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Abstract. In this paper, we prove that cyclic hamiltonian cycle systems of the complete
graph minus a 1-factor, Kn − I, exist if and only if n ≡ 2, 4( mod 8) and n 6= 2pα with p
prime and α ≥ 1.

1. Introduction

Throughout this paper, Kn will denote the complete graph on n vertices, Kn − I will
denote the complete graph on n vertices with a 1-factor I removed (a 1-factor is a 1-regular
spanning subgraph), and Cm will denote the m-cycle (v1, v2, . . . , vm). An m-cycle system of
a graph G is a set C of m-cycles in G whose edges partition the edge set of G. An m-cycle
system is called hamiltonian if m = |V (G)|.

Several obvious necessary conditions for an m-cycle system C of a graph G to exist are
immediate: m ≤ |V (G)|, the degrees of the vertices of G must be even, and m must divide
the number of edges in G. A survey on cycle systems is given in [11] and necessary and
sufficient conditions for the existence of an m-cycle system of Kn and Kn − I were given in
[1, 14] where it was shown that a m-cycle system of Kn or Kn−I exists if and only if n ≥ m,
every vertex of Kn or Kn − I has even degree, and m divides the number of edges in Kn or
Kn − I, respectively.

Throughout this paper, ρ will denote the permutation (0 1 . . . n − 1), so 〈ρ〉 = Zn.
An m-cycle system C of a graph G with vertex set Zn is cyclic if, for every m-cycle C =
(v1, v2, . . . , vm) in C, the m-cycle ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is also in C. An n-cycle
system C of a graph G with vertex set Zn is called a cyclic hamiltonian cycle system. Finding
necessary and sufficient conditions for cyclic m-cycle systems of Kn is an interesting problem
and has attracted much attention (see, for example, [2, 3, 4, 5, 7, 8, 9, 12]). The obvious
necessary conditions for a cyclic m-cycle system of Kn are the same as for an m-cycle system
of Kn; that is, n ≥ m ≥ 3, n is odd (so that the degree of every vertex is even), and m
must divide the number of edges in Kn. However, these conditions are no longer necessarily
sufficient. For example, it is not difficult to see that there is no cyclic decomposition of
K15 into 15-cycles. Also, if p is an odd prime and α ≥ 2, then Kpα cannot be decomposed
cyclically into pα-cycles [5].

The existence question for cyclic m-cycle systems of Kn has been completely settled in a
few small cases, namely m = 3 [10], 5 and 7 [12]. For even m and n ≡ 1(mod 2m), cyclic
m-cycle systems of Kn are constructed for m ≡ 0(mod 4) in [9] and for m ≡ 2(mod 4) in
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[12]. Both of these cases are handled simultaneously in [7]. For odd m and n ≡ 1(mod 2m),
cyclic m-cycle systems of Kn are found using different methods in [2, 4, 8]. In [3], as a
consequence of a more general result, cyclic m-cycle systems of Kn for all positive integers
m and n ≡ 1(mod 2m) with n ≥ m ≥ 3 are given using similar methods. Recently, it has
been shown [5] that a cyclic hamiltonian cycle system of Kn exists if and only if n 6= 15 and
n 6∈ {pα | p is an odd prime and α ≥ 2}. Thus, as a consequence of a result in [4], cyclic m-
cycle systems of K2mk+m exist for all m 6= 15 and m 6∈ {pα | p is an odd prime and α ≥ 2}.
In [15], the last remaining cases for cyclic m-cycle systems of K2mk+m are settled, i.e., it
is shown that, for k ≥ 1, cyclic m-cycle systems of K2km+m exist if m = 15 or m ∈ {pα |
p is an odd prime and α ≥ 2}.

These questions can be extended to the case when n is even by considering the graph
Kn− I. In [3], it is shown that for all integers m ≥ 3 and k ≥ 1, there exists a cyclic m-cycle
system of K2mk+2 − I if and only if mk ≡ 0, 3(mod 4). In this paper, we are interested in
cyclic hamiltonian cycle systems of Kn − I where n is necessarily even. The main result of
this paper is the following.

Theorem 1.1. For an even integer n ≥ 4, there exists a cyclic hamiltonian cycle system of
Kn − I if and only if n ≡ 2, 4(mod 8) and n 6= 2pα where p is prime and α ≥ 1.

Our methods involve circulant graphs and difference constructions. In Section 2, we give
some basic definitions and lemmas while the proof of Theorem 1.1 is given in Section 3.
In Lemma 3.1, we show that if there is a cyclic hamiltonian cycle system of Kn − I, then
n ≡ 2, 4(mod 8) and n 6= 2pα where p is prime and α ≥ 1. Lemmas 3.2 and 3.3 handle each
of these congruence classes modulo 8. Our main theorem then follows.

2. Preliminaries

The proof of Theorem 1.1 uses circulant graphs, which we now define. Let S be a subset
of Zn satisfying

(1) 0 6∈ S, and
(2) S = −S; that is, s ∈ S implies that −s ∈ S.

