Hamiltonian cycles in circulant digraphs with jumps 2, 3, c [We need a real title???]

Abstract

[We need an abstract???]

1 Introduction

It is not known which circulant digraphs have hamiltonian cycles; this is a fundamental open question. However, the circulants of outdegree 3 are the smallest ones that need to be considered, because a classic result of R. A. Rankin (see Theorem 2.7) provides a nice characterization for circulants of outdegree 2 (and any strongly connected digraph of outdegree 1 is obviously hamiltonian).
S. C. Locke and D. Witte [1] found two infinite families of non-hamiltonian circulant digraphs of outdegree 3 . One of the families includes the following examples, which require introducing a piece of notation.

Notation 1.1 For $S \subset \mathbb{Z}$, we use $\operatorname{Circ}(n ; S)$ to denote the circulant digraph whose vertex set is \mathbb{Z}_{n}, and with an arc from v to $v+s$ for each $v \in \mathbb{Z}_{n}$ and $s \in S$.

Theorem 1.2 (Locke-Witte, cf. [1, Thm. 1.4])
(1) $\operatorname{Circ}(6 m ; 2,3,3 m+2)$ is not hamiltonian if and only if m is even.
(2) $\operatorname{Circ}(6 m ; 2,3,3 m+3)$ is not hamiltonian if and only if m is odd.

In this paper, we completely characterize which loopless digraphs of the form $\operatorname{Circ}(n ; 2,3, c)$ that have outdegree 3 are hamiltonian:

Theorem 1.3 Assume $c \not \equiv 0,2,3(\bmod n)$. The digraph $\operatorname{Circ}(n ; 2,3, c)$ is not hamiltonian iff
(1) n is a multiple of 6 , so we may write $n=6 m$,
(2) either $c=3 m+2$ or $c=3 m+3$, and
(3) c is even.

The direction (\Leftarrow) of Theorem 1.3 is a restatement of part of the Locke-Witte Theorem (1.2), so we need only prove the opposite direction.

Acknowledgements

The work of D.W.M. and J.M. was partially supported by research grants from Canada's National Science and Engineering Research Council.

2 Preliminaries

Our goal is to establish Theorem $1.3(\Rightarrow)$. We will prove the contrapositive.
Assumption 2.1 Throughout the paper:
(1) We assume the situation of Theorem 1.3, so $n, c \in \mathbb{Z}^{+}$, and $c \not \equiv 0,2,3$ $(\bmod n)$.
(2) We may assume $c \not \equiv 1,-1(\bmod n)$. (Otherwise, $\operatorname{Circ}(n ; 2,3, c)$ has a hamiltonian cycle consisting entirely of arcs of length c.)
(3) Since the vertices of $\operatorname{Circ}(n ; 2,3, c)$ are elements of \mathbb{Z}_{n}, we may assume $3<c<n$.
(4) We assume n is divisible by 6. (Otherwise, $\operatorname{Circ}(n ; 2,3, c)$ has either a hamiltonian cycle consisting entirely of arcs of length 2 or a hamiltonian cycle consisting entirely of arcs of length 3.)
(5) We write $n=6 m$.

Notation 2.2 Let H be a subdigraph of $\operatorname{Circ}(n ; 2,3, c)$, and let v be a vertex of H.
(1) We let $d_{H}^{+}(v)$ and $d_{H}^{-}(v)$ denote the number of arcs of H directed out of, and into, vertex v, respectively.
(2) If $d_{H}^{+}(v)=1$, and the arc from v to $v+a$ is in H, then we say that v travels by a in H.

Notation 2.3 Let u, w be integers representing vertices of $\operatorname{Circ}(n ; 2,3, c)$. If $u-1 \leq w<u+n$, let $I(u, w)=\{u, u+1, \ldots, w\}$ be the interval of vertices from u to w. (Note that $I(u, u)=\{u\}$ and $I(u, u-1)=\emptyset$.)

Notation 2.4 For $v_{1}, v_{2} \in \mathbb{Z}_{n}$ and $s \in\left\{2,3,-c^{\prime}\right\}$, we use

- $v_{1} \xrightarrow[s]{ } v_{2}$ to denote the arc from v_{1} to $v_{1}+s=v_{2}$, and
- v_{1}----- v_{2} to denote a path of the form $v_{1}, v_{1}+s, v_{1}+2 s, \ldots, v_{1}+k s=v_{2}$.

