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1 Introduction

It is not known which circulant digraphs have hamiltonian cycles; this is a fun-
damental open question. However, the circulants of outdegree 3 are the small-
est ones that need to be considered, because a classic result of R. A. Rankin
(see Theorem 2.7) provides a nice characterization for circulants of outdegree 2
(and any strongly connected digraph of outdegree 1 is obviously hamiltonian).

S. C. Locke and D. Witte [1] found two infinite families of non-hamiltonian
circulant digraphs of outdegree 3. One of the families includes the following
examples, which require introducing a piece of notation.

Notation 1.1 For S ⊂ Z, we use Circ(n; S) to denote the circulant digraph
whose vertex set is Zn, and with an arc from v to v + s for each v ∈ Zn and
s ∈ S.

Theorem 1.2 (Locke-Witte, cf. [1, Thm. 1.4])

(1) Circ(6m; 2, 3, 3m + 2) is not hamiltonian if and only if m is even.
(2) Circ(6m; 2, 3, 3m + 3) is not hamiltonian if and only if m is odd.

In this paper, we completely characterize which loopless digraphs of the form
Circ(n; 2, 3, c) that have outdegree 3 are hamiltonian:

Theorem 1.3 Assume c 6≡ 0, 2, 3 (mod n). The digraph Circ(n; 2, 3, c) is not
hamiltonian iff

(1) n is a multiple of 6, so we may write n = 6m,
(2) either c = 3m + 2 or c = 3m + 3, and
(3) c is even.
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The direction (⇐) of Theorem 1.3 is a restatement of part of the Locke-Witte
Theorem (1.2), so we need only prove the opposite direction.
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2 Preliminaries

Our goal is to establish Theorem 1.3(⇒). We will prove the contrapositive.

Assumption 2.1 Throughout the paper:

(1) We assume the situation of Theorem 1.3, so n, c ∈ Z+, and c 6≡ 0, 2, 3
(mod n).

(2) We may assume c 6≡ 1,−1 (mod n). (Otherwise, Circ(n; 2, 3, c) has a
hamiltonian cycle consisting entirely of arcs of length c.)

(3) Since the vertices of Circ(n; 2, 3, c) are elements of Zn, we may assume
3 < c < n.

(4) We assume n is divisible by 6. (Otherwise, Circ(n; 2, 3, c) has either a
hamiltonian cycle consisting entirely of arcs of length 2 or a hamiltonian
cycle consisting entirely of arcs of length 3.)

(5) We write n = 6m.

Notation 2.2 Let H be a subdigraph of Circ(n; 2, 3, c), and let v be a vertex
of H.

(1) We let d+
H(v) and d−H(v) denote the number of arcs of H directed out of,

and into, vertex v, respectively.
(2) If d+

H(v) = 1, and the arc from v to v + a is in H, then we say that v
travels by a in H.

Notation 2.3 Let u, w be integers representing vertices of Circ(n; 2, 3, c). If
u − 1 ≤ w < u + n, let I(u, w) = {u, u + 1, . . . , w} be the interval of vertices
from u to w. (Note that I(u, u) = {u} and I(u, u− 1) = ∅.)

Notation 2.4 For v1, v2 ∈ Zn and s ∈ {2, 3,−c′}, we use

• v1
s v2 to denote the arc from v1 to v1 + s = v2, and

• v1
s v2 to denote a path of the form v1, v1 + s, v1 +2s, . . . , v1 + ks = v2.
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We now treat two simple cases that do not conform to the more general struc-
tures that we deal with in later sections.

Lemma 2.5 The digraph Circ(6m; 2, 3, 6m− 2) has a hamiltonian cycle.

PROOF. For 0 ≤ i ≤ m− 1, define the path Q6i as follows:

6i 2 6i + 4 3 6i + 7 6m− 2 6i + 3 3 6i + 6.

Notice that this path starts at vertex 6i, ends at vertex 6i + 6, and uses one
vertex from every other equivalence class modulo 6. It is therefore straight-
forward to verify that the concatenation of the paths Q0, Q6, . . . , Q6m−6 is a
hamiltonian cycle.

Lemma 2.6 The digraph Circ(6m; 2, 3, 6m− 3) has a hamiltonian cycle.

PROOF. The following is a hamiltonian cycle in this digraph:

0 3 6m−6 2 6m−4 6m− 3 2 2 4 3 6m−5 2 1 6m− 3 6m−2 2 0.

The path from 0 to 6m− 6, together with 6m− 3 (which immediately follows
6m− 5) uses all of the vertices that are 0 (mod 3); the path from 6m− 4 to
2, together with 6m − 1 (which immediately follows 6m − 3) uses all of the
vertices that are 2 (mod 3), and the path from 4 to 6m − 5, together with 1
and 6m− 2, uses all of the vertices that are 1 (mod 3).

