# Problem Solving Session <br> Friday, November 29, 2013 <br> 3:00pm-4:50pm in B650 

Here are this week's linear algebra problems:

1. In my cupboard is a bowl that contains five brands of multivitamins. Each day, I reach into it and take a couple of complete pills. Before I swallow them, I record the number of units of vitamins A, $B, C$, and $D$ that I will get from them by referring to this table:

| Brand | Vitamin A | Vitamin B | Vitamin C | Vitamin D |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 1 | 1 | 1 | 1 |
| 3 | 7 | 7 | 14 | 7 |
| 4 | 6 | 6 | 12 | 12 |
| 5 | 9 | 8 | 18 | 19 |

In October, I took a total of 564 units of vitamin A, 504 units of B, 1088 units of C, and 1098 units of $D$. How many of each brand of multivitamin did I consume last month?
2. While preparing practice problems, I created a matrix $A$ with integer entries and computed

$$
A^{2}=\left[\begin{array}{rr}
? & -6 \\
2 & 13
\end{array}\right]
$$

However, part of my answer got smudged. I also lost the matrix $A \ldots$...whoops! What could the missing entry in $A^{2}$ be? How many matrices could I have created?
3. A Hadamard matrix of order $n$ is an $n \times n$ matrix $A$ such that every entry is 1 or -1 and $A A^{T}=n I_{n}$. Find a Hadamard matrix of order 2. Explain why there is no Hadamard matrix of order 3.
4. Show that if $H$ is Hadamard, then $\left[\begin{array}{rr}H & H \\ -H & H\end{array}\right]$ is also Hadamard. Use this to find one of order 8 .
5. (Putnam 1991 A 2 ) Let $A$ and $B$ be different $n \times n$ matrices with real entries. If $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$, can $A^{2}+B^{2}$ be invertible?
6. Explain how real-valued matrices of the form $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ are like the complex numbers.
7. Calculate the determinant of the following matrix. This is known as the Vandermonde determinant of order $n$.

$$
V_{n}=\left|\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-2} & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-2} & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-2} & x_{n}^{n-1}
\end{array}\right|
$$

8. Show that $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{ccc}1 & a & b \\ a & a^{2} & a b \\ b & a b & b^{2}\end{array}\right]$.

Use this to find all the eigenvalues of $A$ including their algebraic and geometric multiplicities.
9. Let $A$ be a symmetric matrix. Show that if $\overrightarrow{\mathbf{x}}_{1}$ and $\overrightarrow{\mathbf{x}}_{2}$ are eigenvectors of $A$ corresponding to different eigenvalues, then $\overrightarrow{\mathbf{x}}_{1}$ and $\overrightarrow{\mathbf{x}}_{2}$ are orthogonal.
10. Let $\left\{M_{1}, M_{2}, M_{3} \ldots M_{k}\right\}$ be a linearly independent set of $n \times 1$ matrices. Show that the set containing the $k^{2}$ matrices of the form $M_{i} M_{j}^{T}$ is also linearly independent.
11. (Putnam 1990 B3) Let $S$ be a set of $2 \times 2$ integer matrices whose entries $a_{i j}$
(a) are all squares of integers and,
(b) satisfy $a_{i j} \leq 200$.

Show that if S has more than $50387\left(=15^{4}-15^{2}-15+2\right)$ elements, then it has two elements that commute.
12. (Putnam 2003 B1) Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?
13. (Putnam 2008 A2) Alan and Barbara play a game in which they take turns filling entries of an initially empty $2008 \times 2008$ array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if its is zero. Which player has a winning strategy?

