NEW BOUNDS FOR ()
LAURA FABER AND HABIBA KADIRI

ABSTRACT. In this article we provide new explicit Chebyshev’s bounds for the prime counting function ¥ (x).
The proof relies on two new arguments: smoothing the prime counting function which allows to generalize the
previous approaches, and a new explicit zero density estimate for the zeros of the Riemann zeta function.

1. INTRODUCTION.
1.1. Main Theorem and History. We recall that ¢)(x) is the Chebyshev function given by
logp ifn=pFfork>1,

d(x) =) A(n), with A(n) =

else.
n<zx 0

The Prime Number Theorem (PNT) is equivalent to
Y(x) ~x as x — oo.

This estimate is a core tool in solving many problems in number theory and an explicit form of it turns out
to be very useful in a wide range of problems. In this article, we investigate explicit bounds (also known as
Chebyshev’s bounds) for the error term

For instance, the main article of reference [20] in this subject is extensively used in various fields including
Diophantine approximation, cryptography, and computer science. Moreover, breakthroughs concerning
Goldbach’s conjecture (see the work of Ramaré [18], Tao [25], and Helfgott [6] [7]) rely on sharp explicit
bounds for finite sums over primes. We combine a new explicit zero density estimate for ((s) and an
optimized smoothing argument to prove

Theorem 1.1. Let by < 9963 be a fixed positive constant. Let x > e®. Then there exists ¢g > 0 such that
E(x) < ey, where € is given explicitly in (3.9) and is computed in Table 3.

Corollary 1.2. Forall x > €%, F(x) < 5.3688 - 10~4.

A classic explicit formula that relates prime numbers to non-trivial zeros of ( is given by [1, §17, (1)]:

(1.1) Y(x) :$—Zl;)—10g277'—;10g(1—x_2)’
p

when x is not a prime power. As the sum over the zeros is not absolutely convergent, it is impossible to
directly use this formula to bound the error term F(z). To bypass this problem, the standard argument is to
apply an explicit formula to an average of ¢)(x) on a small interval containing [0, z].
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In 1941 Rosser [22, Theorem 12] provides an explicit version of this proof. In 1962 Rosser and Schoen-
feld [23, Theorem 28] improve on this method by introducing further averaging. Later results of Rosser
and Schoenfeld [24], Dusart [2] [3], and very recently Nazardonyavi and Yakubovich [14] all use the
argument of [23]. They successively obtain smaller bounds for the error term as a consequence of im-
provements concerning the location of the non-trivial zeros of the Riemann zeta function, namely the
verification of the Riemann Hypothesis up to a fixed height H, and an explicit zero-free region of the

form Res > 1 — and |Jms| > 2, where R is a computable constant. On the other hand

Rlog |Jms|
Theorem 1.1 relies on new arguments. We introduce a smooth weight f and compare () to the sum

S(x) = > An)f (%) In Section 3.1 we choose f in a close to optimal way so as to make the bound

on E(x) as small as possible. We also observe that Rosser and Schoenfeld’s averaging method is a spe-
cial case of this smoothing method (see Section 3.4 for further discussion). In Theorem 2.3 we establish
a general explicit formula for ./(z). A large contribution to the size of E(z) arises from a sum over the
non-trivial zeros of the form o 2P~1F(p), where F is the Mellin transform of f. This sum is studied in
Section 2.3. We split it so as to isolate zeros closer to the 1-line (say of real part larger than a fixed o) as
they contribute the most to the sum. In section 2.3.2 we estimate this contribution by using for the first time
explicit estimates for the zero density N (o, T") (as given in article [9]). This allows an extra saving over
previous methods as they are of size between log 7" and 7" smaller than N (7). Finally Theorem 2.8 provides
a general form for the bound of the error term E(x).

We provide here a history of numerical improvements for Theorem 1.1 in the case where by = 50. At the
same time we mention which height H and constant i were used.

TABLE 1. Forall z > %0, E(z) < €.

Authors H R €0
Rosser [22] 1467 [22] 17.72 [22] | 1.1900- 102
Rosser and Schoenfeld [23] 21943 [12][13] 17.5163... [23]| 1.7202-1073
Rosser and Schoenfeld [24] 1894438 [24] 9.645908801 [24] | 1.7583-107°
Dusart [2] 545439823 [26] 9.645908801 [24] | 9.0500 - 108
Dusart [3]* 2445999556 030 [S]* 5.69693 [8] 1.3010 - 10~°
Nazardonyavi and Yakubovich [14]* | 2445999556030 [5]* 5.69693 [8] 1.3055 - 107
Faber and Kadiri 2445999 556 030 [5]* 5.69693 [8] | 9.4602- 1010
30610046000 [17][16] 5.69693 [8] 2.3643 - 1079

(* unpublished)

Note that when we use the same values for H and R than [3] and [14], our bounds for E(x) are consistently
smaller than theirs (for all by except for by = 10 000 in the case of [3]).

1.2. Zeros of the Riemann zeta function. We use the latest computations of Platt [16] [17] concerning the
verification of RH:

Theorem 1.3. Let H = 3.061 - 10'%. If((s) = 0 ar 0 < Re(s) < Land 0 < Jm(s) < H, then Re(s) = 3.

