SAMPLE STATISTICS

Suppose we have a (finite) population with a characteristic having values x_1, x_2, \dots, x_N . Here x_i is the value of the characteristic for the *i*-th member of the population. Consider for example, a population consisting of just three trees, A, B, and C and suppose that the characteristic of interest is the weight of the tree. Suppose the weight of tree A is $x_1 = 9$, of B is $x_2 = 15$ and of C is $x_3 = 9$.

Population parameters are computed as usual:

Population mean parameter:

$$\mu = \frac{\sum_i x_i}{N}$$

Population deviation parameter:

$$\sigma = \sqrt{\frac{\sum_i (x_i^2)}{N} - \mu^2}$$

Population proportion parameter:

$$\theta = \frac{\text{number of successes}}{N}$$

where in the latter case the population is split into just two categories by the characteristic, one called *success* and the other *failure*.

Other useful parameters are those for median (M), mode (MO) and variance (V). In the example, $\mu = (9+15+9)/3 = 11$, $\sigma = \sqrt{(9^2+15^2+9^2)/3 - 11^2} \approx 2.83$ and $\theta = 1/3$ if we call values ≥ 10 successes and the others failures, thus tree B produces the only success.

The goal is to estimate these parameters via a sample. Select a sample of n elements. We consider just two possible methods. In both the probability function for the samples selected is uniform; when the population is finite this means all possible samples are equally likely. In **independent random sampling (irs)**, the sampling is done with replacement, while in **simple random sampling (srs)** the sampling is done without replacement. It is easier to analyze the case of an independent random sampling since the successive selections are independent; however, often sampling is done without replacement.

Let X_1, X_2, \dots, X_n be the random variables that keep track of which characteristic values where selected: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$. For example, if we selected a sample of size 2 which consisted of B and C then $x_{(1)} = 15$ and $x_{(2)} = 9$. This example is simple minded because in practice both n and N are larger with N being fairly large, since if N is not large a census is likely feasible.

A sample statistic is a random variable that is a function of the sample random variables X_i . The value of a "good"[†] sample statistic on a specific sample is used to estimate a population parameter. Here are three important statistics:

The sample mean statistic is $\overline{X} = \sum_i X_i/n$, thus on a sample $x_{(1)}, \dots, x_{(n)}$ it has value equal to the ordinary average of the sample values:

$$\overline{x} = \frac{\sum_{i} x_{(i)}}{n}$$

[†] Some desirable properties for a statistic are that it be unbiased, minimum variance, consistent and sufficient (see page 3).

The sample deviation statistic is $S = CF \cdot \sqrt{\frac{n}{n-1}} \sqrt{\frac{\sum_i (X_i^2)}{n} - \overline{X}^2}$, thus on a sample $x_{(1)}, \dots, x_{(n)}$ it has value

$$s = \operatorname{CF} \cdot \sqrt{\frac{n}{n-1}} \sqrt{\frac{\sum_{i} (x_{(i)}^2)}{n} - \overline{x}^2}.$$

This is the ordinary deviation of the sample corrected by the factor $\sqrt{\frac{n}{n-1}}$, a factor which compensates for the "clipping" inherent in the sample relative to the population. An additional Correction Factor, $CF = \sqrt{(N-1)/N}$, appears only if the sampling is done without replacement and the population N is finite, but even then it is negligible ($\geq .975$) and so often ignored if $N \geq 30$. Note that for n = 1, S is undefined. This is no surprise because you can not realistically guess a deviation if you only have one sample value.

The sample deviation statistic is $P = (\text{the number of successes in the } X_i)/n$, thus on a sample it has value $p = (\text{the number of successes among the } x_i)/n$.

These statistics are good statistics for estimating the corresponding population parameters. The best estimate[†] for μ , σ and θ are the respective values \overline{x} , s and p of the sample statistics \overline{X} , S and P on the sample $x_{(1)}$, \cdots , $x_{(n)}$. In the example, based on the sample $x_{(1)} = 15$ and $x_{(2)} = 9$ the best estimate for μ is $\overline{x} = (15 + 9)/2 = 12$, the best estimate for σ is $s = \sqrt{2/3}\sqrt{2/1}\sqrt{(15^2 + 9^2)/2 - 12^2} = \sqrt{2/3}\sqrt{2}\sqrt{9} \approx 3.46$, and the best estimate for θ is p = 1/2.

