A proof that continuous implies bounded:

For continuous f on [a,b], show that for some M, $f(x) \le M$ for all x.

The left endpoints (which increase) and the right endpoints (which decrease)

must limit to a number x since the distance apart is halved at each stage. The c_i also limit to x and $f(c_i) \rightarrow f(x)$ since f is continuous. But f(x) is a fixed number, whereas $f(c_i)$'s become arbitrarily large.

Note: The proof of "for some M, $M \le f(x)$ " follows by applying above to -f.