Table 3 presents values of ¢y computed for this value of H. Prior to the work of Platt, Gourdon [5]
announced a verification up to H = 2445999 556 030. We choose to use Platt’s value of H since his
verification of RH is the most rigorous to date (he employs interval arithmetic). Since other recent results
([3] and [14]) use Gourdon’s H, we also give a version of Theorem 1.1 based on his value (see Table 4).

From [8, Theorem 1.1] we have the zero-free region:

Theorem 1.4. Let R = 5.69693. Then there are no zeros of ((s) in the region

1
Res > 1 — ———— and |Jms| > 2.
Rlog |Jms|
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Let T > 2 and N(T) be the number of non-trivial zeros ¢ = [ + i in the region 0 < v < T and
0 < 8 < 1.1In 1941, Rosser [22, Theorem 19] proved

Theorem 1.5. LetT > 2,
T T T 7
PT)=—log— — — + —
(M) = le o — 5 T
and a1 = 0.137, ag = 0.443, ag = 1.588. Then
IN(T) — P(T)| < R(T).

R(T) = a1logT + azloglog T + as,

We recall that N (o, T') is the number of non-trivial zeros in the region oy < Res < land 0 < Jms < 7.
In [9] the second author proved explicit upper bounds for N (o, T'):

Theorem 1.6. Let 3/5 < o¢ < 1. Then there exists constants ¢y, co, c3 such that, for all T > H,
N(oo9,T) < 1T+ cplog T + c3.

The c¢;’s depend on various (hidden) parameters and it is possible to choose these so as to make the
above bound smaller when 7' is asymptotically large or when it is close to H, the height of the numerical
verification of RH. Table 2 at the end of this paper list values for the ¢;’s in these respective cases. For
instance, it gives

N(89/100,T) < 0.4617T + 0.66441log T' — 340272,

which provides a saving of about 1/3(logT") compared to Theorem 1.5.
When T is near H, Theorem 1.6 yields values for the ¢;’s which provide a bound for N (o, T') of size
about log H. For instance, it gives that N(99/100, H) < 78 while Rosser’s Theorem gives 5.2 - 10'°.

2. GENERAL FORM OF AN EXPLICIT INEQUALITY FOR ().
2.1. Introducing a smooth weight f.
Definition 2.1. Ler 0 < a < bym € Nand m > 2. We define a function f on [a,b] by f(z) = 1 if
0<z<a fl(x) =0ifx >band f(z) =g (ﬁ) ifa < x < b, where g is a function defined on [0, 1]
satisfying

Condition 1: 0 < g(z) <1 for 0 <z <1,
Condition 2: g is an m-times differentiable function on (0, 1) such that forallk = 1,...,m,

g®(0) =9 (1) =0,
and there exist positive constants ay, such that
1g®) ()] < ax forall 0 <z < 1.
We now consider

@.1) S (z) = iA(n)f(Z) and Ey(z) = “W .
n=1

T

Let § > 0. We denote f~ and f* for the function f defined above with the choices a = 1 — §,b = 1
and a = 1,b = 1 + ¢ respectively. We also define .~ and ./ the sums .# associated to f~ and f*
respectively. Observe that

(2.2) S (x) <Y(z) < ST (x) and E(z) <max(Ey(z), Eo+(z)).
The Mellin Transform of f is given by

(2.3) F(s) = /0 b feat.
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We recall the property (see [10, page 80, (3.1.3)]): if there exist « and (5 such that o < (5 and, for every € > 0,
f(z) =0@ ) asz — 0,and f(z) = O(x7PF€) as & — +oo, then F is analytic in o < Res < B. It
follows from our choice of f that F' is analytic in Yies > 0. Moreover, we have the inverse Mellin transform
formula

24100
2.4) ) = — /2 " Psyds.

271 Jo_ino

Observe that

" ) 1 1 ! 1 el
[ tar = o= [ ) (0= @yt 0

Let k£ be a non-negative integer. We define
(2.5) M(a,b, k) /|gM1 | (b — a)u+ a)*™ du.

We now record some properties of F'.

Lemma 2.2. Let 0 < a < b,m € Nym > 2. Let f and g be functions as in Definition 2.1.

(a) The Mellin transform F of f has a single pole at s = O with residue 1 and is analytic everywhere
else.
(b) Let s € C such that Res < 1. Then F satisfies

1
2.6) F()=a+(b—a) / o(u)du,
0
b, k
@2.7) W@ﬂg(%|ﬁg,ﬁmﬂk_0
Proof. The identity (2.6) follows immediately from the deﬁnition of f.
We now use Condition 1 and Condition 2. We have F'(s fo (t)t*~tdt with f'(z) = 0for 0 < z < a.
We integrate by parts once and observe that F'(s) = Gg ) , where
b

2.8) Gls) = — / £t

a

is an entire function. The residue of ' at s = 0 is G(0) = 1.

LetRes < land k =0,..., or m. Inequality (2.7) is obtained by integrating F' by parts k + 1 times:

( 1k+1

29 F(s) = s(s+1)...(s+k)

We consider
b
Gon(s) = / pm 1) () gy,

Since () vanishes at both @ and b for all i = k, ..., m, we have

(2.10)  Gm(—k) = (m —k)}(-1)™* / FED@)dt = (m — k)(=1)"F(f® (b) — fF)(a)) = 0.