The circulant graph X(n; S) is defined to be that graph whose vertices are the elements of
Zn, with an edge between vertices g and h if and only if h = g + s for some s ∈ S. We call S
the connection set, and we will often write −s for n− s when n is understood. Notice that
the edge from g to g+s in this graph is generated by both s and −s, since g = (g+s)+(−s)
and −s ∈ S. Therefore, whenever S = S ′ ∪ −S ′, where S ′ ∩ −S ′ = {s ∈ S | s = −s}, every
edge of X(n; S) comes from a unique element of the set S ′. Hence we make the following
definition. In a circulant graph X(n; S), a set S ′ with the property that S = S ′ ∪ −S ′ and
S ′ ∩ −S ′ = {s ∈ S | s = −s} is called a set of edge lengths for X(n; S).

Notice that in order for a graph G to admit a cyclic m-cycle decomposition, G must be
a circulant graph, so circulant graphs provide a natural setting in which to construct cyclic
m-cycle decompositions.

The graph Kn is a circulant graph, since Kn = X(n; {1, 2, . . . , n − 1}). For n even,
Kn − I is also a circulant graph, since Kn − I = X(n; {1, 2, . . . , n − 1} \ {n/2}) (so the
edges of the 1-factor I are of the form {i, i + n/2} for i = 0, 1, . . . , (n − 2)/2). In fact, if
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n = a′b and gcd(a′, b) = 1, then we can view Zn as Za′ × Zb, using the group isomorphism
φ : Zn → Za′ × Zb defined by φ(k) = (k(mod a′), k(mod b)). We can therefore relabel both
the vertices and the edge lengths of the circulant graphs, using ordered pairs from Za′ × Zb,
rather than elements of Zn, by identifying elements of Zn with their images under φ. This
will prove a very useful tool in our results. Throughout Section 3, as n is even, we will use
the isomorphism φ with a′ = 2a for some a, and b odd.

Let H be a subgraph of a circulant graph X(n; S). For a fixed set of edge lengths S ′, the
notation `(H) will denote the set of edge lengths belonging to H, that is,

`(H) = {s ∈ S ′ | {g, g + s} ∈ E(H) for some g ∈ Zn}.
Many properties of `(H) are independent of the choice of S ′; in particular, neither of the
two lemmas in this section depends on the choice of S ′.

Let C be an m-cycle in X(n; S) and recall that the permutation ρ, which generates Zn,
has the property that ρ(C) ∈ C whenever C ∈ C. We can therefore consider the action of Zn

as a permutation group acting on the elements of C. Viewing matters this way, the length
of the orbit of C (under the action of Zn) can be defined as the least positive integer k such
that ρk(C) = C. Observe that such a k exists since ρ has finite order; furthermore, the
well-known orbit-stabilizer theorem (see, for example [6, Theorem 1.4A(iii)]) tells us that k
divides n. Thus, if G is a graph with a cyclic m-cycle system C with C ∈ C in an orbit of
length k, then it must be that k divides n = |V (G)| and that ρ(C), ρ2(C), . . . , ρk−1(C) are
distinct m-cycles in C, where ρ = (0 1 · · · n− 1).

The next lemma determines |`(C)|, where C is a cycle in a cyclic m-cycle system of a
graph G, and the number of edges of each edge length in `(C).

Lemma 2.1. Let C be a cyclic m-cycle system of a graph G of order n. If C ∈ C is in an
orbit of length k, then |`(C)| = mk/n. Furthermore, if ` ∈ `(C), then C has n/k edges of
length `.

Proof. Let C be a cyclic m-cycle system of a graph G of order n. Let C ∈ C in an orbit
of length k and let ` ∈ `(C). Thus, {i, i + `} ∈ E(C) for some i ∈ Zn. Without loss of
generality, we may assume that i = 0. Since ρk(C) = C, it follows that {k, k + `} ∈ E(C).
Likewise, {k, k + `} ∈ E(C) implies {2k, 2k + `} ∈ E(C). In fact, it must be the case that
{0, `}, {k, k + `}, {2k, 2k + `}, . . . , {n− k, n− k + `} are distinct edges of C. Thus, C has at
least n/k edges of length `.

If {j, j + `} ∈ E(C) with k - j, then by letting an appropriate power of ρk act on this
edge, we may assume without loss of generality that 0 < j < k. But ρj(C) ∈ C, so since
ρj(C) ∩ C 6= ∅, we must have ρj(C) = C, contradicting the fact that the length of the orbit
of C is k. So C must have exactly n/k edges of length `.

As the choice of ` ∈ `(C) was arbitrary, it follows that C has n/k edges of length t for all
t ∈ `(C). Since C has m edges, we have (n/k)|`(C)| = m, or |`(C)| = mk/n. �

In the case that m = n, Lemma 2.1 implies that a cycle in an orbit of length k has exactly
k distinct edge lengths. More generally, Lemma 2.1 also implies that n/k must divide m;
therefore, we have that (n/k) | gcd(m, n).

The next lemma determines the relationship between the length of the orbit of a cycle and
the edge lengths appearing on that cycle.
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Lemma 2.2. Let C be an n-cycle in a graph G with V (G) = Zn in an orbit of length k > 1.
Then for each ` ∈ `(C), we have that k - `.

