"Lemma 2.2: bounds for the function g given by g(a,b,c,x) = kappa(a/(a^(2)\ +x^(2))+(b)/(b^(2)+x^(2)))-(c)/(c^(2)+x^(2)) kappa=1/(sqrt(5)), a[0]=(sqrt(5)-1)/(2) , b[0]=(sqrt(5)+1)/(2) , c[0]=1 " > restart; > > #part (i) > kappa := 1/sqrt(5): > a0 := (sqrt(5)-1)/2: > b0 := (sqrt(5)+1)/2: > c0 := 1: > x0 := fsolve( 2*x^6+4*x^4-1 , x=0..infinity); # root of the polynomial 2x^6+4x^4-1 > g := proc(a,b,c,x) kappa*(a/(a^2+x^2)+b/(b^2+x^2))-c/(c^2+x^2) end: > simplify(g(a0,b0,c0,0)) ; > g0:= evalf(g(a0,b0,c0,x0)) ; 0.6720163413 0 -0.1215851071 "Application of Lemma 2.2 to get Lemma 2.3. epsilon=0.15, 1 > #p9-10 - #proof of Lemma 2.3. > eps:=0.15: > s1:=proc(x) ((1+sqrt(1+4*x^2))*(1/2)) end: > > m1 := evalf( ( s1(1+eps) - (1-eps) - a0 ) / eps) ; > m2 := evalf( ( s1(1+eps) - b0 ) / eps) ; > m3 := 1; > m0:= evalf( kappa*m1/(a0-m1*eps)^2+kappa*m2/(b0-m2*eps)^2+m3/(c0-m3*eps)^2); > alpha1 := evalf(m0*eps); 1.906397542 0.906397542 1 9.300018076 1.395002711 > #p10-11 - #proof of Lemma 2.4. > restart: > eps:=0.15: > kappa := 1/sqrt(5): > s1:=proc(x) ((1+sqrt(1+4*x^2))*(1/2)) end: > > #finding bound alpha20 for 1/s - kappa/s1 - kappa/(s1-1) > f :=proc(x) 1/x - kappa/s1(x) - kappa/(s1(x)-1) end: > maximize( f(x) ,x=1..1+eps , location); > alpha20 := evalf(f(1+eps)); > > g := proc(a,b,c,x) kappa*(a/(a^2+x^2)+b/(b^2+x^2))-c/(c^2+x^2) end: > a0 := (sqrt(5)-1)/2: > b0 := (sqrt(5)+1)/2: > c0 := 1: > x0 := fsolve( 2*x^6+4*x^4-1 , x=0..infinity): > g0:= evalf(g(a0,b0,c0,x0)) : > m1 := evalf( ( s1(1+eps) - (1-eps) - a0 ) / eps) : > m2 := evalf( ( s1(1+eps) - b0 ) / eps) : > m3 := 1: > m0:= evalf( kappa*m1/(a0-m1*eps)^2+kappa*m2/(b0-m2*eps)^2+m3/(c0-m3*eps)^2): > > #finding bound alpha21 for g(sigma1-1,sigma1,sigma,kgamma0) > alpha21:=-evalf(g0-m0*eps); > > #finding bound alpha22 for g(sigma1-1,sigma1,sigma,kgamma0) > alpha22:=evalf(alpha21+eps); > > 0.0214699497, {[{x = 1.15}, 0.0214699497]} 0.0214699497 1.516587818 1.666587818 > > restart; > kappa:=evalf(1/sqrt(5)): > evalf(1-kappa)/2: > print("(1-kappa)/2"=%); "(1-kappa)/2" = 0.2763932023 Case1; >(gamma[0], 1); > restart; > kappa:=evalf(1/sqrt(5)): > > # values for alpha_i's (Lemma 2.3-2.4) > alpha20 := 0.021470: > alpha21 := 1.516588: > alpha22 := 1.666588: > > # values for d(0) and D(k) (Lemma 2.5) > d0 := -0.0512 : > vD[1] := 0.3918 : > vD[2] := 0.3915 : > vD[3] := 