Thus F' only has a pole at s = 0 and is analytic everywhere else. (|
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2.2. An explicit formula for a smooth form of /(). We use classical techniques to rewrite .*(x) as a
complex integral, shift the integration contour to the left, and collect all the poles of the integrand so as to
obtain a smooth analogue of the classical explicit formula (1.1).

Theorem 2.3. Let 0 < a < bym € N,m > 2. Let f be a function satisfying Definition 2.1 and F' its Mellin

transform. Then
o0

S () =xF(1) =Y 2PF(p) - CC/(O) =) a " F(-2n),
P n=1

where p runs through all the non-trivial zeros p = [ + iy of the Riemann zeta function.

Proof. We insert (2.4) in (2.1):
24100 /
() = L / CL’SF(S)( - C—(s))ds.
2

2mi —1i00 C
Fix k£ € R\2N and 7" > 2 such that 7" does not equal an ordinate of a zero of (. Observe that the integrand
has a pole at s = 0 with residue — % (0), a pole at s = 1 with residue xF'(1), poles at the non-trivial zeros of
zeta p = [ + i~y with residue —x” F'(p), and poles at the trivial zeros of zeta s = —2n,n € N, with residue

—272"F(—2n). We move the vertical line of integration extending from 2 — 57 to 2 + iT to the line of
integration extending from —k — i7" to —k + ¢’ so as to form the rectangle Z. Thus
!/
S(x) = (T, k) + L(T, k) — I3(T, k) — i( )+ F(z— Y a’F(p)— > 2 >"F(-2n),
[vI<T 1<n<k
where I, I, I3 are respectively integrating along the segments [—k+iT, 24T, [—k+iT, —k—iT], |-k —

iT,2 — iT']. It remains to prove that for each j = 1,2,3, limy 71 |1;(T, k)| = 0. We use the classical
bounds (see [1, page 108])

! log? T if —1<0<2
C(O’—FZT)‘ o8 1 =7=%
¢ log(lo| +T) if —k<o< -1,
together with inequality (2.7) for F', and obtain
log?T 2% logT 1 -T
LR < 2ot o+ o .

T+ logx  Tmtlzlogx t e

We conclude that limy, 7,4 |[1(7, k)| = 0. Note that I3(T, k) = I;(=T, k) converges to 0 by a similar
argument. For I5(7T, k), we combine (2.7) with [1, inequality (8)]:

oEhif [t < 3
F(- —k:—l—it‘<< hoeltl et o
. ) {ﬁﬂ ife] > 3.
Thus |Io(T, k)| < m_k< logh 4 logT) and limy, 7y 4 o0 | I2(T, k)| = 0. 0

2.3. A general form of explicit bounds for ¢)(z). We deduce from (2.7) that

o x _—2n
—2n x M(CL, ba 0)
‘;_1:5 F(—Qn)‘ < M(a,b,0) n§:1 — <

Together with the above, (2.6), and — C?(0) log( ™) it follows that

M(a,b,0) 3

2.11)  Eg(z) < ’a—l—i— / du‘+2x5 YE(p)| + log(2m)z™" + 5



To study the sum over the zeros, we introduce the notation
« H > 01issuchthatif ((f+iy) =0and0 <~y < H, then § = 1/2,

* T > 0 is such that Z 7~ can be directly computed,
0<y<Ty
x T is a parameter satisfying Ty < 17 < H,

2.12) * R > 1is a constant so that {(o + it) does not vanish in the region

1
>1— ———and|t| > 2
7= Rlog [t] [t =2,

% 00 is a parameter satisfying 3/5 < o¢ < 1,
* ¢; > 0,c2 > 0,c3 < 0depend on oy so that
N(oo,T) < 1T + cologT + c3, forall T > H.

« 1
Using the symmetry of the zeros of zeta and using the notation Z =3 Z + Z we have:
B=1/2 1/2<8<1

(2.13) S E () = D (#7407 (P ()] + IF (@)
P v>0
We now separate the zeros vertically at H:
(2.14) Y @ F(p)| = £1 + s,
P
with
_1 . . * _ _ _
Si=aTh Y (F/2+ i)+ P2 =), Sa= Y (aF 4077 (F(p)| + [F(p)]).
0<y<H y>H

We split X; vertically at 7} and use (2.7) to bound |F'(p)| with & = 0 when v < T, and k¥ = m when
T1 < v < H respectively. Thus

(2.15) 21§2x’%<M(a76,0) Z 1+M Z L)

b—aq)m m—+1
0<y<Th v ( ) T1<y<H "

1
Moreover, we split the first sum at height 7y < 77 and denote sg a close upper bound for Z —. We use
v<Ty
(2.7) with k£ = m for X7 and split it horizontally at 0. Together with the zero-free region given in Theorem
1.4 and the fact that 2%~ 4+ 27 increases with 3, we obtain

~Fees 4 o~ (" FREw)
(2.16) X5 < QM( (m—(l—oo) +$—0'0> Z %H n Z x Rlgy 4 g Rlog H )

— m m—+1
(b a) y>H v>H,00<f<1 v
We denote
1 1 1
si(T)= oo slm ) = ) Smrre S3(m) = ZW
0<y<Ty Th<y<H v>H
(2.17) . 1
x Rlog~y
sa(m,o0) = Z Al s5(z,m,00) = Z TymAL
v>H,o0<pB<1 v>H,o0<pB<1
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We have

2.18) Y 2N F(p)| <2 (M(a, b,0)s1(Ty) + W@(m,ﬂ)) -
P

N

M(a,b,m)
(b—a)™
We conclude by inserting (2.18) in (2.11).