Proof. Let C be an n-cycle in a graph G with V (G) = Zn in an orbit of length k > 1.
Suppose to the contrary there exists ` ∈ `(C) such that k | `. Then ρ`(C) = C. Without loss
of generality, we may assume that {0, `} ∈ E(C). Thus, {`, 2`}, {2`, 3`}, . . . are all edges of
C. If d = gcd(`, n) > 1, then C is a cycle of length n/d < n, a contradiction; otherwise C is
an n-cycle but ρ(C) = C, contradicting the fact that C is in an orbit of length k. Therefore,
k - `. �

Let X be a set of m-cycles in a graph G with vertex set Zn such that C = {ρi(C) | C ∈
X, i = 0, 1, . . . , n − 1} is an m-cycle system of G. Then X is called a starter set for C and
the m-cycles in X are called starter cycles. Clearly, every cyclic m-cycle system C of a graph
G has a starter set X as we may always let X = C. A starter set X is called a minimum
starter set if C ∈ X implies ρi(C) 6∈ X for 1 ≤ i ≤ n− 1.

Let C be a cyclic m-cycle system of a graph G with V (G) = Zn. To find a minimum starter
set X for C, we start by adding C1 to X if the length of the orbit of C1 is maximum among
the cycles in C. Next, we add C2 to X if the length of the orbit of C2 is maximum among
the cycles in C \ {ρi(C1) | 0 ≤ i ≤ n− 1}. Continuing in this manner, we add C3 to X if the
length of the orbit of C3 is maximum among the cycles in C \{ρi(C1), ρ

i(C2) | 0 ≤ i ≤ n−1}.
We continue in this manner until {ρi(C) | C ∈ X, 0 ≤ i ≤ n − 1} = C. Therefore, every
cyclic m-cycle system has a minimum starter set. Observe that if X is a minimum starter
set for a cyclic m-cycle system C of the graph X(n; S) and S ′ is a set of edge lengths, then
it must be that the collection of sets {`(C) | C ∈ X} forms a partition of S ′.

3. Proof of the Main Theorem

In this section, we will prove Theorem 1.1. We begin by determining the admissible values
of n in Lemma 3.1. Next, for those admissible values of n, we construct cyclic hamiltonian
cycles systems of Kn − I in Lemmas 3.2 and 3.3. The strategy we will adopt is as follows.
For n even, we will choose integers a and b so that n = 2ab with b odd and gcd(a, b) = 1.
We will then view Kn − I as a circulant graph labelled by the elements of Z2a × Zb. Let

S ′ = {(0, j), (a, j) | 1 ≤ j ≤ (b− 1)/2} ∪ {(i, k) | 1 ≤ i ≤ a− 1, 0 ≤ k ≤ b− 1},

and observe that |S ′| = (b− 1) + (a− 1)b = ab− 1 = (n− 2)/2. Now S ′ ∩ −S ′ = ∅, so that
X(n; φ−1(S ′ ∪ −S ′)) is an (n − 2)-regular graph so indeed X(n; φ−1(S ′ ∪ −S ′)) = Kn − I,
and φ−1(S ′) is a set of edge lengths of Kn − I, which becomes the set S ′ under relabelling.

Let ρ̂ = φρφ−1 and note that

ρ̂ = ((0, 0) (1, 1) (2, 2) · · · (2a− 1, b− 1))

generates Z2a ×Zb, that is, 〈ρ̂〉 = Z2a ×Zb. Let C be an m-cycle system of Kn − I where the
vertices have been labelled by the elements of Z2a × Zb such that C ∈ C implies ρ̂(C) ∈ C.
Then, clearly {φ−1(C) | C ∈ C} is a cyclic m-cycle system of Kn − I.

Next observe that if (e, f) ∈ S ′ has gcd(e, 2a) = 1 and gcd(f, b) = 1, then X (n; {±φ−1((e, f))}),
the subgraph consisting of the edges of length ±φ−1 ((e, f)), forms an n-cycle C with the
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property that ρ(C) = C. Let

T = {(i, j) ∈ S ′ | gcd(i, 2a) > 1 or gcd(j, b) > 1}.

To find a cyclic hamiltonian cycle system of Kn − I, it suffices to find a set X of n-cycles
such that {`(C) | C ∈ X} is a partition of T . Then the collection

C = {φ−1(C), ρ(φ−1(C)), . . . , ρn−1(φ−1(C)) | C ∈ X}∪{X
(
n; {±φ−1((e, f))}

)
| (e, f) ∈ S ′\T}

is a cyclic hamiltonian cycle system of Kn − I.
We now show that if Kn − I has a cyclic hamiltonian cycle system for n even, then n ≥ 4

with n ≡ 2, 4(mod 8) and n 6= 2pα where p is prime and α ≥ 1.

Lemma 3.1. For an even integer n ≥ 4, if there exists a cyclic hamiltonian cycle system of
Kn − I, then n ≡ 2, 4(mod 8) and n 6= 2pα where p is prime and α ≥ 1.

Proof. Let n ≥ 4 be an even integer and suppose that Kn − I has a cyclic hamiltonian cycle
system C. Let X be a minimum starter set for C and let C ∈ X be in an orbit of length k.
Let P : 0, v1, v2, . . . , vk be the subpath of C, starting at vertex 0, of length k. We wish to
show that the edge lengths of P are distinct. Suppose, to the contrary, that two edges of P
have the same length `. Then, since P, ρk(P ), ρ2k(P ), . . . , ρn−k(P ) are pairwise edge-disjoint
subpaths of C, it follows that C has 2n/k edges of length `, contradicting Lemma 2.1. Thus,
`(P ) = `(C).

