Orthogonality and Eigenvectors

§1. Introduction

Recall:

1) P is unitary if $P^* = P^{-1}$.

2) The matrix of transition between orthonormal bases is unitary.

3) Matrices A and B are unitary similar if $B = P^{-1}AP$ with P unitary so A and B represent the same transformation with respect to different orthonormal bases. We find unitary similar matrices which are of one or another special form.

$\S2$. Schur Decomposition

Theorem (Schur decomposition) Given a square matrix A there is a unitary P with $\Delta = P^{-1}AP$ upper triangular. If A is real and has only real eigenvalues then P can be selected to be real.

Note Δ has the eigenvalues of A along its diagonal because Δ and A are similar and Δ has its eigenvalues on the diagonal.

Proof By induction assume the result is true for order n-1 matrices and let A be order n. Let \mathbf{v} be an eigenvector with value λ . Normalize \mathbf{v} , that is, replace \mathbf{v} by $\mathbf{v}/||\mathbf{v}||$ if necessary. Extend \mathbf{v} to an orthonormal basis $\mathbf{v}, \mathbf{w}_1, \ldots, \mathbf{w}_{n-1}$ using Gram-Schmidt. Let Q be the matrix of transition to this basis. So Q is unitary and $Q^{-1}AQ$ is of form

$$\begin{pmatrix} \lambda & * & \dots & * \\ 0 & & & \\ \vdots & & C \\ 0 & & & \end{pmatrix}.$$

By induction there is a unitary V with $V^{-1}CV$ upper triangular. Consider

$$U = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & V & \\ 0 & & & & \end{pmatrix}$$

which is also unitary. Then QU is unitary and $(QU)^{-1}A(QU) = U^{-1}(Q^{-1}AQ)U =$

$$= \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & V^{-1} & \\ 0 & & & \end{pmatrix} \begin{pmatrix} \lambda & * & \dots & * \\ 0 & & & \\ \vdots & C & \\ 0 & & & \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & V & \\ 0 & & & \end{pmatrix} = \begin{pmatrix} \lambda & * & \dots & * \\ 0 & & & \\ \vdots & V^{-1}CV & \\ 0 & & & \end{pmatrix}$$

which is upper triangular.

Remark The proof gives an algorithm for finding P.

§3. Normal Matrices

Lemma 1 Let A and B be unitary similar. Then A is normal iff B is normal.

Proof Let P be unitary with $B = P^*AP$. Then $B^* = P^*A^*P$ and $P^* = P^{-1}$. So $B^*B - BB^* = P^*A^*PP^*AP - P^*APP^*A^*P = P^*(A^*A - AA^*)P$. Thus $B^*B - BB^* = 0$ iff $A^*A - AA^* = 0$. ■

Lemma 2 If A is normal then for each i, the i-th row of A has the same length as the i-th column of A.

Proof $\langle A\mathbf{e}_i, A\mathbf{e}_i \rangle = \langle \mathbf{e}_i, A^*A\mathbf{e}_i \rangle = \langle \mathbf{e}_i, AA^*\mathbf{e}_i \rangle = \langle A^*\mathbf{e}_i, A^*\mathbf{e}_i \rangle$. Thus $||A\mathbf{e}_i|| = ||A^*\mathbf{e}_i||$. The left side is the length of the *i*-th column of *A*. The right side is the length of the *i*-th column of *A*^{*}, that is, the *i*-th row of the conjugate of *A*; but the conjugate of a vector has the same length.

The argument in the proof works for any vector \mathbf{x} instead of \mathbf{e}_i , which proves the following lemma, whose converse is also true.

Lemma 3 If A is normal then $||A\mathbf{x}|| = ||A^*\mathbf{x}||$ for all \mathbf{x} .

Theorem (Unitary Similar Diagonalization) For a square matrix A, A is unitary similar to a diagonal matrix iff A is normal, that is, there is a unitary P with $P^{-1}AP = \Lambda$ diagonal iff $A^*A = AA^*$.

 $\begin{array}{l} Proof \quad \Rightarrow: \text{ Suppose } P^{-1}AP = \Lambda \text{ is diagonal. Diagonal matrices are normal since } \Lambda\Lambda^* = \begin{pmatrix} \lambda\lambda & 0 \\ 0 & \ddots \end{pmatrix} = \Lambda^*\Lambda. \text{ By Lemma 1, } A \text{ is normal.} \end{array}$

 \Leftarrow : By the previous theorem (Schur), A is unitary similar to an upper triangular matrix Δ . We show Δ is diagonal. By Lemma 1, Δ is normal and by Lemma 2, the *i*-th row of Δ has the same length as its *i*-th column. If Δ is not diagonal, then select *i* so that the *i*-th row is the first row with a nonzero off-diagonal element:

$$\Delta = \begin{pmatrix} t_{11} & 0 & \dots & 0 & \dots & 0 \\ 0 & t_{22} & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & t_{ii} & * & * \\ 0 & 0 & \dots & 0 & * & * \\ \vdots & \vdots & \dots & \vdots & \vdots & \ddots \end{pmatrix}.$$

The length of the *i*-th column is $|t_{ii}|$ but the length of *i*-th row is greater than $|t_{ii}|$, a contradiction. So Δ can have no nonzero off-diagonal elements.

