# Problem Solving Session <br> Friday, September 19, 2014 <br> 2:00pm-2:50pm in C630 

The $A M-G M$ inequality states that the arithmetic mean of nonnegative real numbers $x_{1}, x_{2}, \ldots x_{n}$ is greater than or equal to their geometric mean; that is,

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

Equality is achieved if and only if $x_{1}=x_{2}=\cdots=x_{n}$.

1. Prove the AM-GM inequality in the case of two variables i.e. $\frac{a+b}{2} \geq \sqrt{a b}$.
2. A farmer wants to fence in 60,000 square feet of land in a rectangular plot along a straight highway. The fence he plans to use along the highway costs $\$ 2$ per foot, while the fence for the other three sides costs $\$ 1$ per foot. How much of each type of fence will he have to buy in order to keep expenses to a minimum? What is the minimum expense?
3. Find the minimum value of $f(x)=\frac{144 x^{2} \sin ^{2} x+\pi^{2}}{x \sin x}$ on $(0, \pi)$.
4. Let the function $f$ be positive and continuous on $\mathbb{R}$ such that $f(x+1)=f(x)$ for all real $x$. Prove that

$$
\int_{0}^{1} \frac{f(x)}{f\left(x+\frac{1}{2}\right)} d x \geq 1
$$

5. Find the maximum value of $f(x)=(1-x)(1+x)(1+x)$ on $[0,1]$.
6. Given a rectangle of width $a$ and height $b$, use a straight edge and compass to construct a square of area $a b$.
