DATA

TEXT

compiled code (a.out)

STACK

SHARED
MEMORY

Memory Layout (Virtual address space of a C process)

System

env
argv
argc

auto variables for
main()

auto variables for
func()

available for
stack growth

malloc.o (lib*.so0)

printf.o (lib*.so)

available for
heap growth

Heap
(malloc arena)

global variables

"..%d..."

malloc.o (lib*.a)

printf.o (lib*.a)

file.o

main.o func(72,73

crt0.o (startup routine

High memory

—<—— mfp - frame pointer (for main)

—<—— stack pointer
(grows downward if func()
calls another function)

Offset from current
frame pointer (for

func())

dynamically linked

i library functions if
(usual case)

frame pointer —> 0

points here

—~<— brk point

stack pointer ——>

(top of stack)
points here

uninitialized data (bss)

initialized data

statically linked

i library functions if
(not usual case)

—<—— ra (return address)

L ow memory

Stack illustrated after the call
func(72,73) called from main(),
assuming func defined by:
func(int x, inty) {
int a;
int b[3];
/* no other auto variables */

Assumes int = long = char * of
size 4 and assumes stack at high
address and descending down.

Expanded view of the stack

Stack
main()
auto Contents
variables
+12 73 y
+8 72 X
+4 ra return address
mfp caller’s frame pointer
-4 garbage a
-8 garbage b[2]
-12 garbage b[1]
-16 garbage b[0]

All auto variables and parameters
are referenced via offsets from the
frame pointer.

The frame pointer and stack pointer
are in registers (for fast access).

When funct returns, the return value

is stored in a register. The stack pointer
is move to the y location, the code

is jumped to the return address (ra),
and the frame pointer is set to mfp

(the stored value of the caller’s frame
pointer). The caller moves the return
value to the right place.