+2 ((x_(l_m) + x_ao) sg(m) + :r_(l_nggH)sél(m, 00) + ss(x, m, ao)> :

Lemma 24. Let 0 < a < bym € N, with m > 2. Let f be a function satisfying Definition 2.1. Let
H, Ty, T, R, and o satisfy (2.12). Then for all v > 0, E»(z) < K(z,a,b,m,00), where

1
(2.19) K(z,a,b,m,00) = ‘a -1+ (- a)/ g(u)du’
0

+ 2M(a7 ba m) ((x_(l—a'()) + m—UO)SS(m) _|_ l'_(l_RIOlgH)Szl(m, O-O) _|_ S5($, m’ 0-0))
(b—a)™
M
+ 2(M(a, b,0)so + M(a,b,0)s1(T1) + 7(% b,m) so(m, Tl))m_%
(b—a)ym™
M
+ log(2m)z ™! + méb’o)x_g,

and M (a,b,m) and the s;’s are defined in (2.5) and (2.17) respectively.
Note that for a, b, m, oq fixed constants, K (x, a, b, m, 0g) decreases with x. Thus, for all z > x
(2.20) Ey(x) < K(x0,a,b,m,0qp).

2.3.1. Bounding s1(T1), sa(m,T1), and s3(m). We apply here a result from Rosser and Schoenfeld [24].
It uses explicit estimates for N (7') as given in Theorem 3.4 to bound certain sums over the zeros of zeta.

Lemma 2.5. [24, Lemma 7] Let 1 < U < V, and let ®(y) be nonnegative and differentiable for U <
y < V. Let (W —y)®'(y) > 0for U < y < V, where W need not lie in [U,V]. Let Y be one of
U, V, W which is neither greater than both the others or less than both the others. Choose j = 0 or 1 so
that (—1)7(V — W) > 0. Then

1 [V , a Vo
> et <o [ etog Ly (19 (w+2) [ Wy mw),

where the error term E;(U, V) is given by
Ej(U,V) = (1+(=1))RY)2(Y)+(N (V)= P(V) = (=1)/ R(V))®(V)~ (N (U) - P(U)+R(U))2(U).
Corollary 2.6. [24, Corollary of Lemma 7] If; in addition, 2w < U, then

> 0= (- + (1) [

U<n<V U

y ay logy + as
®(y) log 2L-dy + E; h - .
(v)log 5 -dy + E;(U V), where q(y) ylogylog(y/2m)

Moreover, if j = 0and W < U, then
(2.21) Eo(U,V) <2R(U)®(U).
We give details on how we apply Corollary 2.6 and (2.21) to s1, o, and s3. We take respectively
e O(y) =y L U=T, V=T,

e O(y) =y ™ LU=T,V=H,
° @(y):y’mfl,U:H,V:oo.



In each case, ®’(y) < 0 for all y, and we choose W < U,Y = U, and j = 0. Since

T1 oo 2L

To
YV log 4 _ 1+ mlog(U/2m) 14 mlog(V/2m)
/ ym a m2U™ m2ym
we obtain:
1 2R(Tp)
(222) s1(Th) < Bu(Th) = s + (- +a(To) ) (Tos(Ta/To) los(v/TiTo/ (2m))) + =2,
1 1 log(T1/2 1 log(H /2 2R(T
(223) sa(m.Ty) < Ba(m.Ty) = <%+q(T1))( +mm<;g7;5{n1/ T +mm;>i§m/ w)) T"(”ll)’
1
1 1 log(H/2 2R(H
(2:24) 53(m) < By(m) = (o + q(ap)) LT IOBU2T) | 2RO,

2.3.2. Bounding s4(m,0q) and s5(x,m,op). We assume here that ®(y) = o(y) when y — o0, so as to
ensure that lim,,_, ®(y)N (09, y) = 0. Since all non-trivial zeros of zeta have real part 1/2 when v < H,
then N (op, H) = 0 and we have the Stieltjes integral

/ N 0'0, )d Y.
y>H, 5>0’0

Lemma 2.7. Let H,o0¢,c1,ca,cs satisfy (2.12). Let H < U < V, and let ®(y) be non-negative and
differentiable for U < y < V. Assume ®(y) = o(y) when y — oo and (W — y)®'(y) > 0 for all
U <y <V, where W need not lie in [U, V. Let Y be one of U,V,W which is neither greater than both

the others or less than both the others. Then
1%

Z O(y) < (Y +c2logY +¢3)P(Y) — (a1V +calogV +¢3)P(V) + / (c1+ c2/y)®(y)dy.
U<y<V,8>00 Y

Proof. We have 0 < N(og,y) < c1y + c2logy + c3. Our assumptions ensure us that ®’(y) > 0 if
U<y <Y andthat ®'(y) <0if Y <y < V. Thus

%4
- [ Nev @iy < - [ et etogy + e was
Y
and we integrate by part to complete the proof. U
For s4(m, 0g), we take ®(y) = ﬁ, D' (y) = ”},jfé, W <U=Y =H,and V = cco. Thus
1 log H 1 1
(2.25) s4(m,09) < By(m, H,00) = <01 (1 + a) + ¢ o]g—{ + (63 + mcj_ 1)H> T