Although we do not use it in this paper, we recall the following elegant result
that was mentioned in the introduction:

Theorem 2.7 (R. A. Rankin, 1948, [2, Thm. 4]) The circulant digraph
Circ(n; a, b) of outdegree 2 has a hamiltonian cycle iff there exist s, t ∈ Z+,
such that

• s + t = gcd(n, a− b), and
• gcd(n, sa + tb) = 1.

3 Most cases of the proof

In this section, we prove the following two results that cover most of the cases
of Theorem 1.3:
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Proposition 3.1 If c > 3m, then Circ(6m; 2, 3, c) has a hamiltonian cycle.

Proposition 3.2 If c ≤ 3m and c 6≡ 3 (mod 6), then Circ(6m; 2, 3, c) has a
hamiltonian cycle.

Notation 3.3 For convenience, let c′ = 6m− c, so 1 ≤ c′ < 6m− 3, and

Circ(6m; 2, 3, c) = Circ(6m; 2, 3,−c′).

In fact, since the cases c = 6m− 3, 6m− 2 and c ≡ −1 (mod n) have already
been addressed, we may assume that c′ > 3.

Remark 3.4 The use of c′ is very convenient when c is large (so one should
think of c′ as being small — less than 3m), but it can also be helpful in some
other cases.

Definition 3.5 A subdigraph P of Circ(n; 2, 3,−c′) is a pseudopath from u
to w if P is the disjoint union of a path from u to w and some number (per-
haps 0) of cycles. In other words, if v is a vertex of P , then

d+
P (v) =

0 if v = w;

1 otherwise;
and d−P (v) =

0 if v = u;

1 otherwise.

Definition 3.6 Let u, w be integers representing vertices of Circ(n; 2, 3, c). If
u + c′ + 2 ≤ w ≤ u + 2c′, let P (u, w) be the pseudopath from u + 1 to w − 1
whose vertex set is I(u, w), such that v travels by


2, if v ∈ I(u, w − c′ − 3) ∪ I(u + c′ + 1, w − 2),

3, if v ∈ I(w − c′ − 2, u + c′ − 1),

−c′, if v ∈ {u + c′, w}.

Notice that the range of values for w makes sense because c′ > 3.

Lemma 3.7 P (u, w) is a path if any of the following hold:

• w − u ≡ 2c′ (mod 3); or
• w − u ≡ 2c′ + 1 (mod 3) and w − u ≡ c′ (mod 2); or
• w − u ≡ 2c′ + 2 (mod 3) and w − u 6≡ c′ (mod 2).

PROOF. To simplify the notation slightly, let us assume (without loss of
generality) that u = 0.

Case 1 Assume w − c′ ≡ c′ (mod 3).
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Choose ε ∈ {1, 2}, such that w − c′ − ε− 1 is even. The path in P (u, w) is

1 2 w − c′ − ε 3 c′ − ε + 3 2 w −c′ w − c′

3 c′ −c′ 0 2 w − c′ + ε− 3 3 c′ + ε 2 w − 1.

This contains both of the c-arcs, so there are no cycles in P (u, w).

Case 2 Assume there exists ε ∈ {1, 2}, such that w− c′− ε ≡ c′ (mod 3) and
w − c′ − ε− 1 is even.

The path in P (u, w) is

1 2 w − c′ − ε 3 c′ −c′ 0 2 w − c′ + ε− 3

3 c′ − ε + 3 2 w −c′ w − c′ 3 c′ + ε 2 w − 1.

This contains both of the c-arcs, so there are no cycles in P (u, w).

Lemma 3.8 Let k ∈ Z be such that

• k ≤ 6m,
• c′ + 3 ≤ k ≤ 2c′ + 2, and
• k + c′ 6≡ 3 (mod 6).

Let u, w be integers representing vertices of Circ(n; 2, 3, c). Then for all u, w
with u ≤ w and w − u + 1 = k, the subgraph induced by I(u, w) has a hamil-
tonian path that starts at u + 1 and ends in {w − 1, w}.

PROOF. We consider three cases.

Case 1 Assume k ≡ 2c′ + 1 (mod 3).

We have w − u = k − 1 ≡ 2c′ (mod 3). Since k − 1 6∈ {2c′ + 1, 2c′ + 2}, we
must have w−u = k−1 ≤ 2c′). By Lemma 3.7, P (u, w) is a hamiltonian path
from u + 1 to w − 1.

Case 2 Assume k ≡ 2c′ + 2 (mod 3).

