
Sample Statistics

Suppose we have a (finite) population with a characteristic having values x1, x2, · · ·, xN .
Here xi is the value of the characteristic for the i-th member of the population. Consider
for example, a population consisting of just three trees, A, B, and C and suppose that the
characteristic of interest is the weight of the tree. Suppose the weight of tree A is x1 = 9,
of B is x2 = 15 and of C is x3 = 9.
Population parameters are computed as usual:
Population mean parameter:

µ =
∑

i xi

N
Population deviation parameter:

σ =

√∑
i(x

2
i )

N
− µ2

Population proportion parameter:

θ =
number of successes

N

where in the latter case the population is split into just two categories by the characteristic,
one called success and the other failure.
Other useful parameters are those for median (M), mode (MO) and variance (V ). In the
example, µ = (9+15+9)/3 = 11, σ =

√
(92 + 152 + 92)/3− 112 ≈ 2.83 and θ = 1/3 if we

call values ≥ 10 successes and the others failures, thus tree B produces the only success.
The goal is to estimate these parameters via a sample. Select a sample of n elements.
We consider just two possible methods. In both the probability function for the samples
selected is uniform; when the population is finite this means all possible samples are equally
likely. In independent random sampling (irs), the sampling is done with replacement,
while in simple random sampling (srs) the sampling is done without replacement. It is
easier to analyze the case of an independent random sample since the successive selections
are independent; however, often sampling is done without replacement.
Let X1, X2, · · ·, Xn be the random variables that keep track of which characteristic values
where selected: x(1), x(2), · · ·, x(n). For example, if we selected a sample of size 2 which
consisted of B and C then x(1) = 15 and x(2) = 9. This example is simple minded because
in practice both n and N are larger with N being fairly large, since if N is not large a
census is likely feasible.
A sample statistic is a random variable that is a function of the sample random variables
Xi. The value of a “good”† sample statistic on a specific sample is used to estimate a
population parameter. Here are three important statistics:
The sample mean statistic is X =

∑
i Xi/n, thus on a sample x(1), · · ·, x(n) it has

value equal to the ordinary average of the sample values:

x =
∑

i x(i)

n

† Some desirable properties for a statistic are that it be unbiased, minimum variance, con-
sistent and sufficient (see page 3).



The sample deviation statistic is S = CF ·
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x(1), · · ·, x(n) it has value
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This is the ordinary deviation of the sample corrected by the factor
√

n
n−1 , a factor which

compensates for the “clipping” inherent in the sample relative to the population. An
additional Correction Factor, CF =

√
(N − 1)/N , appears only if the sampling is done

without replacement and the population N is finite, but even then it is negligible (≥ .975)
and so often ignored if N ≥ 30. Note that for n = 1, S is undefined. This is no surprise
because you can not realistically guess a deviation if you only have one sample value.
The sample deviation statistic is P = (the number of successes in the Xi)/n, thus on
a sample it has value p = (the number of successes among the xi)/n.
These statistics are good statistics for estimating the corresponding population parameters.
The best estimate† for µ, σ and θ are the respective values x, s and p of the sample statistics
X, S and P on the sample x(1), · · ·, x(n). In the example, based on the sample x(1) = 15
and x(2) = 9 the best estimate for µ is x = (15 + 9)/2 = 12, the best estimate for σ is
s =

√
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9 ≈ 3.46, and the best estimate for θ is
p = 1/2.
Actually the proportion and the mean are closely related. Define x∗ to be 1 if x is a
success and 0 otherwise. Then the proportion parameter and statistic for x are just the
mean parameter and statistic, respectively, for x∗. That is, θ = µ, P = X∗ and p = x∗.
X, S and P are random variables so they have distributions. These are distributions of
the estimates — different samples give different estimates and each estimate has a certain
probability of being the estimate you will give. For instance, consider simple random
samples of size 2 in the example.††

Sample x(1) x(2) x s p
A,B 9 15 12 ≈ 3.46 .5
A,C 9 9 9 0 0
B,C 15 9 12 ≈ 3.46 .5

Each sample is as likely as any other since the sample is a simple random sample, thus X
has distribution:

X 9 12
P (X) 1/3 2/3

Random variables have averages and deviations:

µX = 9 · 1/3 + 12 · 2/3 = 11

† X and P are unbiased, minimum variance, consistent and sufficient for µ and θ as is S2

for σ2. S is somewhat biased for σ, but it is used anyway.
†† Notice when replacement is allowed, that there are 9 possible samples. A sample AA

occurs only once, while a “mixed” sample can occur twice: AB or BA. Accordingly the
distribution for X is 9, 12, 15 with probabilities 4/9, 4/9, 1/9.



µX is the average estimate for the population parameter µ.

σX =
√

92 · 1/3 + 122 · 2/3− 112 ≈ 1.41

σX is the spread or deviation in estimates for the population parameter µ, so it is a
measure of how good the estimate x is for µ.
It is important to keep in mind that in a sampling situation such as above, you will not
actually explicitly know X, µX , σX , X, etc. unless additional assumptions are made. All
you know is the sample random variable values x(i).
Similarly

S 0 ≈ 3.46 S2 0 12 P 0 1/2
P (S) 1/3 2/3 P (S2) 1/3 2/3 P (P ) 1/3 2/3

The average estimate for population deviation σ is µS = 0 · 1/3 + 3.46 · 2/3 ≈ 2.31.
This value has a bias relative to the true value of about 2.83. On the other hand, µS2 = 8
which is also σ2 so there is no bias there.
The deviation in the estimate for population deviation σ is
σS =

√
02 · 1/3 + 3.452 · 2/3− µS

2 ≈ 1.63.
The average estimate for population proportion θ is µP = 0 · 1/3 + 1/2 · 2/3 = 1/3.
The deviation in the estimate for population proportion θ is
σP =

√
02 · 1/3 + (1/2)2 · 2/3− µP

2 ≈ .236.

Properties of a good statistic:
A statistic Y is said to be unbiased for a population parameter α if the average estimate
µY is the true value α. It is minimum variance if σY is as small as possible. It is
sufficient if, roughly, knowing the actual sample values reveals no more about α than
merely knowing the value of the statistic Y . It is consistent if, roughly, as the sample
size n gets larger the value of the statistic approaches α.

Theorem
Suppose a population has mean parameter µ and deviation parameter σ and suppose
a simple or independent random sample of size n is selected. Then the mean statistic
X = (X1 + · · · + Xn)/n satisfies µX = µ and σX = SPCF · σ/

√
n where the Small

Population Correction Factor, SPCF =
√

(N − n)/(N − 1), appears only if the sampling
is done without replacement and the population N is finite, but even then it is negligible
(≥ .975) if n ≤ 5%N + 1.
Central Limit Theorem
In addition, X is appoximately normally distributed with mean µX = µ and deviation σX .

Remarks: The approximation gets better the larger n is, but as a general rule of thumb,
it is good enough if n ≥ 30.
If the population is normally distributed then X is exactly normally distibuted.
Note that as n gets larger, the deviation σX approaches zero.