We now treat two simple cases that do not conform to the more general structures that we deal with in later sections.

Lemma 2.5 The digraph $\operatorname{Circ}(6 m ; 2,3,6 m-2)$ has a hamiltonian cycle.

PROOF. For $0 \leq i \leq m-1$, define the path $Q_{6 i}$ as follows:

$$
6 i-2--6 i+4 \underline{3} 6 i+7^{6 \underline{m}---2} 6 i+3 \underline{3} 6 i+6 .
$$

Notice that this path starts at vertex $6 i$, ends at vertex $6 i+6$, and uses one vertex from every other equivalence class modulo 6 . It is therefore straightforward to verify that the concatenation of the paths $Q_{0}, Q_{6}, \ldots, Q_{6 m-6}$ is a hamiltonian cycle.

Lemma 2.6 The digraph $\operatorname{Circ}(6 m ; 2,3,6 m-3)$ has a hamiltonian cycle.

PROOF. The following is a hamiltonian cycle in this digraph:

The path from 0 to $6 m-6$, together with $6 m-3$ (which immediately follows $6 m-5)$ uses all of the vertices that are $0(\bmod 3)$; the path from $6 m-4$ to 2 , together with $6 m-1$ (which immediately follows $6 m-3$) uses all of the vertices that are $2(\bmod 3)$, and the path from 4 to $6 m-5$, together with 1 and $6 m-2$, uses all of the vertices that are $1(\bmod 3)$.

Although we do not use it in this paper, we recall the following elegant result that was mentioned in the introduction:

Theorem 2.7 (R. A. Rankin, 1948, [2, Thm. 4]) The circulant digraph $\operatorname{Circ}(n ; a, b)$ of outdegree 2 has a hamiltonian cycle iff there exist $s, t \in \mathbb{Z}^{+}$, such that

- $s+t=\operatorname{gcd}(n, a-b)$, and
- $\operatorname{gcd}(n, s a+t b)=1$.

3 Most cases of the proof

In this section, we prove the following two results that cover most of the cases of Theorem 1.3:

Proposition 3.1 If $c>3 m$, then $\operatorname{Circ}(6 m ; 2,3, c)$ has a hamiltonian cycle.
Proposition 3.2 If $c \leq 3 m$ and $c \not \equiv 3(\bmod 6)$, then $\operatorname{Circ}(6 m ; 2,3, c)$ has a hamiltonian cycle.

Notation 3.3 For convenience, let $c^{\prime}=6 m-c$, so $1 \leq c^{\prime}<6 m-3$, and

$$
\operatorname{Circ}(6 m ; 2,3, c)=\operatorname{Circ}\left(6 m ; 2,3,-c^{\prime}\right)
$$

In fact, since the cases $c=6 m-3,6 m-2$ and $c \equiv-1(\bmod n)$ have already been addressed, we may assume that $c^{\prime}>3$.

Remark 3.4 The use of c^{\prime} is very convenient when c is large (so one should think of c^{\prime} as being small - less than $3 m$), but it can also be helpful in some other cases.

Definition 3.5 A subdigraph P of $\operatorname{Circ}\left(n ; 2,3,-c^{\prime}\right)$ is a pseudopath from u to w if P is the disjoint union of a path from u to w and some number (perhaps 0) of cycles. In other words, if v is a vertex of P, then

$$
d_{P}^{+}(v)=\left\{\begin{array}{ll}
0 & \text { if } v=w ; \\
1 & \text { otherwise } ;
\end{array} \quad \text { and } \quad d_{P}^{-}(v)= \begin{cases}0 & \text { if } v=u \\
1 & \text { otherwise }\end{cases}\right.
$$

Definition 3.6 Let u, w be integers representing vertices of $\operatorname{Circ}(n ; 2,3, c)$. If $u+c^{\prime}+2 \leq w \leq u+2 c^{\prime}$, let $P(u, w)$ be the pseudopath from $u+1$ to $w-1$ whose vertex set is $I(u, w)$, such that v travels by

$$
\left\{\begin{aligned}
2, & \text { if } v \in I\left(u, w-c^{\prime}-3\right) \cup I\left(u+c^{\prime}+1, w-2\right) \\
3, & \text { if } v \in I\left(w-c^{\prime}-2, u+c^{\prime}-1\right) \\
-c^{\prime}, & \text { if } v \in\left\{u+c^{\prime}, w\right\}
\end{aligned}\right.
$$

