
Gudermann function

A definition for the Gudermann function is:

gdx =
Z x

0
sech t dt.

The function is also called the Gudermannian function or the hyperbolic amplitude function. Its domain is
all x.

Using the substitution u = sinh t, for which du = cosh t dt, and 1 + u2 = 1 + sinh2 t = cosh2 t we find an
alternate definition for this function:

gdx =
Z x

0
sech t dt =

Z x

0

1
cosh t

dt =
Z x

t=0

cosh t
cosh2 t

dt =
Z sinhx

u=0

du
1+u2

=
(

arctanu
)∣∣sinhx

u=0

= arctansinhx.

So
gdx =

Z x

0
sech t dt = arctansinhx. (1)

The graph of gd is similar to the graph of arctan.

By the Fundamental Theorem of Calculus:

d
dx

gdx = sechx. (2)

Since gdx is an angle whose tangent is sinhx = (sinhx)/1 so we have a triangle as follows, where the
hypotenuse of the triangle is

√
1+ sinh2 x = coshx:
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gdx

1

coshx

sinhx

From this triangle we read off the following relationships. They are significant since through the Gudermann
(and without using complex numbers) they express hyperbolic functions in terms of trig functions.

cosgdx =
1

coshx
= sechx (3)

singdx =
sinhx
coshx

= tanhx (4)

tangdx = sinhx (5)

secgdx = coshx (6)

cscgdx =
coshx
sinhx

= cothx (7)

cotgdx =
1

sinhx
= cschx (8)



Here is yet another alternative expression for gd:

gdx = 2arctanex− π

2
. (9)

To prove this it suffices to show two things:

• Both sides are 0 at 0: gd0 = arctansinh0 = arctan0 = 0, while on the right side,
2arctane0− π

2 = 2arctan1− π

2 = 2 π

4 −
π

2 = 0.

• The derivatives of both sides are the same. The derivative of the right side is

2 · 1
1+(ex)2 · e

x =
2

e−x + ex = 1/coshx = sechx,

which happens to be the derivative of gdx by equation (2).

The inverse Gudermann function

The inverse function to x = gdy is y = arcgdx, the arc Gudermann function. Its domain is (−π

2 , π

2 ) and its
graph is similar to the graph of tan on that interval. Its derivative, using equation (6), is

darcgdx
dx

=
dy
dx

= 1/
dx
dy

= 1/
d
dy

gdy = 1/sechy = coshy

(6)= secgdy

= secx. (10)

Integrating
R x

0 and noting that arcgd0 = 0 (see (9)) gives:Z x

0
sec t dt = arcgdx. (11)

Next we determine several alternate expressions for arcgd, that is, for the integral of sec.

The six equations (3) to (8) give, respectively:

arcgdx = arcsechcosx = arctanhsinx = arcsinh tanx (12)

= arccoshsecx = arccothcscx = arccschcotx, (13)

the proof of which we illustrate by using equation (4). The equation gives arctanhsingdx = x, from which,
on replacing x with arcgdx, we get arctanhsingdarcgdx = arcgdx, that is, arctanhsinx = arcgdx. Note the
pleasing symmetry:

gdx = arctansinhx and arcgdx = arctanhsinx. (14)

Similar formulas hold for the other five cases.



There are expression for arccosh and arctanh in terms of ln which give these formulas:

arcgdx = arccoshsecx = ln
(

secx+
√

sec2−1
)

= ln(secx+ tanx), (15)

arcgdx = arctanhsinx =
1
2

ln
(

1+ sinx
1− sinx

)
. (16)

Equation (9) gives arctanex = 1
2 gdx+ π

4 , which rewrites as x = ln tan
(1

2 gdx+ π

4

)
. Replacing x with arcgdx

and using gdarcgdx = x gives:
arcgdx = ln tan

( x
2

+
π

4

)
. (17)

In summary, from equations (11), (15), (16), (17):Z x

0
sec t dt = arcgdx = arccoshsecx = arctanhsinx = ln(secx+ tanx) = ln tan

( x
2

+
π

4

)
.

These formulas for the integral of sec, especially the last one, have an interesting history, as they were
discovered numerically in connection with map making by Mercator, Gunter, and Bond and proved by
Newton’s teacher Barrow and another famous mathematician of the time (Gregory).

Note that the antiderivative of sec is usually given with an absolute value:Z
secx dx = ln |secx+ tanx|+ c

but in our case the domain is (−π/2,π/2) making the absolute value superfluous since there secx+ tanx =
1

cosx(1+ sinx) is a product of positives.


