GERSCHGORIN'S CIRCLE THEOREM

The eigenvalues of A lie in the union of circles center a_{ii} radius $\sum_{j \neq i} |a_{ij}|$.

PROOF: The *i*-th component equation of $\lambda \mathbf{x} = A\mathbf{x}$ rewrites as $(\lambda - a_{ii})x_i = \sum_{j \neq i} a_{ij}x_j$. For non-zero x_i ,

$$|\lambda - a_{ii}| \le \sum_{j \ne i} |a_{ij}| |x_j| / |x_i|.$$

Take *i* so that $|x_i|$ is maximal; note that not all x_i of an eigenvector can be zero. Then λ lies in the circle with indicated radius centered at a_{ii} .