Suppose, first, that k 6= c′ + 3 (so k ≥ c′ + 4). Letting w′ = w − 1, then

w′ − u = w − u− 1 = k − 2 ≥ (c′ + 4)− 2 = c′ + 2

and w′ − u = (w − 1)− u = k − 2 ≡ 2c′ (mod 3). By Lemma 3.7, P (u, w′) is
a hamiltonian path in I(u, w′) from u + 1 to w′ − 1. Adding the 2-arc from
w′ − 1 to w′ + 1 = w yields a hamiltonian path in I(u, w) from u + 1 to w.
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Suppose instead that k = c′ + 3. Then w − u = k − 1 ≡ 2c′ + 1 (mod 3) and
w − u = k − 1 = (c′ + 3) − 1 ≡ c′ (mod 2), so by Lemma 3.7, P (u, w) is a
hamiltonian path from u + 1 to w − 1.

Case 3 Assume k ≡ 2c′ (mod 3).

By assumption, we have k + c′ ≡ 2c′ + c′ ≡ 0 (mod 3). Since k + c′ 6≡ 3
(mod 6), we must have k + c′ ≡ 0 (mod 6), so k ≡ c′ (mod 2). Then w− u =
k−1 ≡ 2c′+2 (mod 3) and w−u ≡ k−1 6≡ k ≡ c′ (mod 2), so by Lemma 3.7,
P (u, w) is a hamiltonian path from u + 1 to w − 1.

It is now easy to prove Propositions 3.2 and 3.1.

PROOF OF PROPOSITION 3.2. As previously mentioned, we may as-
sume c > 3. Since 3 < c ≤ 3m, we have 3m ≤ c′ < 6m− 3, so

c′ + 3 < 6m < 2c′ + 2.

Furthermore, since c 6≡ 3 (mod 6), we have

6m + c′ ≡ c′ 6≡ 3 (mod 6).

Hence, Lemma 3.8 implies that the interval I(0, 6m − 1) has a hamiltonian
path from 1 to 6m− 2 or to 6m− 1. Inserting the 3-edge from 6m− 2 to 1 or
the 2-edge from 6m− 1 to 1, yields a hamiltonian cycle. Since I(0, 6m− 1) is
the entire digraph, this completes the proof.

PROOF OF PROPOSITION 3.1. We have already dealt with the cases
c = 6m − 2 (in Lemma 2.5), c = 6m − 3 (in Lemma 2.6), and the cases
6m ∈ {2c′ + 4, 2c′ + 6} are dealt with by Theorem 1.2. Furthermore, we noted
earlier that the case c = 6m− 1 is clearly hamiltonian, so we may assume in
what follows that c < 6m− 3 and 6m /∈ {2c′ + 4, 2c′ + 6}.

Let K be the set of integers k that satisfy the conditions of Lemma 3.8. Note
that c′ < 3m.

We claim that n can be written as a sum n = k1 + k2 + · · · + ks, with each
ki ∈ K. To see this, begin by noting that c′+4 ∈ K (and 5 of any 6 consecutive
integers between c′ + 3 and 2c′ + 2, inclusive, belong to K). Thus, we may
assume n < 2(c′ + 4) = 2c′ + 8, for otherwise it is easy to write n as a sum
of integers in K. Since n is even, and n /∈ {2c′ + 4, 2c′ + 6}, we conclude that
n = 2c′ +2 ∈ K. So n is obviously a sum of elements of K. This completes the
proof of the claim.
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The preceding paragraph implies that we may cover the vertices of Circ(n; 2, 3, c)
by a disjoint collection of intervals I(ui, wi), such that the number of vertices
in I(ui, wi) is ki. By listing the intervals in their natural order, we may assume
ui+1 = wi + 1. By Proposition 3.8, the vertices of I(ui, wi) can be covered by
a path Pi that starts at ui + 1 and ends in {wi − 1, wi}. Since

(ui+1 + 1)− wi = (wi + 2)− wi = 2

and
(ui+1 + 1)− (wi − 1) = (wi + 2)− (wi − 1) = 3,

there is an arc from the terminal vertex of Pi to the initial vertex of Pi+1.
Thus, by adding a number of 2-arcs and/or 3-arcs, we may join all of the paths
P1, P2, . . . , Ps into a single cycle that covers all of the vertices of Circ(n; 2, 3, c).
Thus, we have constructed a hamiltonian cycle.

4 The remaining cases

In this section, we prove the following result. Combining it with Propos-
tions 3.1 and 3.2 (and Theorem 1.2) completes the proof of Theorem 1.3.

Proposition 4.1 If c ≤ 3m and c ≡ 3 (mod 6), then Circ(6m; 2, 3, c) has a
hamiltonian cycle.

Definition 4.2 Let t be any natural number, such that 0 ≤ 6t ≤ c− 9.