For s5(x,m,00), we apply Lemma 2.7 with U = H, V = oo, ®(y) = édm(y) = Z iffy o (y) =

log Pm
(7R(loggy)2 —(m+1)) y(y), and

(2.26) W= eV Rt

Let J,,(Y") denote the integral
oo
= [ nln)ay
Y
We obtain

(2.27) s5(@,m,00) < (1Y + calogY + ¢3)pm(Y) + c1Jim(Y) + cadm+1(Y),
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Let z > 0,w > 0. We appeal to the theory of the following modified Bessel function

K, (z,w) = ;/OO t"Lexp (—%(t—i— 1/t)) dt

w

We do the variable change y = e2Zm?, take z = 24/ mlogx R JogY = 22 log Y, and recognize

log:r
Jm(Y) == %Kl(Z,UJ).
We use [24, Lemma 4] which asserts that if w > 1 then
2

(2.28) Ki(z,w) < Qi(z,w) = ﬁexp(—z/ﬂw—%l/w)).
We deduce for J,,,(Y) that if log z < mR(log Y)?, then

R log Y)? _ _logzx
(2.29) Tn(Y) < (log ¥') Mo Rl YT |

2logx (logx) (logY)? —
In this case, we have W < H,Y = H. We insert (2.29) in (2.27) and obtain

1
log H 03):U_RlogH

ss(z,m,00) < (c1 + c2 T Ty gm +c1dm(H) + caJmy1(H),
We conclude that if log z < mR(log H)? then
(2.30)
1
logH «c3 R (log H)? x FlogH
s5(x,m,00) < Bs(x,m,o :(c T 2 + )
5( 0) 5( 0) 1 2 H H ( C1 H)2logx( )(IOgH) -1 Hm

2.3.3. Main Theorem. We deduce a new bound for K (z, a, b, m, o¢) from (2.22), (2.23), (2.24), (2.25), and
(2.30). Lemma 2.4 becomes

Theorem 2.8. Let 0 < a < b,m € N, withm > 2. Let f and g be functions satisfying Definition 2.1, and
M(a,b,m) as defined in (2.5). Let H, Ty, T1, R, 09, c1, 2, c3 satisfy (2.12). Let xq be a positive constant
satisfying xo < exp(mR(log H)?). Then for all x > x

(2.31)

2M (a,b,m)Bs(zg, m,00) n 2M (a,b,m)B3(m) —(1-oy)

1
E,yxga—1+b—a/gudu+ x
() ‘ ( ) 0 () ‘ (b—a)m (b—a)m 0
2M (a,b,m)Bs(m) =00 2M (a,b,m)By(m, H, oo)m—(l—m)
(b—a)m 0 (b—a)m 0
_1
+ (M(a7 b,0)B1(T1) + M(a, b(’bnz)f;ﬁm’ﬂ))xo 24+ log(27r)x0_1 + M(az,b, O)xag,

where the B;’s are defined in (2.22), (2.23), (2.24), (2.25), and (2.30).

3. NEW EXPLICIT BOUNDS FOR ().
3.1. Choosing the smooth function. We want to find a function g satisfying Definition 2.1 and so that the
M(a,b,m)
fol g(u)du

b2m+3 a2m+3 +1
3.1 M(a,b < (m d
( ) (a’7 7m) — (b 2m + 3 /

quotient is as small as possible. By the Cauchy-Schwarz inequality we have




It follows from Calculus of Variations (see [4, Chapter 2, §11]) that the function ¢ optimizing the quotient
VB (om0 w)
fol glu)au

(w)d

is given by

3.2) glz)=1- W /Ox (1 — t)™dt.

We observe that our choice of kernel is a primitive of the one used in the context of short intervals containing
primes by Ramaré & Saouter [21]. This is not surprising as our object of study is > -, A(n) f(n/x), while

theirs is essentially Y ° ~; A(n) (f(n/y) — f(n/x)).
With definition (3.2), we find

1 1
o @mA D g, L
(3.3) /Og(u)du—l e /Ot (1—1) dt—2,
and
(3.4) M{(a,b,0) = “"QH’.

We use (3.1) to provide a simple bound for M (a, b, m). Since g(1) = 0,g(0) = 1, and g(*"*+?)(z) = 0 for
all 0 < z < 1, integrating by parts m-times leads to

L. m [Y 2m , m m 2m)!(2m + 1)!
/o<g< () du = (-1) / 9D ) f (u)du = (-1 g 0) = ¢ )<§n!>2 :

Thus (3.1) becomes

p2mt3 — g2m+3 . /(2m)!(2m + 1)!
3.5 M(a,b < Xa,b = . .
From (3.2), we recognize that
2 1)!
gt (y) = _me(l — 2u),
m!

where P, is the m'" Legendre polynomial as given by Rodrigues’ formula (see [11, formula (0.4)]):

1 o

Ponl@) = G 5m

((z®—1)™).
They can be written explicitly (see [11, formula (0.2)]):
m 2 k m—k
m z+1 rz—1
P,(x) = .
@-2 (1) (%) (%)

These polynomials are well-known and are among the built-in functions of PARI/GP. Since the sign of P,
alternates between its roots, M (a, b, m) can be computed directly from