0.4062 : > vD[4] := 0.4266 : > > # values for trigonometric polynomial > va:=0.8924: > vb:=0.1768: > Q:=8*(va+cos(t))^2*(vb+cos(t))^2: # definition of the trigonometric polynomial with respect to va, b > P:=combine(Q,trig): # linear form of the polynomial to obtain a0,a1,a2,a3,a4 > a[1]:=evalf(coeff(P,cos(t))): > a[2]:=evalf(coeff(P,cos(2*t))): > a[3]:=evalf(coeff(P,cos(3*t))): > a[4]:=evalf(coeff(P,cos(4*t))): > a[0]:=combine( P-(a[1]*cos(t)+a[2]*cos(2*t)+a[3]*cos(3*t)+a[4]*cos(4*t)) ,trig): > print(["a0"= a[0],"a1"= a[1],"a2"= a[2],"a3"= a[3],"a4"= a[4]]); > > > # value for r as given p13 > r:=evalf(sqrt(a[0])/(sqrt(a[1])-sqrt(a[0]))): > print("r"= r); > > #coefficient of (log d_K) > c1:=evalf( (sum(a[k], k = 0 .. 4) ) * ((1-kappa)*(1/2)) ) : > print("c_1"= c1); > evalf( c1/( a[1]/(1+r)-a[0]/r ) ) : > print("coefficient of (log d_K)"= %); > > #coefficient of (log gamma_0)n_K > c2:=evalf( (sum(a[k], k = 1 .. 4) ) * ((1-kappa)*(1/2)) ) : > print("c_2"= c2); > evalf( c2/( a[1]/(1+r)-a[0]/r ) ) : > print("coefficient of (log gamma_0)n_K"= %); > > #coefficient of nK > c3:=evalf( a[0]*(-(1-kappa)/2*log(Pi) +d0) + sum(a[k] *((1-kappa)/2*log(k/Pi)+vD[k]) , k = 1 .. 4) ) : > print("c_3"= c3); > evalf( c3/( a[1]/(1+r)-a[0]/r ) ) : > print("coefficient of n_K"= %); > > #constant term > c4:=evalf( a[0]*alpha20 + sum(a[k] , k = 1 .. 4)*alpha22 ) : > print("c_4"= c4); > evalf( c4/( a[1]/(1+r)-a[0]/r ) ) : > print("constant term"= %); ["a0" = 9.034112058, "a1" = 15.52951106, "a2" = 9.834965120, "a3" = 4.276800000, "a4" = 1.] "r" = 3.214389997 "c_1" = 10.96600761 "coefficient of (log d_K)" = 12.54180965 "c_2" = 8.469040446 "coefficient of (log gamma_0)n_K" = 9.686031323 "c_3" = 2.649026624 "coefficient of n_K" = 3.029688548 "c_4" = 51.26034558 "constant term" = 58.62639529 > "Case 2: (d[2])/(L) restart; > kappa:=evalf(1/sqrt(5)): > > # values for d(k) (Lemma 2.5) > d0 := -0.0512 : > d[1] := -0.0390 : > d[2] := 0.2469 : > d[3] := 0.4452 : > d[4] := 0.5842 : > > # values for trigonometric polynomial in Case 2 > va:=0.8918: > vb:=0.1732: > Q:=8*(va+cos(t))^2*(vb+cos(t))^2: # definition of the trigonometric polynomial with respect to va, b > P:=combine(Q,trig): # linear form of the polynomial to obtain a0,a1,a2,a3,a4 > a[1]:=evalf(coeff(P,cos(t))): > a[2]:=evalf(coeff(P,cos(2*t))): > a[3]:=evalf(coeff(P,cos(3*t))): > a[4]:=evalf(coeff(P,cos(4*t))): > a[0]:=combine( P-(a[1]*cos(t)+a[2]*cos(2*t)+a[3]*cos(3*t)+a[4]*cos(4*t)) ,trig): > print(["a0"= a[0],"a1"= a[1],"a2"= a[2],"a3"= a[3],"a4"= a[4]]); > > #coeeficient of n_K is negative > evalf(a[0] *( -(1-kappa)/2*log(Pi) + d0 ) + sum(a[k] *( -(1-kappa)/2*log(Pi) + d[k] ) ,k=1..4)): > print( % < 0); > > # table values in Case 2 > d2:=2.374: > r2:=0.248: > c2 := 1/fsolve( a[0]/r2 - a[1]/(r2+c) + a[1]*r2/(r2^2+d2^2) - a[0]*(r2+c)/((r2+c)^2+d2^2) + sum(a[k],k=0..4)*(1-kappa)/2 ,c=0.0001..1): > print(["d2"= d2,"r"= r2,"1/c"= c2]); > > # verification of (3.2) and proof of eq (3.4) > print(d2 > sqrt(r2*(r2+c2))/2); # see eq(3.2) > > > # verification of (3.1) and proof of eq (3.5) > print(a[0]/(a[1]-a[0])*1/c2 < r2); > q:= evalf(a[1]/a[0]); > print(2*a[1] > a[0]); ["a0" = 8.963440620, "a1" = 15.41199431, "a2" = 9.772578080, "a3" = 4.260000000, "a4" = 1.] -8.634914714 < 0 ["d2" = 2.374, "r" = 0.248, "1/c" = 12.73044822] 0.8970305400 < 2.374 0.1091864462 < 0.248 1.719428394 8.963440620 < 30.82398862 "Case 3: (d[1])/(L) restart; > kappa:=evalf(1/sqrt(5)): > > # values for d(k) (Lemma 2.5) > d0 := -0.0512 : > d[1] := -0.0390 : > d[2] := 0.2469 : > d[3] := 0.4452 : > d[4] := 0.5842 : > > # values for trigonometric polynomial in Case 3 > va:=0.8924: > vb:=0.1771: > Q:=8*(va+cos(t))^2*(vb+cos(t))^2: # definition of the trigonometric polynomial with respect to va, b > P:=combine(Q,trig): # linear form of the polynomial to obtain a0,a1,a2,a3,a4 > a[1]:=evalf(coeff(P,cos(t))): > a[2]:=evalf(coeff(P,cos(2*t))): > a[3]:=evalf(coeff(P,cos(3*t))): > a[4]:=evalf(coeff(P,cos(4*t))): > a[0]:=combine( P-(a[1]*cos(t)+a[2]*cos(2*t)+a[3]*cos(3*t)+a[4]*cos(4*t)) ,trig): > print(["a0"= a[0],"a1"= a[1],"a2"= a[2],"a3"= a[3],"a4"= a[4]]); > > # table values in Case 3 > d1:=1.021: > d2:=2.374: > r12:=0.236: > c12 := 1/fsolve( a[0]/r12 - a[1]/(r12+c) + a[1]*r12/(r12^2+d1^2) - a[0]*(r12+c)/((r12+c)^2+d1^2) - a[0]*(r12+c)/((r12+c)^2+d2^2) - a[1]*(r12+c)/((r12+c)^2+4*d2^2) + sum( a[k]*( r12/(r12^2+(k*d1)^2) - (r12+c)/((r12+c)^2+((k-1)*d2)^2) - (r12+c)/((r12+c)^2+((k+1)*d2)^2) ) ,k=2..4) + sum( a[k] ,k=0..4)*(1-kappa)/2 ,c=0.0001..1): > print(["d1"= d1,"d2"= d2,"r"= r12,"1/c"= c12]); > > #verification of eq (3.7) > print(a[0]/(a[1]-a[0])*1/c12 < r12); > > #coeeficient of n_K is negative > evalf( a[0] *( -(1-kappa)/2*log(Pi) + d0 ) + sum(a[k] *( -(1-kappa)/2*log(Pi) + d[k] ) ,k=1..4) ): > print( %<0); ["a0" = 9.039496669, "a1" = 15.53844962, "a2" = 9.839673320, "a3" = 4.278000000, "a4" = 1.] ["d1" = 1.021, "d2" = 2.374, "r" = 0.236, "1/c" = 12.73005948] 0.1092623214 < 0.236 -8.710158576 < 0 "Case 4: 0 restart; > kappa:=evalf(1/sqrt(5)): > > # values for d(k) (Lemma 2.5) > d0 := -0.0512 : > d[1] := -0.0390 : > d[2] := 0.2469 : > d[3] := 0.4452 : > d[4] := 0.5842 : > > #coeeficient of n_K is negative > evalf( -(1-kappa)/2*log(Pi) + d0 ); > > # trigonometric polynomial in Case 4 is just 1 + cos(theta) > > # the value of r which optimizes c=c(r) is given by the root of the derivative of c(r) (see p17) > diff( (-(1-kappa)/2*x^2+sqrt(x^2-d1^2*(1+(1-kappa)/2*x)^2)) / (1+(1-kappa)/2*x) ,x): > R1:=proc(d1,x) (-(1-kappa)*x+(1/4)*(8*x-4*d1^2+4*d1^2*kappa-2*d1^2*x+4*d1^2*x*kappa-2*d1^2*x*kappa^2)/sqrt(4*x^2-4*d1^2-4*d1^2*x+4*d1^2*x*kappa-d1^2*x^2+2*d1^2*x^2*kappa-d1^2*x^2*kappa^2))/(1+(1/2*(1-kappa))*x)-(-(1/2*(1-kappa))*x^2+(1/2)*sqrt(4*x^2-4*d1^2-4*d1^2*x+4*d1^2*x*kappa-d1^2*x^2+2*d1^2*x^2*kappa-d1^2*x^2*kappa^2))*(1/2-(1/2)*kappa)/(1+(1/2*(1-kappa))*x)^2 end: > > # table values in Case 4 > d1:=1.021: > r1:=fsolve(R1(d1,x),x=0..10): > c1 := 1/evalf( (-(1-kappa)/2*r1^2 + sqrt(r1^2-d1^2*(1+(1-kappa)/2*r1)^2) ) / (1+(1-kappa)/2*r1) ): > print(["d1"= d1,"r"= r1,"1/c"= c1]); > > d1:=0.25: > r1:=fsolve(R1(d1,x),x=0..10): > c1 := 1/evalf( (-(1-kappa)/2*r1^2 + sqrt(r1^2-d1^2*(1+(1-kappa)/2*r1)^2) ) / (1+(1-kappa)/2*r1) ): > print(["d1"= d1,"r"= r1,"1/c"= c1]); > > restart; > kappa:=evalf(1/sqrt(5)): > > # values for d(k) (Lemma 2.5) > d0 := -0.0512 : > d[1] := -0.0390 : > d[2] := 0.2469 : > d[3] := 0.4452 : > d[4] := 0.5842 : > > r1:=1.644: > d1 := fsolve( (-(1-kappa)/2*r1^2 + sqrt(r1^2-x^2*(1+(1-kappa)/2*r1)^2) ) / (1+(1-kappa)/2*r1) - x , x=0.01..2): > c1 := d1: > print(["1/d1"= 1/d1,"r"= r1,"1/c"= 1/c1]); -0.3675955590 ["d1" = 1.021, "r" = 2.142611919, "1/c" = 12.54939230] ["d1" = 0.25, "r" = 1.534402885, "1/c" = 1.691751135] ["1/d1" = 1.999613465, "r" = 1.644, "1/c" = 1.999613465] "Case 5: gamma[0] =0" > restart; > kappa:=evalf(1/sqrt(5)): > r:=evalf(2*(sqrt(2)-1)/(1-kappa)): > c1:=evalf( r*(1-(1-kappa)/2*r) / ((1+(1-kappa)/2*r) ) ): > print(["r"= r,"1/c1"= 1/c1]); ["r" = 1.498638746, "1/c1" = 1.610937637] >