Next, since ρik(P ) is a subpath of C, an n-cycle, for 1 ≤ i ≤ n/k − 1, it follows that
vk = jk for some positive integer j. Thus, P begins at vertex 0 and ends at vertex jk. Also,
since C is an n-cycle, we have that gcd(j, n/k) = 1. Suppose first that k is odd. Then n/k is
even since n is even. Thus, since gcd(j, n/k) = 1, it follows that j is odd. Hence jk is odd, so
that the number of odd edge lengths in `(C) is odd. Since |`(C)| = k is odd, it follows that
`(C) has an even number of even edge lengths. Next, if k is even, then jk is even so that
`(C) has an even number of odd edge lengths and hence `(C) must have an even number of
even edge lengths.

Thus, if C ∈ X, then `(C) has an even number of even edge lengths. Since {`(C) | C ∈ X}
is a partition of {1, 2, . . . , (n− 2)/2}, it follows that there must be an even number of even
integers in the set {1, 2, . . . , (n− 2)/2}. Since n is even, we have that n ≡ 2, 4(mod 8).

It remains to show that n 6= 2pα where p is prime and α ≥ 1. Suppose, to the contrary,
that n = 2pα for some prime p and α ≥ 1. Let X be a minimum starter set for C and
choose C ∈ X with 2pα−1 ∈ `(C) (replace S ′ by −S ′ if necessary to ensure that 2pα−1 ∈ S ′).
Suppose that C is in an orbit of length k. Then k | 2pα, and since Kn− I has 2pα(2pα−2)/2
edges and each cycle of C has 2pα edges, we must have |C| = pα − 1. It therefore follows
that 1 ≤ k < 2pα. Hence, k | 2pα−1, and by Lemma 2.2, we must have k = 1. But if
k = 1, then `(C) = {2pα−1} and since X(2pα; {±2pα−1}) consists of 2pα−1 p-cycles, we have
a contradiction. Therefore, n 6= 2pα where p is prime and α ≥ 1. �

We will handle each of the cases n ≡ 2(mod 8) and n ≡ 4(mod 8) separately. We begin
with the case n ≡ 4(mod 8) as this is the easier of the two cases.

Lemma 3.2. For n ≡ 4(mod 8), the graph Kn − I has a cyclic hamiltonian cycle system.
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Proof. Suppose that n ≡ 4(mod 8), say n = 8q + 4 for some nonnegative integer q. Since
K4 − I is a 4-cycle, we may assume that q ≥ 1. Now, Zn

∼= Z4 × Z2q+1 and thus we will
use φ to relabel the vertices of Kn − I = X(n; {1, . . . , n− 1} \ {n/2}) with the elements of
Z4 × Z2q+1. The set

S ′ = {(0, i), (2, i) | 1 ≤ i ≤ q} ∪ {(1, j) | 0 ≤ j ≤ 2q}

has the property that S ′ ∩−S ′ = ∅ and φ−1(S ′ ∪−S ′) = {1, 2, . . . , n− 1} \ {n/2}. Thus we
can think of the elements of S ′ as the edge lengths of the relabelled graph. If q is even, say
q = 2j for some positive integer j, define the walk P by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, j), (0,−j),

(2, j + 1), (0,−(j + 1)), (2, j + 2), (0,−(j + 2)), . . . , (2, q), (0,−q), (1, 0).

If q is odd, say q = 2j + 1 for some positive integer j, define the walk P by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, j), (0,−j), (0, j + 1),

(2,−(j + 1)), (0, j + 2), (2,−(j + 2)), . . . , (0, q), (2,−q), (3, 0).

In either case, note that the vertices of P , except for the first and the last, are dis-
tinct modulo 2q + 1 while the first and the last vertices are distinct modulo 4. There-
fore, P is a path. Next, the edge lengths of P , in the order they are encountered, are
(0, 1), (0, 2), . . . , (0, q), (2, q), (2, q − 1), . . . , (2, 1), (1, q). Let

C = P ∪ ρ̂2q+1(P ) ∪ ρ̂4q+2(P ) ∪ ρ̂6q+3(P ).

Then, clearly C is an n-cycle in an orbit of length 2q + 1 and

`(C) = {(0, 1), (0, 2), . . . , (0, q), (2, q), (2, q − 1), . . . , (2, 1), (1, q)}.

Now, let d0, d1, . . . , dt denote the integers with 0 ≤ dj < 2q and gcd(dj, 2q + 1) > 1. For
j = 0, 1, . . . , t, consider the walk Pj : (0, 0), (1, dj), (2, 2q). Clearly, Pj is a path and the edge
lengths of Pj, in the order they are encountered, are (1, dj), (1, 2q − dj). Let

Cj = Pj ∪ ρ̂2(Pj) ∪ ρ̂4(Pj) ∪ ρ̂6(P − j) ∪ · · · ρ̂8q+2(Pj).

Then Cj is an n-cycle in an orbit of length 2 and

`(Cj) = {(1, dj), (1, 2q − dj)}.