1
(3.6) M(a,b,m) = (2”37::1)'/ | Po(1 = 20)| (b — a)u + a)™ " du.
: 0

10



3.2. New explicit bounds for )(x). We rewrite Theorem 2.8 with g as chosen in (3.2):

Theorem 3.1. Let m € Nym > 2, § > 0, and the pair (a,b) takes values (1,1 + §) or (1 — 0,1).
Let H, Ty, T, R, 0, c1, o, c3 satisfy (2.12). Let by > 0 be a positive constant satisfying by < (m +
1)R(log H)?. Then for all x > e%

(3.7 Eg(z) <=+

g 2M (a,b,m)Bs(e?,m, o) N 2M (a,b,m)Bs(m) o—(1=00)bo

- ym om
2M(a, bgm)Bg(m) o—0obo 2M (a, b, mfsB4(m, H,o09) L

5 M(a,b,m)Bs(m,T M(a,b,0
+(§Bl(T1)+ (a ”}LQ(m 1 (a2 )

where M (a,b,m) is given by (3.6), and the B;’s are defined in (2.22), (2.23), (2.24), (2.25), and (2.30).

)e_bO/Q + 10g(27r)e_b0 + e 3bo,

3.3. Proof of Theorem 1.1. We now specify the values for our parameters:we take H and R respectively
as in Theorem 1.3 and Theorem 1.4. Let by > 2 be a fixed constant satisfying by < 3R(log H)? (that is
bo < 9963 for H = 3.061 x 10'° and by < 13906 for H = 2445999 556 030). Let 2 > 0. We define

5 2M/(a,b,m)Bs(ebo 2M(a,b,m)B
(38) e(bo,a,b,m, 00, T1) = & 4+ 2ol b Bs(eBymyo0) \ 2MIa b ) By(im) (1o

2 om gm
n 2M (a, b;;nn)Bg(m) g—oobo 4 2M (a, b,msz(m, H, 00)6_(1_m)b0
n (gB1(T1) n M (a,b, T'gnBz(m,Tl)>6_b0/2 + log(2m)e b + M(a2,b, O)e—3b0'
The definition for ¢y follows directly from (2.2) and Theorem 3.1:
3.9 €0 = max (e(bo, 1,1+ 9, m,00,11),€(bo, 1 — 3,1, m, 00, Tl)).

To compute €(bg, 1,1 + d, m, 00, T1), we choose a value for o in Table 2, an integer value larger than 2
for m, and a value for J with up to 4 significant digits. For Ty, we use here a computation of Darcy Best
(personal communication) based on Odlyzko’s list of zeros [15]: Ty = 1132491 and s = 11.637732. In
[24], the authors used T = 158.84998 and sg = 0.8113925. Then we choose a value for 17 which is either
To, H or so that it satisfies

) M(1,1 4 6,m)Bs(m, T

e
We do the same to compute €(bg, 1 — d, 1, m, 09, T1). All values for og, m, and § are chosen to make € as
small as possible.

3.4. Comparison with Rosser and Schoenfeld’s method.

3.4.1. The smoothing argument. The first step of their argument consists in studying 1)(x) on average on a
small interval around a large x value. Let x,6 > 0 with z ¢ N. Let m € N. It follows from the First Mean
Value Theorem for Integrals applied to h(z) = ¥(x + z) — (x + z) that there exists z €(0, =) such that:

1 dxz/m dxz/m
h(z +z§/ / h(yr + ... +ym) + + .o+ ym))dyr ... dym,.
(2) o) ), ; (h(y1 Ym) + (11 Ym)) dy1 . .. dy

(In order to make Rosser and Schoenfeld’s article consistent with our setup, we replace their 6 with our 6 /m.)
Implementing the explicit formula (1.1) in the right integrals together with the fact that ¥(x + z) < ¥(x)
leads to [22, Theorems 12 and 14]:

(3.10) E(z) < g + 2(m, 6, 2) + O(z71),
11



with
Do (=LY (L 56 fm)™ e
(@6/m)mp(p+1)...(p+m)

S(m, 8,) = | 3@ ns(p)|, and Ls(p) =
o

We recall that we obtain (3.10) with
YX(m,d,x) = ‘ prle(p)’.
P

We recognize that I, 5 is indeed the Mellin transform of

= e () () )

where 1 is the indicator function on (0, 1). Instead we use the function f given by Definition 2.1 and (3.2):

—1

flz)=1— W /0‘5 (1 — ™t

We now compare the size of each Mellin transform. Rosser establishes (see [22, Theorem 15]) that
((1 + 5/m)m+1 + 1>m _ QMM
(0 /m)mly|mL T gmfymt

[Im.s(p)| <

while we have from (2.7) and (3.5)
M(1,1+06,m) _ Vv (2m)!(2m + 1)!

(1+0(1)),

F 1 1)).
F () < = < g e (4 o(1)
IF(p)] _ /( 2m (2m41)!