Since the columns of P are eigenvectors of A, the next corollary follows immediately.

Corollary There is an *orthonormal* basis of eigenvectors of A iff A is normal.

Lemma Let A be normal. $A\mathbf{x} = \lambda \mathbf{x}$ iff $A^*\mathbf{x} = \overline{\lambda}\mathbf{x}$.

Proof $A\mathbf{x} = \lambda \mathbf{x}$ is equivalent to $||(A - \lambda I)\mathbf{x}|| = 0$. It is easy to show $A - \lambda I$ is normal, so Lemma 3 shows that $||(A - \lambda I)^*\mathbf{x}|| = ||(A^* - \overline{\lambda}I)\mathbf{x}|| = 0$ is equivalent. This in turn is equivalent to $A^*\mathbf{x} = \overline{\lambda}\mathbf{x}$.

Proposition (Eigenspaces are Orthogonal) If A is normal then the eigenvectors corresponding to different eigenvalues are orthogonal.

Proof Suppose $A\mathbf{v} = \lambda \mathbf{v}$ and $A\mathbf{w} = \mu \mathbf{w}$, where $\lambda \neq \mu$. $\langle \mathbf{v}, A\mathbf{w} \rangle = \langle \mathbf{v}, \mu \mathbf{w} \rangle = \mu \langle \mathbf{v}, \mathbf{w} \rangle$. However, $\langle \mathbf{v}, A\mathbf{w} \rangle = \langle A^* \mathbf{v}, \mathbf{w} \rangle$ which by the lemma is $\langle \overline{\lambda} \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle$. So $\mu \langle \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle$ but since $\lambda \neq \mu$, $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

Remark The above proposition provides the key to computing the matrix P in the Diagonalization Theorem. For each eigenspace, find a basis as usual. Orthonormalize the basis using Gram-Schmidt. By the proposition all these bases together form an orthonormal basis for the entire space. Examples will follow later (but not in these notes).

§4. Special Cases

Corollary If A is Hermitian $(A^* = A)$, skew Hermitian $(A^* = -A \text{ or equivalently } iA$ is Hermitian), or unitary $(A^* = A^{-1})$, then A is unitary similar to a diagonal matrix and A has an orthonormal basis of eigenvectors.

Proof These types of matrices are normal. Apply the previous theorem and corollary.

Proposition

If A is Hermitian then the eigenvalues of A are real.

If A is skew Hermitian then the eigenvalues of A are imaginary.

If A is unitary then the eigenvalues of A are of length 1.

Proof We note $A^* = A$ if A is Hermitian, $A^* = -A$ if A is skew Hermitian, and $A^* = A^{-1}$ if A is unitary. For convenience, combine these cases as $A^* = \pm A^{\pm 1}$.

Suppose $A\mathbf{x} = \lambda \mathbf{x}$ with $\mathbf{x} \neq \mathbf{0}$. Then $\langle \mathbf{x}, A\mathbf{x} \rangle = \langle \mathbf{x}, \lambda \mathbf{x} \rangle = \lambda \langle \mathbf{x}, \mathbf{x} \rangle$, whereas $\langle A^* \mathbf{x}, \mathbf{x} \rangle = \langle \pm A^{\pm 1} \mathbf{x}, \mathbf{x} \rangle = \langle \pm \lambda^{\pm 1} \mathbf{x}, \mathbf{x} \rangle = \pm \overline{\lambda}^{\pm 1} \langle \mathbf{x}, \mathbf{x} \rangle$.

 $\langle \mathbf{x}, \mathbf{x} \rangle \neq \mathbf{0}$ since $\mathbf{x} \neq \mathbf{0}$, so canceling gives $\lambda = \pm \overline{\lambda}^{\pm 1}$ which shows λ is real, imaginary or of length one for the respective cases.

§5. The Real Case

A real matrix can have non-real eigenvalues (as we saw when we diagonalized a rotation matrix) since characteristic polynomials with real coefficients can have non-real roots. If A is Hermitian, which for a real matrix amounts to A is symmetric, then we saw above it has real eigenvalues.

Theorem (Orthogonal Similar Diagonalization) If A is *real symmetric* then A has an orthonormal basis of real eigenvectors and A is orthogonal similar to a real diagonal matrix $\Lambda = P^{-1}AP$ where $P^{-1} = P^T$.

Proof A is Hermitian so by the previous proposition, it has real eigenvalues. We would know A is unitary similar to a real diagonal matrix, but the unitary matrix need not be real in general. By the Schur Decomposition Theorem, $P^{-1}AP = \Delta$ for some *real* upper triangular matrix Δ and *real* unitary, that is, orthogonal matrix P. The argument of the last theorem shows Δ is diagonal.

Remark The converse to this theorem holds: If A is real and orthogonal similar to a diagonal matrix, then A is real and symmetric.

Remark Since not all real matrices are symmetric, sometimes an artifice is used. For example, $A^T A$ and AA^T are symmetric even when A is not.

©1999 March, W. Holzmann

3