Problem Solving Session
 Friday, October 10, 2014
 2:00pm-2:50pm in C630

1. Find all the possible values of a / b where $a^{2}-6 a b+8 b^{2}=0$ and $b \neq 0$.
2. Find all integer solutions to $m^{2}=n^{6}+17$.
3. Let $P(x)=x^{2}+b x+c$ be a polynomial satisfying $P(P(-1))=P(P(2))=0$ and $P(-1) \neq P(2)$. Find $P(0)$.
4. Let $f(x)$ be a fourth degree monic polynomial such that $f(-1)=-1, f(2)=-4$, $f(3)=-9$, and $f(4)=-16$. Find $f(1)$.
5. How many positive solutions does $x^{5}+11 x^{4}+17 x^{3}-19 x^{2}=0$ have? How many positive integer solutions does it have?
6. Find relatively prime positive integers r and s such that $\frac{r}{s}=\frac{2(\sqrt{2}+\sqrt{10})}{5(\sqrt{3+\sqrt{5}})}$.
7. Find the smallest positive integer n such that $x^{4}+n^{2}$ is not prime for any integer x.
8. (B1 2005) Find a non-zero polynomial $P(x, y)$ such that $P(\lfloor t\rfloor,\lfloor 2 t\rfloor)=0$ for all real numbers t.
9. (B1 2004) Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. If r is a rational root of $p(x)$, show that the numbers $a_{n} r$, $a_{n} r^{2}+a_{n-1} r, \ldots, a_{n} r^{n}+a_{n-1} r^{n-1}+\ldots+a_{1} r$ are all integers.