Notice that the range of values for w makes sense because $c^{\prime}>3$.
Lemma 3.7 $P(u, w)$ is a path if any of the following hold:

- $w-u \equiv 2 c^{\prime}(\bmod 3)$; or
- $w-u \equiv 2 c^{\prime}+1(\bmod 3)$ and $w-u \equiv c^{\prime}(\bmod 2)$; or
- $w-u \equiv 2 c^{\prime}+2(\bmod 3)$ and $w-u \not \equiv c^{\prime}(\bmod 2)$.

PROOF. To simplify the notation slightly, let us assume (without loss of generality) that $u=0$.

Case 1 Assume $w-c^{\prime} \equiv c^{\prime}(\bmod 3)$.

Choose $\varepsilon \in\{1,2\}$, such that $w-c^{\prime}-\varepsilon-1$ is even. The path in $P(u, w)$ is

$$
\begin{aligned}
& 1-2-w-c^{\prime}-\varepsilon-3-c^{\prime}-\varepsilon+3-2-\underline{c}^{\prime} w-c^{\prime} \\
& \quad 3-c^{\prime} \underline{c}^{\prime} 0 \text {---- } w-c^{\prime}+\varepsilon-3 \text {--- } c^{\prime}+\varepsilon-2--w-1 .
\end{aligned}
$$

This contains both of the c-arcs, so there are no cycles in $P(u, w)$.
Case 2 Assume there exists $\varepsilon \in\{1,2\}$, such that $w-c^{\prime}-\varepsilon \equiv c^{\prime}(\bmod 3)$ and $w-c^{\prime}-\varepsilon-1$ is even.

The path in $P(u, w)$ is

$$
\begin{aligned}
& 1-2--w-c^{\prime}-\varepsilon-3--c^{\prime}-c^{\prime} 0-2--w-c^{\prime}+\varepsilon-3 \\
& \\
& \quad 3-c^{\prime}-\varepsilon+3-2--w c^{\prime} w-c^{\prime}-3-c^{\prime}+\varepsilon-2--w-1 .
\end{aligned}
$$

This contains both of the c-arcs, so there are no cycles in $P(u, w)$.

Lemma 3.8 Let $k \in \mathbb{Z}$ be such that

- $k \leq 6 m$,
- $c^{\prime}+3 \leq k \leq 2 c^{\prime}+2$, and
- $k+c^{\prime} \not \equiv 3(\bmod 6)$.

Let u, w be integers representing vertices of $\operatorname{Circ}(n ; 2,3, c)$. Then for all u, w with $u \leq w$ and $w-u+1=k$, the subgraph induced by $I(u, w)$ has a hamiltonian path that starts at $u+1$ and ends in $\{w-1, w\}$.

PROOF. We consider three cases.
Case 1 Assume $k \equiv 2 c^{\prime}+1(\bmod 3)$.
We have $w-u=k-1 \equiv 2 c^{\prime}(\bmod 3)$. Since $k-1 \notin\left\{2 c^{\prime}+1,2 c^{\prime}+2\right\}$, we must have $\left.w-u=k-1 \leq 2 c^{\prime}\right)$. By Lemma 3.7, $P(u, w)$ is a hamiltonian path from $u+1$ to $w-1$.

Case 2 Assume $k \equiv 2 c^{\prime}+2(\bmod 3)$.
Suppose, first, that $k \neq c^{\prime}+3$ (so $k \geq c^{\prime}+4$). Letting $w^{\prime}=w-1$, then

$$
w^{\prime}-u=w-u-1=k-2 \geq\left(c^{\prime}+4\right)-2=c^{\prime}+2
$$

and $w^{\prime}-u=(w-1)-u=k-2 \equiv 2 c^{\prime}(\bmod 3)$. By Lemma 3.7, $P\left(u, w^{\prime}\right)$ is a hamiltonian path in $I\left(u, w^{\prime}\right)$ from $u+1$ to $w^{\prime}-1$. Adding the 2 -arc from $w^{\prime}-1$ to $w^{\prime}+1=w$ yields a hamiltonian path in $I(u, w)$ from $u+1$ to w.