Since gcd(q, 2q + 1) = 1, we have that dj 6= q and thus `(C) ∩ `(Cj) = ∅ for 0 ≤ j ≤ t.
Let T = {`(C), `(C0), . . . , `(Ct)}. and let (e, f) ∈ S ′\T . Then e = 1 and gcd(f, 2q+1) = 1.

Thus,

X = {φ−1(C), φ−1(C0), . . . , φ
−1(Ct)} ∪ {X(n; {±φ−1((e, f))}) | (e, f) ∈ S ′ \ T}

is a minimum starter set for a cyclic hamiltonian cycle system of Kn − I. �

Before continuing, let Φ denote the Euler-phi function, that is, for a positive integer a,
Φ(a) denotes the number of integers n with 1 ≤ n ≤ a and gcd(n, a) = 1. For a positive
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integer a, Φ(a) is easily computed from the prime factorization of a. Let a = pk1
1 pk2

2 · · · pkt
t

where p1, p2, . . . , pt are distinct primes and k1, k2, . . . , kt are positive integers. Then

Φ(a) =
t∏

i=1

pki−1
i (pi − 1).

We now handle the case when n ≡ 2(mod 8).

Lemma 3.3. For n ≡ 2(mod 8) with n ≥ 4 and n 6= 2pα where p is prime and α ≥ 1, the
graph Kn − I has a cyclic hamiltonian cycle system.

Proof. Suppose that n ≡ 2(mod 8) with n 6= 2pα where p is prime and α ≥ 1, say n = 8q + 2
for some positive integer q. Let 4q+1 = pk1

1 pk2
2 · · · pkr

r qj1
1 qj2

2 · · · qjs
s where p1, p2, . . . , pr, q1, q2, . . . , qs

are all distinct primes with r, s ≥ 0, p1 < p2 < . . . < pr, pi ≡ 3(mod 4), ki ≥ 1 for 1 ≤ i ≤ r,
qi ≡ 1(mod 4), and ji ≥ 1 for 1 ≤ i ≤ s. Since n ≡ 2(mod 8), it follows that

∑
ki is even.

Case 1. Suppose that s ≥ 1, or some ki is even for 1 ≤ i ≤ r, or r > 2. Let

a =


qj1
1 if s ≥ 1,

pki
i if s = 0 and ki is even for some 1 ≤ i ≤ r, or

pk2
2 pk3

3 if s = 0, ki is odd for 1 ≤ i ≤ r, and r > 2.

Note that for each choice of a, we have that a ≡ 1(mod 4). Let b = (4q + 1)/a and observe
that gcd(a, b) = 1. Next, we will use φ to relabel the vertices of Kn − I = X(n; {1, . . . , n−
1} \ {n/2}) with the elements of Z2a × Zb. The set

S ′ = {(0, j), (a, j) | 1 ≤ j ≤ (b− 1)/2} ∪ {(i, j) | 1 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 1}

has the property that S ′ ∩−S ′ = ∅ and φ−1(S ′ ∪−S ′) = {1, 2, . . . , n− 1} \ {n/2}, so we can
think of the elements of S ′ as the edge lengths of the relabelled graph.

Let d1, d2, . . . , dt denote the integers with 1 ≤ dj < a and gcd(dj, 2a) > 1 and let
e1, e2, . . . , ea−1−t denote the integers in the set {1, 2, . . . , a − 1} \ {d1, d2, . . . , dt} so that
(ei, 2a) = 1 for 1 ≤ i ≤ a− 1− t. We will need to show that 2(a− 1− t) ≥ t + 1.

First, Φ(2a) is the number of integers n with 1 ≤ n ≤ 2a and gcd(n, 2a) = 1. Thus,
2a − Φ(2a) is the number of integers n with 1 ≤ n ≤ 2a and gcd(n, 2a) > 1 so that
(2a − Φ(2a))/2 is the number of integers n with 1 ≤ n ≤ a and gcd(n, 2a) > 1. Hence
t = (2a − Φ(2a))/2 − 1, since each di < a. Substituting t = (2a − Φ(2a))/2 − 1 into
2(a − 1 − t) ≥ t + 1, we obtain the inequality Φ(2a) ≥ 2a/3, which needs to be verified
for each choice of a above. Suppose first that a = qj1

1 . Then, since q1 ≥ 5 > 3 and
Φ(2a) = qj1−1

1 (q1 − 1), it easily follows that Φ(2a) ≥ 2a/3. Similarly, if a = pki
i , then again

Φ(2a) ≥ 2a/3 since pi ≥ 3. Next suppose that a = pk2
2 pk3

3 and observe that since p3 > p2 > p1,
it follows that p2 ≥ 7 and p3 ≥ 11. Now Φ(2a) ≥ 2a/3 is equivalent to Φ(2a)/a ≥ 2/3, and
since Φ(2a) = pk2−1

2 (p2− 1)pk3−1
3 (p3− 1), it follows that Φ(2a)/a = (p2− 1)(p3− 1)/(p2p3) ≥

60/77 > 2/3. Hence, Φ(2a) ≥ 2a/3 if a = pk2
2 pk3

3 .
Let b = 2m + 1 for some positive integer m. Since b = (4q + 1)/a and a ≡ 1(mod 4), we

also have b ≡ 1(mod 4), so m is even. Say m = 2j for some positive integer j, and define the
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walk P by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, j), (0,−j),

(a, j + 1), (0,−(j + 1)), (a, j + 2), (0,−(j + 2)), . . . , (a, m), (0,−m), (e1, 0).