It follows from Stirling Formula that the quotient decreases rapidly to 0 as m

Hm,s(P)] m(ml)
grows. For instance it is 0.0083 . .. when we take m = 23 for by = 50

3.4.2. The new density of zeros. When z is large enough, the largest contribution to ¥ (m, ¢, x) arises from

1

4~ Flogy
G.1D) > ppvTE
v
y>H,00<8<1~ Rlogv

Rosser and successive authors took op = 1/2 since only bounds for N(7') were available. Rosser and
Schoenfeld find (see [24, equations (3.4), (3.16) and (2.4)]) that if by < 2R10g2 H and x > e then

b,
(3.12) e Flog [

Z .%'_Rl‘l’g'Y < R(log H)S

< (1+0(1)).
m+1 mR(log H)?
gl 27rb0(4 log 11 _1>

v>H,1/2<B<1—pri—

We are able to reduce significantly the contribution of the sum by using o closer to the limit of the zero-free
region. We establish that if by < 3Rlog? H and 2 > ¢% then the above bound is replaced with

logH ¢ R (log H)?
+2)+ (e +2 )2bo( ) (log H)7 )

H H
When (m—R)(log H ) — 1 is large enough (for instance for 45 < by < 2000 and m > 10), the main
contribution arises from the above left expression. We use the values for the ¢;’s from the right column of
Table 2 as they make c; H + ¢ log H + c3 small. Otherwise, we use the values from the left column as they
provide the smallest value for c¢; + %

<C1 + c2

12
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TABLE 2. ForallT > H, N(o,T) < c1T + c2log T + cs.

c is small c1H + colog H + c3 is small

ag C1 C2 C3 C1 C2 C3
0.60 42288 22841 —81673 28.6424 22841 —8.7674-10%!
0.65 24361 17965 —97414 17.1679 13674 —5.2550 - 10*!
0.70 1.4934 14609 —136370 12.3778  0.9859 —3.7888- 10"
0.75 1.0031 1.1442 —169449 9.6776  0.7708 —2.9622 - 10!
0.76 0.9355 1.0921 —176604 92730 0.7386 —2.8384-10"!
0.77 0.8750 1.0437 —184134 8.9009 0.7089 —2.7245.10"
0.78 0.8205 0.9986 —192120 8.5575 0.6816 —2.6194-10
0.79 0.7714 09566 —200 644 8.2396 0.6563 —2.5221-10"!
0.80 0.7269 0.9176 —209 795 7.9445 0.6328 —2.4317-10
0.81 0.6864 0.8812 —219667 7.6698 0.6109 —2.3477- 10
0.82 0.6495 0.8473 —230367 74135 05905 —2.2692- 10!
0.83 0.6156 0.8157 —242009 7.1737 0.5714 —2.1958 - 10!
0.84 0.5846 0.7862 —254724 6.9490 0.5535 —2.1270- 10
0.85 0.5561 0.7586 —268658 6.7379 05367 —2.0624-10'!
0.86 0.5297 0.7327 —283978 6.5392 0.5209 —2.0016 - 10!
0.87 0.5053  0.7085 —300872 6.3520 0.5059 —1.9443-10"!
0.88 0.4827 0.6857 —319555 6.1751 04919 —1.8901-10'!
0.89 04617 0.6644 —340272 6.0079 04785 —1.8389- 10
0.90 0.4421 0.6443 —363301 5.8494 04659 —1.7905- 10"
0.91 0.4238 0.6253 —388959 5.6991 04539 —1.7444-10"
0.92 04066 0.6075 —417606 5.5564 04426 —1.7007 - 10!
0.93 0.3905 0.5906 —449647 54206 04318 —1.6592-10"!
0.94 0.3754 0.5747 —485543 52913 04215 —1.6196- 10"
0.95 0.3612  0.5596 —525807 5.1680 04116 —1.5819-10
0.96 0.3478 05452 —571018 5.0503 04023 —1.5458-10'!
0.97 0.3352 05316 —621815 49379 03933 —1.5114-10"
0.98 0.3232 05187 —678911 4.8304 0.3848 —1.4785-10%
0.99 03118 0.5063 —743087 47274 03766 —1.4470- 10!

To verify the values for the c;’s, we refer the reader to [9, Section 6]: we choose the parameters from this article tobe H = Ho — 1,
oo = 0.522817 for o0 = 0.60 and ¢ = 0.5208 otherwise.
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Table 3: Let H = 3.061 - 10'® and by < 9963. For all z > €%, E(x) < ¢o.

