Problem Solving - October 24 - 2:00-2:50 - C630

Problems

Combinatorics: The art of counting permutations, combinations, symmetries and the like. Notation: $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}, n! = n(n-1)\cdots 2\cdot 1, 0! = 1.$

- 1. The following identities are true. Give algebraic or combinatorial proofs for them: for $k, n \in \mathbb{N}$
 - (i) $\binom{n}{k} = \binom{n}{k-1} + \binom{n-1}{k-1};$
 - (ii) (Pascal's Triangle) $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1};$
 - (iii) (Vandermonde's convolution formula) $\sum_{i=0}^{k} {m \choose i} {n \choose k-i} = {m+n \choose k};$
 - (iv) (Subsets of $\{1, 2, ..., n\}$) $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = 0;$
 - (v) $\sum_{k=1}^{n} k\binom{n}{k} = n2^{n-1}; \sum_{k=1}^{n} (-1)^k k\binom{n}{k} = 0;$
 - (vi) the number of *n*-tuples (x_1, x_2, \ldots, x_n) with $x_i \in \mathbb{N}$ and $x_1 + x_2 + \cdots + x_n = k$ is $\binom{n+k-1}{n-1}$;
 - (vii) $\sum_{i=0}^{k} \binom{n+i}{i} = \binom{n+k+1}{k}.$
- 2. A mother brings her five children to the Galaxy Cinemas arcade and gives them 30 tokens. In how many ways can she do this if ...
 - (i) ...all of the tokens are the same?
 - (ii) ... she has 9 Donkey Kong tokens, 10 Mario tokens, and 11 Sonic tokens?
 - (iii) ...all of the tokens are distinct?
- 3. (Wilson's theorem) Show that $(n-1)! \equiv -1 \pmod{n}$ if and only if n is a prime number.
- 4. (Putnam 1985 A1) Determine the number of ordered triples (A_1, A_2, A_3) such that
 - (i) $A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\};$
 - (ii) $A_1 \cap A_2 \cap A_3 = \emptyset$.
- 5. (Putnam 1992 B2) For non-negative integers n and k, define Q(n,k) to be the coefficient of x^k in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that

$$Q(n,k) = \sum_{j=0}^{k} \binom{n}{j} \binom{n}{k-2j}.$$

6. (Putnam 2000 B2) For n, m non-negative integers, prove

$$\frac{\gcd(m,n)}{n}\binom{n}{m} \in \mathbb{Z}.$$