Suppose instead that $k=c^{\prime}+3$. Then $w-u=k-1 \equiv 2 c^{\prime}+1(\bmod 3)$ and $w-u=k-1=\left(c^{\prime}+3\right)-1 \equiv c^{\prime}(\bmod 2)$, so by Lemma 3.7, $P(u, w)$ is a hamiltonian path from $u+1$ to $w-1$.

Case 3 Assume $k \equiv 2 c^{\prime}(\bmod 3)$.
By assumption, we have $k+c^{\prime} \equiv 2 c^{\prime}+c^{\prime} \equiv 0(\bmod 3)$. Since $k+c^{\prime} \not \equiv 3$ $(\bmod 6)$, we must have $k+c^{\prime} \equiv 0(\bmod 6)$, so $k \equiv c^{\prime}(\bmod 2)$. Then $w-u=$ $k-1 \equiv 2 c^{\prime}+2(\bmod 3)$ and $w-u \equiv k-1 \not \equiv k \equiv c^{\prime}(\bmod 2)$, so by Lemma 3.7, $P(u, w)$ is a hamiltonian path from $u+1$ to $w-1$.

It is now easy to prove Propositions 3.2 and 3.1.

PROOF OF PROPOSITION 3.2. As previously mentioned, we may assume $c>3$. Since $3<c \leq 3 m$, we have $3 m \leq c^{\prime}<6 m-3$, so

$$
c^{\prime}+3<6 m<2 c^{\prime}+2
$$

Furthermore, since $c \not \equiv 3(\bmod 6)$, we have

$$
6 m+c^{\prime} \equiv c^{\prime} \not \equiv 3 \quad(\bmod 6)
$$

Hence, Lemma 3.8 implies that the interval $I(0,6 m-1)$ has a hamiltonian path from 1 to $6 m-2$ or to $6 m-1$. Inserting the 3 -edge from $6 m-2$ to 1 or the 2 -edge from $6 m-1$ to 1 , yields a hamiltonian cycle. Since $I(0,6 m-1)$ is the entire digraph, this completes the proof.

PROOF OF PROPOSITION 3.1. We have already dealt with the cases $c=6 m-2$ (in Lemma 2.5), $c=6 m-3$ (in Lemma 2.6), and the cases $6 m \in\left\{2 c^{\prime}+4,2 c^{\prime}+6\right\}$ are dealt with by Theorem 1.2. Furthermore, we noted earlier that the case $c=6 m-1$ is clearly hamiltonian, so we may assume in what follows that $c<6 m-3$ and $6 m \notin\left\{2 c^{\prime}+4,2 c^{\prime}+6\right\}$.

Let \mathcal{K} be the set of integers k that satisfy the conditions of Lemma 3.8. Note that $c^{\prime}<3 m$.

We claim that n can be written as a sum $n=k_{1}+k_{2}+\cdots+k_{s}$, with each $k_{i} \in \mathcal{K}$. To see this, begin by noting that $c^{\prime}+4 \in \mathcal{K}$ (and 5 of any 6 consecutive integers between $c^{\prime}+3$ and $2 c^{\prime}+2$, inclusive, belong to \mathcal{K}). Thus, we may assume $n<2\left(c^{\prime}+4\right)=2 c^{\prime}+8$, for otherwise it is easy to write n as a sum of integers in \mathcal{K}. Since n is even, and $n \notin\left\{2 c^{\prime}+4,2 c^{\prime}+6\right\}$, we conclude that $n=2 c^{\prime}+2 \in \mathcal{K}$. So n is obviously a sum of elements of \mathcal{K}. This completes the proof of the claim.

The preceding paragraph implies that we may cover the vertices of $\operatorname{Circ}(n ; 2,3, c)$ by a disjoint collection of intervals $I\left(u_{i}, w_{i}\right)$, such that the number of vertices in $I\left(u_{i}, w_{i}\right)$ is k_{i}. By listing the intervals in their natural order, we may assume $u_{i+1}=w_{i}+1$. By Proposition 3.8, the vertices of $I\left(u_{i}, w_{i}\right)$ can be covered by a path P_{i} that starts at $u_{i}+1$ and ends in $\left\{w_{i}-1, w_{i}\right\}$. Since

$$
\left(u_{i+1}+1\right)-w_{i}=\left(w_{i}+2\right)-w_{i}=2
$$

and

$$
\left(u_{i+1}+1\right)-\left(w_{i}-1\right)=\left(w_{i}+2\right)-\left(w_{i}-1\right)=3
$$

there is an arc from the terminal vertex of P_{i} to the initial vertex of P_{i+1}. Thus, by adding a number of 2 -arcs and/or 3 -arcs, we may join all of the paths $P_{1}, P_{2}, \ldots, P_{s}$ into a single cycle that covers all of the vertices of $\operatorname{Circ}(n ; 2,3, c)$. Thus, we have constructed a hamiltonian cycle.