b() [o0) m 1 T1 €0
20 0.89 4 1.363-10°° To 5.3688 - 102
25 0.89 3 7.256-107°¢ To 4.8208 -107°
30 0.89 2 2.811-107° Ty 5.6679 - 10~°
35 0.91 3 1.751-1077 16739 408 7.4457-1077
40 0.92 5 2.142-1078 245176 468 8.6347-107%
45 0.92 13 3.910-107° 4085373679 1.0358 - 1078
50 0.93 23 3.116 - 107° 9667437397 2.3643-107°
55 0.93 24 3.105-107° 10162 544 235 1.6783-107°
60 0.93 24 3.099 - 107° 10182 181 286 1.6191-107°
65 0.94 24 3.093-107° 10201 894 453 1.6114-107°
70 0.94 24 3.087-107° 10221684178 1.6081-107°
75 0.94 24 3.082-107° 10238 234 420 1.6052-10~°
80 0.95 24 3.225-107° 10254 838 399 1.6025-107°
85 0.95 24 3.071-107° 10274834474 1.5997-107°
90 0.95 24 3.066 - 107° 10291 557 599 1.5969 - 10~°
95 0.95 24 3.061-107° 10308 335 305 1.5942-107°
100 0.95 24 3.056 - 107° 10325 167 860 1.5916 - 10~°
200 0.97 23 2.960 - 107° 10175863512 1.5422-107°
300 0.97 23 2.866-107° 10508919 281 1.4953-107°
400 0.98 22 2.769-107° 10360124 846 1.4476 - 107°
500 0.98 21 2.674-107° 10193677612 1.4006 - 10~°
600 0.98 20 2.579-107° 10015840574 1.3543-107°
700 0.98 20 2.492-107° 10364671 352 1.3081-107°
800 0.98 19 2.397-107° 10181118220 1.2616 - 10~°
900 0.98 18 2.303-107° 9979294107 1.2154-107°
1000 0.98 17 2.209-107° 9761696912 1.1695 - 10~°
1500 0.98 14 1.753-107° 9882930 682 9.3929 - 1010
2000 0.99 10 1.293-107° 9091 299 627 7.1125-1071°
2500 0.99 6 8.300- 10710 7664 220 686 4.8137-1071°
3000 0.99 2 3.000- 10710 4992 468 020 2.2211-1071°
3500 0.99 2 9.200- 1071 14198 916 944 6.6209 - 1071
4000 0.99 2 2.700- 10" 26 575655 437 1.9689 - 10~
4500 0.99 2 7.810-10712 30196 651 346 5.8563 - 10712
5000 0.99 2 2.320-10712 30572809972 1.7434 - 10712
6000 0.99 2 2.100-10713 30609694 715 1.5457 10713
7000 0.99 2 1.826-107 30609 997 695 1.3693 - 10~
8000 0.99 2 1.618 - 10715 30609 999 985 1.2135-107%°
9000 0.99 2 1.434.10716 H 1.0755 - 10716
9963 0.99 2 1.390 - 10717 H 9.5309 - 10718

For 45 < by < 2000 we use the values of ¢;’s from the right column of Table 2. We use the left values otherwise.
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Table 4: Let H = 2445999556 030 and by < 13906. For all z > %,

E(:E) S €0.

bo oo m 5 T1 €0
20 0.88 4 1.363-107° To 5.3688 - 1071
25 0.89 3 7.256 - 107 Ty 4.8208 -107°
30 0.89 2 2.806 - 107° To 5.6646 - 1076
35 0.90 2 1.604-1077 11360 452 7.0190 - 1077
40 0.91 3 1.600- 1078 174242715 8.0214-1078
45 0.92 4 1.613-107° 2393630483 8.6997 - 107°
50 0.93 7 2.058- 10710 36 960 925 828 9.4602 - 1071
55 0.96 21 5.079 - 10711 532313030046 1.1243 - 10710
60 0.96 28 4.807-107 1 770935 427 426 3.2156 - 1071
65 0.96 29 4.801-107 1 801 857986418 2.5430- 1071
70 0.96 29 4.795 .10~ 802 859 999 396 2.4849 - 1071
75 0.96 29 4.789-107 1 803 864 521 532 247731071
80 0.97 29 4.783 .10~ 804 871 562 262 2.4738 - 1071
85 0.97 29 47771071 805881131075 2.4707 .10~
90 0.97 29 4.771-1071 806 893 237 503 2.4677 - 1071
95 0.97 29 4.765- 1071 807907 891 129 2.4647 .10~
100 0.97 29 4.759 10711 808925101 582 2.4618 - 107!
200 0.98 28 4.647 1071 797 441 603 800 2.4065 - 10711
300 0.98 28 4.546- 1071 815133603120 2.3543 - 1011
400 0.98 27 4.440-107 4 802 199 639 823 2.3021 10"
500 0.98 26 4.334-1071 788 664 950 273 2.2506 - 10~
600 0.98 26 4.237-107 1 806 692 808 636 2.1998 - 1011
700 0.99 25 4.131-1071 792643976 191 2.1480 - 107!
800 0.99 25 4.032-1071 812075384439 2.0969 - 10711
900 0.99 23 3.918 - 10711 762 588 970 852 2.0443 - 1071
1000 0.99 23 3.818 - 10711 782528018 219 1.9921 - 10~
1500 0.99 20 3.303- 107 774756 126 279 1.7342 - 10~
2000 0.99 17 2.788 - 10711 764936 897 224 1.4762 .10~
2500 0.99 14 2.272-10711 752424 086 843 1.2118 - 10~ ¢
3000 0.99 11 1.755 - 107! 735757 894 330 9.5728 - 10712
3500 0.99 7 1.209 - 10~ 618567 513 247 6.9073 - 10712
4000 0.99 4 6.800 - 1012 533755825076 4.2115-10712
4500 0.99 2 2.300- 10712 576 348 240 050 1.6858 - 1012
5000 0.99 2 8.400- 10713 1334194702027 6.0522 - 10713
6000 0.99 2 1.036- 10713 2401 904 005 983 7.7686 - 10714
7000 0.99 2 1.332-107 2445 250 025 818 9.9890 - 1071
8000 0.99 2 1.713-107%° 2445987153 821 1.2845-1071°
9000 0.99 2 2.202-10716 2445999 351 095 1.6516 - 10716
10000 0.99 2 2.830- 10717 2445999 552 648 2.1236 - 10717
13900 0.99 2 9.502- 10~ 2! H 7.1265 - 102

We only use the values of ¢;’s from the left column of Table 2.
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