 0
1 1 0−0 1 1 1 0 0 0 0−1−0
0 0 0 0 0 1 1 1−0 1−1−1 0
−−0 1 0 1 1 1 1 0−1 0 0 0 0
1−1 0 1 0−1 0 0 0 0 1 1 0−
−1−0 0 0 0 0 0 1 1 1 1 1 0−
1−1 0−0 1−0 1 1 1 0 0 0 0
0 0 0 0 1 0−1 0 1 1 1−−0 1
1 0−1 1−1 0 1 1 0−0 0 0 0
0 0 0 0−1−0 1 1 0−0 1 1 1
−0 1−1−1 0 0 0 0 0 0 1 1 1
1 0−1 0 0 0 0−−0 1 0 1 1 1



, W2 =



0 0 0 0 1−1 0 1 0−1 1 1 0−
0 1 1 1−1−0 0 0 0 0 1 1 0−
0 1 1 1 1−1 0−0 1−0 0 0 0
0 1 1 1 0 0 0 0 1 0−1−−0 1
1−1 0 0 0 0 0 1 1 0−1 0−1
−1−0 0 1 1 1 1 1 0−0 0 0 0
1−1 0 0 1 1 1 0 0 0 0−0 1−
0 0 0 0 0 1 1 1−−0 1 1 0−1
1 0−1 1 1 0−0 0 0 0 1−1 0
0 0 0 0 1 1 0−0 1 1 1−1−0
−0 1−0 0 0 0 0 1 1 1 1−1 0
1 0−1−−0 1 0 1 1 1 0 0 0 0
1 1 0−1 0−1 1−1 0 0 0 0 0
1 1 0−0 0 0 0−1−0 0 1 1 1
0 0 0 0−0 1−1−1 0 0 1 1 1
−−0 1 1 0−1 0 0 0 0 0 1 1 1



,
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and

W3 =



0 0 0 0 1 0−1 1 1 0−1−1 0
0 1 1 1 0 0 0 0 1 1 0−−1−0
0 1 1 1−0 1−0 0 0 0 1−1 0
0 1 1 1 1 0−1−−0 1 0 0 0 0
1 0−1 0 0 0 0 1−1 0 1 1 0−
0 0 0 0 0 1 1 1−1−0 1 1 0−
−0 1−0 1 1 1 1−1 0 0 0 0 0
1 0−1 0 1 1 1 0 0 0 0−−0 1
1 1 0−1−1 0 0 0 0 0 1 0−1
1 1 0−−1−0 0 1 1 1 0 0 0 0
0 0 0 0 1−1 0 0 1 1 1−0 1−
−−0 1 0 0 0 0 0 1 1 1 1 0−1
1−1 0 1 1 0−1 0−1 0 0 0 0
−1−0 1 1 0−0 0 0 0 0 1 1 1
1−1 0 0 0 0 0−0 1−0 1 1 1
0 0 0 0−−0 1 1 0−1 0 1 1 1



.

A construction akin of the one used in the proof of Theorem 16 applied to W gives:

K =



0 0 0 0 0−−−0−−−0−−−
0 1 1 1 0 0 0 0 0−−−0 1 1 1
0 1 1 1 0 1 1 1 0 0 0 0 0−−−
0 1 1 1 0−−−0 1 1 1 0 0 0 0
0 0 0 0 1 0−1 1 0−1 1 0−1
−0 1−0 0 0 0 1 0−1−0 1−
−0 1−−0 1−0 0 0 0 1 0−1
−0 1−1 0−1−0 1−0 0 0 0
0 0 0 0 1 1 0−1 1 0−1 1 0−
−−0 1 0 0 0 0 1 1 0−−−0 1
−−0 1−−0 1 0 0 0 0 1 1 0−
−−0 1 1 1 0−−−0 1 0 0 0 0
0 0 0 0 1−1 0 1−1 0 1−1 0
−1−0 0 0 0 0 1−1 0−1−0
−1−0−1−0 0 0 0 0 1−1 0
−1−0 1−1 0−1−0 0 0 0 0



.

Then W1, W2, W3 and K are mutually unbiased weighing matrices of order 16 and weight 9.

Remark 20. (a) The most interesting application of Theorem 18 is that it can be applied to
weighing matrices of odd order. For example, it is known that a weighing matrix of order 13
and weight 9 exists. Theorem 18 applies and 13 unbiased weighing matrices of order 169 and
weight 81 can be constructed.
(b) Theorem 18 is an extension of Theorem 16 in one direction. We could have obtained Theorem
16 as a corollary to Theorem 18, but we chose not to, due to the fact that there is much interest
in unbiased Hadamard matrices. However, there is an obvious advantage in our method, since
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it works for all matrices enjoying an orthogonality property.
(c) Another way to extend Theorem 16 is to apply it to partial Hadamard matrices. These are
m× n, m ≤ n, matrices with orthogonal rows. The method used in this paper extends to these
matrices.

References

[1] R. Julian R. Abel, Charles Colbourn, Jeffrey Dinitz, Mutually Orthogonal Latin Squares
(MOLS), in Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.),
Second Edition, pp. 160–193, Chapman & Hall/CRC Press, Boca Raton, FL, 2007.

[2] P. O. Boykin, M. Sitharam, M. Tarifi and P. Wocjan, Real mutually unbiased bases.
Preprint. arXiv:quant-ph/0502024v2 [math.CO], (revised version dated Feb. 1, 2008).

[3] P. J. Cameron and J. J. Seidel, Quadratic forms over GF(2), Nederl. Akad. Wetensch. Proc.
Ser. A 76=Indag. Math 35 (1973), 1–8.

[4] Chris Godsil, Aidan Roy, Equiangular lines, mutually unbiased bases, and spin models
European J. Combin., 30 (2009), 246–262.

[5] H. Kharaghani, New class of weighing matrices, Ars Combin. 19 (1985), 69–72.

[6] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. De-
signs 13 (2005), 435–440.

[7] Nicholas LeCompte, William J. Martin, William Owens, On the equivalence between real
mutually unbiased bases and a certain class of association schemes, preprint.

[8] J. Seberry and M. Yamada, Hadamard matrices, sequences, and block designs, in Con-
temporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson, eds.,
John Wiley Sons, Inc., 1992, pp. 431–560.

[9] P. Wocjan and T. Beth, New construction of mutually unbiased bases in square dimensions,
Quantum Inf. Comput. 5 (2005), 93–101.

10