4 The remaining cases

In this section, we prove the following result. Combining it with Propostions 3.1 and 3.2 (and Theorem 1.2) completes the proof of Theorem 1.3.

Proposition 4.1 If $c \leq 3 m$ and $c \equiv 3(\bmod 6)$, then $\operatorname{Circ}(6 m ; 2,3, c)$ has a hamiltonian cycle.

Definition 4.2 Let t be any natural number, such that $0 \leq 6 t \leq c-9$.
(1) Let

$$
\begin{aligned}
\ell_{1} & =c-5, \\
\ell_{2} & =\ell_{2}(t)=c-1+6 t, \\
\ell_{3} & =c-2 \\
\ell_{4} & =c+3 .
\end{aligned}
$$

(2) Define subdigraphs Q_{1}, Q_{2}, Q_{3} and Q_{4} of $\operatorname{Circ}(6 m ; 2,3, c)$ as follows:

- The vertex set of Q_{i} is $I\left(0, \ell_{i}+2\right) \cup\left\{\ell_{i}+5\right\}$.
- In Q_{1}, vertex v travels by $\begin{cases}c, & \text { if } v=0 ; \\ 2, & \text { if } v=1 \text { or } 2 ; \\ 3, & \text { if } v=3,4, \ldots, c-6 .\end{cases}$
- In Q_{2}, vertex v travels by $\begin{cases}c, & \text { if } v=1 \text { or } 6 t+4 ; \\ 2, & \text { if } v=2 \text { or } 6 t+5 \leq v \leq c-2 ; \\ 3, & \text { if } v=0 \text { or } 3 \leq v \leq 6 t+3 \text { or } c-1 \leq v \leq c-2+6 t .\end{cases}$
- In Q_{3}, vertex v travels by $\begin{cases}c, & \text { if } v=1 \text { or } 3 ; \\ 2, & \text { if } v=1,2 \text { or } 4 \leq v \leq c-3 .\end{cases}$
- In Q_{4}, vertex v travels by $\begin{cases}c, & \text { if } v=2 \text { or } 8 ; \\ 2, & \text { if } 9 \leq v \leq c-1 ; \\ 3, & \text { if } v=0,1 \text { or } 3 \leq v \leq 7 \text { or } c \leq v \leq c+2 .\end{cases}$

Notation 4.3 For ease of later referral, we also let $\ell_{i}(t)$ denote ℓ_{i} for $i \in$ $\{1,3,4\}$.

Lemma 4.4

(1) Each Q_{i} is the union of four disjoint paths from $\{0,1,2,5\}$ to $\left\{\ell_{i}, \ell_{i}+\right.$ $\left.1, \ell_{i}+2, \ell_{i}+5\right\}$.
(2) Indeed, if we

- let $u_{1}=0, u_{2}=1, u_{3}=2, u_{4}=5$, and $w_{i, j}=\ell_{i}+u_{j}$, and
- define permutations

$$
\sigma_{1}=(1423), \sigma_{2}=(234), \sigma_{3}=(1324), \text { and } \sigma_{4}=\text { identity },
$$

then Q_{i} contains a path from u_{j} to $w_{i, \sigma_{i}(j)}$ for $j=1,2,3,4$.

