
Problem Solving - October 4 - 3:00-4:50 - B650

The Principle of Mathematical Induction

Let a be an integer and P (n) a statement about n for each integer n ≥ a. The principle of mathematical
induction states that: Suppose the following two conditions are true.

(i) P (a) is true;

(ii) P (k + 1) is true whenever P (k) is true.

Then, P (k) is true for all integers k ≥ a.

Guidelines

Have fun. There are a lot of problems. Don’t try to do all of them. Don’t do any you already know how
to solve. Work in groups. Don’t give up after five minutes. Plug in small numbers. Look for patterns.
Draw pictures. Use symmetry. Try cases. Work backwards. If you’re stuck, take a break and play a
game. Find equivalent versions of the problem. Choose effective notation.

Problems

1. Prove that the following relations hold:

(a) 1 + 1/
√

2 + 1/
√

3 + ... + 1/
√

n < 2
√

n.

(b) 1 + 2 + 3 + · · ·+ n = n(n+1)
2

.

(c) 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ (n− 1)n + n(n + 1) = n(n+1)(n+2)
3

.

(d)
∑n

k=1 k · k! = (n + 1)!− 1

2. The Euclidean plane is divided into regions by drawing a finite number of straight lines. Show
that it is possible to colour each of these regions either red or blue in such a way that no two
adjacent regions have the same colour.

3. If each person, in a group of n people, is a friend of at least half the people in the group, then it
is possible to seat the n people in a circle so that everyone sits next to friends only.

4. Let (xn)∞n=1 be a sequence of integers with f1 = f2 = 1 and fn = fn−1 + fn−2 for n = 3, 4, 5, . . . .

(a) Show that gcd(fn, fn+1) = 1 for all n ∈ N.

(b) Show that fn+1 < (7/4)n for all n ∈ N.

(c) Show that

fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

(d) Show that
f 2

1 + f 2
2 + f 2

3 + · · ·+ f 2
n = fnfn+1.



5. There are 3 pegs and n punctured cylindrical
disks placed in decreasing order of radius on one
of the pegs. The pegs can be moved one at a
time and may not be placed on top of a disk of
smaller radius. Show that this can be done in
2n − 1.

6. Determine a closed formula for the following expression(
1− 1

4

)(
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)(
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16

)
· · ·
(

1− 1

n2

)
.

7. How many primes are of the form 101010 · · · 101 base 10?

8. A number n is called squarefull if, for any prime p|n, p2|n. Show that there are infinitely many
consecutive number n and n + 1 such that both are squarefull.

9. Let u1 = 1 and u2 = 2. For n > 2, define the un to be the smallest integer k greater than un−1

such that it can be expressed uniquely as the sum of two distinct elements from {u1, u2, . . . , un−1}.
The first few number in the sequence are 1, 2, 3, 4, 6. Such numbers are called Ulam numbers.
Show that there are infinitely many Ulam numbers.

10. [Putnam 1992 A2] Let (xn)n≥0 be a sequence of non-zero real numbers such that x2
n−xn−1xn+1 = 1

for n = 1, 2, 3, . . . . Prove that there exists a real number a such that xn+1 = axn − xn−1.

11. [Putnam 1993 A1] Suppose that a sequence (an)∞n=1 satisfies 0 < an ≤ a2n + a2n+1 for all n ≥ 1.
Show that

∑∞
n=1 an diverges.

12. [Putnam 1996 B1] Define a selfish set to a be a set which has its own cardinality (number of
elements) as an element. Find, with proof, the number of subsets of {1, 2, . . . , n} which are
minimal selfish sets, that is, selfish sets none of whose proper subsets are selfish.

13. [Putnam 1959 Morning 1] Let n be a positive integer. Prove that xn − (1/xn) is expressible as a
polynomial in x− (1/x) with real coefficients if and only if n is odd.


