Problem Solving Session
 Friday, November 22, 2013
 3:00pm-4:50pm in B650

Here are this week's polynomial problems:

1. In the expansion of $\left(x^{3}-2 x^{2}-x+2\right)^{4}$, what is...
(a) ...the constant term?
(b) ...the sum of the coefficients and the constant term?
(c) ...the coefficient of x ?
2. Find all ordered pairs of real numbers (x, y) that satisfy both $x^{3} y=-4$ and $2 x+x^{2} y=2$.
3. Find two real numbers x and y such that $x<y, x+y=4$, and $x^{3}+y^{3}=76$.
4. Find a polynomial with integer coefficients of which $\sqrt[3]{3}-\sqrt{2}$ is a root.
5. Find the number a with the property that $f(a)=a$ is a local minimum of

$$
f(x)=x^{4}-4 x^{3}+3 x^{2}+2 a x-1 .
$$

6. A polynomial of degree n whose variable is x is called monic if the coefficient of x^{n} is 1 . If $P(x)$ is a monic polynomial of degree 3 such that $P(1)=1, P(2)=4$, and $P(3)=9$, what is $P(4)$?
7. A monic polynomial is called peculiar if its coefficients are in arithmetic progression and its roots are integers. One example is $x^{2}-1$, whose coefficients are $1,0,-1$ and whose roots are -1 and 1 . Find all peculiar polynomials of degree 2.
8. Let a, b, c, d, and r be nonzero complex numbers such that r is a root of both

$$
a x^{3}+b x^{2}+c x+d=0 \quad \text { and } \quad b x^{3}+c x^{2}+d x+a=0 .
$$

Find all possible values of r.
9. Let $P(x)$ be a polynomial with integer coefficients that is equal to 2010 for four distinct integral values of x. Show that there is no integer x for which $P(x)$ is equal to 2007 .