Note that the vertices of P , except for the first and the last, are distinct modulo b, while
the first and the last vertices are distinct modulo 2a. Therefore, P is a path. Next, the
edge lengths of P , in the order they are encountered, are (0, 1), (0, 2), . . . , (0, m), (a, m),
(a, m− 1), . . . , (a, 1), (e1, m). Let

C = P ∪ ρ̂b(P ) ∪ ρ̂2b(P ) ∪ · · · ρ̂(2a−1)b(P ).

Since the last vertex of P is (e1, 0), and gcd(e1, 2a) = 1, we have that C is an n-cycle in an
orbit of length b where

`(C) = {(0, 1), (0, 2), . . . , (0, m), (a, m), (a, m− 1), . . . , (a, 1), (e1, m)}.
Now, define the walks P1, P2, . . . , Pt as follows for i = 1, 3, 5, . . .,

Pi : (0, 0), (di, 1), (0,−1), (di, 2), (0,−2), . . . , (di, m), (0,−m), (−e(i+1)/2, 0),

and

Pi+1 : (0, 0), (di+1, 1), (0,−1), (di+1, 2), (0,−2), . . . , (di+1, m), (0,−m), (e(i+1)/2+1, 0).

For j = 1, 2, . . . , t, the vertices of Pj, except for the first and the last, are distinct modulo b,
while the first and the last vertices are distinct modulo 2a. Therefore, Pj is a path. Next, the
edge lengths of Pj, in the order they are encountered, are (dj, 1), (dj, 2), . . . , (dj, m), (dj, m+
1), . . . , (dj, b− 1), and (e(j+1)/2, m + 1) if j is odd or (ej/2+1, m) if j is even. Let

Cj = Pj ∪ ρ̂b(Pj) ∪ ρ̂2b(Pj) ∪ · · · ρ̂(2a−1)b(Pj).

Since the last vertex (k, 0) of Pj, where k = −e(j+1)/2 or k = ej/2+1 has the property that
gcd(k, 2a) = 1, we have that Cj is an n-cycle in an orbit of length b where

`(Cj) = {(dj, 1), (dj, 2), . . . , (dj, m), (dj, m + 1), . . . , (dj, b− 1), (e(j+1)/2, m + 1)}
if j is odd, or

`(Cj) = {(dj, 1), (dj, 2), . . . , (dj, m), (dj, m + 1), . . . , (dj, b− 1), (ej/2+1, m)}
if j is even.

Define the set A = `(C)∪ `(C1)∪ `(C2)∪ · · · ∪ `(Ct). Now, A contains t+1 elements from
the set {(ei, m), (ei, m + 1) | 1 ≤ i ≤ a− 1− t}. Next

|{(ei, m), (ei, m + 1) | 1 ≤ i ≤ a− 1− t}| = 2(a− 1− t).

Since we have seen previously that 2(a − 1 − t) ≥ t + 1, it follows that there are enough
distinct values of ei to make edge lengths in A distinct, so |A| = (t + 1)b.

Let c1, c2, . . . , cx denote the integers with 1 ≤ cj < b and gcd(cj, b) > 1 for 1 ≤ j ≤ x. Fix j
with 1 ≤ j ≤ x and for i = 1, 2, . . . , a−1−t, consider the walk Pi,j : (0, 0), (ei, cj), (2ei, b−1).
Clearly, Pi,j is a path and the edge lengths of Pi,j, in the order they are encountered, are
(ei, cj), (ei, b− 1− cj). Let

Ci,j = Pi,j ∪ ρ̂2(Pi,j) ∪ ρ̂4(Pi,j) ∪ ρ̂6(Pi,j) ∪ · · · ρ̂2ab−2(Pi,j).
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Since gcd(ei, a) = 1, it follows that Ci,j is an n-cycle in an orbit of length 2 and

`(Ci,j) = {(ei, cj), (ei, b− 1− cj)}.

Define the set

B =
⋃

1 ≤ i ≤ a− 1− t
1 ≤ j ≤ x

`(Ci,j).

We want A ∩B = ∅. Now, if A ∩B 6= ∅, then as gcd(ck, b) > 1 for every k and b = 2m + 1,
we cannot have c = m or c = m + 1, so it must be the case that b− 1− ck = m + 1 for some
k with 1 ≤ k ≤ x. Thus ck = (b − 3)/2 = m − 1. In this case, for i = 1, 2, . . . , a − 1 − t,
define Pi,k : (0, 0), (ei, ck), (2ei, m) and create Ci,k as before. Thus

`(Ci,k) = {(ei, ck), (ei, 1)}.

Since gcd(2ei, 2a) = 2, it follows that Ci,k will be an n-cycle in an orbit of length 2. Thus
A ∩B = ∅.

Finally, consider the path P ′ : (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), . . . , ((a−1)/2, 0), (−(a−
1)/2, 0), (a, 1) and let

C ′ = P ′ ∪ ρ̂a(P ′) ∪ ρ̂2a(P ′) ∪ · · · ∪ ρ̂a(2b−1)(P ′).