(1) Let

`1 = c− 5,

`2 = `2(t) = c− 1 + 6t,

`3 = c− 2,

`4 = c + 3.

(2) Define subdigraphs Q1, Q2, Q3 and Q4 of Circ(6m; 2, 3, c) as follows:
• The vertex set of Qi is I(0, `i + 2) ∪ {`i + 5}.

• In Q1, vertex v travels by


c, if v = 0;

2, if v = 1 or 2;

3, if v = 3, 4, . . . , c− 6.

• In Q2, vertex v travels by


c, if v = 1 or 6t + 4;

2, if v = 2 or 6t + 5 ≤ v ≤ c− 2;

3, if v = 0 or 3 ≤ v ≤ 6t + 3 or c− 1 ≤ v ≤ c− 2 + 6t.

• In Q3, vertex v travels by

c, if v = 1 or 3;

2, if v = 1, 2 or 4 ≤ v ≤ c− 3.
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• In Q4, vertex v travels by


c, if v = 2 or 8;

2, if 9 ≤ v ≤ c− 1;

3, if v = 0, 1 or 3 ≤ v ≤ 7 or c ≤ v ≤ c + 2.

Notation 4.3 For ease of later referral, we also let `i(t) denote `i for i ∈
{1, 3, 4}.

Lemma 4.4

(1) Each Qi is the union of four disjoint paths from {0, 1, 2, 5} to {`i, `i +
1, `i + 2, `i + 5}.

(2) Indeed, if we
• let u1 = 0, u2 = 1, u3 = 2, u4 = 5, and wi,j = `i + uj, and
• define permutations

σ1 = (1423), σ2 = (234), σ3 = (1324), and σ4 = identity,

then Qi contains a path from uj to wi,σi(j) for j = 1, 2, 3, 4.

PROOF. The paths in Q1 are:

0 c c (= `1 + 5),

1 2 3 3 c− 3 (= `1 + 2),

2 2 4 3 c− 5 (= `1),

5 3 c− 4 (= `1 + 1).

The paths in Q2 are:

0 3 6t + 6 2 c− 1 3 c− 1 + 6t (= `2),

1 c c + 1 3 c + 1 + 6t (= `2 + 2),

2 2 4 3 6t + 4 c c + 4 + 6t (= `2 + 5),

5 3 6t + 5 2 c 3 c + 6t (= `2 + 1).

The paths in Q3 are:

0 c c (= `3 + 2),

1 2 3 c c + 3 (= `3 + 5),

2 2 c− 1 (= `3 + 1),

5 2 c− 2 (= `3).
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The paths in Q4 are:

0 3 9 2 c 3 c + 3 (= `4),

1 3 10 2 c + 1 3 c + 4 (= `4 + 1),

2 c c + 2 3 c + 5 (= `4 + 2),

5 3 8 c c + 8 (= `4 + 5).

The above lemma yields the following conclusion:

Lemma 4.5 If, for some natural number k, there exist sequences

• I = (i1, i2, . . . , ik) with each ij ∈ {1, 2, 3, 4}, and
• T = (t1, t2, . . . , tk) with 0 ≤ 6tj ≤ c− 9, for each j,

such that

(i)
∑k

j=1 `ij(tj) = 6m, and
(ii) the permutation product σi1σi2 · · ·σik is a cycle of length 4,

then Circ(6m; 2, 3, c) has a hamiltonian cycle constructed by concatenating
copies of Q1, Q2, Q3, and Q4.

PROOF OF PROPOSITION 4.1. Since σ4 is the identity and `4 = c+3,
we see that if Circ(6m; 2, 3, c) has a hamiltonian cycle constructed by concate-
nating copies of Q1, Q2, Q3, and Q4, then Circ(6m+ c+3; 2, 3, c) also has such
a hamiltonian cycle. Thus, by subtracting some multiple of c + 3 from 6m, we
may assume

2c− 6 ≤ 6m ≤ 3c− 9.

(For this modified c, it is possible that c > 3m.)

Recall that 0 ≤ 6t ≤ c − 9, so 2c − 6 + 6t can be any multiple of 6 between
2c− 6 and 3c− 15. Since σ1σ2 = (1243) and `1 + `2(t) = 2c− 6 + 6t, it follows
that Circ(6m; 2, 3, c) has a hamiltonian cycle constructed by concatenating
one copy of Q1 and one copy of Q2 whenever 2c− 6 ≤ 6m ≤ 3c− 15.

The only case that remains is when 6m = 3c − 9. Now σ1σ
2
3 = (1324) and

`1 + 2`3 = 3c − 9, so Circ(3c − 9; 2, 3, c) has a hamiltonian cycle constructed
by concatenating one copy of Q1 and two copies of Q3.
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