Actually the proportion and the mean are closely related. Define x^* to be 1 if x is a success and 0 otherwise. Then the proportion parameter and statistic for x are just the mean parameter and statistic, respectively, for x^* . That is, $\theta = \mu$, $P = \overline{X^*}$ and $p = \overline{x^*}$. \overline{X} , S and P are random variables so they have distributions. These are distributions of the estimates — different samples give different estimates and each estimate has a certain probability of being the estimate you will give. For instance, consider simple random samples of size 2 in the example.^{††}

Sample	$x_{(1)}$	$x_{(2)}$	\overline{x}	s	p
$^{\rm A,B}$	9	15	12	≈ 3.46	.5
$^{\rm A,C}$	9	9	9	0	0
$^{\mathrm{B,C}}$	15	9	12	≈ 3.46	.5

Each sample is as likely as any other since the sample is a simple random sample, thus X has distribution:

$$\begin{array}{cccc} X & 9 & 12 \ P(\overline{X}) & 1/3 & 2/3 \end{array}$$

Random variables have averages and deviations:

$$\mu_{\overline{X}} = 9 \cdot 1/3 + 12 \cdot 2/3 = 11$$

^{††} Notice when replacement is allowed, that there are 9 possible samples. A sample AA occurs only once, while a "mixed" sample can occur twice: AB or BA. Accordingly the distribution for \overline{X} is 9, 12, 15 with probabilities 4/9, 4/9, 1/9.

[†] \overline{X} and P are unbiased, minimum variance, consistent and sufficient for μ and θ as is S^2 for σ^2 . S is somewhat biased for σ , but it is used anyway.

 $\mu_{\overline{X}}$ is the **average estimate** for the population parameter μ .

$$\sigma_{\overline{X}} = \sqrt{9^2 \cdot 1/3 + 12^2 \cdot 2/3 - 11^2} \approx 1.41$$

 $\sigma_{\overline{X}}$ is the spread or **deviation in estimates** for the population parameter μ , so it is a measure of how good the estimate \overline{x} is for μ .

It is important to keep in mind that in a sampling situation such as above, you will not actually explicitly know \overline{X} , $\mu_{\overline{X}}$, $\sigma_{\overline{X}}$, X, etc. unless additional assumptions are made. All you know is the sample random variable values $x_{(i)}$.

Similarly

The average estimate for population deviation σ is $\mu_S = 0 \cdot 1/3 + 3.46 \cdot 2/3 \approx 2.31$. This value has a bias relative to the true value of about 2.83. On the other hand, $\mu_{S^2} = 8$ which is also σ^2 so there is no bias there.

The deviation in the estimate for population deviation σ is

 $\sigma_S = \sqrt{0^2 \cdot 1/3 + 3.45^2 \cdot 2/3 - \mu_S^2} \approx 1.63.$

The average estimate for population proportion θ is $\mu_P = 0 \cdot 1/3 + 1/2 \cdot 2/3 = 1/3$. The deviation in the estimate for population proportion θ is $\sigma_P = \sqrt{0^2 \cdot 1/3 + (1/2)^2 \cdot 2/3 - \mu_P^2} \approx .236$.

PROPERTIES OF A GOOD STATISTIC:

A statistic Y is said to be **unbiased** for a population parameter α if the average estimate μ_Y is the true value α . It is **minimum variance** if σ_Y is as small as possible. It is **sufficient** if, roughly, knowing the actual sample values reveals no more about α than merely knowing the value of the statistic Y. It is **consistent** if, roughly, as the sample size n gets larger the value of the statistic approaches α .

Theorem

Suppose a population has mean parameter μ and deviation parameter σ and suppose a simple or independent random sample of size n is selected. Then the mean statistic $\overline{X} = (X_1 + \cdots + X_n)/n$ satisfies $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}} = \text{SPCF} \cdot \sigma/\sqrt{n}$ where the Small Population Correction Factor, $\text{SPCF} = \sqrt{(N-n)/(N-1)}$, appears only if the sampling is done without replacement and the population N is finite, but even then it is negligible $(\geq .975)$ if $n \leq 5\%N + 1$.

Central Limit Theorem

In addition, \overline{X} is appoximately normally distributed with mean $\mu_{\overline{X}} = \mu$ and deviation $\sigma_{\overline{X}}$.

REMARKS: The approximation gets better the larger n is, but as a general rule of thumb, it is good enough if $n \ge 30$.

If the population is normally distributed then \overline{X} is exactly normally distibuted. Note that as n gets larger, the deviation $\sigma_{\overline{X}}$ approaches zero.