Since gcd(1, b) = 1, we have that C ′ is an n-cycle in an orbit of length a and

`(C ′) = {(1, 0), (2, 0), . . . , (a− 1, 0), ((a + 1)/2, b− 1)}.

Since a ≡ 1(mod 4) we have that gcd((a+1)/2, 2a) = 1 and therefore ((a+1)/2, b−1) 6∈ A∪B.
Let T = S ′ \ (A ∪B ∪ `(C ′)) and let (e, f) ∈ T . Then, it must be that gcd(e, 2a) = 1 and

gcd(f, b) = 1. Thus,

X = {φ−1(C), φ−1(C1), . . . φ
−1(Ct), φ

−1(C1,1), φ
−1(C1,2), . . . , φ

−1(C1,x), φ
−1(C2,1), φ

−1(C2,2),

. . . , φ−1(C2,x), . . . , φ
−1(Ca−1−t,1), φ

−1(Ca−1−t,2), . . . , φ
−1(Ca−1−t,x), φ

−1(C ′)}⋃
{X(n; {±φ−1((e, f))}) | (e, f) ∈ T}

is a minimum starter set for for a cyclic hamiltonian cycle system of Kn − I.

Case 2. Suppose that s = 0, ki is odd for 1 ≤ i ≤ r, and r = 2. Thus n = 2pk1
1 pk2

2 where k1

and k2 are odd. In this case, we will let a = pk1
1 , b = pk2

2 and use φ to relabel the vertices of
Kn − I = X(n; {1, . . . , n− 1} \ {n/2}) with the elements of Z2a × Zb. The set

S ′ = {(0, j), (a, j) | 1 ≤ j ≤ (b− 1)/2} ∪ {(i, j) | 1 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 1}

has the property that φ−1(S ′) is a set of edge lengths of Kn − I, so we can think of the
elements of S ′ as the edge lengths of the relabelled graph.

Let d1, d2, . . . , dt denote the integers with 1 ≤ dj < a and gcd(dj, 2a) > 1 and let
e1, e2, . . . , ea−1−t denote the integers in the set {1, 2, . . . , a − 1} \ {d1, d2, . . . , dt} so that
gcd(ei, 2a) = 1 for 1 ≤ i ≤ a− 1− t. In this case, note that as p1 ≡ 3(mod 4) and k1 is odd,
gcd((a + 1)/2, 2a) = 2 so that (a + 1)/2 ∈ {d1, d2, . . . , dt}. Without loss of generality, let
d1 = (a + 1)/2 and e1 = 1.
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Since k2 is odd and p2 ≡ 3(mod 4), it follows that b = pk2
2 = 4j + 3 for some positive

integer j. Define the walk P by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, j), (0,−j), (0, j + 1), (a,−(j + 1)),

(0, j + 2), (a,−(j + 2)), . . . , (0, 2j + 1), (a,−(2j + 1)), ((3a + 1)/2, 0).

Note that the vertices of P , except for the first and the last, are distinct modulo b, while
the first and the last vertices are distinct modulo 2a. Therefore, P is a path. Next, the edge
lengths of P , in the order they are encountered, are (0, 1), (0, 2), . . . , (0, 2j + 1), (a, 2j + 1),
(a, 2j), . . . , (a, 1), ((a + 1)/2, 2j + 1). Let

C = P ∪ ρ̂b(P ) ∪ ρ̂2b(P ) ∪ · · · ρ̂(2a−1)b(P ).

Since the last vertex ((3a + 1)/2, 0) of P has the property that gcd((3a + 1)/2, 2a) = 1, we
have that C is an n-cycle in an orbit of length b where

`(C) = {(0, 1), (0, 2), . . . , (0, 2j + 1), (a, 2j + 1), (a, 2j), . . . , (a, 1), ((a + 1)/2, 2j + 1)}.
Define the walk P1 by

P1 : (0, 0), ((a + 1)/2, 1), (0,−1), ((a + 1)/2, 2), (0,−2), . . . , ((a + 1)/2, j), (0,−j),

(1, j + 1), (1− (a + 1)/2,−(j + 1)), (1, j + 2), (1− (a + 1)/2,−(j + 2)),

. . . , (1, 2j + 1), (0,−(2j + 1)), (ea−1−t, 0).

Now, for i = 2, 3, . . . , t− 1, define the walk Pi by

Pi : (0, 0), (di, 1), (0,−1), (di, 2), (0,−2), . . . , (di, 2j + 1), (0,−(2j + 1)), (e(i+1)/2, 0),

if i is odd, or

Pi : (0, 0), (di, 1), (0,−1), (di, 2), (0,−2), . . . , (di, 2j + 1), (0,−(2j + 1)), (−ei/2, 0)

if i is even. Define the walk Pt by

Pt : (0, 0), (dt, 1), (0,−1), (dt, 2), (0,−2), . . . , (dt, 2j + 1), (0,−(2j + 1)), (−ea−1−t, 0).

