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Three problems between graph theory and topology

Richard K. Guy

1. Lovasz proved a conjecture of Kneser that the
(n

r

)
r-tuples chosen from

an n-set may be partitioned inton−2r + 2 parts, so that every pair in the
same part have a non-empty intersection. For example, the edges ofK6 may
be partitioned into 4 parts:

01, 02, 03, 04, 05; 12, 13, 14, 15; 23, 24, 25; 34, 35, 45.

Under what circumstances can the cardinalities of the parts be equal?
(Clearly not in the present example.) Under what circumstances can the
parts, considered as (hyper)graphs, be isomorphic?

2. Show that the outerthickness of the complete graph on 4n−1 points,
K4n−1, is n (providedn 6= 2). That is, show that its
(2n−1)(4n−1) edges can be partitioned inton parts, each of which can
be drawn as a planar graph with all its vertices on the boundary of a single
cell.

3. Find the outercoarseness of the (edge-set of the) 5-dimensional cube,
Q5. I.e., partition its 5× 25−1 = 80 edges into as many non-outerplanar
graphs as possible. The answer is either 7, 8 or 9. Obtain a better bound
than

ξo(Qn) > (0.96n−1.15)2n−4
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On general partition graphs

Ton Kloks

A graphG is a general partition graph if there is some setS and an as-
signment of non–empty subsetsSx ⊆ S to the vertices ofG such that two
verticesx andy are adjacent if and only ifSx∩Sy 6= /0 and for every max-
imal independent setM the set{Sm |m∈ M} is a partition ofS. For every
minor closed family of graphs there exists a polynomial time algorithm that
checks if an element of the family is a general partition graph. Also for the
class of circle graphs we show that it can be checked in polynomial time if
a member of the class is a general partition graph.

The triangle condition says that for every maximal independent setM and
for every edge(x,y) with x,y 6∈M there is a vertexm∈M such that{x,y,m}
is a triangle inG. It is known that the triangle condition is necessary for a
graph to be a general partition graph (but in general not sufficient). We
show that for AT–free graphs this condition is also sufficient and this leads
to an efficient algorithm that demonstrates whether or not an AT–free graph
is a general partition graph.

We show that the triangle condition can be checked in polynomial time
for planar graphs and circle graphs. It is unknown if the triangle condition is
also a sufficient condition for planar graphs to be a general partition graph.
For circle graphs we show that the triangle condition isnot sufficient.

This covers joint work with C. M.Lee (Chung-Cheng University, Chi-
ayi, Taiwan), Jim Liu (University of Lethbridge, Lethbridge, Canada), and
Haiko Müller (School of Computing, Leeds, UK).
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Hamiltonian properties of complements of line graphs

Jim Liu

Let G = (V,E) be a simple graph. The complement of the line graph of
G, denoted byL(G), has vertex setE, two verticese1 ande2 are adjacent
in L(G) if e1 ande2 are not incident inG. Let P be any of the properties:
Hamiltonian, traceable, Hamilton-connected, Hamilton-laceable, and pan-
cyclic. I will characterize graphs such that the complements of their line
graphs have propertyP.

Moreover, these characterizations lead to linear recognition algorithms.
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How to exchange secrets —
communication of cryptographic keys

Renate Scheidler

Conventional (one-key) cryptographic systems, such as the Data Encryp-
tion Standard (DES) or the new Advanced Encryption Standard (AES), are
the preferred secure communication schemes for many applications. This is
because they are both fast and sufficiently secure for most applications. The
real difficulty in employing such cryptosystems is the problem of securely
transmitting a secret cryptographic key between communicants. This talk
describes a solution to this problem – a means by which a secret key can be
safely transmitted across an insecure channel. Our key exchange protocols
are based on the algebra and arithmetic of reduced principal ideals in a real
quadratic number field.

This research was conducted in collaboration with H. C. Williams and
M. J. Jacobson, Jr., both at the University of Calgary, and J. A. Buchmann
at the Technical University of Darmstadt, Germany.

Despite the quite algebraic and number theoretic nature of this topic, this
presentation is designed to be accessible to a general mathematics-trained
audience.
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Stitching Images Back Together

Joy Morris

In a variety of settings, images may be broken down into smaller pieces.
During the course of this, information can be lost or slightly distorted, cre-
ating problems when attempts are made to reconstruct the original image
from the pieces. This talk discusses methods for reconstructing the original
image, focusing on a graph-theoretic model for the problem.

6



Hamiltonian paths in cartesian powers of directed cycles

Dave Witte

The vertex set of thekth cartesian power of a directed cycle of lengthm
can be naturally identified with the abelian group(Zm)k. For any two ele-
mentsu = (u1, . . . ,uk) andv = (v1, . . . ,vk) of (Zm)k, it is easy to see that if
there is a hamiltonian path fromu to v, then

u1 + · · ·+uk ≡ v1 + · · ·+vk +1 (mod m).

We prove the converse, unlessk = 2 andm is odd. This is joint work with
David Austin and Heather Gavlas. A similar result is conjectured for carte-
sian products of directed cycles that are not assumed to be of equal lengths.
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Vertex Embeddings of Regular Polytopes

Peter Zvengrowski

Starting from the fact, known since antiquity, that it is possible to choose
four vertices of the cube so as to form the vertices of a regular tetrahedron,
we investigate in this mainly expository talk the general question of when
the vertices of one regular polytope embed in those of another regular poly-
tope. Relationships of this question with several areas of mathematics will
be discussed, including combinatorics, linear algebra, number theory, Ga-
lois theory, and algebraic topology. The proof of the equivalence of the
following three statements will be outlined:

(1) the regular(n−1)-simplex has a vertex embedding in the(n−1)-
cube,

(2) there exists a Hadamard matrix of ordern,
(3) the regularn-orthoplex (generalized octahedron) has a vertex em-

bedding in then-cube.
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