PROOF. The paths in Q_{1} are:

$$
\begin{aligned}
& 0 \xrightarrow{c} c \quad\left(=\ell_{1}+5\right), \\
& 1 \underline{2} 3 \text { - }-c-3 \quad\left(=\ell_{1}+2\right) \text {, } \\
& 2 \underline{2} 4 \text {-3 - } c-5 \quad\left(=\ell_{1}\right) \text {, } \\
& 5 \text {-3 - } c-4 \quad\left(=\ell_{1}+1\right) \text {. }
\end{aligned}
$$

The paths in Q_{2} are:

$$
\begin{aligned}
& 0-3-6 t+6-2-c-1-3-1+6 t \quad\left(=\ell_{2}\right), \\
& 1 \frac{c}{-} c+1-3-c+1+6 t \quad\left(=\ell_{2}+2\right) \\
& 2 \underline{2} 4-3-6 t+4 \frac{c}{2} c+4+6 t \quad\left(=\ell_{2}+5\right), \\
& 5-3-6 t+5-2-c-3-c+6 t \quad\left(=\ell_{2}+1\right) .
\end{aligned}
$$

The paths in Q_{3} are:

$$
\begin{aligned}
& 0 \frac{c}{2} c \quad\left(=\ell_{3}+2\right) \\
& 1 \underline{2} 3 \stackrel{c}{c} c+3 \quad\left(=\ell_{3}+5\right) \\
& 2--2-c-1 \quad\left(=\ell_{3}+1\right) \\
& 5-2-c-2 \quad\left(=\ell_{3}\right)
\end{aligned}
$$

The paths in Q_{4} are:

$$
\begin{aligned}
& 0 \text {-3-- } 9 \text {--2-- } c \text { } \underline{3}_{c} c+3 \quad\left(=\ell_{4}\right) \text {, } \\
& 1 \text {-3 } 10 \text {--2 } c+1 \quad \underline{3} c+4 \quad\left(=\ell_{4}+1\right) \text {, } \\
& 2 \underline{c} c+2 \underline{3} c+5 \quad\left(=\ell_{4}+2\right) \text {, } \\
& 5 \underline{3} 8 \underline{c} c+8 \quad\left(=\ell_{4}+5\right) \text {. }
\end{aligned}
$$

The above lemma yields the following conclusion:
Lemma 4.5 If, for some natural number k, there exist sequences

- $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with each $i_{j} \in\{1,2,3,4\}$, and
- $T=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ with $0 \leq 6 t_{j} \leq c-9$, for each j,
such that
(i) $\sum_{j=1}^{k} \ell_{i_{j}}\left(t_{j}\right)=6 m$, and
(ii) the permutation product $\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}$ is a cycle of length 4 ,
then $\operatorname{Circ}(6 m ; 2,3, c)$ has a hamiltonian cycle constructed by concatenating copies of Q_{1}, Q_{2}, Q_{3}, and Q_{4}.

PROOF OF PROPOSITION 4.1. Since σ_{4} is the identity and $\ell_{4}=c+3$, we see that if $\operatorname{Circ}(6 m ; 2,3, c)$ has a hamiltonian cycle constructed by concatenating copies of Q_{1}, Q_{2}, Q_{3}, and Q_{4}, then $\operatorname{Circ}(6 m+c+3 ; 2,3, c)$ also has such a hamiltonian cycle. Thus, by subtracting some multiple of $c+3$ from $6 m$, we may assume

$$
2 c-6 \leq 6 m \leq 3 c-9
$$

(For this modified c, it is possible that $c>3 m$.)
Recall that $0 \leq 6 t \leq c-9$, so $2 c-6+6 t$ can be any multiple of 6 between $2 c-6$ and $3 c-15$. Since $\sigma_{1} \sigma_{2}=(1243)$ and $\ell_{1}+\ell_{2}(t)=2 c-6+6 t$, it follows that $\operatorname{Circ}(6 m ; 2,3, c)$ has a hamiltonian cycle constructed by concatenating one copy of Q_{1} and one copy of Q_{2} whenever $2 c-6 \leq 6 m \leq 3 c-15$.

The only case that remains is when $6 m=3 c-9$. Now $\sigma_{1} \sigma_{3}^{2}=(1324)$ and $\ell_{1}+2 \ell_{3}=3 c-9$, so $\operatorname{Circ}(3 c-9 ; 2,3, c)$ has a hamiltonian cycle constructed by concatenating one copy of Q_{1} and two copies of Q_{3}.

References

[1] Stephen C. Locke and Dave Witte: On non-hamiltonian circulant digraphs of outdegree three, J. Graph Theory 30 (1999), no. 4, 319-331. MR1669452
[2] R. A. Rankin: A campanological problem in group theory, Proc. Cambridge Philos. Soc. 44 (1948) 17-25. MR0022846