For i = 1, 2, . . . , t, the vertices of Pi, except for the first and the last, are distinct modulo b,
while the first and the last vertices are distinct modulo 2a. Therefore, Pi is a path. Next, the
edge lengths of Pi for i 6= 1, in the order they are encountered, are (di, 1), (di, 2), . . . , (di, 2j +
1), (di, 2j + 2), . . . , (di, b − 1), and (e(i+1)/2, 2j + 1) if 1 < i < t is odd, (ei/2, 2j + 2) if
i < t is even, or (ea−1−t, 2j + 2) if i = t. For i = 1, the edge lengths of Pi, in the order
they are encountered, are (di, 1), (di, 2), . . . , (di, 2j), (1, 2j +1), (di, 2j +2), . . . , (di, b−1), and
(ea−1−t, 2j + 1). Let

Ci = Pi ∪ ρ̂b(Pi) ∪ ρ̂2b(Pi) ∪ · · · ρ̂(2a−1)b(Pi).

Since the last vertex (`, 0) of Pi has the property that gcd(`, 2a) = 1, we have that Ci is an
n-cycle in an orbit of length b where

`(Ci) = {(di, 1), (di, 2), . . . , (di, 2j + 1), (di, 2j + 2), . . . , (di, b− 1), (e(i+1)/2, 2j + 1)}
if i is odd and 1 < i < t,

`(Ci) = {(di, 1), (di, 2), . . . , (di, 2j + 1), (di, 2j + 2), . . . , (di, b− 1), (ei/2, 2j + 2)}
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if i is even and 1 < i < t,

`(Ci) = {(di, 1), (di, 2), . . . , (di, 2j), (1, 2j + 1), (di, 2j + 2), . . . , (1, b− 1), (ea−1−t, 2j + 1)}
if i = 1, or

`(Ci) = {(di, 1), (di, 2), . . . , (di, 2j + 1), (di, 2j + 2), . . . , (di, b− 1), (ea−1−t, 2j + 2)}
if i = t.

Define the set A = `(C)∪ `(C1)∪ `(C2)∪ · · · ∪ `(Ct). Now, A contains t+1 elements from
the set {(ei, 2j + 1), (ei, 2j + 2) | 1 ≤ i ≤ a− 1− t}. Again

|{(ei, 2j + 1), (ei, 2j + 2) | 1 ≤ i ≤ a− 1− t}| = 2(a− 1− t).

As in Case 1, t = (2a−Φ(2a))/2 where in this case a = pk1
1 , and we need 2(a−1− t) ≥ t+1.

Since p1 ≥ 3, the inequality follows. So there are enough distinct values of ei to make edge
lengths in A distinct and therefore |A| = (t + 1)b.

Let c1, c2, . . . , cx denote the integers with 1 ≤ cj < b and gcd(cj, b) > 1 for 1 ≤ j ≤ x. Fix j
with 1 ≤ j ≤ x and for i = 1, 2, . . . , a−1−t, consider the walk Pi,j : (0, 0), (ei, cj), (2ei, b−1).
Clearly, Pi,j is a path and the edge lengths of Pi,j, in the order they are encountered, are
(ei, cj), (ei, b− 1− cj). Let

Ci,j = Pi,j ∪ ρ̂2(Pi,j) ∪ ρ̂4(Pi,j) ∪ ρ̂6(Pi,j) ∪ · · · ρ̂2ab−2(Pi,j).

Since gcd(ei, a) = 1, it follows that Ci,j is an n-cycle in an orbit of length 2 and

`(Ci,j) = {(ei, cj), (ei, b− 1− cj)}.
Define the set

B =
⋃

1 ≤ i ≤ a− 1− t

1 ≤ j ≤ x

`(Ci,j).

We want A ∩ B = ∅. Now, if A ∩ B 6= ∅, then as gcd(ck, b) > 1 for every k and b = 4j + 3,
we cannot have c = 2j + 1 or c = 2j + 2, so it must be the case that b− 1− ck = 2j + 2 for
some k with 1 ≤ k ≤ x. Then ck = (b− 3)/2. This implies that 3 | pk2

2 since gcd(ck, p
k2
2 ) > 1.

This is impossible since p2 ≥ 7.
Finally, consider the path P ′ : (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), . . . , ((a−1)/2, 0), (−(a−

1)/2, 0), (a, 1) and let

C ′ = P ′ ∪ ρ̂a(P ′) ∪ ρ̂2a(P ′) ∪ · · · ∪ ρ̂a(2b−1)(P ′).

Since gcd(1, b) = 1, it follows that C ′ is an n-cycle in an orbit of length a and

`(C ′) = {(1, 0), (2, 0), . . . , (a− 1, 0), ((a + 1)/2, b− 1)}.
Let T = S ′ \ (A ∪B ∪ `(C ′)) and let (e, f) ∈ T . Then, it must be that gcd(e, 2a) = 1 and

gcd(f, b) = 1. Thus,

X = {φ−1(C), φ−1(C1), . . . φ
−1(Ct), φ

−1(C1,1), φ
−1(C1,2), . . . , φ

−1(C1,x), φ
−1(C2,1), φ

−1(C2,2),

. . . , φ−1(C2,x), . . . , φ
−1(Ca−1−t,1), φ

−1(Ca−1−t,2), . . . , φ
−1(Ca−1−t,x), φ

−1(C ′)}⋃
{X(n; {±φ−1((e, f))}) | (e, f) ∈ T}

is a minimum starter set for for a cyclic hamiltonian cycle system of Kn − I.
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�

Theorem 1.1 now follows from Lemmas 3.1, 3.2, and 3.3.
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